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Abstract. Artificial intelligence (Al)-based weather predic-
tion research is growing rapidly and has shown to be com-
petitive with advanced dynamic numerical weather predic-
tion (NWP) models. However, research combining Al-based
weather prediction models with data assimilation remains
limited, partially because long-term sequential data assimila-
tion cycles are required to evaluate data assimilation systems.
This study proposes using ensemble data assimilation for di-
agnosing Al-based weather prediction models and marked
the first successful implementation of the ensemble Kalman
filter with Al-based weather prediction models. Our exper-
iments with an Al-based model, ClimaX, demonstrated that
the ensemble data assimilation cycled stably for the Al-based
weather prediction model using covariance inflation and lo-
calization techniques within the ensemble Kalman filter.
While ClimaX showed some limitations in capturing flow-
dependent error covariance compared to dynamical mod-
els, the Al-based ensemble forecasts provided reasonable
and beneficial error covariance in sparsely observed regions.
In addition, ensemble data assimilation revealed that error
growth based on ensemble ClimaX predictions was weaker
than that of dynamical NWP models, leading to higher infla-
tion factors. A series of experiments demonstrated that en-
semble data assimilation can be used to diagnose properties
of Al weather prediction models, such as physical consis-
tency and accurate error growth representation.

1 Introduction

The intensification of weather-induced disasters due to cli-
mate change is becoming increasingly severe worldwide
(e.g., Jonkman et al., 2024). In a recent risk report, the World
Economic Forum (2023) indicated that extreme weather is
among the most severe global threats. To address extreme-
weather events such as torrential heavy rains and heat waves,
further advancements in weather forecasting are essential.
There are two essential components for accurate weather
forecasting: (1) numerical weather prediction (NWP) mod-
els that forecast future weather based on initial conditions
and (2) data assimilation, which integrates atmospheric ob-
servation data to estimate initial conditions for subsequent
forecasts by NWP models.

Since NVIDIA issued the first artificial intelligence (Al)
weather prediction model, FourCastNet, which was competi-
tive with dynamical NWP models, in February 2022 (Pathak
etal.,2022; Bonev et al., 2023), deep-learning-based weather
prediction research has shown rapid growth. A number of Al
weather prediction models have been proposed, mainly by
private information and technology (IT) companies, such as
GraphCast by Google DeepMind (Lam et al., 2023), Pangu-
Weather by Huawei (Bi et al., 2023), ClimaX and Stormer
by Microsoft (Nguyen et al., 2023), and Aurora by Microsoft
(Bodnar et al., 2025). These machine learning approaches
have been shown to be competitive with state-of-the-art
NWP models (e.g., Kochkov et al., 2024). Progress in Al-
based weather prediction has been supported by the expan-
sion of benchmark data and evaluation algorithms, such as
WeatherBench (Rasp et al., 2020, 2024). Notably, most Al-
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based weather prediction models, including Pang-Weather,
ClimaX, Stormer, and FourCastNet, use the Vision Trans-
former (ViT) neural network architecture (Vaswani et al.,
2017; Dosovitskiy et al., 2021). The ViT, which has been
explored in language models and image classifications, has
been demonstrated to be effective in weather prediction as
well.

However, research that couples Al-based weather predic-
tion models with data assimilation remains limited. This lim-
itation is partially due to the fact that long-term sequen-
tial data assimilation experiments are needed for the eval-
uation of data assimilation systems, in contrast to weather
prediction tasks that allow for parallel learning using bench-
mark data. Conventional data assimilation methods used in
NWP systems can be categorized into three groups: varia-
tional methods, ensemble Kalman filters, and particle filters.
There are strong mathematical similarities between neural
networks and variational data assimilation, both of which
minimize their cost functions using their differentiable mod-
els. Because auto-differentiation codes are always available
for neural-network-based Al models, Al weather prediction
models are considered compatible with variational data as-
similation methods, as in Xiao et al. (2024) and Adrian et
al. (2025). On the other hand, recent studies have started to
solve the inverse problem inherent in data assimilation us-
ing deep neural networks (McCabe and Brown, 2021; Chen
et al., 2024; Bocquet et al., 2024; Luk et al., 2024; Vaughan
et al., 2024). Some studies have employed ensemble Kalman
filters for data-driven models (Hamilton et al., 2016; Penny
et al., 2022; Chattopadhyay et al., 2022, 2023). However,
no study has succeeded in employing ensemble Kalman fil-
tering with global Al models of the atmosphere. Since Al
models require significantly lower computational costs com-
pared to dynamical NWP models, Al models offer benefits
for ensemble-based methods, such as ensemble Kalman fil-
ters (EnKFs) and particle filters. Ensemble data assimilation
at the global scale also allows us to assess the capability of
data assimilation with AI models to handle spatially inho-
mogeneous observation networks and to maintain physically
consistent multivariate error covariance across the entire at-
mosphere.

This study proposes using ensemble data assimilation for
diagnosing Al-based weather prediction models. For that
purpose, this study marks the first successful implementation
of ensemble Kalman filter experiments with an Al weather
prediction model to the best of the authors’ knowledge.
We applied the ViT-based ClimaX (Nguyen et al., 2023)
to data assimilation experiments using the available source
code and experimental environments with necessary modifi-
cations. For data assimilation, we applied the local ensem-
ble transform Kalman filter (LETKF) (Hunt et al., 2007),
which is among the most widely used data assimilation meth-
ods in operational NWP centers, such as the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), the
Deutscher Wetterdienst (DWD), and the Japan Meteorologi-
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cal Agency (JMA). Using the coupled ClimaX-LETKF data
assimilation system, we investigated several key aspects of
Al-based weather prediction models, including whether the
data assimilation cycles stably for the ClimaX AI weather
prediction model using ensemble Kalman filters and whether
Al-based ensemble weather prediction accurately represents
flow-dependent background error variance and covariance.
We also investigated whether techniques such as covari-
ance inflation and localization, which are conventionally
used in EnKFs for dynamical NWP models, are effective
for Al weather prediction models. By addressing these re-
search questions, we aim to advance the integration of Al
weather prediction models with data assimilation techniques
toward the development of more accurate weather forecast-
ing. While this study primarily aims to use ensemble data as-
similation for diagnosing Al-based weather prediction mod-
els, our research also represents an important step toward en-
abling real-time updates of Al weather models with meteo-
rological observations.

The rest of the paper is organized as follows. Sect. 2 de-
scribes the methods and experiments, and Sect. 3 presents the
results. Finally, Sect. 4 provides a discussion and summary.

2 Methods and experiments
2.1 ClimaX model

ClimaX (Nguyen et al., 2023) is a ViT-based Al weather pre-
diction model for the global atmosphere. Variable tokeniza-
tion and variable aggregation are key components of the Cli-
maX architecture on ViT, as they provide flexibility and gen-
erality. This study used the low-resolution version of ClimaX
(version 0.3.1), with 64 and 32 zonal and meridional grid
points, respectively, corresponding to a spatial resolution of
5.625° x 5.625°. The vertical model level was set at seven
(900, 850, 700, 600, 500, 250, and 50 hPa).

By default, ClimaX is set to be trained against only five
variables: geopotential at 500 hPa, temperature at 850 hPa,
temperature at 2 m, zonal wind at 10 m, and meridional wind
at 10 m. We updated ClimaX for data assimilation, which al-
lowed the AI model to produce variables required for sub-
sequent forecasts (Table 1). The updated ClimaX has state
vectors, including zonal wind, meridional wind, temperature,
specific humidity, and geopotential at seven vertical layers
along with three surface variables: 10m zonal wind, 10 m
meridional wind, and 2 m temperature. We also diagnosed
surface pressure, which is a required input for data assimila-
tion, based on geopotential and surface elevation. Figure 1
shows the training curves of the default and updated Cli-
maX models verified against WeatherBench data (Rasp et al.,
2020). Data for the period 2006-2015 were used for train-
ing, and data for 2016 were used for validation. Here we re-
trained ClimaX entirely with the additional outputs (i.e., no
transfer learning). It took approximately 4 h with four GPUs
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of NVIDIA RTX 6000Ada. Anomaly correlation coefficients
increased, and root mean square errors (RMSEs) decreased,
as shown in Fig. 1, indicating successful training of the up-
dated ClimaX model. Because more variables were predicted
by the updated ClimaX than by the default ClimaX, more
training steps were required.

2.2 Local ensemble transform Kalman filter (LETKF)

The LETKF is among the most widely used data assimila-
tion methods in operational NWP centers, such as ECMWE,
DWD, and JMA. The LETKF simultaneously computes
analysis equations at every model grid point with the assim-
ilation of surrounding observations within the localization
cut-off radius. The ClimaX-LETKF system was developed
based on the SPEEDY-LETKEF system (Kotsuki et al., 2022)
by replacing the SPEEDY weather prediction model with
ClimaX. Our future research can readily be expanded to par-
ticle filter experiments because the Kotsuki et al. (2022) sys-
tem includes local particle filters in addition to the LETKF.

Let X, = {x,fl),...,xgm)
whose ensemble mean and perturbation are given by X; (€
R") and §X, = {xl(l) —X. ., x§’"> — f,] (e R ™), respec-
tively. Here, n and m are the system and ensemble sizes. The
superscript (i) and subscript ¢ denote the ith ensemble mem-
ber and the time, respectively. The EnKF, including LETKF,
estimates the error covariance P (€ R"*") according to sam-
ple estimates based on ensemble perturbation:

} be an ensemble state matrix,

1 T
P ~ ——38X5X". (H
m—1

The analysis update equation of the LETKF is given by
. T —_—

Xt = w0 1+ oxB (V) R (57— i D)
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where P is the error covariance matrix in the ensemble space
(e R™*™) Y = H§X is the ensemble perturbation matrix in
the observation space (€ R”*™), R is the observation er-
ror covariance matrix (€ RP*P), y is the observation vector
(€ RP), H is the observation operator that may be nonlinear,
H (e RP*") is the Jacobian of the linear observation operator
matrix, and 1 is a row vector whose elements are all 1 (¢ R™).
Here, p is the number of observations. The superscripts o,
b, and a denote the observation, background, and analysis,
respectively. The scalar B is a multiplicative inflation fac-
tor which inflates the background error covariance such that
PP — (1+pB)PP. This study uses the Miyoshi (2011) ap-
proach, which estimates spatially varying inflation factors
adaptively based on observation—space statistics (Desroziers
et al., 2005).

https://doi.org/10.5194/gmd-18-7215-2025

Localization is a practically important technique for
EnKFs to eliminate long-range erroneous correlations due
to the sample estimates of P with a limited ensemble size
(Houtekamer and Zhang, 2016). Although a larger localiza-
tion can spread observation data information for grid points
distant from observations, a larger localization scale can
yield suboptimal error covariance because of sampling er-
rors. The LETKF inflates the observation error variance to
realize the localization (Hunt et al., 2007) whose function is
given by

=

l exp[f%{(dh/Lh)2+(dv/Lv)2}:| if dy <210/3Ly, and dy < 24/10/3L ’ (4)

0 else

where [ is the localization function, and its inverse /! is mul-
tiplied to inflate R for the localization. Horizontal and verti-
cal distances (km and log(Pa)) from the analysis grid point to
the observation are defined by d}, and dy, where subscripts &
and v denote horizontal and vertical, respectively. Here, Ly,
and L, are tunable horizontal and vertical localization scales
(km and log(Pa)). The vertical localization scale L, was set
at 1.0 (log Pa) following the method of Kotsuki et al. (2022).
Sensitivity to the horizontal localization scale for Ly =400,
500, 600, 700, and 800 km is investigated in subsequent ex-
periments.

2.3 Data assimilation experiments

In this study, all experiments were conducted as simulation
experiments by generating observation data from Weather-
Bench with additions of Gaussian random noises. Although
the real observation data were not directly assimilated, the
assimilated observations reflect the real atmosphere in this
study, in contrast to observing system simulation experi-
ments. To approximate real-world scenarios, we considered
radiosonde-like observations to generate atmospheric obser-
vation profiles for observing stations (Fig. 2). At observing
stations, temperature and zonal and meridional winds were
observed at all seven layers, whereas specific humidity was
observed at the first to fourth layers. Table 1 shows the stan-
dard deviations of the observation errors. The network of
observing stations and observation error standard deviations
were consistent with those of the SPEEDY-LETKF experi-
ments (Kotsuki et al., 2022; Kotsuki and Bishop, 2022). Ob-
servation data were produced at 6 h intervals such that the
data assimilation interval was also 6 h. Since the observation
data were generated directly at the model grid points, the ob-
servation operator is a linear operator composed only of 0.0
and 1.0.

We employed a series of data assimilation experiments
over the year 2017, which is not used for training and val-
idation of ClimaX. The ensemble size is 20. Their initial
conditions for 00:00 UTC, 1 January 2017, were taken from
WeatherBench data in 2006, which were sampled every 12 h
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7218 S. Kotsuki et al.: Ensemble data assimilation to diagnose AI-based weather prediction models
(a) ACC Geopotential at 500 hPa (b) ACC Temperature at 850 hPa 10 (c) ACC Zonal wind at 500 hPa
10 1.0 01
1
09 ' 0.8 0.91
08 0.8 0.8-
0.7 0.7
gor g g
] 061 06+
061 4 1
05 : 05 : 05-
1 —— ClimaX (updated) 04l i —— ClimaX (updated) 0a
04| | - —- ClimaX (default) | ——- ClimaX (default) ’ —— ClimaX (updated)
0.3
0 2500 5000 7500 10000 12500 15000 17500 0 2500 5000 7500 10000 12500 15000 17500 0 2500 5000 7500 10000 12500 15000 17500
Step Step Step
(d) RMSE Geopotential at 500 hPa (e} RMSE Temperature at 850 hPa (f) RMSE Zonal wind at 500 hPa
1000 'l —— ClimaX (updated) 5 " —— ClimaX (updated) —— ClimaX (updated)
=== ClimaX (default) \ === ClimaX (default) 81
800
7
w600 W6
2 2
& z5
400 4-
200 3
2 <
0 2500 5000 7500 10000 12500 15000 17500 0 2500 5000 7500 10000 12500 15000 17500 4] 2500 5000 7500 10000 12500 15000 17500
Step Step Step

Figure 1. Training curves for the default and updated ClimaX models (dashed blue and solid orange lines) verified against WeatherBench
data in 2016, as a function of the number of training steps. Each training step includes 64 training data in a mini batch. Panels (a)-(c) and
(d)—(f) show anomaly correlation coefficients (ACCs) and root mean square errors (RMSEs). Panels (a) and (d), (b) and (e), and (c) and
(f) are geopotential at 500 hPa (m2 s_2), temperature at 850 hPa, and zonal wind at 500 hPa. There are no dashed blue lines in panels (¢) and
(f) because the default ClimaX model does not predict zonal wind at 500 hPa.

Table 1. Variables of the ClimaX model used in this study. ClimaX requires input variables to predict output variables. Observation (Obs)
variables are assimilated with the associated error standard deviation (error SD).

Symbol  Variable Unit Input Output Obs Error SD  Height
U Zonal wind ms~! X X X 1.0 925, 850, 700, 600, 500, 250, 50 (hPa)
\'% Meridional wind ms™! X X X 1.0

T Temperature K X X X 1.0

Q Specific humidity kgkg™! X X X* 0.1

Geo Geopotential m2s—2 X X

Ul0m 10 m zonal wind ms™! X X 10m
V10m 10 m meridional wind ms™! X X 10m
T2m 2 m temperature ms~! X X 2m

Ps Surface pressure hPa X 1.0 Surface
Elev Surface elevation m X Surface
Long Longitude degree X -

Lat Latitude degree X -

Mask Land-sea mask lor0 X -

* Specific humidity is observed up to the fourth model level (i.e., 925, 850, 700, and 600 hPa).

from 00:00 UTC, 1 January 2006. Data assimilation experi-
mental results were verified against WeatherBench data.

It should be noted that we were unable to conduct observa-
tion system simulation experiments (OSSEs), which require
a natural run by ClimaX. This is because ClimaX could not
produce long-term forecasts within our experimental config-
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urations. A typical example is shown in Fig. 3. The fore-
casted temperature fields of ClimaX eventually began to de-
viate from the WeatherBench data with the continuation of
6 h forecasts. Ultimately, ClimaX produced meteorologically
unrealistic weather fields, as demonstrated by the very low
temperatures in the Pacific Ocean. Because Al models can-
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Figure 2. The observing network. The small black dots and red crosses represent model grid points and observing points, respectively.

not learn physical laws in the absence of specific treatments,
they are more likely to produce unrealistic weather fields un-
der previously unencountered weather conditions. In other
words, this suggests that ClimaX is unable to return to a me-
teorologically plausible attractor (or trajectory), while data
assimilation enables ClimaX to synchronize with the real at-
mosphere, as shown in Sect. 3. This property in AI mod-
els was theoretically demonstrated by Adrian et al. (2025),
who showed that long-term filter accuracy can be achieved
with surrogate models if the models can provide accurate
short-term forecasts. Applying neural networks that are in-
formed or constrained by physical laws would be necessary
to conduct observation system simulation experiments for
Al-based weather prediction models.

3 Results

Figure 4 presents the time series of global mean root mean
square errors (RMSEs) for temperature and geopotential
height at the fifth model level, with four different horizon-
tal localization scales (Ly). After the initiation of data as-
similation, all experiments showed reductions in analysis er-
rors. Experiments with Ly =500, 600, and 700 km showed
stable performance over a period of 1 year, until the end of
2017. Notably, data assimilation improved not only the ob-
served variable, temperature, but also the unobserved vari-
ables, such as geopotential height. This indicates that ob-
servation information was propagated to unobserved vari-
ables through the data assimilation cycle. In contrast, the ex-
periment with Ly, = 800km exhibited filter divergence after
September 2017 due to erroneous error covariance associated
with the larger localization scale. In addition, the experiment
with Ly =400 km kept reducing the RMSEs over a year, but
the RMSEs were still higher than those of the other exper-
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Figure 3. Spatial patterns of temperature (K) at the fifth model
level (500 hPa). Panels (a)—(c) are WeatherBench data. Panels (d)—
(f) are forecasts by ClimaX initialized at 00:00 UTC on 1 January
2017. Panels (a) and (d) show 00:00 UTC on 3 January 2017, (b)
and (e) show 00:00 UTC on 1 February 2017, and (c) and (f) show
00:00 UTC on 1 May 2017.

iments, with the exception of Ly =800km. This indicates
that a localization scale that is too small is suboptimal. This
implies that ensemble-based error covariance is beneficial to
some extent for propagating the impacts of assimilated ob-
servations for distant grid points.

Figure 5 shows the global mean RMSEs for zonal wind,
meridional wind, temperature, specific humidity, geopoten-
tial height, and surface pressure as a function of the horizon-
tal localization scales averaged over July—-December 2017.
At smaller localization scales (Ly =400 and 500 km), the
analysis RMSEs tended to be lower than the first-guess RM-
SEs, which suggests that data assimilation was beneficial

Geosci. Model Dev., 18, 7215-7225, 2025
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Figure 4. Time series of global mean root mean square errors (RMSEs) verified against WeatherBench data and ensemble spreads for
(a) temperature (K) and geopotential height (m) at the fifth model level (500 hPa). The thin and bold solid lines indicate 6-hourly RMSEs
and their 7 d running means, respectively. The dashed lines indicate ensemble spreads. The black, purple, blue, green, and red lines indicate
the ClimaX-LETKF experiments at localization scales of Ly, =400, 500, 600, 700, and 800 km. The x axis indicates the date (month/day)

in 2017.

in reducing errors. Conversely, at larger localization scales
(L =800km), analysis RMSEs tended to be higher than
the first-guess RMSEs, indicating that data assimilation de-
graded the analysis, presumably also due to excessive error
covariance at larger localization scales. In addition, the anal-
ysis RMSEs were slightly higher than the first-guess RMSEs
for some variables at Ly, =700 km, although the data assim-
ilation cycled stably (Fig. 4). In general, stable filters are ex-
pected to yield overall RMSE reduction unless the system
is non-chaotic. Therefore, these results for Ly = 700 km im-
ply that the present ClimaX exhibits weaker chaotic behavior
compared to the real atmosphere.

Among the five experiments, a localization scale of
Ly =600km yielded the lowest analysis RMSEs for most
variables. Significant analysis error reductions were observed
for temperature and surface pressure. However, no clear im-
pacts were observed for zonal and meridional winds. Even
slight degradations were detected, implying that spatial and
inter-variable error covariance may not be well represented
in our ClimaX-LETKF.

Here, we investigate the spatial patterns of the difference
between the analysis and first-guess mean absolute errors,
which is given by

1 — WB —=b WB
MAEdiff=ﬁtZt\x?—xt | == —x"), )

where N; is the sample size, and superscript WB repre-
sents WeatherBench data. Negative and positive values in-
dicate improvements and degradations due to data assimila-
tion. Figure 6 shows the MAEy; for four variables (zonal
wind at 850 hPa, temperature at 700 hPa, geopotential height
at 500 hPa, and surface pressure) based on the experiments
with the localization scale Ly = 500km, which resulted in
RMSE reductions by data assimilation for most of the vari-
ables in Fig. 5. General improvements are seen at grid points
with observations for zonal wind and temperature (Fig. 6a

Geosci. Model Dev., 18, 7215-7225, 2025

and b). However, there were also slight degradations at grid
points surrounding observing stations, such as those in the
Arctic Ocean and along the US and Japanese coasts. We also
see degradations for geopotential height, where temperature
and zonal wind degradations are presented (Fig. 6¢). These
degradations suggest that ensemble-based spatial error co-
variance was suboptimal in these regions. In contrast, geopo-
tential height and surface pressure generally improved in the
Southern Hemisphere (Fig. 6¢ and d). In particular, improve-
ments are seen even at grid points surrounding observing sta-
tions in the Southern Hemisphere. Specifically, using the spa-
tial and inter-variable error covariance based on Al ensemble
forecasts was advantageous for geopotential heights and sur-
face pressure in sparsely observed regions.

Another important property is that ClimaX would be less
chaotic than dynamical NWP models, as indicated by the es-
timated inflation factor B diagnosed by observation—space
statistics (Fig. 7). In addition, the larger inflation would
also indicate greater model error in ClimaX, which requires
stronger inflation to account for the model’s imperfection.
Compared to our study, Kotsuki et al. (2017) estimated a
much smaller inflation factor for a global ensemble data as-
similation system using a dynamical model (see Fig. 10a
in Kotsuki et al., 2017). For example, the inflation factors
in Kotsuki et al. (2017) were at most around 2.0, whereas
ClimaX-LETKF required inflation factors exceeding 5.0.
Selz and Craig (2023) noted that an Al-based weather pre-
diction model failed to reproduce rapid initial error growth
rates, which would prevent it from replicating the butterfly
effect as accurately as dynamical NWP models.

4 Discussion and summary

The optimal localization scale was unexpectedly very small
in Fig. 5. Kondo and Miyoshi (2016) pointed out that a larger

https://doi.org/10.5194/gmd-18-7215-2025
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the horizontal localization scales (km) averaged over July—December 2017. The colored bars and black diamonds indicate analysis (AN) and
first-guess (FG) RMSEs, respectively. The blue, green, red, and purple bars in panels (a)—(e) represent the second, third, fifth, and sixth model
levels (850, 700, 500, and 250 hPa, respectively). The gray bars in panel (f) represent surface pressure. The RMSEs of specific humidity at
the sixth model level in panel (d) were too low to be shown.
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Figure 6. Spatial patterns of difference between analysis (AN) and first-guess (FG) mean absolute errors (MAEs) for (a) zonal wind (ms™ 1)
at 850 hPa, (b) temperature (K) at 700 hPa, (c) geopotential height (m) at 500 hPa, and surface pressure (hPa), averaged over July—December
2017. The warm and cold colors represent improvements and degradations due to data assimilation. Results are for a localization scale of
Ly, =500km. The black crosses indicate observing stations.
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Figure 7. (a) Spatial pattern of the multiplicative inflation factor at the end of the experiment on 18:00 UTC of 31 December 2017. (b) Time
series of globally averaged inflation factors. Results are for a localization scale of Ly = 600km.

localization scale is beneficial for low-resolution models and
larger ensemble sizes (see Table 1 in Kondo and Miyoshi,
2016). Our optimal localization scale for the 20-member
ClimaX-LETKF was 600 km, which is shorter than the 700—
900km scale of the 20-member LETKF experiments cou-
pled with a dynamical NWP model (also known as SPEEDY;
Molteni, 2003) (e.g., Miyoshi and Kondo, 2013, Fig. 2b in
Kotsuki and Bishop, 2022). Nevertheless, considering that
the SPEEDY model has a finer horizontal resolution (96 x 48
horizontal grids) than ClimaX used in this study (64 x 32
horizontal grids), it remains plausible that ClimaX captures
flow-dependent error covariance less effectively than dy-
namical NWP models. Bonavita (2024) investigated physi-
cal realism of the present Al models (FourCastNet, Pangu-
Weather, and GraphCast) and concluded that Al models are
not able to properly reproduce sub-synoptic and mesoscale
weather phenomena. The suboptimal flow-dependent error
covariance in this study can be attributed to physically in-
consistent atmospheric fields of the ClimaX predictions.
Two major advancements are required for Al-based
weather prediction models to improve ensemble data assim-
ilation. First, it is imperative that Al models generate phys-
ically consistent forecast variables. The accuracy of spatial
and inter-variable error covariance would be improved by
this enhancement, which would require AI model training
procedures to include physical constraints such as hydro-
static and geostrophic balances, in addition to decreasing the
mean square errors of the target variables. Second, it is cru-

Geosci. Model Dev., 18, 7215-7225, 2025

cial to accurately capture the error growth rate. Our findings
demonstrated that error growth based on ensemble ClimaX
predictions was weaker than that of dynamical NWP models,
leading to higher inflation factors (Fig. 7). Thus, ensemble
forecasts produced by Al weather prediction models likely
exhibit insufficient spread. In weather forecasting, captur-
ing forecast uncertainty is as important as providing accurate
forecasts. Recent studies have begun to develop models for
generating statistically accurate ensembles by using genera-
tive models (Price et al., 2025) or by training on probabilistic
cost functions (Kochkov et al., 2024). Other possible solu-
tions for improving the error growth are to develop a set of
slightly different AI models by randomizing the seed in the
Al training process as an analogy to stochastic parameteriza-
tion (Weyn et al., 2021) or to incorporate the Lyapunov ex-
ponent within the cost function of model training (Platt et al.,
2023). Note that the present experiments were conducted at
a coarse resolution of 5.625°, which may limit the ability of
the ClimaX-LETKF system to accurately diagnose localized
weather phenomena. At higher spatial resolutions, Al models
may capture mesoscale and sub-synoptic features, potentially
leading to more realistic ensemble-based error covariances.
Future work will explore the data assimilation system’s be-
haviors at higher resolutions using more advanced versions
of Al models with denser observation datasets.

Despite the need for further improvements, this study rep-
resents a significant step toward ensemble data assimilation
for Al-based weather prediction models. Notably, we demon-

https://doi.org/10.5194/gmd-18-7215-2025
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strated that the data assimilation cycled stably for the Al-
based weather prediction model ClimaX with the LETKF
using covariance inflation and localization techniques. In ad-
dition, the ensemble-based error covariance was estimated
reasonably well by the Al-based weather prediction model
in sparsely observed regions.

Additional research is anticipated for areas identified as
requiring further improvements. For that purpose, ensem-
ble data assimilation is a useful tool for diagnosing Al-
based weather forecasting models. That is, investigating op-
timal localization scales, ensemble-based error covariance,
and necessary inflation factors gives beneficial insights into
understanding the properties of Al models. After achieving
these two major advancements, it is important to employ
a systematic sensitivity analysis for the localization radius
and ensemble size. A suitable inflation method for Al-based
weather prediction models also remains to be explored. Com-
paring the EnKF with variational or ensemble—variational
approaches would be an important topic for future investi-
gation. Since Al models require much lower computational
costs compared to dynamical NWP models, extending the
present study to large-ensemble EnKFs or a local particle
filter (LPF) is also an important subject of future studies.
Our future work will investigate the applicability of the pro-
posed system to real-time forecasting with higher-resolution
Al models with real weather observations, such as PREP-
BUFR and satellite radiances. The analysis fields and en-
semble spreads generated by the ensemble data assimilation
with assimilation of real observations may be applicable to
subsequent training of Al models. Most current Al weather
models are trained on reanalysis data such as WeatherBench,
without explicitly accounting for the uncertainty in analysis
(i.e., analysis ensemble spread). By using ensemble spreads
or individual ensemble members, the training process of Al
models could be improved, such as by relaxing penalties in
regions with large ensemble spread.

Beyond weather prediction, data assimilation has been
successfully combined with machine-learning-based surro-
gate models in various fields, including oceanography, hy-
drology, and wildfire (e.g., Brajard et al., 2021; Cheng et al.,
2022; Jeong et al., 2024). It would be beneficial to explore
how the EnKF could be applied to diagnose Al-based mod-
els in other fields.

Code and data availability. The data assimilation system, exper-
imental data, and visualization scripts used in this paper are
archived on Zenodo (https://doi.org/10.5281/zenodo.13884167,
Kotsuki, 2024a). The original ClimaX version 0.3.1 and LETKF
codes are also archived on Zenodo (ClimaX version 0.3.1,
https://doi.org/10.5281/zenodo.14258099, Kotsuki, 2024b; LETKF,
https://doi.org/10.5281/zenodo.14258014, Kotsuki, 2024c).
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