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Abstract. Ozone (O3) pollution poses an escalating threat to
rice production and food security in China, with concentra-
tions projected to rise under future climate scenarios. Accu-
rately quantifying O3 impacts on rice is thus crucial for in-
formed agricultural planning. This study is the first to utilise
free-air concentration enrichment (FACE) observations spe-
cific to rice for calibrating a crop model (Joint UK Land En-
vironment Simulator with crops, JULES-crop) and assessing
the impacts of O3. FACE experiments, which involve grow-
ing crops under natural field conditions while exposing them
to elevated O3 levels, provide an ideal approach for study-
ing the effects of O3 on crops. Utilising data from the only
O3-FACE facility dedicated to rice, we calibrated physiolog-
ical and O3-response parameters in JULES-crop and eval-
uated the model against additional independent FACE ob-
servations. The calibration establishes this as the first crop
model refined with ideal open-air field observations, signif-
icantly enhancing its capability to simulate rice growth pro-
cesses and O3-induced yield losses and surpassing the per-
formance of simulations based on the default parameters in
JULES-crop. With this newly calibrated model, JULES-crop
is now equipped to assess the impacts of O3 on agriculture,
offering a valuable tool to inform mitigation strategies.

1 Introduction

Rice is a staple food for over half of the world’s population
and plays a crucial role in global food security. The rising
concentration of ozone (O3) is a major concern, contribut-
ing to significant losses in crop production worldwide (Van
Dingenen et al., 2009). Mills et al. (2018) estimated that the
average global yield loss of rice due to O3 was 4.4 % be-
tween 2010 and 2012. In China, O3 caused relative rice yield
losses of 6.2 %–52.9 % between 2014 and 2018 and of 23 %
between 2017 and 2019 (Feng et al., 2022; Xu et al., 2021).
Consequently, assessing the impact of O3 on rice growth is
essential, especially as O3-polluted areas overlap with crop-
growing regions and pose a long-term threat to food security
(Emberson et al., 2018).

The main O3 dose-response functions used to assess rice
yield loss include concentration-based methods, such as the
accumulated dose of O3 over 40 ppb (AOT40) and the daily
mean 7 h concentrations (M7), and flux-based methods, such
as the phytotoxic O3 dose (POD) (Tai et al., 2021). Both
concentration-based and flux-based methods can establish
a relationship with relative yield loss based on field ex-
periments. The relationship between relative yield loss and
O3 level, known as the O3 response function, is a valuable
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tool that underpins extensive research into crop yield losses
caused by O3 exposure (Ramya et al., 2023).

Some crop models have incorporated O3 parameters to
better understand O3’s impacts (Guarin et al., 2024; Leung
et al., 2020; Ewert and Porter, 2000). For instance, the Deci-
sion Support System for Agrotechnology Transfer (DSSAT)
crop model established an O3 stress factor using the M7 met-
ric (Guarin et al., 2024). GLAM-ROC simulated O3 effects
by reducing evapotranspiration, transpiration efficiency, and
the harvest index based on AOT40 metric (Droutsas et al.,
2020). The Joint UK Land Environment Simulator with crops
(JULES-crop) integrated a flux-based O3 damage scheme de-
veloped by Sitch et al. (2007) to assess reductions in net pho-
tosynthesis. Flux-based methods account for stomatal con-
ductance and environmental conditions, such as tempera-
ture and the vapour pressure deficit, to modify O3 uptake
and thus directly link the absorbed O3 dose to physiological
damage. Compared with concentration-based methods, flux-
based methods exhibit enhanced performance in correlating
O3 levels with relative yield loss, enabling more precise as-
sessments (Pleijel et al., 2004, 2022; Mills et al., 2011; Ro-
nan et al., 2020). Nonetheless, O3-related parameters in crop
models require calibration to ensure reliable performance,
even when using a flux-based O3 scheme.

Open-top chambers (OTCs) and free-air concentration en-
richment (FACE) experiments are two major methods used
to help calibrate parameters in crop models. State-of-the-
art FACE experiments, which provide more natural environ-
ments for crops, are ideal for establishing O3 exposure met-
rics and investigating the impacts of O3 on crops (Montes et
al., 2022; Feng et al., 2018). To date, only four O3-FACE fa-
cilities have been established for crops worldwide (Montes
et al., 2022): wheat and rice experiments in China (Tang et
al., 2011), wheat experiments in India (Yadav et al., 2019),
grape experiments in Italy (Moura et al., 2023), and soybean
experiments in the United States (Aspray et al., 2023). How-
ever, the rice-specific O3-FACE experiment has not yet been
used to calibrate any crop models.

The parameterisation of crops in JULES was developed by
Osborne et al. (2015). JULES-crop incorporates flux-based
O3 exposure metrics to analyse the loss of accumulated car-
bon based on the exact O3 flux entering the crop stomata,
which is influenced by environmental conditions (Sitch et al.,
2007). The impact of O3 on crops is also reflected in reduc-
tions in crop height, leaf area index (LAI), and crop yields.
Additionally, Tai et al. (2021) highlighted that mechanistic
crop models such as JULES-crop can combine the fertilisa-
tion effects of atmospheric carbon dioxide (CO2) with O3
influence. Thus, JULES-crop is a suitable tool for investigat-
ing the effects of O3 on crops, accounting for environmen-
tal factors that modify the mechanisms of O3 effects (Le-
ung et al., 2022). However, the crop growth and develop-
ment parameters for rice, as well as the O3 impact param-
eters within JULES-crop, have not yet been calibrated. Cali-

Figure 1. Schematic of JULES-crop.

brating JULES-crop would enhance its performance in sim-
ulating rice production under O3 influence.

In this research, we calibrated the rice parameters in
JULES-crop using novel O3-FACE data, enabling leading-
edge future assessments of O3 damage to rice. The study has
three key objectives: (1) to calibrate JULES-crop using novel
O3-FACE field data; (2) to evaluate the model’s performance
in capturing crop growth characteristics using independent
observations; and (3) to assess the impact of O3 on rice phys-
iology, phenology, and yields. This research enhances under-
standing of the mechanisms through which O3 affects rice
growth and development, providing a stronger basis for char-
acterising the future impact of O3 on rice production.

2 Method

2.1 Description of JULES-crop

JULES-crop is an extension of JULES, a land surface model
designed to simulate the fluxes of carbon, water, energy, and
momentum between the land surface and the atmosphere
(Best et al., 2011; Clark et al., 2011). JULES-crop was de-
veloped to simulate the growth and development of major
crops, including wheat, soybean, maize, and rice, under a
range of environmental influences such as temperature, pre-
cipitation, radiation, and soil moisture (Osborne et al., 2015).
Its structure, illustrated in Fig. 1, incorporates the physiologi-
cal processes of crops, including photosynthesis, respiration,
and biomass accumulation.

JULES-crop simulates the physiological and phenological
processes of crops, predicting yields at both field and global
scales. This capability makes it a valuable tool for under-
standing the impacts of climate change and air pollution on
agriculture (Leung et al., 2022; Wolffe et al., 2021; Vianna
et al., 2022). To date, winter wheat (in preparation), maize
(Williams et al., 2017), and soybean (Leung et al., 2020)
within JULES-crop have been calibrated using observational
data. Mathison et al. (2021) updated several rice and wheat
parameters in JULES-crop, relying primarily on the litera-
ture, but did not account for O3 effects. In this study, novel
O3-FACE experimental data were utilised to calibrate rice
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parameters in JULES-crop for the first time, improving its
ability to assess O3 impacts on rice growth.

JULES-crop utilises a flux-based approach to simulate the
O3 damage following Sitch et al. (2007). It assumes that the
potential net photosynthesis Ap is suppressed by O3:

A= ApF.

Here A is leaf-level net photosynthesis with the O3 effects
and F is the reduction factor:

F = 1− a ·max
[
FO3 −FO3crit,0

]
,

where FO3 represents instantaneous leaf uptake of O3. FO3crit
and a are the plant-functional-type-specific threshold and
sensitivity factor, respectively.

The O3 flux FO3 (nmolm−2 s−1) is calculated as

FO3 =
[O3]

ra+
[
κO3
gl

] .
Here [O3] (nmolm−3) is the molar O3 concentration at the
reference level, ra (sm−1) is the aerodynamic resistance and
the boundary layer resistance between the leaf surface and
reference level (Monin and Obukhov, 1954), κO3 is the ra-
tio of leaf conductance for O3 to leaf conductance for wa-
ter vapour (1.67), and gl represents the leaf conductance for
H2O as a linear function of the photosynthetic rate (Cox et
al., 1999):

gl = g
∗

l F,

where g∗l is the leaf conductance in the absence of O3 effects.

2.2 O3-FACE experiments

The O3-FACE experiment was conducted in Xiaoji, China
(32°35′5′′ N, 119°42′0′′ E), in 2012. It features four regular
octagonal O3-FACE fields (14 m in diameter) and four con-
trol fields, each covering an area of approximately 120 m2.
The experimental fields are spaced over 70 m apart to min-
imise the influence of O3 release on neighbouring fields.
Pipes positioned 50–60 cm above the crops released pure O3
gas into each O3-FACE field between 09:00 and 16:00 LT
during the rice growing period. The mean daytime O3 con-
centration during the experimental period was approximately
46 ppb under the elevated O3 treatment, compared to 37 ppb
in the ambient environment – an increase of around 25 %.
The environmental conditions in the O3-FACE and control
fields were identical, except for the presence of O3 pipes in
the O3-FACE fields. Samples from the O3-FACE fields were
collected from the field centre, at least 1.5 m away from the
O3 pipes, to ensure that the sampled rice had grown under
stable O3 conditions. Further details of the O3-FACE system
can be found in Wang et al. (2012).

The rice cultivar used was II You 084. The rice was planted
on 30 May 2012 and reached maturity on 19 October 2012

in the ambient O3 environment and 12 October 2012 in the
elevated O3 environment. During the growth period, key de-
velopmental stages, such as jointing and flowering, were
recorded, and crop growth characteristics – including the dry
biomass of leaves, stems, and panicles; LAI; and plant height
– were measured at these stages to calibrate the model.

Three planting densities were employed during trans-
plantation: low density (16 plants m−2), medium density
(24 plants m−2), and high density (32 plants m−2). In ad-
dition to standard growth measurements, photosynthesis-
related variables – including leaf temperature, internal leaf
CO2 concentration, stomatal conductance, and the photo-
synthesis rate (CO2 assimilation rate) – were assessed us-
ing a LI-6400 portable photosynthesis system. After the rice
reached maturity, 64 plants from each experimental field
were harvested and dried to calculate the average rice yields.

2.3 FACE experiment for JULES-crop evaluation

Following calibration, observations of rice yields; height;
and the dry weight of leaves, stems, and panicles from an
independent FACE experiment were then used to evaluate
the performance of JULES-crop. These additional field ex-
periments were conducted in Danyang, China (31°54′31′′ N,
119°28′21′′ E), and provided rice data for the 2022 and 2023
growing seasons. Two cultivars, Yangdao 6 and Wuyun-
geng 23, were transplanted on 20 July 2022 and 21 July
2023, respectively, and harvested between late October and
early November. Yangdao 6 is an Indica rice cultivar, while
Wuyungeng 23 belongs to the Japonica subspecies group,
both of which represent the two major rice subspecies cul-
tivated in China.

2.4 Data preparation

JULES-crop requires driving data, ancillary data, and control
files to configure the model. Observations of hourly air pres-
sure, specific humidity, air temperature, precipitation, wind
speed, and shortwave radiation (SW) recorded during the O3-
FACE experiments were used as driving data. Diffuse radia-
tion was calculated using a constant diffuse fraction in the
model, with the default value of 0.4 applied in this study due
to the absence of observational data. Surface downward long-
wave radiation (LW) was not measured in the O3-FACE ex-
periment and was instead estimated using an empirical model
based on local observations (Chang and Zhang, 2019):

R↓ = σ ·(Ta)
4
·

[
clf+ (1− clf) ·

(
a · ln

(
ea

Ta

)
+ b ·ϕ+ c

)]
.

Here R↓ is the downward LW under all kinds of sky condi-
tions (clear and cloudy), Ta is the air temperature; ea is the
water vapour pressure; ϕ is the relative humidity; σ is the
Stefan–Boltzmann constant; a, b, and c are the empirical co-
efficients (Table 1); and clf is the cloud modification factor,
set to 0 under clear-sky conditions:
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Table 1. Empirical coefficients used in the longwave radiation
model.

Period a b c

Daytime with the cloud impact 0.118 0 1.033
Nighttime 0.08 0.0014 1.026

clf= 1−Kt.

Here Kt is the clearness index, which was calculated as fol-
lows:

Kt =
Hm

H0
,

where Hm represents the hourly measured solar radiation
and H0 denotes the hourly extraterrestrial solar radiation.
Detailed calculation for H0 can be found in Kumar and
Umanand (2005).

For the ancillary data, soil property values were extracted
from the ancillary dataset used in the HadGEM2-ES model,
which also underpins global simulations (Osborne et al.,
2015). Another crucial factor influencing crop growth, the
annual average CO2 concentration, was set based on data
provided by the Global Monitoring Laboratory (GML) of the
National Oceanic and Atmospheric Administration (NOAA).

The weather station for the evaluation experiments pro-
vided only daily temperature and precipitation data. Conse-
quently, additional meteorological variables, including wind,
humidity, and LW, were sourced from the ECMWF Reanaly-
sis v5 (ERA5) dataset. However, the ERA5-generated SW
for 2022 and 2023 disrupted the JULES-crop simulations
leading to unrealistically high leaf area index (LAI) values
(exceeding 15). The overestimation of SW in ERA5 has been
widely reported, with studies attributing it to the omission of
aerosol variations and a limited capacity to simulate clouds
and water vapour, resulting in an overestimation of hourly
SW in China by approximately 73.95 Wm−2 (He et al., 2021;
Jiang et al., 2020; Tong et al., 2023; Li et al., 2023). To ad-
dress this, SW was bias-corrected using observations from
the O3-FACE experiment conducted in 2012.

Additionally, O3 concentration observations were unavail-
able for the evaluation experiments. Hourly O3 data from the
nearest station of the China National Environmental Mon-
itoring Centre (https://www.cnemc.cn/, last access: 20 De-
cember 2024) were used instead. Aside from these driving
data, e.g. weather variables, O3 concentrations, CO2 concen-
trations, and crop stage dates, the evaluation simulations ap-
plied the same settings and parameters as those used in the
calibration.

3 Results

3.1 Calibration

All parameters calibrated using the O3-FACE experiment
are listed in Tables 2 and 3. The calibration process for
rice involved four main steps. First, leaf-level simulations
were calibrated by fitting simulated photosynthesis rates
with observed values. The nitrogen content in leaves, stems,
and roots was obtained from observations and the litera-
ture. Observed leaf temperature, internal CO2 concentra-
tion, and stomatal conductance were used as model inputs.
Photosynthesis-related parameters were adjusted based on
discrepancies between observed and simulated photosynthe-
sis rates. Notably, O3 damage was not considered during this
step.

Second, canopy-level simulations were calibrated by de-
termining the rice growth rate and partitioning of assimilated
carbon. Air temperature data were used to calculate the accu-
mulated temperature required for rice growth stages, and the
allocation of carbon to various carbon pools was also defined
during this phase.

Third, model simulations were evaluated against observed
LAI and crop height following the calibration of crop phys-
iology parameters. Lastly, rice yields were compared with
observations under both ambient and elevated O3 concentra-
tions.

The calibration process involved iteratively adjusting pa-
rameters manually until the model simulations fell within the
range of observed values. Additional adjustments were made
to refine results, aiming to align them more closely with
the central tendency of the observations. Although the num-
ber of simulations was constrained by computational limita-
tions, the process successfully achieved agreement with all
available observations, ensuring no discrepancies remained.
While finer and finer incremental adjustments were not feasi-
ble due to computational limitations, the approach effectively
balanced precision and generalisation, capturing the essential
crop observations without overfitting.

3.1.1 Photosynthesis

The potential leaf-level photosynthesis, unaffected by wa-
ter stress and O3 effects, is calculated based on three poten-
tially limiting rates: the Rubisco-limited rate (Wc), the light-
limited rate (Wl), and the rate of transport of photosynthetic
products (We) for C3 plants, as detailed in Clark et al. (2011).

Following Farquhar et al. (1980) and Collatz et al.
(1991), several parameters in the photosynthesis scheme are
temperature-dependent, including the maximum rate of Ru-
bisco carboxylation, Vm (molCO2 m−2 s−1), which is critical
for calculating bothWc andWe. Vcmax is calculated assuming
an optimal temperature range defined by Tupp and Tlow.

Geosci. Model Dev., 18, 7257–7273, 2025 https://doi.org/10.5194/gmd-18-7257-2025
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Table 2. Calibrated plant functional type (PFT) parameters representing rice.

Parameters Osborne et al. (2015) This study Parameter meanings

nl nl0_io 0.073 0.065 Leaf nitrogen concentration (kgN per kgC)
µsl ns_nl_io 1 0.52 Ratio of stem nitrogen concentration to leaf nitrogen concentration
µrl nr_nl_io 1 0.46 Ratio of root nitrogen concentration to leaf nitrogen concentration
ne neff_io 8× 10−4 1.28× 10−3 Scale factor relating Vcmax with leaf nitrogen concentration
fdr fd_io 0.015 0.008 Scale factor for dark respiration
Tupp tupp_io 36 38 Upper temperature parameter for photosynthesis (°C)
q10,leaf q10_leaf_io 2 2.1 Q10 factor for plant respiration

Table 3. Calibrated crop-related parameters representing rice.

Parameters Osborne et al. (2015) This study Parameter meanings

TTemr tt_emr_io 60 50 Thermal time between sowing and emergence (°Cd)

TTveg tt_veg 980* 1300 Thermal time between emergence and flowering (°Cd)

TTrep tt_rep 653* 880 Thermal time between flowering and harvest (°Cd)

αroot alpha1_io 18.5 17.4 Coefficient for determining partitioning

αstem alpha2_io 19.0 17.4 Coefficient for determining partitioning

αleaf alpha3_io 19.5 17.9 Coefficient for determining partitioning

βroot beta1_io −19.0 −20 Coefficient for determining partitioning

βstem beta2_io −17.0 −16.7 Coefficient for determining partitioning

βleaf beta3_io −18.5 −18.5 Coefficient for determining partitioning

γ gamma_io 20.9 24.5 Coefficient for determining specific leaf area (m2 kg−1)

δ delta_io −0.2724 −0.145 Coefficient for determining specific leaf area (m2 kg−1)

τ remob_io 0.25 0.12 Remobilisation factor – fraction of stem growth partitioned to
reserve carbon

fC, stem cfrac_s_io 0.5 0.404 Carbon fraction of dry matter for stems

fC, root cfrac_r_io 0.5 0.337 Carbon fraction of dry matter for roots

fC, leaf cfrac_l_io 0.5 0.399 Carbon fraction of dry matter for leaves

κ allo1_io 1.4 1.27 Allometric coefficient relating stem carbon to crop height

λ allo2_io 0.4 0.24 Allometric coefficient relating stem carbon to crop height

µ mu_io 0.05 2 Allometric coefficient for calculation of senescence

ν nu_io 0 6 Allometric coefficient for calculation of senescence

fyield yield_frac_io 1.0 0.8 Fraction of the harvest carbon pool converted to yield carbon
(yield is the economically valuable component of the harvest
pool e.g. kernel)

Cinit initial_carbon_io 0.01 0.01 Carbon in crop at emergence in kgCm−2

DVIinit initial_c_dvi_io 0.0 0.1 Development index (DVI) at which the crop carbon is set to
initial_carbon_io

DVIsen sen_dvi_io 1.5 1.25 DVI at which leaf senescence begins

* These parameters were spatially varying in Osborne et al. (2015).
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Figure 2. Leaf nitrogen concentration (kgN per kgC) (a) and the ratio of root nitrogen concentration to leaf nitrogen concentration (b). The
dashed grey line represents the values selected for the simulation, while the dots indicate the observed values.

Vcmax =
Vcmax25fT (Tc)[

1+ e{0.3(Tc−Tupp)}
][

1+ e{0.3(Tlow−Tc)}
] ,

where Vcmax25 represents the maximum rate of carboxylation
of the enzyme Rubisco at 25 °C and is assumed to be lin-
early dependent on the leaf nitrogen concentration. For the
C3 crop, Vcmax25 = nenl, where ne is the scale factor and nl
is the leaf nitrogen concentration (kgN per kgC). Tc is the
leaf temperature in °C, Tupp and Tlow are PFT-dependent pa-
rameters, and fT depends on the parameter q10,leaf, the factor
by which plant respiration increases by a 10 °C increase in
temperature:

fT = q
0.1(Tc−25)
10,leaf .

Changes in PFT parameters primarily influence the simula-
tions of the photosynthesis rate, which in turn affects the
accumulation of carbon in rice. In JULES-crop, the photo-
synthesis process is closely linked to the nitrogen content of
the crop. Leaf nitrogen concentration (nl) is a key factor im-
pacting the photosynthesis rate and was estimated based on
literature sources (Fig. 2a). As leaf nitrogen concentration
declines from the vegetative to the ripening stage, the rice
plant’s capacity for carbon accumulation diminishes.

The ratio of the nitrogen content of roots relative to leaves
(µrl) was also derived from the literature (Fig. 2b). This
ratio determines the nitrogen content in the roots, which
further influences the respiration rate. The maturity stage
was excluded when calculating the average values for each
stage. The values presented in Fig. 2 were collected from
peer-reviewed studies conducted across China over the past
20 years (listed in the Supplement), encompassing several
rice cultivars grown in major rice-producing regions.

Figure 3. Ratio of the stem nitrogen concentration to the leaf ni-
trogen concentration. The dashed grey line and the dots show the
values for the simulation and observations, respectively.

The ratio of the nitrogen content of stems to that of leaves
(µsl) was determined from the O3-FACE observations. The
ratio varied across growth stages, reaching its highest value
during the maturity stage (Fig. 3). This is because at maturity
the leaves consist solely of yellow leaves, which have lower
nitrogen content compared to the green leaves present during
earlier stages. The calibrated µsl is the average value during
the tillering, jointing, and heading stages.

The simulations of the net leaf photosynthesis rate, using
the default parameters from Osborne et al. (2015), underesti-
mated the observed values (Fig. 4a). Several parameters, in-
cluding nl, ne, fdr, Tupp, and q10,leaf, were calibrated to make
the simulation results agree better with observations. The

Geosci. Model Dev., 18, 7257–7273, 2025 https://doi.org/10.5194/gmd-18-7257-2025



B. Xu et al.: A first calibration of JULES-crop version 7.4 for rice 7263

standard photosynthesis model assumes that the upper tem-
perature limit for C3 crops is 36 °C. However, when the tem-
perature exceeded 36 °C, the simulated photosynthesis rates
were still underestimated (Fig. 4b). This suggests that tem-
peratures above 36 °C should be increased to 38 °C to obtain
improved agreement with observations, as shown in Figs. 4c
and 5.

Figure 5 shows that the simulated leaf photosynthetic rate
starts to decrease at approximately 30 °C using the calibrated
temperature parameters, while the simulated curves using the
default Tupp from Osborne et al. (2015) reached the optimum
temperature at about 29 °C. The exact optimum temperature
for simulations varied with the intercellular CO2 concentra-
tion of leaves (Ci). According to the experimental data col-
lected from the literature, the optimum temperature should
be around 30 °C, depending on the environmental conditions
such as the nitrogen content of leaves, light intensity, and
CO2 concentration as well as growth stages. After calibra-
tion, the response of the leaf photosynthetic rate to leaf tem-
perature was closer to observations from both this study and
the literature.

3.1.2 Rice development and assimilate partitioning

The development status of rice is closely linked to its phe-
nological progression and is represented by the development
index (DVI). The DVI increases as the ratio of accumulated
thermal time to the prescribed thermal time for each develop-
mental phase rises. Initially, the DVI is set to −1 at sowing,
increases to 0 at emergence, completes accumulation before
flowering at a value of 1, and reaches a value of 2 at maturity.

Once rice is sown, its developmental rate, defined by the
DVI, depends on the prescribed thermal time, which includes
the thermal time between sowing, emergence, flowering, and
maturity stages (Osborne et al., 2015). The thermal time
(Teff) can be calculated as follows:

Teff =


0, for T < Tb

T − Tb, for Tb ≤ T ≤ To

(To− Tb)
(

1− T−To
Tm−To

)
, for To ≤ T ≤ Tm

0, for T ≥ Tm

,

where T , Tb, To, and Tm are air temperature, base temper-
ature (8 °C), optimum temperature (30 °C), and maximum
temperature (42 °C), respectively, which are the values from
Osborne et al. (2015).

The changes in the value of DVI during the simulation are
determined by

dDVI
dt
=


Teff/Temr, for − 1≤ DVI< 0

Teff/Tveg, for 0≤ DVI< 1
Teff/Trep, for 1≤ DVI< 1

,

where Temr, Tveg, and Trep represent the thermal time inter-
vals between sowing and emergence, emergence and flower-
ing, and flowering and maturity, respectively.

Table 4. Thermal time of rice between transplanting and maturity.

Period Thermal time (°Cd)

Seedling to transplanting 327.2
Transplanting to panicle initiation 788.0
Panicle initiation to heading 427.2
Heading to maturity 590.0
Seedling to maturity 2132.4

The field experiment recorded the dates for sowing, trans-
planting, panicle initiation, heading, and maturity when col-
lecting samples. In China, most rice is grown in puddled
fields after transplanting (Wang et al., 2017). Before trans-
planting, rice is cultivated in nurseries and is not moved to the
field until it has developed five or six leaves. The prescribed
thermal time was estimated based on the calculated thermal
time from the observations (Table 4). The observed develop-
ment stages and crop characteristics are used to determine the
thermal time required for the model, ensuring that the follow-
ing conditions are met: the model’s predicted maturity stage
coincides with the actual timing observed in the experiment
and the DVI of crop characteristics from simulations agrees
with the observations. For example, the transplanting stage
falls within the vegetative phase, so the DVI of observations
should fall within the range of 0 to 1.

Once the development rate was determined, the accumu-
lated net primary productivity (NPP) of each time step was
partitioned into four main carbon pools: root, stem (includ-
ing structural stem and stem reserves), leaves, and the harvest
pool (including yellow leaves and harvested organs, which
are panicles for rice).

The partition coefficients (p) are calculated as follows
(Osborne et al., 2015):

proot =
e−αroot+βrootDVI

e−αroot+βrootDVI+ e−αstem+βstemDVI+ e−αleaf+βleafDVI+ 1
,

pstem =
e−αstem+βstemDVI

e−αroot+βrootDVI+ e−αstem+βstemDVI+ e−αleaf+βleafDVI+ 1
,

pleaf =
e−αleaf+βleafDVI

e−αroot+βrootDVI+ e−αstem+βstemDVI+ e−αleaf+βleafDVI+ 1
,

pharv =
1

e−αroot+βrootDVI+ e−αstem+βstemDVI+ e−αleaf+βleafDVI+ 1
.

Six parameters, αroot, αstem, αleaf, βroot, βstem, and βleaf, de-
termine the partitioning process during the whole growth pe-
riod. And the NPP accumulated through photosynthesis for
each time step is distributed to the four carbon pools accord-
ing to the partition coefficients.

The parameters for carbon distribution were calibrated
based on the dry weights of the stem, leaves, and panicles
from field experiments. Since root carbon is not included in
the observations, its partitioning value is estimated as a frac-
tion of rice yield. Liu et al. (2023) suggested that the ratio
of root dry weight to grain yield is approximately 0.13, al-
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Figure 4. Simulated photosynthesis rate (µmolCO2 m−2 s−1) using parameters before calibration (a) and after calibration without (b) or
with (c) changing the upper temperature limitation parameter (Tupp). The dashed line is the 1 : 1 line.

Figure 5. The coloured lines are simulated temperature responses of the photosynthesis rate using the mean value of the observed intercellular
CO2 concentration of leaves (Ci) and calibrated (38 °C) or default (36 °C) Tupp. The filled dots and open circles represent the observations
used in this study and simulations generated by calibrated parameters, respectively. The error bars are taken from five independent studies
(Table S1 in the Supplement) that span multiple rice cultivars, nitrogen regimes, CO2 levels, and light intensity levels.
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Figure 6. Fraction of daily accumulated net primary productivity
partitioned into roots (blue), stems (orange), leaves (green), and har-
vested parts (red) of the crop as a function of the development index
(DVI; 0 = emergence, 1 = flowering, 2 = maturity) for rice. The dot-
ted black line is the fraction based on parameters used in Osborne
et al. (2015).

Figure 7. Specific leaf area against the development index.
Coloured symbols indicate observations, and the colour shows the
data from different experiment fields. The dotted black line and the
solid black line show the fit using parameters from Osborne et al.
(2015) and our calibrated parameters, respectively. Note that vari-
ous symbols correspond to successive sampling dates from the same
experimental field, thereby illustrating the temporal progression of
the observations.

though it can vary depending on the cultivar and nitrogen
application rate. Figure 6 shows the fraction of accumulated
NPP partitioned into the different carbon pools using the cal-
ibrated parameters.

The accumulated carbon in different carbon pools directly
affects the biomass of various rice organs. The model calcu-
lates carbon accumulation and distribution, so the fractions
of carbon to dry matter in the root, stem, and leaf (fC, root,

Figure 8. Stem dry weight against crop height. Coloured symbols
are observations, and the colour shows the data from O3-FACE ex-
periment. The dashed black line and the solid black line show the fit
using parameters from Osborne et al. (2015) and the calibrated pa-
rameters, respectively. Note that various symbols correspond to suc-
cessive sampling dates from the same experimental field, thereby
illustrating the temporal progression of the observations.

fC, stem, and fC, leaf) must be defined prior to running the
model. The values used in our calibrated simulations were
taken from the observations and are listed in Table 2, along
with the default values from Osborne et al. (2015). The value
of the carbon fraction impacts the root growth, crop height,
and LAI.

3.1.3 LAI and crop height

LAI is an important attribute of crops, reflecting their capac-
ity for carbon accumulation. In JULES-crop, LAI is linked
to the leaf carbon pool (Osborne et al., 2015):

LAI=
Cleaf

fC, leaf
SLA.

Here Cleaf indicates the amount of carbon in leaves, fC, leaf
represents the carbon fraction of dry matter in leaves, and
SLA is the specific leaf area (m−2 leaf kg−1):

SLA= γ (DVI+ 0.06)δ,

where γ and δ are determined by fitting the curve between
DVI and SLA (De Vries et al., 1989) from observations
(Fig. 7).

As green leaves begin to turn yellow, leaf senescence starts
and is represented by the parameter DVIsen. The change from
green to yellow signals the transition of carbon from the leaf
carbon pool to the harvest carbon pool. The transition rate is
simulated by reducing Cleaf by a specific fraction (De Vries
et al., 1989):

Charv = Charv+µ(DVI−DVIsen)
ν
·Cleaf,
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Figure 9. Carbon-to-dry-matter ratio of the leaf, stem, root, and panicle during different crop development stages, where the average means
the value collected from the literature, which only provided an average value for all stages during the rice growth. The dashed green, yellow,
and blue lines represent the value prescribed in the model for the fraction of carbon to dry matter in the root, stem, and leaf, respectively.

Figure 10. Leaf, stem, and total aboveground carbon against the day of year under ambient and elevated O3 conditions. Box plots are
observations, whereas lines show the simulation results using parameters from Osborne et al. (2015) (grey) and calibrated (green) parameters
under ambient O3 conditions, including high (blue) and low (orange) O3 sensitivity under elevated O3 conditions, with units of gm−2.
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Table 5. O3 parameters calibrated for high and low sensitivity to O3 damage.

Parameters Osborne et High Low Parameter
al. (2015) sensitivity sensitivity meanings

FO3crit fl_O3_ct_io 5.0 7.0 8.0 Critical flux of O3 to vegetation (nmolm−2 s−1).
a dfp_dcuo_io 0.25 1.2 0.7 Plant-type-specific O3 sensitivity parameter (nmolm−2 s−1).

where µ and ν were determined by fitting the declining trend
of carbon in green leaves following leaf senescence. The sim-
ulation results are presented in Sect. 3.1.4.

The calculation of crop height (h) depends on the amount
of carbon in the stem (Cstem) (Hunt, 2012):

h= κ

(
Cstem

fC, stem

)λ
,

where fC, stem represents the carbon fraction of dry matter in
the stem and κ and λ are determined by fitting the relation-
ship between h and the stem dry matter of stems, which is
equal to Cstem

fC, stem
(Fig. 8).

Similarly to leaf senescence, the carbon stored in the stem
reserves is mobilised into the harvest carbon pool at a rate of
10 % d−1 once the partition coefficient for stems drops below
0.01 (De Vries et al., 1989).

Charv = Charv+ 0.1 · τCstem,

where τ represents the fraction of stem growth partitioned to
reserve carbon.

The observations did not include components of the car-
bon fraction, such as Cleaf and Cstem, required for the model
simulation; therefore, these values were sourced from peer-
reviewed rice field studies (listed in the Supplement). Some
studies evaluated varied stressors or environmental treat-
ments. Thus, to ensure consistency with calibration, only
the control-plot values under default (unstressed) conditions
were used. All the literature data were derived from rice field
experiments conducted in China, involving several rice culti-
vars to enhance representativeness (Fig. 9). The carbon con-
tent of panicles was also obtained from the literature and
combined with the carbon in yellow leaves during the ripen-
ing phase to calculate the total carbon in the harvest pool. Ad-
ditionally, the fractions of carbon to dry matter were used to
compare the simulation results with the observations, which
only provided dry biomass data for rice.

3.1.4 Comparison with O3-FACE experiments

Figure 10 illustrates the changes in the main carbon pools
throughout the entire growing period. The accumulated car-
bon was reduced under elevated O3 conditions, highlight-
ing the detrimental impact of O3 on crop growth. At the
maturity stage, total aboveground carbon under elevated O3
was 22 %–29 % lower compared to ambient O3 conditions,

as shown in the observations (Fig. 10e and f). Carbon lev-
els in both the leaf and stem exhibited a similar decreasing
trend due to the O3-induced damage to the photosynthesis
process and carbon accumulation. The simulations closely
matched the observations, using the average carbon-to-dry-
matter fraction for different growth stages to convert ob-
served data into carbon weights (Fig. 9). It is important to
note that the carbon fraction varies with cultivar and growing
environment. To align the model results, which are based on
carbon weight instead of dry weight, with the observed data,
the average carbon-to-dry-matter ratio across all stages was
applied.

There are two parameters in the simulations that directly
relate to the impact of O3 on the rice (Clark et al., 2011; Sitch
et al., 2007) (Table 5). The reduction in the net photosyn-
thesis rate was determined by the value of the instantaneous
leaf uptake of O3 above the threshold FO3crit, multiplied by
a sensitivity parameter a (Pleijel et al., 2004). Observations
using three planting densities of rice observations were used
to calibrate the model. As can be seen from Fig. 11, the high
sensitivity and low sensitivities coincided with the upper and
lower boundaries of relative yield (RY), which is calculated
as follows:

RY=
YO3

Y0
,

where YO3 represents the crop yield including O3 damage
and Y0 represents the crop yield with no effects of O3.

In Fig. 11, AOT40 was used to represent the O3 concen-
trations in the environment:

AOT40=
n∑
i=1

([O3]i − 0.04) ,

where [O3]i stands for the hourly O3 concentration level
(unit: ppm h) during daylight hours (08:00–19:59) and n rep-
resents the total hours of the growing season.

Figure 12 illustrates the height and LAI of rice under both
elevated and ambient O3 conditions. The difference in LAI
and height between these two environments underscores the
negative impact of O3 on rice carbon accumulation. Post-
calibration, the simulations for both LAI and height align
well with observational data (Fig. 11a and c). Prior to the
new calibration, simulations with default parameters from
Osborne et al. (2015) significantly underestimated both LAI
and height largely due to the underestimated photosynthe-
sis rate (Fig. 4). This underestimation led to reduced carbon
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Figure 11. Relative yield against AOT40 (ppm h). Coloured lines
show the relative yield of rice planted in high (green), medium (or-
ange), and low (blue) density. The grey lines show the simulations
of relative yield with high (dotted) and low (dashed) sensitivity to
O3 damage.

assimilation and storage, resulting in insufficient carbon allo-
cation to stems and leaves, which directly impacted LAI and
height. It is worth noting that all plots comparing simulation
and observation begin after the model’s initialisation phase.

3.2 Evaluation

Figure 13 compares simulated and observed values of leaf
carbon, stem carbon, total aboveground biomass, and rice
height for the years 2022 and 2023, based on data from an
independent FACE experiment (see Sect. 2.2). The obser-
vations were limited to heading and maturity stages. These
observations were compared to our newly calibrated JULES-
crop model simulations using these FACE observations. The
calibrated O3-damage parameters were applied to model the
impact of O3 on rice biomass and carbon content.

The simulated stem carbon was marginally lower than
the average observed values (Fig. 13c and d), while total
aboveground biomass was overestimated when using low
O3 sensitivity parameters (Fig. 13e and f). These variations
can be attributed to differences in the carbon allocation be-
tween the calibration and evaluation experiments. The seed-
ing depth notably influenced stem weight since stems thick-
ened nearer the root, and only aboveground stems were har-
vested and measured. Consequently, deeper seeding resulted
in a smaller fraction of stem biomass relative to total above-
ground biomass (Gong et al., 2023). This slight underestima-
tion of stem carbon was also evident in the simulation of crop
height, which was similarly affected by seeding depth.

The total biomass observed in the evaluation experiment
surpassed that measured in the O3-FACE experiment, partic-
ularly with a notably larger stem weight. Crop parameters
were calibrated using data from the O3-FACE experiment,

but differences in agronomic practices across experiments
may have introduced uncertainties.

While the simulated crop height fell within the range of
observed values, it was marginally lower than the average
measured height (Fig. 13g and h). Despite variations in seed-
ing practices between the calibration and evaluation field ex-
periments, the carbon distribution and levels aligned well
with the observations. Overall, JULES-crop demonstrated
the ability to accurately predict rice growth and carbon al-
location across various carbon pools.

3.3 Limitations

While this study provides a rice model calibration based on
the novel O3-FACE experiments, several limitations must be
acknowledged. The calibrated O3 parameters influence mod-
elled net photosynthesis, biomass, and yield through the con-
trol on stomatal uptake and instantaneous photosynthesis.
Due to limited O3-FACE observations, our calibration did not
represent differences in O3 sensitivity due to rice cultivar.

Additionally, the calibrated thermal time was specific to
a particular location and should be recalculated using local
air temperature and rice phenology data if simulations are
performed for other regions. For example, the evaluation ex-
periment conducted in 2023 in a nearby county exhibited a
relatively high thermal time compared to the calibration ex-
periment, primarily due to the longer growth duration. Rice
growth in the 2022 and 2023 evaluation experiments was
severely affected by crop pests and diseases at the maturity
stage, leading to significant yield loss. As a result, only crop
growth characteristics were used to validate the model.

Furthermore, although the model was calibrated and eval-
uated using independent experimental data, directly apply-
ing the parameters to global simulations may introduce sig-
nificant uncertainties. As such, global simulations using the
parameters derived in this study should incorporate fur-
ther evaluations to verify model performance (Müller et al.,
2017).

4 Conclusions

This study marks a significant advancement in modelling
rice growth and O3 effects by providing the first calibration
of the JULES-crop model using rice-specific data from O3-
FACE experiments. These experiments offer a realistic field
setting to assess the impacts of O3 on crops, addressing the
limitations of alternative setups such as OTCs by simulating
more natural environmental conditions. Initial simulations
with the default rice parameters in JULES-crop revealed sub-
stantial underestimation of carbon accumulation throughout
the growth cycle. Calibration using the most recent O3-FACE
data significantly improved the model’s ability to replicate
rice physiology, phenology, yield, and O3 sensitivity.
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Figure 12. Crop height (cm) and green leaf area index (LAI) are shown versus the day of year under ambient and elevated O3 conditions.
Box plots show observations, whereas lines show the simulation results using parameters from Osborne et al. (2015) (grey) and calibrated
(green) parameters under ambient O3 conditions, including high (blue) and low (orange) O3 sensitivity under elevated O3 conditions.

The calibration process involved adjusting key parame-
ters to align simulations with observed data, including leaf
area indices; crop height; yield; and the biomass of leaves,
stems, and panicles. The model was refined to accurately rep-
resent yield reductions caused by elevated O3 levels. Eval-
uation against independent field experiments demonstrated
good agreement between simulated outcomes and observed
results, affirming the model’s robustness.

This study deepens our understanding of O3’s impact on
rice production and delivers a newly calibrated model suit-
able for assessing future climate scenarios and O3 effects.
The study lays the groundwork for future agricultural re-
search aimed at mitigating O3-induced yield losses, provid-
ing a valuable framework for enhancing food security as O3
levels continue to rise.

Code availability. This study used JULES (Joint UK Land Envi-
ronment Simulator) version 7.4, which was released in Novem-
ber 2023. The model is available for download from the UK Met Of-
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gov.uk/trac/jules, last access: 1 November 2023), with registration
required. For simulating photosynthesis rates, we used the Leaf
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Figure 13. Leaf, stem, total aboveground biomass, and crop height against the day of year for 2022 and 2023. Box plots are observations,
and coloured lines show the simulation results using low (orange) and high (blue) O3 sensitivity, respectively.
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