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Abstract. Numerical methods of discontinuous Galerkin
(DG) discretisation for coastal ocean modelling have ad-
vanced significantly, but there are still challenges in accu-
rately simulating phenomena such as wetting and drying pro-
cesses and baroclinic flows in coastal and estuarine regions.
This study develops a novel three-dimensional (3D) coastal
and estuarine modelling system named DGCEMS, using a
quadrature-free nodal DG method. The model adopts σ coor-
dinates, employs a nonsplit-mode framework, and integrates
a semi-implicit Runge–Kutta scheme. A series of numerical
experiments demonstrate the model’s second-order conver-
gence, low spurious mixing, and capability to simulate salt–
freshwater interactions in the presence of wetting and drying
boundaries.

1 Introduction

During the past few decades, numerical methods have
evolved dramatically, and coastal ocean models can bene-
fit from these advanced numerical methods (Blaise et al.,
2010). Classical three-dimensional (3D) hydrodynamic mod-
els, e.g. ROMS (Shchepetkin and McWilliams, 2005),
Delft3D (Lesser et al., 2004), FVCOM (Chen et al., 2003),
TELEMAC (Moulinec et al., 2011), and SCHISM (Zhang
et al., 2016), can be utilised to predict storm surges, tsunamis,
and floods and assess environmental qualities by adding

additional equations (e.g. transport and reaction) to model
oil slicks, contaminant plume propagation, temperature, and
salinity transport, among other problems (Bertsch et al.,
2022; Zhou et al., 2024; Sanz-Ramos et al., 2023).

In coastal and estuary waters, the presence of large gra-
dients and strong discontinuity processes (e.g. wetting and
drying processes and saline flow) may pose challenges for
these classical circulation models, such as maintaining high
numerical accuracy, minimising numerical mixing, and pre-
venting excessive diffusion. From the perspective of numer-
ical discretisation methods in the above models, the finite-
volume (FV) method is known to have limitations in develop-
ing high-order accuracy schemes and incorporating so-called
hp adaptivity (Lee, 2019). High-order FV models can in-
crease the order by wide stencils, but they have to perform
complex numerical reconstruction, which significantly in-
creases computational complexity (Cheng et al., 2016). Mod-
els based on the finite-element (FE) method can also achieve
high order, but they do not have local conservation. In the
wet–dry (WD) fronts and in small-scale dynamics like baro-
clinic eddies, where local conservation of mass and momen-
tum is critical, the property of local conservation is a pre-
ferred characteristic of a numerical scheme (Lee, 2020).

As a combination of both FV and FE methods, the dis-
continuous Galerkin (DG) method, with a relatively small
number of elements, is well suited to modelling of 3D flows
exhibiting strong velocity or density gradients. Dawson and
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Aizinger (2005) first developed a 3D shallow-water equa-
tion (SWE) model based on DG methods called UTBEST3D.
They used z coordinates in a vertical direction and a local
discontinuous Galerkin (LDG) method for vertical diffusion
(Aizinger and Dawson, 2007). To reduce the degrees of stiff-
ness, Blaise et al. (2010) and Comblen et al. (2010) devel-
oped a 3D baroclinic marine model called SLIM3D and used
the symmetric interior penalty Galerkin method (SIPG) to
discrete the vertical diffusion. In addition, the mode-splitting
procedure, which splits the 2D external mode and the 3D in-
ternal mode, is used to save computational time (Kowalik and
Murty, 1993). Later, Delandmeter et al. (2018) added a fully
consistent and conservative vertically adaptive coordinate
system in SLIM3D. At the same time, Kärnä et al. (2018)
also developed a 3D DG baroclinic model called Thetis.
Thetis includes a more accurate mode-splitting method, re-
vised viscosity formulation, and new second-order time in-
tegration scheme, which has lower or comparable numerical
dissipation. The above three models all choose z coordinates,
considering that σ coordinates enable a smooth representa-
tion of the bottom topography, which is particularly appro-
priate for coastal applications. Using σ coordinates, Conroy
and Kubatko (2016) explicitly treated the vertical diffusion
term to study the water column concerning barotropic forc-
ing by building a 3D DG SWE model. The model of Conroy
and Kubatko (2016) does not consider nonlinear advective
terms and can only investigate 3D linear problems. The men-
tioned models use the quadrature-based nodal DG method.
In explicit and semi-implicit time stepping schemes com-
monly used in connection with the SWE models, the most
computationally expensive parts of a DG algorithm are the
element and edge integrals computed via loops over quadra-
ture points (Faghih-Naini et al., 2020). One criticism of the
original DG method is that it requires expensive quadrature
rules to reduce the aliasing error arising in the nonlinear sys-
tem. The essence of the quadrature-free approach is to con-
vert the nonlinear fluxes to polynomials or polynomial op-
erations, which can be integrated analytically into the ele-
ment or element boundaries (Li, 2024). The quadrature-free
DG scheme has a comparable order and L2 errors even at
the 7th order of accuracy compared to the quadrature-based
DG scheme for the isentropic vortex problem (Nair, 2015).
In the MATLAB–C hybrid framework, Ran et al. (2022) de-
veloped a 3D barotropic model based on the quadrature-free
nodal DG method. They choose the nonsplit-mode scheme
considering that this method does not need to adjust the dif-
ferences in the momentum calculation between the 2D exter-
nal mode and the 3D internal mode and has fewer excessive
errors (Chen et al., 2022; Conroy and Kubatko, 2016). A se-
ries of numerical experiments have proven the accuracy and
potential application value of the barotropic model, but its
computational efficiency is low, which limits the applicabil-
ity of the model.

In addition to the utilisation of different numerical discreti-
sation schemes, wetting and drying (WD) processes should

be included in coastal and estuarine modelling, which is a
challenge for 3D DG models. At present, within existing
3D DG models, Vallaeys (2018) noted that the WD processes
can be considered in the external mode of the mode-splitting
SLIM3D model, but this kind of wetting and drying mod-
ule cannot be operated together with the baroclinic module.
Chen et al. (2024) developed a WD treatment in a 3D DG
model with the nonsplit-mode scheme, but there is still no
description and verification of the coexistence of WD pro-
cesses and thermohaline transport.

To adapt to the complex terrain of estuary and coastal
areas and have a comparable calculation accuracy to exist-
ing 3D DG baroclinic models, this work aims to develop a
new share-code discontinuous Galerkin coastal and estuar-
ine modelling system (DGCEMS) for a 3D nonsplit-mode,
implicit–explicit Runge–Kutta baroclinic model using σ co-
ordinates with a WD module based on a quadrature-free
nodal DG scheme. The arrangement of this paper is as fol-
lows. Section 2 describes the model with the discretisation
of each term in the model, while Sect. 3 presents numerical
tests and applications to show the main functionality of the
model. Conclusions are given in Sect. 4.

2 Model and discretisation

2.1 Governing equations

The conservative and pre-balanced scheme of 3D shallow-
water equations in the σ coordinates, with advection–
diffusion equations of temperature T and salinity S, can be
written as

U t+∇ ·F (U)= S(U). (1)

Here U = [D,Du,Dv,DT,DS]T, where D is the water
depth, and u and v are the velocity components along
the x and y directions, respectively. The convective term
F (U)= [E(U),G(U),H (U)], and each part in this term
can be written as

E(U)=


Du

Du2
+ 1/2

(
g
(
D2
− z2

b
))

Duv
DuT
DuS

 ,

G(U)=


Dv
Duv

Dv2
+ 1/2

(
g
(
D2
− z2

b
))

DvT
DvS

 ,H (U)=

ω
ωu
ωv
ωT
ωS

 , (2)

where g is gravitational acceleration; zb is the bottom eleva-
tion, and ω is the vertical velocity along the σ direction. The
right side of Eq. (1) contains the terms of

S(U)= Sb+Sf+Sd,h+Sd,v+Sbaro, (3)
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where Sb, Sf, Sd,h, Sd,v, and Sbaro represent the bottom to-
pography term, Coriolis acceleration term, horizontal diffu-
sion term, vertical diffusion term, and baroclinic term, re-
spectively. The five terms are given as follows:

Sb =


0

−gη∂zb/∂x

−gη∂zb/∂y

0
0

 ,Sf =


0

−fDv

fDu

0
0

 , (4)

Sd,h =
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0
∂
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(
KhD

∂u
∂x

)
+

∂
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(
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∂
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+

∂
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(
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)
∂
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(
KHD
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(
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(
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)
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∂
∂y

(
KHD

∂S
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)


,

Sd,v =



0
∂
∂σ

(
Kv
D2

∂Du
∂σ

)
∂
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(
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∂Dv
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, (5)

Sbaro =


0

−
gD
ρ0

[∫ 0
σ
D
∂ρ
∂x

dσ − ∂D
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∫ 0
σ
σ
∂ρ
∂σ

dσ
]
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 , (6)

where η =D+ zb is the surface elevation; f is the Corio-
lis coefficient; Kh and KH are the horizontal (eddy) diffu-
sion coefficients using Smagorinsky’s method (Smagorinsky,
1963); Kv and KV are the vertical (eddy) diffusion coef-
ficients calculated by the MY-2.5 turbulent closure scheme
in the General Ocean Turbulence Model (GOTM; Burchard
et al., 1999); ρ0 is the reference density; and the water den-
sity ρ is defined as ρ = ρ(T ,S), which is a function of T
and S. In the model, two state equations can be chosen: lin-
ear, shown in Eq. (7), and full nonlinear, from Jackett et al.
(2006):

ρ(T ,S)= ρ0−αT(T − T0)+βS(S− S0). (7)

In Eq. (7), αT and βS are coefficients. T0 and S0 are refer-
ence temperature and salinity, respectively. It can be seen that
the above system has seven prognostic variables, namely D
(or η)T , u, v, ω, ρ, T , and S, but there are a total of six
equations (Eqs. 1 and 7) to be solved. To this end, the depth-
averaged continuity equation is applied to calculate the water
depth (or free surface) for the nonsplit-mode model, which
can be written as

∂D

∂t
+
∂DU

∂x
+
∂DV

∂y
= 0, (8)

where U =
∫ 0
−1udσ and V =

∫ 0
−1vdσ are depth-averaged

horizontal velocities. The vertical velocity is solved by com-
bining 2D and 3D continuity equations, which can be written
as

∂ω

∂σ
=
∂(DU −Du)

∂x
+
∂(DV −Dv)

∂y
(9)

and then be integrated layer by layer along the vertical direc-
tion.

2.2 Discontinuous Galerkin discretisation

In this section, we describe the numerical implementa-
tion of DGCEMS. The DG function spaces are defined in
Sect. 2.2.1, followed by the quadrature-free nodal DG dis-
cretisation (Hesthaven and Warburton, 2007) of the above
governing equations.

2.2.1 Function spaces and notations

For a 3D computational domain, �3d, there is a correspond-
ing projection at the horizontal plane, which is denoted
as �2d, and it can be divided by an unstructured triangular
mesh. These triangular elements extend vertically and form
triangular prisms, which are computational elements in �3d.
The DG discretisation of this model is based on the linear
function space, which is denoted as PNh in the 2D space
and P(Nh,Nv) in the 3D space (in Fig. 1, both Nh and Nv are
equal to 1, representing the stage of the function of horizon-
tal and vertical space). It should be noted that the number
of vertical layers in the model is flexible and user-defined.
The vertical discretisation shown in Fig. 1 employs two lay-
ers for illustrative purposes only, to demonstrate the distribu-
tion of interpolation nodes in the σ -coordinate direction. In
practical simulations, more vertical layers (e.g. 10 to 20 lay-
ers) are typically used to improve the resolution of vertical
velocity profiles and stratification. Increasing the number of
layers enhances vertical accuracy but does not change the
order of numerical convergence and may increase computa-
tional cost. We set φ2d ∈ PNh , ϕ2d ∈ P

2
Nh

, φ3d ∈ P(Nh,Nv), and
ϕ3d ∈ P

2
(Nh,Nv)

as the test functions in the 2D and 3D function
spaces.

Next, we use the following notations to represent the vol-
ume and surface integrals:

〈·〉� =

∫
�

(·)dx, (10)

〈〈·〉〉∂� =

∫
∂�

(·)ds. (11)
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Figure 1. Schematic of vertical computational element distribution
(example with two layers). Black dots represent the interpolation
nodes corresponding to the horizontal first-order and vertical first-
order basis functions.

In surface terms, we additionally define the concept of the
average, {{·}}, and the jump, [[·]], to simplify the expression
of subsequent formulas:

{{a}} =
1
2
(a++ a−), (12)

{{b}} =
1
2
(b++ b−), (13)

[[ab]]= a+b++ a−b−, (14)
[[b · n]]= b+ ·n++ b− ·n−, (15)
[[bn]]= b+n++ b−n−, (16)

where a represents a scalar field and b represents a vec-
tor field, − and + are the local side and adjacent side, and
n= (nx,ny,nσ ) is the outward unit normal on the edges. Let
T and P stand for the partition of the 2D domain �2d and
3D domain�3d, respectively. Element interfaces are denoted
by I2d = {ki ∩ kj |ki,kj ∈ T , i 6= j}, while Ih and Iv are no-
tations of horizontal and vertical interfaces in P .

2.2.2 Convection terms and source terms

We multiply Eq. (1) by a test function ϕ ∈ φ3d and integrate
the face terms by parts twice:

〈U t ·ϕ〉�3d −〈F (U) · ∇ϕ〉�3d

+

〈〈
(E(U),G(U))∗,HLLC

· [[ϕnh]]
〉〉
Iv

−〈〈(E(U),G(U))− · [[ϕnh]]〉〉Iv

+〈〈H (U)∗,up
· [[ϕnσ ]]〉〉Ih

−〈〈H (U)− · [[ϕnσ ]]〉〉Ih

= 〈Sb ·ϕ〉�3d +〈Sf ·ϕ〉�3d +〈Sbaro ·ϕ〉�3d

−Dh (u,v,T ,S,ϕ)+Dv (u,v,T ,S,ϕ) . (17)

Here, ( )∗,HLLC is calculated by the Harten–Lax–van Leer–
Contact (HLLC) method (Toro, 2001); ( )∗,up means the up-
wind numerical flux at the interface; nh = (nx,ny) is the hor-
izontal outward unit normal vector; nσ represents the vertical
outward unit normal vector; andDh andDv are the horizontal
and vertical diffusion operators, which are introduced in the
next section. In computational elements, the bottom and top
interfaces are horizontal (nx,ny = 0), while the side inter-
faces are vertical (nσ = 0). For convection terms, the process
of surface integration is divided into a horizontal part and a
vertical part, which need to use the upwind and the HLLC
approximate Riemann solver, respectively. This model uses
the quadrature-free nodal DG method to avoid the complex
calculation processes of the Gaussian integral for nonlinear
convection terms. The DG discretisation of the source terms
also contains the process of the surface integral, but it seems
to be omitted in Eq. (17) because the central numerical flux
is used, resulting in the surface integral being 0 as a whole.

2.2.3 Horizontal and vertical diffusion terms

The discretisation of diffusion terms differs from that of con-
vection because they have elliptic operators, which need ad-
ditional stabilisation. Thus, the symmetric interior penalty
Galerkin (SIPG) method (Epshteyn and Rivière, 2007) is
used, where Dh and Dv read

Dh(u,ϕ)= −
〈
∇hϕ · (Dνh · ∇hu)

T〉
�3d

+〈〈{{Dνh · ∇hu}} · [[ϕnh]]〉〉Iv

+〈〈{{Dνh · ∇hϕ}} · [[unh]]〉〉Iv

−〈〈{{τ }}{{Dνh}} [[unh]] [[ϕnh]]〉〉Iv , (18)

Dv(u,ϕ)= −

〈
∂ϕ

∂σ
·

(
νv

D2 ·
∂Du

∂σ

)〉
�3d

+

〈〈{{
νv

D2 ·
∂Du

∂σ

}}
· [[ϕnσ ]]

〉〉
Ih

+

〈〈{{
νv

D2 ·
∂ϕ

∂σ

}}
· [[Dunσ ]]

〉〉
Ih

−

〈〈
{{τ }}

{{ νv

D2

}}
[[unσ ]] [[ϕnσ ]]

〉〉
Ih
. (19)

Here, νh = (0,Kh,Kh,KH,KH)
T and νv =

(0,Kv,Kv,KV,KV)
T, and τ is called the penalty fac-

tor. Following the study by Shahbazi (2005), it can be
defined as

τ =
γ

2
(N + 3)(N + 1)

3L
, (20)

in which N represents the order value of the horizontal or
vertical basic function, γ is the number of surfaces in an el-
ement, and L is the length scale of the local element in the
normal direction of the surface.
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2.2.4 Primitive continuity and vertical velocity
equations

We also multiply Eq. (8) by the test function and integrate
the face terms by parts twice. The strong-form formulation
of the primitive continuity equation is shown in Eq. (20):〈
∂D

∂t
ϕ

〉
�2d

−〈DU · ∇hϕ〉�2d −〈DV · ∇hϕ〉�2d

+

〈〈
(DU)∗,HLLC

· [[ϕnh]]
〉〉
I2d

−〈〈(DU)− · [[ϕnh]]〉〉I2d

+

〈〈
(DV )∗,HLLC

· [[ϕnh]]
〉〉
I2d

−〈〈(DV )− · [[ϕnh]]〉〉I2d = 0. (21)

Then, expanding the function space of Eq. (21) to the
3D system and subtracting that from the first line of Eq. (17),
we have〈
∂ω

∂σ
ϕ

〉
�3d

= 〈(Du−DU) · ∇hϕ〉�3d

+〈(Dv−DV ) · ∇hϕ〉�3d

−

〈〈
(Du−DU)∗,HLLC

· [[ϕnh]]
〉〉
Iv

+〈〈(Du−DU)− · [[ϕnh]]〉〉Iv

−

〈〈
(Dv−DV )∗,HLLC

· [[ϕnh]]
〉〉
Iv

+〈〈(Dv−DV )− · [[ϕnh]]〉〉Iv . (22)

Finally, the vertical integral can achieve vertical velocity
from the bottom to the top.

2.3 Slope limiters and wetting/drying treatment

The slope limiters are necessary for the stabilisation of the
model. Here we use a 3D anisotropic limiter to control the
large gradient of the horizontal momentum and the tracers.
The limited solution at the j th nodal number in the kth tri-
angular prism element is denoted as T̃ k,j , which is defined
as

T̃ k,j = λT k,j + (1− λ)T k, (23)

where T k,j = [(Du)k,j , (Dv)k,j , (DT )k,j , (DS)k,j ]
T repre-

sents the original solution at the kth triangular prism element
in P; T k is the volume-averaged solution at the kth triangu-
lar prism element; and λ is defined by Delandmeter (2017),
which ensures the anisotropy of the 3D limiter.

Considering the WD processes in the nearshore regions,
the strong discontinuity at the WD fronts also frequently
causes difficulties in the model stability (Le et al., 2020;
Medeiros and Hagen, 2013). To avoid the WD problems that
may occur in the computational processes, we follow the WD
treatment method by Chen et al. (2024), where they combine

the vertex-based limiter by Li and Zhang (2017), the well-
balanced positivity-preserving limiter proposed by Xing and
Zhang (2013), and Eq. (23) to prevent the blow-up of the
water level and momentum solutions. In this model, the sten-
cil of the 2D vertex-based limiter has been adjusted to align
with the 3D limiter. This modification was identified through
extensive numerical testing and has been found to enhance
computational stability to a certain extent.

2.4 Time stepping

In the DG framework, the explicit Runge–Kutta time step-
ping method is popular. By selecting different numbers of
stages, different levels of temporal accuracy can be achieved.
Although the explicit scheme has a relatively low compu-
tational cost per time step, it imposes strict limitations on
time steps. Specifically, for high-stiffness terms like the ver-
tical diffusion term, the required time step should be suf-
ficiently small. Thus, we use the implicit–explicit Runge–
Kutta (IMEXRK) scheme. For clarity, the above DG discreti-
sation processes are summarised as

dy
dt
= f EX(y)+ f IM(y), (24)

where y denotes the degree of freedom over all elements;
f IM(y) is the implicit system for the vertical diffusion term,
and f EX(y) represents the explicit system that contains all
other terms. The IMEXRK system reads

y(1) = y(n)+1tf EX(y(n)), (25)

y(2) = y(n)+
1
2
1t(f EX(y(n))+ f EX(y(1))), (26)

y(n+1)
= y(2)+1tf IM(yt (n+1)). (27)

Here, when the model calculates from steps n to n+ 1, it
has two middle steps, shown in Eqs. (25) and (26). Finally,
the whole algorithm from time steps tn to tn+1 is shown in
Algorithm 1. In the workflow, after the physical variables are
computed at each time step, 3D slope limiters are applied
to the reconstructed solution to suppress spurious oscilla-
tions and prevent the generation of non-physical values, par-
ticularly near steep gradients or discontinuities. These lim-
iters ensure numerical stability. Subsequently, the physical
fields are vertically averaged to derive depth-integrated vari-
ables. The WD treatment is then performed on these depth-
averaged variables to accurately capture shoreline movement
while preserving the conservation of water surface elevation
and depth-averaged momentum. This sequential process im-
proves robustness and physical consistency in simulations in-
volving complex wetting and drying processes.

https://doi.org/10.5194/gmd-18-7199-2025 Geosci. Model Dev., 18, 7199–7214, 2025



7204 Z. Chen et al.: The discontinuous Galerkin coastal and estuarine modelling system (DGCEMS v1.0.0)

Algorithm 1: the calculation process of the model in a
computational time step

First stage

1. Calculate the convection term, the horizontal diffusion
term, the source terms, and the primitive continuity
equation (Eqs. 17, 18, and 21) explicitly according to
D(n) (or η(n)), Du(n), Dv(n), DT (n), and DS(n) at time
tn.

2. Achieve the values of D(1) (or η(1)), Du(1), Dv(1),
DT (1), and DS(1) at the first middle step (Eq. 25).

3. Apply slope limiters toDu(1),Dv(1),DT (1), andDS(1)

(Eq. 23).

4. Calculate vertically averaged horizontal velocities by
integration and update the WD statement, the density
ρ(n), and the vertical velocity ω(n) (Eqs. 7 and 9).

Second stage

1. Calculate the convection term, the horizontal diffusion
term, the source terms, and the primitive continuity
equation (Eqs. 17, 18, and 21) explicitly according to
D(1) (or η(1)), Du(1), Dv(1), DT (1), and DS(1).

2. Achieve the values ofD(n+1) (or η(n+1)),Du(2),Dv(2),
DT (2), and DS(2) at the second middle step using the
values at time tn and the first middle step (Eq. 26).

3. Apply slope limiters toDu(2),Dv(2),DT (2), andDS(2)

(Eq. 23).

Final stage

1. Calculate the vertical viscosity and vertical diffusion
implicitly.

2. Achieve the values of Du(n+1), Dv(n+1), DT (n+1), and
DS(n+1) at time tn+1 (Eq. 27).

3. Calculate vertically averaged horizontal velocities by
integration and update the WD statement, the density
ρ(n+1), and the vertical velocity ω(n+1) (Eqs. 7 and 9).

3 Tests and analysis

In this section, we first validate the baroclinic solver by
a manufactured solution test and then verify the diffusion
terms using a standard lock exchange test. An ideal river
plume test case and a semi-closed estuary case of salinity
intrusion are also applied to examine the performance of
DGCEMS.

3.1 Baroclinic manufactured solution test

The baroclinic manufactured solution test was inspired by
Kärnä et al. (2018), and their original z-coordinate formula-
tion was converted into a σ -coordinate framework for val-
idation. The computational domain is a rectangular box of
length Lx = 15 km, width Ly = 10 km, and depth D= 40 m.
At the initial time step, we define the velocity field and the
tracer field as follows:

u=
1
2

sin
(

2πx
Lx

)
cos(3σ), (28)

v =
1
3

cos
(
πy

Ly

)
sin
(σ

2

)
, (29)

T = 15+ 15sin
(
πx

Lx

)
sin
(
πy

Ly

)
cos(σ ), (30)

where the above three expressions are also represented us-
ing the σ coordinate, ranging from −1 to 0, in the ver-
tical direction. In this case, the Coriolis parameter f =
0.0001, while the bottom friction term, the viscosity term,
and the diffusion term are omitted. The linear state equa-
tion is applied with ρ0= 1000 kgm−3, αT= 0.2 kgm−3 °C-
, and T0= 5.0 °C. The value of βs is not defined because
the salinity in the whole field is a constant. We set 10 lay-
ers at vertical directions with horizontal mesh resolutions of
2500, 1250, 625, 312.5, and 156.25 m, where the grid shapes
are isosceles right-angled triangles. In the computational do-
main, all the boundary edges are closed, and no external force
needs to be applied, which causes the system to have a time-
dependent problem. To achieve a steady-state solution, we
derived the analytical functions of the advection term, the
baroclinic term, and the Coriolis acceleration term and then
added them to the source term to balance the initial velocity
and tracer field. Details can be found in Appendix A.

For the five grid resolutions mentioned above, the model
was run for 100 steps with time steps of 4.0, 2.0, 1.0, 0.5, and
0.25 s. The L2 errors in the water elevation, horizontal veloc-
ity, vertical velocity, and temperature field across the entire
computational domain were calculated, as shown in Fig. 2.
The red lines shown in the figure represent the best-fit lines
obtained using the least-squares method, with their slopes
indicating the order of convergence. For varying grid reso-
lutions, the water elevation, horizontal velocity, and temper-
ature exhibit near-second-order convergence. However, the
vertical velocity fails to achieve second-order convergence,
which is attributed to the use of the vertically averaged con-
tinuity equation in the vertical velocity computation. The nu-
merical solution of this equation inherently contains errors
that accumulate throughout the calculation process, prevent-
ing the vertical velocity from reaching optimal second-order
convergence. Overall, the results from this artificial analyt-
ical solution test are consistent with those of Kärnä et al.
(2018), confirming that the discretisation of the advection
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Figure 2. Convergence of the L2 errors in the (a) surface elevation, (b) horizontal velocity, (c) vertical velocity, and (d) temperature field in
the baroclinic manufactured solution test case.

term, baroclinic term, and Coriolis term in σ coordinates is
accurate at both the coding and the algorithmic levels.

3.2 Lock exchange

In this subsection, we validate the baroclinic term and dis-
cuss the spurious mixing caused by horizontal diffusion with
a standard lock exchange test (Ilıcak et al., 2012; Petersen
et al., 2015; Kärnä et al., 2018). The computational domain
is a rectangular channel that is 64 km long, 1 km wide, and
20 m deep. Each element in the domain is1x= 500 m of the
triangle edge length and 1 m in the vertical direction (total
of 20 layers). The initial salinity is set to a constant value
of 35 psu in the whole domain, and the initial temperature is
calculated by

T (x,y,σ )= 5°C where 0≤ x < 32km, (31)

T (x,y,σ )= 35°C where 32≤ x ≤ 64km. (32)

We use Eq. (7) to update the density, where αT = 0.2, βS =

0, T0= 5 °C, and S0= 35 psu. At the location of x= 32km,
the initial density difference is ρ= 6.0 kgm−3. In the model,
only the convective term controls the tracer concentration,
and the bottom friction is omitted. The vertical viscos-
ity, Kv, is 10−4 m2 s−1, and the horizontal viscosity, Kh, is
varied with a value of 1, 10, and 200 m2 s−1 so that the
grid Reynolds numbers Re= Ugrid1x/Kh= 250.0, 25.0, and
1.25, where Ugrid= 0.5 ms−1 represents the characteristic
velocity scale.

Figure 3a shows the initial density field, and Fig. 3b–d are
the density fields at the time of 17 h, where the Re values are
250.0, 25.0, and 1.25, respectively. It seems that as the Re de-
creases, the density front becomes smoother, indicating that
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Figure 3. The density in the lock exchange test under three different grid Reynolds numbers.
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Figure 4. Simulation results of (a) relative RPE and (b) the density front location at the bottom layer of the lock exchange test with
different Re.

the increase in background viscosity reduces overall mixing
within the system. To quantify the role of spurious mixing,
we also use a reference potential energy (RPE), which can
be defined as

RPE= g
∫
ρ∗(z+D)dz, (33)

where ρ∗ is rearranged in descending order based on ac-
tual density values ρ from the bottom to the top. Using this
computational approach, RPE represents the potential energy
within the system that cannot be converted into kinetic en-
ergy. When spurious mixing is present, the value of RPE in
the system increases. At any given time, t , the dimensionless
relative reference potential energy (RPE(t)) is defined as fol-
lows:

RPE(t)=
RPE(t)−RPE(0)

RPE(0)
. (34)

The calculation results of RPE(t) for the three Reynolds
numbers are shown in Fig. 4a. At the 17th hour, the values
of RPE(17) are 3.06, 2.26, and 0.66× 10−5, which agree
with previous simulation results (Ilıcak et al., 2012; Kärnä
et al., 2018). Additionally, the locations of the density fronts
simulated under three different grid Reynolds number condi-
tions were captured and compared with the theoretical max-
imum propagation distance, L, where L= t/2

√
gD1ρ/ρ0.

The spurious mixing resulted in a loss of potential energy
throughout the system, leading to discrepancies between the
model simulations and the theoretical values (Fig. 4b). Over-
all, the error remains within 4.7 %, which is consistent with
Kärnä et al. (2018).

3.3 An ideal river plume

We continue to experiment with an ideal river plume (Wu
2023) to analyse the model’s performance. Saltwater can be
replaced by various contaminants that affect water quality.
Therefore, investigating surface plume dynamics not only
validates the model’s accuracy but also highlights its appli-
cability to environmental modelling and pollutant transport
simulations.

3.3.1 Settings

Figure 5 shows the topography of the estuary region, where
there is a 7.5 km long, 3.0 km wide, and 15 m deep river that
connects to the sea. The initial computational mesh domain is
shown in Fig. 6. Freshwater runoff with a rate of 1500 m3 s−1

and a salinity of 0 flows into a shelf with a bottom slope of
0.0007, where the salinity of the ocean water is 32 psu. We
first use a grid resolution of 1500 m to partition the compu-
tational domain, which means that there are only two rows
of grids along the width of the river channel. In this test,
the Coriolis parameter is calculated by the latitude of 45° N,
which is about 0.0001; the bottom friction coefficient is cal-
culated by the MY-2.5 turbulent closure scheme with a bot-
tom roughness parameter of 0.2 mm; and the eddy diffusivity
coefficient is set to 0. Other external forces are not considered
in this test. The open boundary is set to radiative according
to Wu (2023) so that the boundary will have less influence on
the currents in the computational domain. We also use Eq. (7)
to update the density, where αT = 0, βS = 0.78, T0= 20 °C,
and S0= 32 psu.
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Figure 5. The topography of the ideal river plume experiment.

Figure 6. The computational mesh domain and the initial salinity
field. The salinity is 0 psu at x < 0 km and 32 psu at x ≥ 0 km.

3.3.2 Analysis of plume pattern

Due to the lack of analytical solutions in the test, we illus-
trate the accuracy of the simulation results from the perspec-
tive of grid convergence. For numerical methods, we prefer
them to be less affected by grid resolution. Here, the mesh
resolution is refined by a factor of 2 and 4 in both the x and
the y directions, and the simulated results at 48 h are shown
in Fig. 7. Considering the impact of differences in grid reso-

lution on images, the simulation results of the three types of
grids were processed in the same way to minimise the impact
of post-processing as much as possible. Based on the sim-
ulated plume pattern, as the computational grid resolution
increases, the zigzag phenomenon at the plume front grad-
ually diminishes, resulting in a smoother edge and a more
pronounced bulge shape. Simultaneously, there are notice-
able differences in the extent of freshwater transport along
the coast; with higher grid resolution, the transport distance
increases. This may be attributed to the finer grid’s ability
to more accurately capture buoyancy fronts, thereby enhanc-
ing the coastal extension of freshwater. Additionally, the finer
resolution reduces numerical dissipation, contributing to the
observed differences in transport distance.

3.3.3 Quantitative analysis

To further demonstrate the performance of the model, a se-
ries of quantitative methods are employed to analyse the nu-
merical simulation results of freshwater content (Fc in short),
plume characteristics in the near- and mid-field regions, and
coastal plume transport in the far-field region under different
computational grid resolutions.

Following the concept of the isohaline coordinate by Mac-
Cready et al. (2002), the calculation method of freshwater
volume can be written as

V (S∗)=

∫
S<S∗

(S0− S)/S0dV, (35)

where S∗ represents each salinity level. Then, we have

Fc(S)=
dV (S)

dS
. (36)
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Figure 7. Simulated surface river plume and surface current velocity at 48 h. The grid resolution is refined from 1500 m (a) to 375 m (c).

Figure 8. Freshwater content per salinity class at 48 h for results
with different grid resolutions.

It can be seen in Fig. 8 that under the three grid resolutions,
the freshwater content exhibits a similar trend: it increases
initially and then decreases as salinity rises, with the peak
freshwater content occurring at a salinity of 26 psu. This be-
haviour can be explained by the relationship between salinity
and the distance from the river mouth. Lower salinity val-
ues indicate proximity to the river mouth, where the num-
ber of grids is relatively small, resulting in lower freshwater
content in these regions. Conversely, higher salinity values
correspond to regions farther from the river mouth, where
more grids are present, but the freshwater content per cell
is low, leading to lower overall freshwater content in high-
salinity areas. These results are consistent with the research
of Wu (2023).

Secondly, at y= 140 km, approximately at the location of
the plume’s rotational centre, a cross-sectional profile was

Figure 9. Surface salinity at the profile of y= 140 km under three
grid resolutions. Dashed blue and red lines are the relative salinity
errors for grid sizes of 1500 and 750 m, respectively, compared to
the 375 m grid.

extracted to analyse the effect of grid resolution on the for-
mation of the bulge in the near- and mid-field regions (see
Fig. 9). When the grid resolution is 1500 m, the salinity at
the centre of the bulge is relatively low, around 17.5 psu. As
the grid resolution increases, the asymmetry of surface salin-
ity from the centre of the bulge toward the edge of the inertial
radius becomes more pronounced. Using the 375 m grid res-
olution as the reference, when the grid resolution is doubled
or quadrupled, the salinity error relative to the reference case
fluctuates within 10 %.

Finally, at y= 100 km, the relative freshwater transport
carried by the coastal buoyancy current induced by the plume
is calculated to assess the impact of grid resolution on the
simulation results in the far-field region. The relative fresh-
water transport is determined by the ratio of the freshwa-
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Figure 10. The calculation domain and its grid division of the semi-
closed estuary. The minimum grid resolution is 200 m. The river
channel cross-section is symmetric along the channel centreline
and uniform along the channel direction. The initial water depth
is 10.2 m and α= 0.0007. Three characteristic points are marked:
the channel centre (A), the WD boundary (B), and the initially dry
location (C). The initial salinity is set to 0 on the left side of the
solid red line and 35 psu on the right side.

ter content at this location to that at the river mouth. At
y= 100 km, the simulated surface coastal current velocity is
consistently 0.30 m s−1 across all grid resolutions, indicating
minimal influence of grid resolution on current velocity. The
percentage of freshwater transport at this location is 59.4 %,
57.5 %, and 60.6 % for grid resolutions of 1500, 750, and
375 m, respectively.

3.4 Saltwater enters an idealised semi-enclosed estuary

In addition to estuarine freshwater plumes, another phe-
nomenon related to saltwater and freshwater interactions is
saltwater intrusion into estuaries under tidal forcing. In this
section, a semi-enclosed idealised river channel is config-
ured, as shown in Fig. 10. This test case follows the setup
described by Chen et al. (2022), with the computational mesh
redefined accordingly. The channel is 15 km long, 3 km wide,
and 10.2 m deep, with an initial salinity of 0. The channel
features a riverbank slope of 0.033 and a floodplain slope of
0.0007. The right boundary is open to the sea, with a salin-
ity of 35 psu, where a semi-diurnal tide with a 1 m ampli-
tude is applied. The water temperature is uniformly set to
20 °C. Given that existing 3D DG baroclinic models lack
empirical validation for handling WD processes, this test
examines the model’s applicability and reliability in solv-
ing the salinity transport equation in the presence of WD

Figure 11. A 3D view of a flooding time.

boundaries. The computational domain features a grid res-
olution ranging from 200 to 800 m, with the vertical dimen-
sion divided into 10 layers. The model operates with a time
step of 0.2 s. The linear state equation is applied again, with
αT = 0, βS = 0.714, T0= 20 °C, and S0= 35 psu, to update
the density. The horizontal and vertical viscosities are set to
0.01 m2 s−1, the bottom friction coefficient is set to 0.005,
and the threshold water depth is set to 0.05 m. The limiters
mentioned in Sect. 2.3 are all applied to maintain robustness.

During the flood tide, seawater from the open boundary
flows into the semi-closed channel and overtops the flood-
plain (Fig. 11). Three representative points were selected to
analyse temporal variations in tidal water elevation and ve-
locities: site A, located at the centre of the channel; site B,
near the WD interface on the top of the riverbank slope at
the initial time; and site C, situated in the initially dry inter-
tidal zone (Fig. 10). At sites A and B, the surface water el-
evations exhibit nearly identical variations over a lunar day.
However, at site C, water levels show periodic fluctuations
only during the 8 h corresponding to the high-water time,
remaining 0 the rest of the time (Fig. 12a). For site A, the
mean velocity in the along-channel direction exhibits well-
defined periodic variation, while the mean velocity in the
cross-channel direction remains close to 0, indicating that
the velocity field within the channel is minimally affected
by the WD boundary treatment. For site B, the mean velocity
in the along-channel direction is generally similar to that of
site A. However, during the two flood tide phases, the veloc-
ity is slightly reduced due to the influence of the wetting and
drying boundary treatment. In contrast, the mean velocity in
the cross-channel direction shows periodic variation consis-
tent with the tidal cycle. At site C, velocity is only observed
during high water levels, with both the magnitude and the di-
rection of the velocity varying during the 8 h window of tidal
inundation (Fig. 12b and c). Moreover, the salinity variations
along the channel centreline are shown in Fig. 13. As sea-
water intrudes from the estuarine mouth, the salinity values
within the channel progressively increase in the negative x
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Figure 12. Time series of surface water elevation (a), depth-
averaged velocity along the channel (b), and depth-averaged veloc-
ity across the channel (c) at points A, B, and C.

direction. Vertically, the salinity distribution exhibits a char-
acteristic pattern of lower salinity near the surface and higher
salinity near the bottom. Although this numerical experiment
may not provide highly quantitative conclusions, the model’s
simulation results of the saltwater intrusion process involving
WD interfaces are consistent with physical expectations.

4 Conclusions

This study presents the development of a novel 3D dis-
continuous Galerkin coastal and estuarine modelling sys-
tem, DGCEMS. The model distinguishes itself from existing
3D DG-based ocean models by employing σ coordinates, a
nonsplit-mode framework, and a quadrature-free nodal dis-
continuous Galerkin method. A semi-implicit Runge–Kutta
scheme is applied in the model. The code is available at
https://doi.org/10.5281/zenodo.14803724 (Chen, 2025). Nu-
merical tests show that the simulation results of the model
have a second-order convergence for surface water elevation,
horizontal velocity, and tracer fields, while the convergence
of the vertical velocity field is approximately first order. The
spurious mixing is also well controlled and comparable to the
existing 3D DG coastal ocean model Thetis. The new model
demonstrates low sensitivity to changes in grid resolution
when simulating surface river plumes, consistently produc-

Figure 13. Salinity distribution along the channel centreline cross-
section at 1.5, 3, and 6 h.

ing comparable results even with relatively coarse grids, and
it has the capability to simulate salt–freshwater interactions
in the presence of wetting and drying boundaries. In future
work, the model will be further optimised in terms of its par-
allel computing strategy and overall solution framework to
improve computational efficiency and scalability. Additional
physical processes and modules, such as wave–current inter-
actions, sediment transport, and biogeochemical dynamics,
will also be incorporated to enhance the model’s capability in
simulating more complex and realistic estuarine and coastal
systems.
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Appendix A: Terms for the baroclinic manufactured
solution test

Using Eqs. (28)–(30), the steady-state solution for other
fields and terms are

η = 0, (A1)

U =
1
6

sin(3)sin(2πxLx) , (A2)

V =
−4
3

sin2
(

1
4

)
cos

(
πy

Ly

)
, (A3)

ω =−
Dπ

3LxLy

(
Ly cos

(
2πx
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)
(sin(3)+ sin(3σ))

+2Lx

(
−cos

(
1
2

)
+ cos

(σ
2

))
sin
(
πy
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))
, (A4)
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The above terms are added to the right-hand side of Eq. (3)
as source terms to balance the initial fields.
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