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Abstract. Temperate semi-natural grassland plant communi-
ties are expected to shift under global change, mainly due
to land use and climate change. However, the interaction
of different drivers on diversity and the influence of diver-
sity on the provision of ecosystem services are not fully
understood. To synthesize the knowledge of grassland dy-
namics and to be able to predict community shifts under
different land-use and climate change scenarios, we devel-
oped the GrasslandTraitSim.jl model. In contrast to previ-
ously published grassland models, we link morphological
plant traits to species-specific processes via transfer func-
tions, thus avoiding a large number of species-specific pa-
rameters that are difficult to measure and calibrate. This al-
lows any number of species to be simulated based on a list
of commonly measured traits: specific leaf area, maximum
height, leaf nitrogen per leaf mass, leaf biomass per plant
biomass, above-ground biomass per plant biomass, root sur-
face area per below-ground biomass, and arbuscular mycor-
rhizal colonization rate. For each species, the dynamics of
the above- and below-ground biomass and its height are sim-
ulated with a daily time step. While the soil water content is
simulated dynamically, the nutrient dynamics are kept sim-
ple, assuming that the nutrient availability depends on total
soil nitrogen, yearly fertilization with nitrogen and the total
plant biomass. We present a model description – which is
complemented by online documentation with tutorials, flow
charts, and interactive graphics – and calibrate and validate
the model with two different datasets. We show that the
model replicates the seasonal dynamics of productivity for
experimental sites of the grass species Lolium perenne across
Europe satisfactorily well. Furthermore, we demonstrate that

the model can be used to simulate the productivity and func-
tional composition of grassland sites with different numbers
of mowing events and grazing intensity in three regions in
Germany. Therefore, the GrasslandTraitSim.jl model is pre-
sented as a useful tool for predicting the plant biomass pro-
duction and plant functional composition of temperate grass-
lands in response to management under climate change.

1 Introduction

Permanent semi-natural grasslands cover 30.5 % of the agri-
cultural area of the European Union (Eurostat, 2020), and
many of them are known to support high levels of biodi-
versity (Petermann and Buzhdygan, 2021). At small spatial
scales (< 100 m2), extensively managed grasslands have the
highest recorded plant species richness per area in the world
(Wilson et al., 2012). These plant-species-rich habitats can
in turn support many other taxonomic groups, such as in-
sects (European Environment Agency et al., 2013; Fartmann,
2024), which are adapted to open habitats. Moreover, 29 % of
the European bird species are associated with grassland habi-
tats (Nagy, 2009). In conclusion, temperate grasslands play
an important role in supporting biodiversity in agricultural
landscapes.

The key factor in maintaining the semi-natural grasslands
in the temperate zone is management, as well as regular nat-
ural disturbances, such as low-intensity fires or avalanches,
without which grasslands would become woodlands. This is
because the abiotic conditions on most grassland sites favour
tree growth by having the sufficient temperature, precipita-
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tion, soil moisture, and nutrients (Petermann and Buzhdygan,
2021). Mowing and/or grazing influence the plant species
composition of grasslands and prevent the encroachment of
woody species (Tälle et al., 2016). Therefore, grasslands and
agriculture have been coevolving in Europe since the last
glacial period (Hejcman et al., 2013; Pärtel et al., 2005). The
intensity and type of land use influence the level of grass-
land biodiversity. Both intensification and abandonment can
lead to a decline in grassland biodiversity (Gossner et al.,
2016; Schils et al., 2020; Piseddu et al., 2021). Intensifi-
cation, more specifically higher fertilization, more mowing
events per year, and/or a higher livestock density, lead to
a dominance of a few fast-growing plant species that are
adapted to the high disturbance frequency by mowing and/or
grazing. In particular, high fertilization results in the dom-
inance of clonal species with wide runners and tall growth
(Hejcman et al., 2007; Gough et al., 2012; Gross and Mittel-
bach, 2017). Abandonment, on the other hand, leads to the
growth of woody species and a loss of specialists of open
habitats (Hilpold et al., 2018). Management is therefore a key
driver of plant community composition in the large majority
of temperate grasslands.

Furthermore, climate change is expected to alter the plant
community composition of grasslands, particularly during
periods of heat waves and droughts, for example, by sup-
pressing dominant species (Luo et al., 2025) and/or favour-
ing plants with drought-avoidance strategies (Griffin-Nolan
et al., 2019; Schils et al., 2020). In addition, the diversity
and composition of the plant community in grasslands affect
the provision of ecosystem services, such as biomass produc-
tion, resistance to climatic events, and pollination (Van Oijen
et al., 2020; Buzhdygan et al., 2020). However, how differ-
ent drivers and their interactions impact the community com-
position and how the composition relates to ecosystem ser-
vice provision is poorly understood. In particular, the condi-
tions under which a diverse plant community leads to higher
biomass production remains a topic of debate (Adler et al.,
2011; Chen et al., 2018; Dee et al., 2023). This highlights the
need for a more comprehensive mechanistic understanding
of the underlying processes. Simulation models can comple-
ment experimental and observational studies to predict the
effects of management and climate change on grassland com-
munity dynamics and ecosystem service provision and can
help to provide a better mechanistic understanding of pro-
cesses. Current scientific knowledge is integrated into the
models, and the models can be used to test hypotheses and
to generate new knowledge (Clark et al., 2001; Jeltsch et al.,
2008). Dynamic simulation models are therefore a useful tool
for disentangling the effects of land use and climate on the
plant community composition and the provision of ecosys-
tem services by grasslands.

Historically, different research questions on grasslands,
ranging from ecology to biogeochemistry, have led to the
development of different grassland models by focusing on
some parts of the grassland system while simplifying others

(for an overview of representative models, see Table 1; for
more detail, see Tables F1 and F2). In ecology, for exam-
ple, questions about plant coexistence in grasslands have led
to models with a strong focus on species interactions. In the
biogeochemical community, questions were asked about the
emission of greenhouse gases from grasslands, leading to the
development of models with a focus on biogeochemical cy-
cles in grasslands (Van Oijen et al., 2018). Ecological models
are often simpler models and can be divided into difference
or differential equation models and individual-based mod-
els. While individual-based models are characterized by a
bottom-up approach by modelling the interactions of individ-
uals, difference or differential equation models are character-
ized by a top-down approach by modelling the interactions of
species, leading in both cases to the emergence of grassland
community patterns. Examples of individual-based models
are IBC-grass (May et al., 2009), originally developed to
analyse the effects of grazing on plant communities; and
GRASSMIND (Taubert et al., 2012), which can simulate the
effects of climate change, mowing, fertilization, and irriga-
tion on plant community dynamics. Examples of ecological
differential equation models are DynaGraM (Moulin et al.,
2021) and GraS (Siehoff et al., 2011), both of which can sim-
ulate the effect of mowing and grazing on the plant commu-
nity. There are other more theoretical models that adopt the
Lotka–Volterra differential equations for species competition
to simulate grassland dynamics (Geijzendorffer et al., 2011;
Fort, 2018; Pulungan et al., 2019; Chalmandrier et al., 2021).
Competition between plant species is included in these mod-
els with interaction coefficients. The way that species or plant
functional types are represented in all these models differ.
The species in IBC-grass and GRASSMIND are described
by morphological and physiological traits. GraS represents
species mostly by species indicator values, and in DynaGraM
species are represented by a combination of morphological
and physiological traits and parameters derived from species
indicator values. While IBC-grass, GraS, and the models us-
ing Lotka–Volterra-type equations focus strongly on ecolog-
ical issues and are weak in representing biogeochemical cy-
cles, GRASSMIND is coupled with a soil model, and Dyna-
GraM has a basic representation of nutrient and water cycles
included.

In contrast, models developed by the biogeochemical sci-
entific community have a thorough representation of the
nutrient, water, and carbon cycles in grasslands (Van Oi-
jen et al., 2020). Examples include PaSim (Riedo et al.,
1998), LPJmL (Rolinski et al., 2018), and CENTURY/Day-
Cent (Parton, 1996; Parton et al., 1998). However, the rep-
resentation of plant functional diversity in these models is
limited. For example, in LPJmL, only two plant functional
types (C3 and C4 grasses) are simulated in natural and man-
aged grasslands (Rolinski et al., 2018). Recently, progress
has been made to improve the representation of plant func-
tional diversity by simulating C-, S-, and R-plant functional
types in correspondence with the CSR model of plant strate-
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Table 1. Overview of representative grassland models simulating several plant species or plant functional types. A more comprehensive
overview, including models that simulate only one species, can be found in the appendix (Tables F1 and F2).

Model name with
reference

State variables of
vegetation

Climate
factors1

Water
(W) &
nitrogen
(N)
cycle2

Resource
competition

Management
factors

No.
species/PFTs3

IBM?4 TFA?5

GrasslandTraitSim.jl,
presented here

above- and
below-ground
biomass, height

T ,
PAR,
P ,
PET

W water,
nitrogen, light

mowing,
grazing,
fertilization

25–70 X

Lotka–Volterra
competition model,
Chalmandrier et al.
(2021)

above-ground
biomass

T – – – 118 X

DynaGraM,
Moulin et al. (2021)

above-ground
biomass

T ,
PAR,
P ,
PET

W, N water,
nitrogen, light

mowing,
grazing,
fertilization

15

GraS,
Siehoff et al. (2011)

cover – – space mowing,
grazing,
trampling

10

LPJmL-CSR,
Wirth et al. (2024)

above- and
below-ground
biomass, number of
individuals

T ,
PAR,
P ,
PET

W, N water,
nitrogen, light,
space

mowing,
grazing,
fertilization,
irrigation

3

ModVege-CoSMo,
Confalonieri (2014),
Piseddu et al. (2022)

reproductive and
vegetative
above-ground
biomass with age

T ,
PAR,
P ,
PET

W water,
nitrogen, light
(by suitability
functions)

mowing,
grazing,
fertilization

8

GRASSMIND,
Taubert et al. (2012),
Taubert et al. (2020)

reproductive and
vegetative
above-ground and
below-ground
biomass, height

T ,
PAR,
P ,
PET

W, N water,
nitrogen, light

mowing,
fertilization,
irrigation

3–5 X

IBC-grass,
May et al. (2009)

reproductive and
vegetative
above-ground and
below-ground
biomass

– – generic above-
and
below-ground
resources

grazing 81 X

1 We have reviewed whether air temperature (T ), photosynthetically active radiation (PAR), precipitation (P ), and potential evapotranspiration (PET) are used in a model. Other external
climate drivers, even if used in the specific model, are not shown in the table. 2 We evaluated whether the soil water and the soil nitrogen cycle are explicitly simulated in the models. 3 We
reviewed the number of simulated species or plant functional types (PFTs), regardless of whether the species parameters were calibrated to data or whether the species were generated more
theoretically. 4 We distinguish between individual-based models (IBMs), which directly simulate plant individuals; and population-based models, which simulate plant populations. 5 We
distinguish between models in which parameters of transfer functions mapping morphological functional traits to species demographic rates are calibrated (TFA: “transfer function
approach”) and models in which species demographic parameters are calibrated directly (Chalmandrier et al., 2021).

gies (Grime, 1977) in LPJmL (Wirth et al., 2024). Another
approach to include a representation of plant functional di-
versity in a single-species grassland model is described by
the CoSMo approach (Confalonieri, 2014). Before each time
step, the relative abundance of several species is updated
based on suitability functions of species to drivers. The rela-
tive abundance is used to calculate new community-weighted
mean traits which are used as an input for the single-species
grassland model for one time step. Thereby, the plant com-
petition and the community growth dynamics are decoupled.

An example is the coupling of the ModVege model with the
CoSMo approach (Jouven et al., 2006; Piseddu et al., 2022).
In summary, existing grassland models vary in their com-
plexity in representing plant diversity and biogeochemical
cycles and in how species are represented: by species indica-
tor values, morphological traits, and/or physiological traits.

Modelling multi-species assemblages in grasslands has
been identified as one of the key challenges in grassland
modelling (Kipling et al., 2016). This is due to the fact that
process-based grassland models require data on the physio-
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logical and demographic processes of species, such as mea-
surements of growth rates of species under different radiation
intensities. However, because demographic and physiologi-
cal data are not readily available for many species, the num-
ber of species that can be modelled is limited (Jeltsch et al.,
2008; Chalmandrier et al., 2021). To overcome the problem
of missing demographic and physiological data, measurable
morphological trait data can be used instead. Morphological
trait data can be measured more easily and are available for
many plant species, for example, from the plant trait database
TRY (Kattge et al., 2020). For many morphological traits, it
is known from experimental and observational studies how
they affect species-specific processes (Funk et al., 2017). For
example, a high specific leaf area is associated with high
photosynthetic activity per leaf mass and a high senescence
rate (Wright et al., 2004). So-called transfer functions can
be built to map morphological parameters to physiological
and demographic processes of species (“transfer function ap-
proach (TFA)”; see Table 1 and Chalmandrier et al., 2021).
Parameters in the transfer function can control the strength of
the link between morphological traits and physiological pro-
cesses, for example, how strongly the specific leaf area cor-
relates to the senescence rate of leaves. This has the technical
advantage that the number of parameters for the model cali-
bration does not increase with the species number. While this
morphological trait-based approach enables broader species
coverage and generality, it also comes with limitations. Mor-
phological traits do not fully capture intra-specific genetic
variation or phenotypic plasticity, both of which can be im-
portant for species’ responses to environmental change. Ad-
ditionally, environmental heterogeneity – such as soil texture,
nutrient availability, and microclimate – may modulate the
functional effects of traits in context-dependent ways.

Here, we use this transfer function approach of linking
morphological traits to species-specific processes to develop
the process-based model GrasslandTraitSim.jl. We extend
the approach from Chalmandrier et al. (2021), which used
a theoretical model with little or no representation of cli-
mate, management, and resource competition (see Table 1),
to a model that can analyse the influence of management and
climate on the productivity and plant functional composi-
tion of a grassland. The model is partly based on the Dy-
naGraM model (Moulin et al., 2021), which in turn is based
on LINGRA (Schapendonk et al., 1998) and ModVege (Jou-
ven et al., 2006). Both ModVege and LINGRA simulate only
one species or plant functional type (see Table F1). With
DynaGraM, it is possible to study the influence of climate
and management on the productivity and plant functional
composition, and DynaGraM can simulate several species.
However, DynaGraM does not rely solely on morpholog-
ical species-specific parameters but uses instead a combi-
nation of morphological, demographic, and indicator values
(see Table F2). This hinders the use of the transfer function
approach of linking morphological traits to species’ demo-
graphic rates and has the disadvantage of the species-specific

demographic parameters not being available for many plant
species. We decided to design a population-based model to
not have the computational cost of calibrating an individual-
based model. Moreover, we decided to keep the plant compe-
tition directly in the growth dynamics, as in the DynaGraM
model, and not update the relative abundance of the species
based on suitability functions, as with the CoSMo approach
(Confalonieri, 2014). Our model is of intermediate complex-
ity compared to the above-mentioned models in terms of
the number of equations, which is reflected in the number
of simulated state variables and the number of parameters
(species-specific and global non-species-specific parameters,
see Tables 1, F1, and F2). Consequently, our GrasslandTrait-
Sim.jl model addresses a gap in existing grassland simu-
lation models by simulating multi-species assemblages and
predicting the functional composition of plant communities
in response to management practices and climate change.
As plant functional composition influences biomass supply
in the model, cascading effects from management and cli-
mate through plant functional composition to biomass sup-
ply can be analysed. We will present a comprehensive model
description and calibration and validation using two different
datasets of managed grasslands in Europe.

2 Description of the GrasslandTraitSim.jl model

The GrasslandTraitSim.jl model is designed to simulate the
dynamics of grassland communities under different manage-
ment scenarios and soil and climatic conditions. The state
variables of many plant species (denoted by the subscript s)
are simulated with daily time steps (indicated by the t sub-
script): above-ground dry biomass BA,ts [kgha−1], below-
ground dry biomass BB,ts [kgha−1], and height Hts [m].
The sum of the above-ground and below-ground dry biomass
equals the total dry biomass Bts [kgha−1]. Additionally, the
state variable soil water content in the rooting zoneWt [mm]
is simulated (Fig. 1). Changes in the state variables from one
day to the next are described by a set of difference equations
(for details, see Table F5). The morphological functional
traits of all plant species are fixed (time-invariant inputs, for
example, the maximum plant height) and are linked by model
parameters to the species’ demographic processes (Fig. 2).
As a result of the differences in the demographic rates of
all species, the performance of individual plant species dif-
fers (biomass increase or decrease under particular condi-
tions), leading to the emergence of plant community dynam-
ics. While reading the model description, we encourage the
reader to have a look at the online documentation, which con-
tains many interactive graphics and flow charts that make the
model description more accessible (see the data availability
statement).

The required model inputs are the plant functional traits
of each species, soil properties, daily climatic data, and daily
management data (e.g. timing and intensity of grazing, Ta-
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Figure 1. Structure of the GrasslandTraitSim.jl model. Boxes represent state, intermediate, and input variables (forcing functions), and
arrows indicate the influence of one variable on another. We use the term “intermediate variables” to describe variables that are neither inputs
nor state variables but are important intermediate results in the calculation of the change in state variables. While the green areas show
calculations that influence the change in above- and below-ground biomass and height, the blue area shows the calculation of the change in
soil water content in the rooting zone. The arrows originating from the biomass and height of the species indicate that both the biomass and
height play a role in the processes outlined in the green and blue areas. However, for simplicity, they do not indicate the exact position within
the areas. Species-specific variables are represented by a series of offset boxes positioned behind one another, indicating the presence of
multiple species within the model. We show how the distribution of community traits can be calculated from the model output; other model
outputs include the state variables and the grazed and mown biomass, which can be summarized at the community level.

ble F3). The model has in total 54 global parameters (for
details, see Table F4) that are not site, time, or species depen-
dent. Outputs include the state variables and the grazed and
mown biomass. The simulated abundance distribution can be
summarized using taxonomic diversity indices (e.g. Simp-
son diversity) and plant functional diversity indices (e.g.
functional dispersion and functional evenness), as well as
community-weighted means and variances of each trait. All
of these outputs can be calculated for each day. The model
is not spatially explicit and does not account for spatial het-
erogeneity. As the assumption of spatial homogeneity is met
only approximately for smaller spatial dimensions, we sug-
gest using the model for areas between 1 m2 and 1 ha.

The model procedure is divided into an initialization and a
simulation part. During the initialization, the state variables
(height, above-ground and below-ground biomass of species,
and soil water content) are set to user-supplied initial values.

During the simulation, a loop is run over each day. For each
day, very low or negative values (< 10−30) of the height Hts
and biomass state variables (Bts , BA,ts , and BB,ts) are set to
zero to avoid numerical problems. We have deliberately kept
the threshold at a low level because the plant species should
be able to recover, even from a very low biomass level. Af-
ter that, the main part of the model is executed with the cal-
culation of growth (Sect. 2.1–2.1.7, Eqs. 5–33), senescence
(Sect. 2.1.8, Eqs. 34–35), biomass removal by management
(Sect. 2.1.9, Eqs. 36–42), height dynamics (Sect. 2.2, Eq. 43),
and soil water dynamics (Sect. 2.3, Eqs. 44–52).

2.1 Biomass dynamics

The change in the total biomass B from day t to t + 1 of
species s [kgha−1] is calculated based on the actual growth
Gact,ts [kgha−1] (Eq. 5) and the losses by senescence Sts
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Figure 2. The GrasslandTraitSim.jl model links morphological plant functional traits to processes. Arrows indicate which process or variable
is influenced by each plant functional trait. Each plant functional trait can have species-specific values, allowing for species-specific responses
in many of the model’s processes.

[kgha−1] (Eq. 34) and management Mts [kgha−1] (Eq. 36):

Bt+1s = Bts +Gact,ts − Sts −Mts . (1)

The change in the total biomass Bts is divided into the
change in above-ground BA,ts [kgha−1] and below-ground
biomass Bts [kgha−1]. We assume that plants aim to achieve
a similar level of above-ground biomass per total biomass,
similar to the time-invariant trait above-ground biomass per
total biomass abps [−]. We therefore calculate Ats [−] as the
ratio between the actual biomass ratio and the trait abps :

Ats =

(
BA,ts
Bts

)
abps

. (2)

Ats is less than 1 if the above-ground biomass per total
biomass is less than expected by the trait abps , for exam-
ple, after a mowing event. This variable can be used to al-
locate biomass changes by growth and senescence to above-
ground and below-ground biomass. Biomass loss by mowing
and grazing affects only the above-ground biomass:

BA,t+1s = BA,ts +Ats ·Gact,ts − (1−Ats) · Sts −Mts (3)
BB,t+1s = BB,ts + (1−Ats) ·Gact,ts −Ats · Sts . (4)

This formulation allows for the rapid regrowth of the above-
ground biomass after a grazing period or a mowing event, as
little of the growth is allocated to below-ground biomass and
most is allocated to above-ground biomass.

The actual growth is derived from the community potential
growth Gpot,t [kgha−1] (Eq. 6) and the multiplicative effect
of five growth adjustment factors:

Gact,ts =Gpot,t ·LIGts ·NUTts ·WATts ·ROOTts ·ENVt , (5)

where LIGts [−] is the species-specific competition for light
(Eq. 12), NUTts [−] is the species-specific competition for
nutrients (Eq. 15), WATts [−] is the species-specific compe-
tition for soil water (Sect. 2.1.5), ROOTts [−] is the species-
specific cost for maintaining roots and mycorrhiza (Eq. 26),
and ENVt [−] is the non-species-specific adjustment based
on environmental and seasonal factors (Eq. 29).

2.1.1 Community potential growth

The model follows the concept of the light-use efficiency
(Monteith, 1972) that describes how much dry matter the
plants can build based on the solar radiation. This con-
cept was widely adopted in grassland modelling studies
(Schapendonk et al., 1998; Jouven et al., 2006; Moulin et al.,
2021; for a review, see Pei et al., 2022). The community po-
tential growth Gpot,t is described by

Gpot,t = PARt · γRUEmax ·FPARt , (6)

with the photosynthetically active radiation PARt [MJha−1],
maximal radiation use efficiency γRUEmax [kgMJ−1], and the
fraction of PARt that is intercepted by the plants FPARt [−].

The modelled fraction of radiation intercepted by the
plants is determined by the number of leaves and the height
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of the community. A saturation function is used to describe
the relationship between leaf area per ground area (leaf area
index) and light interception. We argue that light intercep-
tion is less effective when all plants are rather short, because
the leaves are more densely packed. Individual plants avoid
shading by growing taller (Heger, 2016). Therefore, we in-
clude the height of the community in the light interception
calculation, also to prevent a community with short plants
from building up a very high biomass. More technically, we
use the Beer–Lambert equation to model the non-linear re-
sponse of the fraction of light-intercepted FPARt to the to-
tal leaf area index LAItot,t (Monsi, 1953; Monsi and Saeki,
2005). This relationship is governed by the light extinc-
tion coefficient γRUE,k [−], which determines how quickly
the fraction of absorbed radiation approaches 1 as the leaf
area index increases. The reduction in radiation use effi-
ciency because of densely packed leaves is a function of
the community-weighted mean height and is influenced by
the parameter αRUE,cwmH ∈ [0,1] [−], which specifies the
growth reduction at Hcwm,t = 0.2m. The 0.2 m has been ar-
bitrarily set, and the parameter αRUE,cwmH is inversely cali-
brated. If Hcwm,t is greater than 0.2 m, less self-shading will
occur because the leaves are less densely packed, and there-
fore the growth reduction is less than αRUE,cwmH:

FPARt =
(
1− exp

(
−γRUE,k ·LAItot,t

))
· exp

(
log(αRUE,cwmH) · 0.2m

Hcwm,t

)
, (7)

with the community-weighted mean height calculated by
weighting the height Hts [m] of each species by its share
of above-ground biomass BA,ts of the total above-ground
biomass BtotA,t [kg ha−1]:

Hcwm,t =

S∑
s=1

BA,ts

BtotA,t
·Hts . (8)

The total leaf area index LAItot,t is the sum of the species-
specific leaf area indices LAIts :

LAItot,t =

S∑
s=1

LAIts, (9)

where LAIts is defined as

LAIts = BA,ts · slas · lbps · 0.1, (10)

with above-ground biomass BA,ts [kgha−1], specific leaf
area slas [m2 g−1], and leaf biomass per above-ground
biomass lbps [−]. As BA,ts and slas must be converted to
the same unit, Eq. (10) is multiplied by 0.1.

2.1.2 Species-specific light competition

In our model, the proportion of total community biomass
growth attributed to each species is determined by its leaf

area index and height. Plant species with a high leaf area in-
dex per unit of biomass transfer more above-ground biomass
to their leaves and have thinner leaves. These species can
build a greater leaf area, allowing them to use the pho-
tosynthetically active radiation more efficiently per unit of
biomass. Moreover, plant species that are taller than other
species receive greater light exposure and are less affected by
shading from other plant species (Falster and Westoby, 2003;
Anten and Hirose, 1999). A situation in which taller species
exploit relatively more light for growth than their biomass
proportions is described by the term “size-asymmetric com-
petition” (Weiner, 1990; Schwinning and Weiner, 1998).
Some plant species devote more resources to supporting tis-
sue (such as stems), resulting in taller plants that are less af-
fected by shading. Other species invest more in leaves, re-
sulting in a higher leaf area per unit of biomass. It is not
possible to maximize both characteristics simultaneously,
demonstrating a common trade-off in plant strategies (West-
oby et al., 2002). Which strategy dominates depends on abi-
otic factors and biotic interactions. For example, fertilization
can cause a shift in the grassland plant community towards
taller clonal species (Gough et al., 2012; Dickson et al.,
2014).

The proportion of light intercepted by each species out of
the total light intercepted is derived by dividing the sward
into vertical height layers of constant width, by default
0.05 m, to account for shading (similar to Taubert et al.,
2012). We want to calculate how much light is intercepted
in each height layer l INTt,l [−]. Therefore, we need to cal-
culate how much light is intercepted in the layers above and
the interception in layer l. We assume that the biomass, and
therefore also the leaf area index, is uniformly distributed
over the height of the plant. Thus, we can calculate the leaf
area index of each species in each height layer LAIts,l [−]
and the total leaf area index of all species in each layer
LAItot,t,l [−]. For each layer, we can calculate the total leaf
area index above the layer up to the maximum height layer
L. The maximum height layer can be reached by the tallest
plants with the highest maxheight [m]. The reduction in in-
coming light based on the total leaf area index of the layers
above and the interception of layer l is used to calculate the
proportion of light intercepted in layer l INTt,l :

INTt,l = exp

(
γRUE,k ·

L∑
z=l+1

LAItot,t,z

)

·
(
1− exp

(
γRUE,k ·LAItot,t,l

))
. (11)

The proportion of light intercepted in the layer can be used
to obtain the proportion of light intercepted for each species
in each layer by multiplying INTt,l by the leaf area index
proportion of the layer. The sum of all species-specific light
interception proportions across all layers can be used to cal-
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culate the light competition factor LIGts [−]:

LIGts =
L∑
z=l

INTt,l ·
LAIts,z

LAItot,t,z

·
1

1− exp(γRUE,k ·LAItot,t )
. (12)

We divide the term by the total interception of all layers
(compare Eq. 7) to ensure that the sum of all species-specific
light competition factors is equal to 1.

2.1.3 General form of the growth reducer for nutrient
and water stress

We use the same equations with different parameters to re-
late the plant-available nutrients and plant-available soil wa-
ter to the growth reducers of nutrient and water stress. There-
fore, we show here the general form of the equations (see
Fig. 3) to avoid repetition and to define the specific vari-
ables and parameters used in the next two sections on nu-
trient and water stress. The derivation of the equations is
shown in more detail in Appendix A. We use a logistic func-
tion to relate the resource density Rt (general symbol for the
plant-available nutrients Np,ts and the plant-available water
Wp,t ) to the growth reducer REDts (general symbol for the
growth reducers for nutrient stress NUTamc,ts and NUTrsa,ts
and water stress WATts). The growth reducer REDts lies be-
tween zero (no growth possible) and 1 (no growth reduc-
tion at all). While the inflection points of the logistic func-
tion x0,RED,ts (general symbol for x0,NUT,rsa,s , x0,NUT,amc,s ,
and x0,WAT,s) are species specific depending on the trait val-
ues traitts (general symbol for the root surface area per to-
tal biomass TRSAts and the arbuscular mycorrhizal colo-
nization rate per total biomass TAMCts), the slope βRED
(general symbol for βNUT,rsa, βNUT,amc, and βWAT,rsa) is not
species specific. We assume that if the plant has a trait value
equal to the parameter φtrait (general symbol for φTRSA and
φTAMC), then the growth reduction at 0.5 resource density
is αRED,05 (general symbol for αNUT,rsa,05, αNUT,amc,05, and
αWAT,rsa,05). If the parameter φtrait is set to the mean trait of a
community, then the parameter αRED,05 can be interpreted
as the mean response at half the maximum resource den-
sity. How much the inflection points deviate from this mean
response can be controlled by the parameter δRED (general
symbol for δNUT,rsa, δNUT,amc, and δWAT,rsa). If δRED is zero,
there is no difference in the growth reduction between the
species. If δRED is greater than zero, species with higher trait
values are less affected by nutrient or water stress:

x0,RED,ts =
1

βRED
·

(
−δRED ·

(
traitts −

(
1

δRED

· log
(

1−αRED,05

αRED,05

)
+φtrait

)))
+ 0.5 (13)

Figure 3. General form of growth reducer as a function of resource
density (plant-available nutrients and soil water). The function is
governed by the four parameters βRED (slope of the logistic func-
tion), φtrait (usually the mean trait value), αRED,05 (growth reduc-
tion at half the resource density for species with a trait value of
φtrait, marked by a red dot), and δRED (controls how much the
species-specific inflection points differ from the inflection point of a
species with a value of φtrait). We show two different curves for dif-
ferent parameter values: A with αRED,05 = 0.95 and δRED = 0.25;
B with αRED,05 = 0.55 and δRED = 0.1. In both cases we used
βR = 9; φtrait = 20; and the trait values 16, 18, 20, 22, and 24 (from
dark purple to yellow). We include dynamic versions with sliders for
the parameters for the three growth reducers NUTamc,ts , NUTrsa,ts ,
and WATts in the Supplement (see data accessibility statement).

REDts =


0 if Rt = 0
1/
(
1+ exp

(
−βRED ·

(
Rt − x0,RED,ts

)))
if 0<Rt < 1

1 if Rt>=1.
(14)

2.1.4 Species-specific nutrient stress

Plant growth may be reduced when soil nutrient availabil-
ity is low and plants are inefficient at taking up nutrients.
We assume that the arbuscular mycorrhizal colonization rate
(Marschner and Dell, 1994; George et al., 1995; Van Der Hei-
jden et al., 2015) and the root surface area per total biomass
(Barber and Silberbush, 1984) represent strategies in the nu-
trient uptake. High values of these traits lead to increased nu-
trient uptake rates and, consequently, reduced nutrient stress.
Here, we only consider nutrient deficit as nutrient stress. The
growth reducer NUTts [−] is composed of the maximum out
of two nutrient stress factors that are linked to the arbuscular
mycorrhizal colonization rate Namc,ts [−] and the root sur-
face area per total biomass Nrsa,ts [−]:

NUTts =max(NUTamc,ts, NUTrsa,ts). (15)

The maximum of the two nutrient stress factors is used be-
cause, for simplicity, we assume that plants can invest either
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in a high root surface area per total biomass or in a high rate
of arbuscular mycorrhizal colonization. Plants with a higher
root surface area per total biomass follow the strategy of tak-
ing up nutrients themselves, while plants with high arbus-
cular mycorrhizal colonization rates follow the strategy of
outsourcing nutrient uptake to arbuscular mycorrhizal fungi
in the context of the root collaboration gradient (Bergmann
et al., 2020). Since growth is reduced by how well plants
follow their best strategy, the maximum of the two reduction
factors is used to calculate the reduction in growth due to soil
nutrients.

For the calculation of the growth reducers for nutrient
stress based on the arbuscular mycorrhizal colonization rate
NUTamc,ts [−], we use the parameters φTAMC [−], βNUT,amc
[−], αNUT,amc,05 [−], δNUT,amc [−]; and for nutrients stress
based on the root surface area per total biomass NUTrsa,ts
[−], we use φTRSA [m2 g−1], βNUT,rsa [−], αNUT,rsa,05 [−],
and δNUT,rsa [gm−2]. Moreover, we still need the trait values
and the plant-available nutrients (to replace traits and Rt in
Eqs. 13–14).

For the traits that influence the nutrient growth reducer, we
consider that plants with high below-ground biomass per to-
tal biomass are less affected by low nutrient levels because
they have relatively more root tissue to supply nutrients to
the above-ground biomass. It has been shown that the root-
to-shoot ratio increases in many plants under nitrogen-poor
conditions (Jiang et al., 2016; Meurer et al., 2019; Lopez
et al., 2023). Therefore, we calculate the root surface area per
total biomass TRSAts [m2 g−1] and the arbuscular mycor-
rhizal colonization rate per total biomass TAMCts [−] from
the fixed-traits root surface area per below-ground biomass
rsas and arbuscular mycorrhizal colonization rate per root tis-
sue amcs with the dynamic proportion of the below-ground
biomass BB,ts per total biomass Bts :

TAMCts =
BB,ts

Bts
· amcs (16)

TRSAts =
BB,ts

Bts
· rsas, (17)

where the below-ground biomass is cancelled out. TAMCts
and TRSAt s are used to replace the trait in Eq. (13) for the
calculation of NUTamc,ts and NUTrsa,ts .

The nutrients available to plants depends on the total soil
nitrogen of site N [gNkg−1], the fertilization with nitrogen
F [kgNhayr−1], and the density effect (which accounts for
stronger competition for nutrients if many plant species have
a high biomass). The fertilization rate can vary between years
and is the sum of organic and inorganic fertilization with
nitrogen per year. More technically, the empirical parame-
ters ωNUT,N [gN−1 kg] and ωNUT,F [kgN−1 ha−1 yr] control
how strongly the variables total soil nitrogen and fertiliza-
tion rate, respectively, contribute to the value of the nutrient
index (∈ [0,1]). The nutrient index is multiplied by the nu-
trient adjustment factor NUTadj,ts [−], which accounts for

the biomass density, to get the plant-available nutrients Np,ts
[−]:

Np,ts =
(
1− exp

(
−ωNUT,N ·N −ωNUT,F ·F

))
·NUTadj,ts . (18)

The plant-available nutrients Np,ts are used in Eq. (14) for
the resourceRt to calculate the growth reducers of NUTamc,ts
and NUTrsa,ts .Np,ts can be greater than 1 if the total biomass
is low; then growth is not reduced (see Eq. 14). In contrast to
the plant-available water (Eq. 25), the plant-available nutri-
ents are species specific.

Plants are most strongly affected by below-ground compe-
tition if conspecifics and plants with similar traits have a high
biomass and share the below-ground resources. This is sum-
marized with the nutrient adjustment factor NUTadj,ts [−],
which takes into account the biomass and the trait similarity
between all species:

NUTadj,ts = αNUT,maxadj · exp
(

log
(

1
αNUT,maxadj

)

·

S∑
i=1

TSs,i ·Bt i ·
1

αNUT,TSB

)
, (19)

with the trait similarity TSs,i [−] between species s and i,
the biomass of species i Bt i [kgha−1], and the parameters
αNUT,TSB [kgha−1] and αNUT,maxadj [−]. A high nutrient ad-
justment factor NUTadj,ts is favourable for a species because
the factor is multiplied by the site nutrients (Eq. 18), which
means that the species has to share the resources with fewer
competitors. More specifically, a high NUTadj,ts of a species
indicates that either the total biomass is low or that the plant
has traits that are very different from the traits of the abun-
dant plant species. The parameter αNUT,TSB is a reference
value for the sum of the product of trait similarity and the
biomass of all species. If the sum of the product of trait simi-
larity and biomass of all species is equal to αNUT,TSB, the nu-
trient adjustment factor is 1. The parameter αNUT,maxadj (≥ 1)
controls the maximum of the nutrient adjustment factor. The
parameter can be greater than 1 to allow the plant-available
nutrients to be increased when the total biomass is low.

The trait similarity is derived by calculating the dissimi-
larity of the root surface area per above-ground biomass rsas
[m2 g−1] and the arbuscular mycorrhizal colonization rate
amcs [−] between all species and converting it to a similar-
ity index. These two traits are chosen to calculate the trait
dissimilarity index, because both traits encompass unique
plant strategies for the acquisition of nutrients and water
(Bergmann et al., 2020). The trait dissimilarity TDs,i [−] be-
tween species s and species i is calculated by the Euclidean
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distance between the normalized traits of the species:

AMCnorm,s =
amcs −mean(amc)

sd(amc)
(20)

RSAnorm,s =
rsas −mean(rsa)

sd(rsa)
(21)

TDs,i =
√(

RSAnorm,s −RSAnorm,i
)2
+
(
AMCnorm,s −AMCnorm,i

)2
. (22)

This gives the dissimilarity matrix TD [−], which is trans-
formed and scaled by the parameter βNUT,TS [−] to a trait
similarity matrix TS [−]:

TS=
(

1−
TD

max(TD)

)βNUT,TS

(23)

TS=


1 TS1,2 . . . TS1,S

TS2,1 1
...

. . .

TSS,1 1

 . (24)

If βNUT,TS is zero, the trait similarity has no influence in the
calculation of the nutrient adjustment factor in Eq. (19).

2.1.5 Species-specific water stress

Plant growth may be restricted under conditions of low soil-
water content, particularly if the plants exhibit a limited
water-uptake efficiency. We consider the root surface area per
total biomass TRSAts [m2 g−1] (see Eq. 17) as the trait that
influences how strong plants are exposed to the water stress
at a certain soil water level. Here, we only consider too little
water leading to water stress conditions, not too much water,
as the primary goal of our model is not to model systems with
regular flooding or waterlogging. We use the same equations
for the water stress reducer WATts [−] as for the nutrient re-
ducer (see Eqs. 13–14) with the parameters φTRSA [m2 g−1],
βWAT,rsa [−], αWAT,rsa,05 [−], and δWAT,rsa [gm−2]. The same
explanation for the parameters applies as for the nutrient re-
ducer.

The plant-available water is the rescaled soil water content
(to replace R in Eq. 14): the soil water content Wt [mm] is
scaled by the water-holding capacity WHC [mm] (Eq. 51)
and the permanent wilting point PWP [mm] (Eq. 52) to scale
water availability between zero (soil water content at or be-
low the permanent wilting point) and 1 (soil water content
at or above the water-holding capacity). The plant-available
water Wp,t [−] is defined as

Wp,t =
Wt −PWP

WHC−PWP
. (25)

This formulation of plant-available water does not take into
account some short-term temporal dynamics. For example,
after a rainfall event, plants are often not water stressed at
all, even if the soil water content is not replenished to the
water-holding capacity.

2.1.6 Species-specific maintenance costs for roots and
mycorrhizae

Maintaining a fine-root structure and symbiosis with myc-
orrhizal fungi costs energy. These costs include respiration
(Caldwell, 1979), the production of metabolites for nutrient
uptake (Canarini et al., 2019), and the supply of photosyn-
thetic products to the mycorrhizal fungi (Konvalinková et al.,
2017). Similarly to Taubert et al. (2012), who consider the
costs of maintaining a symbiosis with nitrogen-fixing rhi-
zobia, we include a cost term for root surface area per to-
tal biomass ROOTrsa,ts [−] and the mycorrhizal coloniza-
tion rate per total biomass ROOTamc,ts [−]. This means that
part of the potential growth cannot be used to produce new
biomass:

ROOTts = ROOTrsa,ts ·ROOTamc,ts, (26)

where ROOTts [−] is the root investment factor that lowers
the actual growth in (Eq. 5):

ROOTrsa,ts = 1− κROOT,rsa+ κROOT,rsa

· exp
(

log(0.5)
φTRSA ·TRSAts

)
(27)

ROOTamc,ts = 1− κROOT,amc+ κROOT,amc

· exp
(

log(0.5)
φTAMC ·TAMCts

)
, (28)

where TRSAts is the root surface area per total biomass
[m2 g−1] (see Eq. 17), and TAMCts is the arbuscular myc-
orrhizal colonization rate per total biomass [−] (see Eq. 16).
Therefore, the cost of maintaining fine roots and mycor-
rhizae does change with time, depending on the ratio between
above-ground and below-ground biomass.

The parameters κROOT,rsa [−] and κROOT,amc [−] define
the maximum possible growth reduction from zero to 1,
where zero means no growth reduction at all. The parame-
ters φTRSA [m2 g−1] and φTAMC [−] define the trait values
of TRSAts and TAMCts at which the growth reducer is half
in between 1 (no growth reduction) and the maximal growth
reduction that is defined by κROOT,rsa and κROOT,amc. Note
that the same values for φTRSA and φTAMC are also used for
water- and nutrient stress reducers.

2.1.7 Community environmental and seasonal factors

The growth is adjusted for environmental and seasonal fac-
tors ENVt that apply in the same way to all species (Eq. 5).
For simplicity, we do not consider the effect of species-
specific plant traits on the following functions:

ENVt = RADt ·TEMPt ·SEAt , (29)

with the radiation RADt [−] (Eq. 30), temperature TEMPt
[−] (Eq. 31), and seasonal SEAt [−] (Eq. 32) the growth
adjustment factors.
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Plant growth increases with photosynthetically active radi-
ation (as formulated in Eq. 6), but excess radiation can lead
to oxidative damage and photoinhibition (Long et al., 1994).
We have therefore included the equation and parametrization
from Schapendonk et al. (1998) that reduces the growth due
to excess radiation. The radiation adjustment factor RADt
[−] is calculated as follows:

RADt =min
(
1, 1− γRAD,1

(
PARt − γRAD,2

))
, (30)

with the photosynthetically active radiation PARt [MJha−1]
and the parameters γRAD,1 [MJ−1 ha] and γRAD,2 [MJha−1].
A linear decrease in radiation use efficiency with a steepness
of γRAD,1 is assumed if the photosynthetically active radia-
tion is above γRAD,2.

Temperature is one of the fundamental environmental fac-
tors that influence plant growth (Went, 1953). Thus, a tem-
perature adjustment factor TEMPt [−] is included in the
model. The temperature adjustment factor is based on the
empirical step functions by Schapendonk et al. (1998) that
were adjusted by Jouven et al. (2006):

TEMPt =

0 if Tt < ωTEMP,T1

Tt−ωTEMP,T1
ωTEMP,T2−ωTEMP,T1

if ωTEMP,T1 < Tt < ωTEMP,T2

1 if ωTEMP,T2 < Tt < ωTEMP,T3

ωTEMP,T4−Tt
ωTEMP,T4−ωTEMP,T3

if ωTEMP,T3 < Tt < ωTEMP,T4

0 if Tt > ωTEMP,T4 ,

(31)

with the minimum temperature requirement for growth
ωTEMP,T1 [°C], the optimum temperature for growth between
ωTEMP,T2 [°C] and ωTEMP,T3 [°C], and the maximum temper-
ature for growth ωTEMP,T4 [°C]. The temperature adjustment
factor increases linearly from zero to 1 between ωTEMP,T1

and ωTEMP,T2 , stays at 1 between ωTEMP,T2 and ωTEMP,T3 ,
decreases linearly from 1 to zero between ωTEMP,T3 and
ωTEMP,T4 , and stays at zero above ωTEMP,T4 .

A seasonal factor accounts for growth patterns that would
not be expected from an analysis of daily abiotic conditions
alone. Plants usually grow more strongly in spring than in
autumn, even if the radiation and temperature values are
similar. Therefore, in addition to the influence of radiation
(Eqs. 6, 30) and temperature (Eq. 31), a seasonality factor
is added. Jouven et al. (2006) build the following empirical
step functions for the seasonal factor SEAt [−] based on the
yearly accumulated degree days STt [°C] and the parameters

ζSEAmin [−], ζSEAmax [−], ζSEA,ST1 [°C], and ζSEA,ST2 [°C]:

SEAt =

ζSEAmin
if STt < 200°C

ζSEAmin+ (ζSEAmax− ζSEAmin) ·
STt−200 °C

ζSEA,ST1−400 °C

if 200°C< STt < ζSEA,ST1 − 200°C
ζSEAmax

if ζSEA,ST1 − 200°C< STt < ζSEA,ST1 − 100°C

ζSEAmin+ (ζSEAmin− ζSEAmax) ·
STt−ζSEA,ST2

ζSEA,ST2−ζSEA,ST1−100 °C

if ζSEA,ST1 − 100°C< STt < ζSEA,ST2

ζSEAmin
if STt > ζSEA,ST2

(32)

STt =
t∑

i=t mod 365
max(0°C, Ti) . (33)

The seasonality factor starts to increase from ζSEAmin to
ζSEAmax, with a yearly accumulated temperature of above
200 °C, reaching the maximum at ζSEA,ST1 − 200 °C. From
ζSEA,ST1−100 °C to ζSEA,ST2 of the yearly accumulated tem-
perature, the seasonality factor decreases from ζSEAmax to
ζSEAmin.

2.1.8 Species-specific senescence

The removal of plant biomass occurs through senescence and
through management. The biomass removed by senescence
Sts [kgha−1] depends on the basic senescence rate αSEN
[month−1], a seasonality factor SENt [−], an effect of spe-
cific leaf area of the species slas [m2 g−1], and the biomass
of the species Bts [kgha−1]:

Sts =
(

1− (1−αSEN)
1/30.44

)
·SENt

·max

((
slas
φsla

)βSEN,sla

,0.5

)
·Bts . (34)

While the basic senescence rate and seasonality factor are
consistent across the plant community, the contribution of
specific leaf area and biomass to the senescence rate varies
between species. To facilitate interpretation, we have cho-
sen to use the basic senescence rate per month αSEN. Con-
sequently, αSEN has been converted to a senescence rate per
day, assuming a monthly duration of 30.44 d. The influence
of specific leaf area on senescence is controlled by two pa-
rameters: φsla [m2 g−1] and βSEN,sla [−]. βSEN,sla controls
how much the senescence rate differs between species. If
βSEN,sla is zero, there is no difference, and if βSEN,sla is
large, there is a large difference in senescence rate between
species. φsla is used as a reference for the specific leaf area
values: if slas < φsla, the senescence rate is less than αSEN;
if slas = φsla, the senescence rate is equal to αSEN; and if
slas > φsla, the senescence rate is greater than αSEN.

We linked the senescence rate to the specific leaf area in
order to represent the underlying trade-off in the leaf eco-
nomic spectrum. Plants that employ the “fast strategy” of
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the spectrum are highly photosynthetically efficient. They
are modelled here with a higher leaf area index per unit
of biomass, which is influenced by the specific leaf area
(Eq. 10). However, species with a high specific leaf area have
a short leaf lifespan and therefore a high senescence rate
(Eq. 34). Conversely, plants representing the “slow strategy”
of the spectrum exhibit the opposite characteristics (Reich
et al., 1992; Wright et al., 2004; Onoda et al., 2017).

A seasonality factor is used to account for the higher
senescence in autumn. Depending on the cumulative temper-
ate since the beginning of the current year STt [°C] (Eq. 33),
the seasonality factor increases from 1 [−] to a maximum
ψSENmax [−]:

SENt =

1

if STt <ψSEN,ST1

1+ (ψSENmax− 1)
STt−ψSEN,ST1

ψSEN,ST2−ψSEN,ST1
,

if ψSEN,ST1 < STt <ψSEN,ST2

ψSENmax

if STt >ψSEN,ST2 ,

(35)

where ψSEN,ST1 [°C] and ψSEN,ST2 [°C] are the temperature
thresholds at which the seasonality factor starts to increase
and reaches its maximum. The equation and the parameter
values are based on Moulin et al. (2021), which is in turn
based on Jouven et al. (2006).

2.1.9 Biomass removal due to management

Biomass lossesMts [kgha−1] due to management are caused
by mowing MOWts [kgha−1] (Eq. 37) and grazing GRZts
[kgha−1] (Eq. 38) :

Mts =MOWts +GRZts . (36)

The biomass removed by mowing MOWts [kgha−1] de-
pends on the cutting height of the mowing machine and the
height of the plant species. The proportion of above-ground
plant biomass removed by mowing is defined by calculat-
ing the fraction of the plant height Hts [m] above the cutting
height CUTt [m] (see Table F3):

MOWts =
max(Hts −CUTt , 0)

Hts
·BA,ts, (37)

thereby assuming a uniform distribution of the biomass along
the height of the plant.

The amount of biomass of one species that is fed by
grazers depends on the livestock density, the palatability of
the plant species that is linked to the leaf nitrogen content,
and the height of the plants. The grazing function GRZts
[kgha−1] is divided into two parts: the first part defines the
total grazed biomass and the second part the proportion be-
tween the grazed biomass of each species and the total grazed

biomass:

GRZts =
κGRZ ·LDt · (BF,t )

2

(κGRZ ·LDt · ηGRZ)2+ (BF,t )2

·
LNCGRZ,ts ·HGRZ,ts ·BF,ts∑S
i=1LNCGRZ,ti ·HGRZ,ti ·BF,ti

. (38)

The variables and parameters are explained in the following
two paragraphs.

For the total grazed biomass, we assume that grazers can
feed only on plant biomass that is above a certain height
εGRZ,minH [m] (usually set to 0.05 m), because it has been
shown that the intake rate of cattle decreases strongly with
low sward height (Hirata et al., 2010; Silva et al., 2018; Kun-
rath et al., 2020; Boval and Sauvant, 2021). Therefore, we
calculate the above-ground biomass that can be fed by graz-
ers BF,ts [kgha−1] with the proportion of the above-ground
biomass that is above the height εGRZ,minH:

BF,ts =max
(

1−
εGRZ,minH

Hts
, 0
)
·BA,ts (39)

BF,t =

S∑
s=1

BF,ts, (40)

where BF,t [kgha−1] is the total above-ground biomass that
can be consumed by grazers. Furthermore, we assume that
if the overall reachable above-ground biomass is low, the
farmer will gradually increase the supply of additional fod-
der, resulting in less grazed biomass. If no reachable above-
ground biomass is left, the farmer will fully compensate the
requirements of the livestock animals. We do not include
the fodder supply as an input in the model but rather cal-
culate it based on the above-ground biomass that is avail-
able to grazers. To incorporate this, we use a function that
works similarly to a Holling type III response curve. The
consumption of the grazers is determined by the product of
the livestock density LDt [LUha−1] (see Table F3) and the
consumption per livestock and day κGRZ [kgha−1]. We as-
sume that the fodder supply equals half of the consumption
of the grazers if the reachable above-ground biomass is equal
to LDt ·κGRZ ·ηGRZ. The parameter ηGRZ [−] is a scaling pa-
rameter in the term. For example, if ηGRZ equals 2, the total
grazed biomass is reduced to half of the consumption at a
reachable above-ground biomass that equals twice the con-
sumption of the grazers.

The distribution of grazed biomass among plant species
depends on their leaf nitrogen content, height, and the
biomass accessible to grazers. The leaf nitrogen content fac-
tor LNCGRZ,ts [−] is based on the trait leaf nitrogen con-
tent per leaf mass lncs [mgg−1] relative to the community-
weighted mean leaf nitrogen content per leaf mass LNCcwm,t
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[mgg−1]:

LNCGRZ,ts =

(
lncs

LNCcwm,t

)βGRZ,lnc

(41)

LNCcwm,t =

S∑
s=1

BF,ts

BF,t
· lncs, (42)

with βGRZ,lnc [−] acting as a scaling exponent that defines
how strongly the LNCGRZ,ts values deviate from 1. This pa-
rameter thus controls the strength of the grazers’ preference
for plant species with high leaf nitrogen content. Empiri-
cal studies have demonstrated that cattle prefer plant species
with high leaf nitrogen content (Pauler et al., 2020; Atkinson
et al., 2024), and a high carbon-to-nitrogen ratio in leaves
is associated with a grazing avoidance strategy (Archibald
et al., 2019). Furthermore, we include a height factor because
grazers feed more on plants that are tall and easily reach-
able (Hodgson et al., 1994). The height factor HGRZ,ts fol-
lows a similar equation as the leaf nitrogen factor, utilizing
plant species Hts in place of leaf nitrogen content relative to
the community-weighted mean heightHcwm,t [m] and scaled
by the exponent βGRZ,H [−]. In summary, the distribution of
grazed biomass among plant species is driven by the biomass
of the plant species but can be altered by their relative leaf ni-
trogen content and height.

2.2 Plant height dynamics

Plant height Hts increases due to growth but decreases with
mowing and grazing. The height can increase until the plant
reaches the maximum height (maxheights [m]). The growth
rate is the ratio of above-ground biomass growth Ats ·Gact,ts
(Eq. 3) to above-ground biomass BA,ts . We consider the pro-
portion of mown MOWts (Eq. 37) or grazed biomass GRZts
(Eq. 38) on the above-ground biomass as the proportion of
height lost, assuming an even distribution of biomass along
the height of the plant. Since leaves can die without reduc-
ing height, we assume that senescence has no effect on plant
height:

Ht+1s =Hts ·

(
1+

Ats ·Gact,ts

BA,ts
−

MOWts

BA,ts
−

GRZts
BA,ts

)
. (43)

2.3 Soil water dynamics

The change in the soil water content is influenced by mul-
tiple factors, including precipitation, evaporation, transpira-
tion, and drainage and surface run-off. The equations follow
Moulin et al. (2021) that are based on Schapendonk et al.
(1998). The change in the soil water content Wt [mm] is de-
scribed by

Wt+1 =Wt +Pt −AETt −Rt , (44)

where Pt is the precipitation [mm], AETt is the actual evapo-
transpiration [mm], andRt is the surface run-off and drainage
of water from the soil [mm].

How strongly the soil surface is covered by vegetation in-
fluences whether more evaporation or transpiration occurs.
This is modelled by the total leaf area index LAItot,t (Eqs. 9,
10). If the soil is barely covered with vegetation, evaporation
is higher than transpiration. Conversely, if the soil is well
covered with vegetation, transpiration is higher than evapo-
ration. Water can continue to evaporate from the soil as long
as it contains water. Therefore, the potential evapotranspi-
ration PETt [mm], which is a forcing function influencing
both evaporation and transpiration (see Table F3), is multi-
plied by the fraction between the soil water content Wt and
the water-holding capacity WHC [mm] (Eq. 51) to obtain the
evaporation Et :

Et =
Wt

WHC
·PETt ·

[
1−min

(
1,

LAItot,t

3

)]
. (45)

On the other hand, plants can only transpire water that is
available to them, so transpiration can only deplete the soil
water content to the permanent wilting point. Therefore, the
soil water content is rescaled by the permanent wilting point
PWP [mm] (Eq. 52) and the water-holding capacity WHC
[mm] (Eq. 51) to a factor between zero and 1, which influ-
ences the amount of transpiration TRt :

TRt =max
(

0,
Wt −PWP

WHC−PWP

)
·PETt

·min
(

1,
LAItot,t

3

)
. (46)

Additionally, in contrast to Moulin et al. (2021), the transpi-
ration depends here on a factor of the community-weighted
mean specific leaf area SLAt [m2 g−1]. It was shown that
species reduce the specific leaf area under drought stress
(Wright et al., 1993; Liu and Stützel, 2004), most likely to
reduce transpiration. Therefore, it is here assumed that thin-
ner leaves transpire more water. This relationship is modelled
by the parameter αTR,sla [m2 g−1]; that is, the community-
weighted mean specific leaf area where the factor equals 1
and βTR,sla [−], which simulates how strongly the factor de-
viates from 1 if the community-weighted mean specific leaf
area is below or above αTR,sla.

The actual evapotranspiration AETt [mm] is the sum of
the evaporation Et [mm] and the transpiration TRt [mm] but
cannot exceed the soil water content Wt [mm]:

AETt =min(Wt ,Et +TRt ) , (47)

and any excess water above the water-holding capacity WHC
[mm] (Eq. 51) is removed by surface run-off and drainage Rt
[mm]:

Rt =max(0mm,Wt +Pt −AETt −WHC) . (48)

The water-holding capacity and permanent wilting point
are derived from soil properties. Gupta and Larson (1979)
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show how the fraction of soil that can be filled with water
F can be related to particle size distribution, organic matter
content, and bulk density for different matrix potentials. This
fraction was calculated for a matrix potential of −7 kPa for
the water-holding capacity (FWHC) and for a matrix poten-
tial of −1500 kPa for the permanent wilting point (FPWP).
The respective fraction was multiplied by the rooting depth
to derive the water-holding capacity and the permanent wilt-
ing point for the part of the soil that plants can reach with
their roots:

FWHC = βSND,WHC ·SND+βSLT,WHC ·SLT

+βCLY,WHC ·CLY+ βOM,WHC ·OM
+βBLK,WHC ·BLK (49)

FPWP = βSND,PWP ·SND+βSLT,PWP ·SLT

+βCLY,PWP ·CLY+ βOM,PWP ·OM
+βBLK,PWP ·BLK (50)

WHC= FWHC ·RD (51)
PWP= FPWP ·RD. (52)

3 Calibration and validation of the model

We calibrated and evaluated the model performance inde-
pendently using two datasets. First, we used an experimen-
tal dataset on the biomass production of a single species
to compare intra-annual observations and simulations (see
Sect. 3.1). Second, we compared the observed and simu-
lated inter-annual dynamics in terms of both the biomass pro-
duction and the plant functional composition in plant com-
munities, using a dataset of real managed grasslands (see
Sect. 3.2).

3.1 FAO dataset – seasonal dynamics of productivity

First, we used the dataset of the project “Predicting produc-
tion from grassland” in the framework of an FAO subnetwork
for lowland grassland, which was carried out from 1982 to
1986. The dataset was used to calibrate the LINGRA grass-
land model (Schapendonk et al., 1998) and is described in
detail in Bouman et al. (1996). The project consisted of sev-
eral sites across Europe in which the productivity of the grass
Lolium perenne L. was measured weekly over 1 year. For
some sites, experiments were repeated over several years.
All experiments were fertilized, and we only used the irri-
gated experiments to evaluate whether our model can pre-
dict for one species the seasonal patterns under growth con-
ditions with high water and nutrient supply. No site-specific
soil data were measured, nor was this required for the model
simulation without water and nutrient limitation. We used
site-specific climate data that were supplied with the dataset.
We used the trait data for Lolium perenne that we prepared
for the Biodiversity Exploratories dataset (for details, see
Appendix C). We used initial values for Lolium perenne of

200 and 250 kgha−1 for above-ground and below-ground
biomass, respectively, as well as an initial height of 0.4 m.
We selected the initial values so that the simulated above-
ground biomass is close to the first data point. The 26 exper-
iments were split into nine experiments for calibration and
17 experiments for validation (see Table F7). We calibrated
the parameters for senescence (αSEN,ψSENmax, φSEN,ST1 , and
φSEN,ST2 ), seasonality in growth (ζSEAmin, ζSEAmax, ζSEA,ST1 ,
and ζSEA,ST2 ), and the reduction factor of radiation use ef-
ficiency based on the community height (αRUE,cwmH). All
other parameters were kept constant (for their parameter val-
ues, see Table F4).

We applied the Haario-Bardenet adaptive Markov chain
Monte Carlo method (Haario et al., 2001; Johnstone et al.,
2016, as implemented in Clerx et al., 2019) for calibrat-
ing our parameters, given the priors and the experimental
data (for technical details, see Appendix E). We set moder-
ately informative priors (for details, see Table F6) that were
based on the values used by Jouven et al. (2006) and Moulin
et al. (2021). We used a likelihood function based on a nor-
mal distribution, where the mean is given by the simulated
above-ground biomass, the measured above-ground biomass
is treated as the data, and the variance is a parameter esti-
mated during calibration. We calculated the total likelihood
as the product of the likelihoods over all time points and all
nine experiments. During the calibration, we reset the sim-
ulated above-ground biomass after evaluating the likelihood
for one time point to the measured above-ground biomass
(see Fig. 5, step 3). This approach allowed us to assess how
well the model can predict changes in biomass from one data
point to the next, given a set of parameters.

After the calibration, our model can reproduce the sea-
sonal patterns for the species Lolium perenne for indepen-
dent validation sites across Europe to satisfactory degree (see
Fig. 4). The mean absolute error in above-ground biomass
was reduced from approximately 750 kgha−1 of the prior to
500 kgha−1 of the mode of the posterior (respectively the
median of all validation experiments). The uncertainty in the
posterior estimates of parameters was reduced greatly com-
pared to the prior (see Figs. F1 and F2). Therefore, the un-
certainty in the prediction from the prior compared to pre-
dictions from the posterior was also clearly lowered (see
Fig. F3).

We conducted a local sensitivity analysis to identify the
parameters to which the above-ground biomass of Lolium
perenne is most sensitive (see Table F12 for details). The
analysis revealed that the most sensitive parameters were
those relating to the processes of radiation use efficiency
(γRUEmax, γRUE,k , γRAD,1, and αRUE,cwmH), seasonal adjust-
ment for growth (ζSEAmin and ζSEAmax), and senescence
(βSEN,sla and αSEN), indicating that small variations in these
parameter values lead to substantial changes in the above-
ground biomass of Lolium perenne.
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Figure 4. Time series from the independent validation experiments with the highest (FAO45) and the lowest (FAO55) mean absolute error
in predicting the above-ground dry biomass of the FAO dataset (a). Predictions from the mode of the posterior distribution (maximum a
posteriori estimate) and predictions from draws of the posterior distribution are shown to compare with the measured above-ground biomass.
In addition, the mean absolute error between the predicted and observed biomass is shown separately for the calibration (training set) and
validation (testing set) experiments, both before and after calibration (b). The mean absolute error is calculated for each observation and
then averaged across each experiment. The improvement in prediction before calibration, based on the mean error calculated with 50 draws
from the prior distribution, is compared to the error after calibration, based on the mean error calculated with 50 draws from the posterior
distribution.

Figure 5. Calibration workflow. For the Biodiversity Exploratories dataset, we reduced the number of species from 70 to 25 to lower the
computation time in the calibration. We created virtual observations for the 25 species by finding the biomass proportion of the 25 species
so that the community trait distribution closely resembles the trait distribution of the community with 70 species (step 1). The biomass
proportion of the 25 species can be multiplied by the measured total biomass to create virtual observations for our modelled species (step
2). For the calibration of the global model parameters, the model can be used to simulate a trajectory for one parameter combination. The
simulated trajectory is compared with the virtual observation to calculate the likelihood and then reset to the virtual observation. Due to the
resetting, we can evaluate how good the model is in predicting from one observation to another. Starting from the second data point, we
evaluate the likelihood of minimizing the influence of the initial values, which were not calibrated (step 3). The resetting is not used for the
evaluation of the model after the calibration. For the calibration with the FAO dataset, only one species was grown and is simulated, and
therefore we only used step 3 for the calibration.
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3.2 Biodiversity Exploratories dataset – dynamics of
community traits and biomass

Second, we used data from the Biodiversity Exploratories
project (Fischer et al., 2010). This is an observational dataset
of permanent grassland sites from three different regions in
Germany, and we used the subset from 2006 to 2022. Farm-
ers documented their land-use practices, and vegetation com-
position and above-ground biomass were documented annu-
ally by researchers. We assessed whether our model could
reproduce patterns in total biomass production and in the
development of the community trait distribution. We used
site-specific climate, management, and soil data (for details
on data preparation and references, see Appendix C). In to-
tal, 150 sites are included the project. We selected those that
were mainly used as meadows (mown) or as a mixture of pas-
ture (grazed) and meadow. We excluded those sites that were
used as pasture only, resulting in 92 sites over all three re-
gions. We decided to exclude the pasture sites because farm-
ers often decided to provide supplementary feeding on these
sites, and the information on supplementary feeding is not
detailed enough to be included in the simulation model. The
82 sites were split into 12 sites for calibration and 70 sites
for validation (see Tables F9, F10, and F11). For calibra-
tion, we selected four sites from each of the three regions,
some of which were mown only, while others were grazed
and mown. We calibrated parameters of the water growth
reducers (αWAT,rsa,05 and δWAT,rsa), nutrient growth reduc-
ers (αNUT,rsa,05, αNUT,amc,05, δNUT,rsa, and δNUT,amc), invest-
ment into roots (κROOT,rsa and κROOT,amc), and the reference
traits that influence all just-mentioned processes (φTRSA and
φTAMC). All other parameters were kept constant and are
based on literature, based on the calibration with the FAO
dataset, or are set manually by comparing simulated trajecto-
ries with measured data of the calibration sites.

We compiled trait data for 70 plant species that occurred
in the Biodiversity Exploratories sites, partly from measure-
ments from the project and partly from trait databases (for
details, see Appendix C). For the calibration, we wanted
to lower the computation time. That is why we reduced
the number of plant species to 25, by applying hierarchical
clustering and calculating the mean trait values for the 25
groups (for details, see Appendix C1). Lowering the number
of species did not change the general patterns in community
dynamics (see Fig. F4). We derived virtual observations for
these 25 virtual plant species by finding a community trait
distribution with the 25 virtual species that closely resemble
the community trait distribution with the 70 species by min-
imizing the earth mover’s distance (also called the Wasser-
stein distance; Rubner et al., 2000) between these two com-
munity trait distributions (for details about distance between
community trait distributions, see Appendix D). Thereby, we
optimized the relative abundance of the 25 virtual species
(see step 1 in Fig. 5) and calculated the biomass of each
virtual species by multiplying the relative abundance by the

total biomass (see step 2 in Fig. 5). These virtual observa-
tions help to reset the biomass of the simulated species af-
ter the evaluation of the likelihood for one time point (see
step 3 in Fig. 5). We used a likelihood function based on a
normal distribution with zero mean, where the distance be-
tween the simulated and the observationally derived commu-
nity trait distribution (our virtual observations), as calculated
by the earth mover’s distance, is treated as the data, and the
variance is a parameter estimated during calibration. We did
not use the total above-ground biomass in the calibration but
evaluated it after the calibration. We used the same Markov
chain Monte Carlo method as for the calibration with the
FAO dataset to derive the posterior distribution for the pa-
rameters.

Each species is initialized with the same above- and
below-ground biomass (200 kgha−1) and a height equal to
half of their maximum height. This sets the total biomass
at a rather high initial value (5000 kgha−1 of above-ground
biomass in winter, see Fig. 7). Environmental conditions,
management practices, and biotic interactions with other
plant species lead to the site-specific community assem-
bly. While the biomass of most simulated species decreases
rapidly due to their functional traits, the biomass of a few
species increases over time.

The calibration resulted in a slight decrease in the mean
absolute error for predicting the community trait distribu-
tion (see Fig. 6) and greatly reduced the mean absolute er-
ror for predicting the above-ground biomass (see Fig. 7).
The time series of the community-weighted mean traits for
the independent validation sites with the lowest distance be-
tween predicted and observationally derived community trait
distribution (AEG41 in Fig. 6) show that the general trends
are captured well for all traits except the root surface area
per below-ground biomass. For the site with the highest er-
ror in predicting the community trait distribution (AEG31 in
Fig. 6), the trend for the most community-weighted mean
traits are not well captured. The development of the whole
community trait distribution over time for the same sites
show that the simulated functional diversity is lower than
the observed functional diversity (for variance in the commu-
nity trait distributions, see Figs. F8, F9, and F10). For most
data points, the simulated and measured total above-ground
biomass at the independent validation sites with the highest
and lowest predictive error correspond closely (see Fig. 7).

We applied a local sensitivity analysis and calculated
the sensitivity of the total above-ground biomass to small
changes in parameter values (for details, see Table F13). We
confirmed that the total above-ground biomass is most sensi-
tive to changes in parameters dealing with senescence (φsla,
αSEN, and βSEN,sla), the calculation of the permanent wilting
point and the water-holding capacity (βCLY,PWP, βSLT,WHC,
and βCLY,WHC), radiation use efficiency (γRUEmax, γRUE,k
and αRUE,cwmH), and seasonal growth adjustment (ζSEAmax
and ζSEAmin).
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Figure 6. Time series of the community-weighted mean trait values for the independent validation sites with the highest (AEG31) and
the lowest (AEG41) mean absolute error for the distance between simulated and observationally derived community trait distribution (a).
Predictions from the mode of the posterior (maximum a posteriori estimate) and from draws from the posterior distribution are shown in order
to compare them with the observationally derived community-weighted mean traits. In addition, the mean absolute error between predicted
and observationally derived community trait distribution is shown separately for the calibration (training set) and validation (testing set)
sites, both before and after calibration (b). The mean absolute error is calculated for each observation and then averaged across each site.
The predictive performance before calibration, based on the mean error calculated with 50 draws from the prior distribution, is compared to
the error after calibration, based on the mean error calculated with 50 draws from the posterior distribution.
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Figure 7. Time series from the independent validation sites with the highest (SEG04) and the lowest (AEG45) mean absolute error in
predicting the above-ground dry biomass of the Biodiversity Exploratories dataset (a). Predictions from the mode of the posterior distribution
(maximum a posteriori estimate) and draws from the posterior distribution are shown in order to compare them with the measured above-
ground biomass. In addition, the mean absolute error between predicted biomass and measured biomass is shown separately for the calibration
(training set) and validation (testing test) sites, both before and after calibration (b). The mean absolute error is calculated for each observation
and then averaged across each site. The predictive performance before calibration, based on the mean error calculated with 50 draws from the
prior distribution, is compared to the error after calibration, based on the mean error calculated with 50 draws from the posterior distribution.

4 Discussion

4.1 Validation of GrasslandTraitSim.jl

The validation of the GrasslandTraitSim.jl model demon-
strated its ability to relate the morphological traits of plant
species to their species-specific physiological and demo-
graphic rates. Changes in these rates lead to changes in
species biomass and, consequently, changes in plant commu-
nity composition. We proved that the model could satisfacto-
rily reconstruct seasonal biomass production for one species,
biomass production of plant communities, and (with minor
limitations) functional community composition for various
grassland sites.

One of the key advantages of our modelling approach is
that we can compare the simulated morphological trait dis-
tributions with measured morphological trait distributions at
the community level. In contrast to previous grassland mod-
els (e.g. DynaGraM; Moulin et al., 2021 or GRASSMIND;
Taubert et al., 2012) that require demographic or physio-
logical rates as species-specific parameters, our model re-
quires only commonly measured morphological traits (com-
pare Fig. 2). In this way, our model can be applied to a much
larger set of species and communities for which such trait
data are available from on-site measurements or databases.

In our model, we tried to keep a balance between a model
that can reproduce the basic patterns in biomass production
and functional community composition but does not have too
many global parameters, so that it is possible to calibrate all
parameters with datasets that are readily available. However,
already with the complexity that we presented here, it was not
possible to calibrate all global parameters using the Markov
chain Monte Carlo method at once. We had to manually fix
some parameter values beforehand, and we had to set infor-
mative priors on the parameters so that all chains from ran-
dom starting positions of the prior distribution converged to
the posterior distribution within a reasonable number of iter-
ations.

In general, it was much easier to calibrate the model pa-
rameters with the FAO dataset, because biomass was mea-
sured weekly rather than annually, as was the case with
the Biodiversity Exploratories’ observations of biomass and
composition. Annual observations are not optimal because
many different trajectories, simulated by sets of parameter
values, can lead to the same simulated point after 1 year. This
highlights the need for datasets with several measurements
per year for the calibration of process-based grassland mod-
els (Taubert et al., 2020). These detailed datasets could also
reduce the widespread problem of parameter identifiability
in the calibration of ecosystem models (Luo et al., 2009).
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Another limitation of the Biodiversity Exploratories
dataset is that we used species mean traits, derived from the
project or from trait databases, to calculate the community
trait distribution (see Appendix C). However, using species
mean traits results in the loss of intra-specific trait variabil-
ity from the observations. We expect the realized community
trait distributions to vary more between sites than is reflected
in the dataset (Violle et al., 2012; Siefert et al., 2015).

We included grazing in our model because grazing is an
important land-use factor in semi-natural grasslands. Some
of the grassland models did not take this factor into account
(see Table 1 or F2). However, in this study, we were not able
to fully calibrate and evaluate grazing in our model, as the
sites of the Biodiversity Exploratories lack accurate data to
quantify supplementary feeding. Supplementary feeding is
an important factor, for example, on year-round grazing sites.

For the independent validation site with the highest error
in the FAO dataset (FAO45 in Spain, see Fig. 4), our model
predicts too high above-ground biomass in spring. Thereby,
we see that the model is not flexible enough to simulate pro-
duction in a very wide range of regions. Our step function
for seasonal growth adjustment assumes that the growth in-
creases in spring after 200 °C have been accumulated (see
Eq. 32). This might be a reasonable assumption for Lolium
perenne in the Netherlands but not for sites in Spain. The
strong growth starts too early for the site in Spain. For the cal-
ibration of the LINGRA model with the same dataset, it was
assumed that species-specific parameters are different for the
northern and southern sites (Bouman et al., 1996). We did not
calibrate the model here for spatial subsets of the sites, as we
wanted to analyse whether our model is in general applicable
to a variety of sites.

4.2 Discussion of the concept

We chose the morphological functional traits that represent
the main trade-offs in plant physiology. Rather than reflect-
ing one process in detail with many traits (e.g. more traits
dealing with water stress, such as stomatal conductance and
rooting depth), we aimed to represent the following main
trade-offs of plants: (1) the slow–fast continuum of the leaf
economic spectrum states that plants with thinner leaves have
a higher light-use efficiency per unit of biomass but also a
higher senescence rate (as reflected by specific leaf area; Re-
ich et al., 1992; Wright et al., 2004). (2) Taller plant species
can overtop other plant species and are therefore less affected
by shading. However, they are more susceptible to mowing
and grazing (as reflected by maximum plant height; Díaz
et al., 2007; Klimešová et al., 2008). (3) Investing in roots
and mycorrhizae enhances nutrient and water uptake, but this
comes at the cost of maintaining fine roots and the collabora-
tion with mycorrhiza (as reflected by above-ground biomass
per plant biomass, root surface per below-ground biomass,
and arbuscular mycorrhizal colonization rate; Reich, 2014;
Prieto et al., 2015; Bergmann et al., 2020).

To some extent, our model can simulate intra-specific trait
variability based on the functional representation rather than
species identity. In our model, two simulated species can rep-
resent one species in the real world that exhibits different
traits at different sites. However, this approach is not appli-
cable to plant species whose traits change dynamically de-
pending on variable environmental conditions. Furthermore,
our model does not reflect changes in traits during the life
stages of plant species.

The number of co-existing species (e.g. with
biomass> 2 %) is rather low, with three to five species
accounting for most of the biomass in most scenario
analyses. This is a common challenge in grassland mod-
els. For example, in a model comparison study with the
GRASSMIND and LPJmL models, it was noted that in a
two-species simulation, one species always accounted for
most of the biomass (Wirth et al., 2021). We noticed that by
including a density-dependent senescence rate (not shown
in the model equations above), the simulated functional
diversity is increased, and the distance between modelled
and observed community trait distributions can be lowered.
A density-dependent senescence rate can be explained,
for example, by negative plant–soil feedbacks (Bonanomi
et al., 2005; Liu et al., 2022; Goossens et al., 2023). This
shows the potential to explore in future studies how the
incorporation of co-existence mechanisms can lead to more
realistic predictions of functional community composition.

We argue that our model is well suited for analysing the
effects of management (grazing, mowing, and fertilization),
edaphic factors (soil nitrogen, permanent wilting point, and
water-holding capacity), and climatic factors (temperature,
radiation, potential evapotranspiration, and precipitation) on
the productivity and functional composition of diverse plant
communities of temperate semi-natural grasslands. We en-
visage the model as a useful tool for conducting scenario
analyses (e.g. what would happen if the input X were to
change and why?), rather than as a model with superior
predictive performance compared to conventional statistical
models. For example, the influence of management type and
intensity on achieving a balance between creating highly pro-
ductive grasslands and maintaining plant diversity could be
analysed. Furthermore, the influence of the initial species
composition on the productivity under fluctuating climate
conditions (e.g. years with drought) could be studied by an-
swering the question of whether a more diverse community
can buffer extreme climatic events. Moreover, we consider
the potential application of including or excluding certain
processes (e.g. a specific transfer function, which links traits
to demographic rates) and analyse whether the agreement be-
tween simulations and measured data improves.
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5 Conclusions

We presented GrasslandTraitSim.jl, a process-based model
that can be used to simulate the effects of land use and
climate change on the plant functional composition and
biomass production of permanent semi-natural grasslands.
We have extended the approach of Chalmandrier et al. (2021)
by linking measurements of morphological plant traits with
demographic and physiological species-specific processes.
Our model uses only morphological traits as species-specific
inputs to simulate the biomass of many plant species over
time. Therefore, the study is a step towards modelling highly
diverse plant communities in grasslands. Further simulation
studies – for example, the analysis of different land-use sce-
narios – are required to fully explore the potential of the
GrasslandTraitSim.jl model. We hope that the accompanying
documentation, tutorials, and open-source code will encour-
age collaboration and discussion on this topic.

Appendix A: Derivation of the species-specific water
and nutrient growth reducers

The response curves (growth reducers) REDts for different
nutrient and water availabilities, denoted as Rt , are imple-
mented via logistic equations with a minimum of zero (no
growth is possible) and a maximum of 1 (no growth reduc-
tion). While the species-specific part of the response curves
is implemented by different inflection points x0,RED,ts , the
slope βRED is the same for all species:

REDts =
1

1+ exp
(
−βRED · (Rt − x0,RED,ts)

) . (A1)

We then used another logistic equation that relates the
trait values to the inflection point of the response curve. We
wanted to control how much the response curves should dif-
fer when the trait values differ from x0,prep,s ; this is imple-
mented with the parameter δRED. The equation could be writ-
ten as

x0,RED,ts = x0,RED,min

+
x0,RED,max− x0,RED,min

1+ exp
(
−δRED · (traitts − x0,prep,s)

)
.

(A2)

However, these equations and their parameters x0,prep,s ,
x0,RED,min, and x0,RED,max are hard to understand and to in-
terpret, therefore we reformulated the equation. Instead of
calculating the inflection point x0,RED,ts directly, we calcu-
lated the growth reduction at 0.5 of the maximal resource
availability:

RED05,ts =
1

1+ exp
(
−δRED · (traitts − x0,RED,05)

) . (A3)

This has the advantage of having natural boundaries ∈
[0,1], because the growth reduction cannot be larger than 1

(REDts = 0) or lower than zero (REDts = 1). We introduce
one parameter αRED,05, which is the growth reducer for the
mean trait φtrait at half of the maximal resource availability:

αRED,05 =
1

1+ exp
(
−δRED · (φtrait− x0,R,05)

) (A4)

and rearranged the equation to

x0,R,05 =
1

δRED
· log

(
1−αRED,05

αRED,05

)
+φtrait. (A5)

This leads to an equation that we can use to calculate the
growth reducer for all trait values at half of the maximal re-
source availability:

RED05,ts =

1

1+ exp
(
−δRED ·

(
traitts −

(
1

δRED
· log

(
1−αRED,05
αRED,05

)
+φtrait

))) . (A6)

Now, we need again the full equation to calculate the growth
reducer for any resource availability. We use Eq. (A1) and
solve for x0,RED,ts with REDts = 0.5:

RED05,ts =
1

1+ exp
(
−βRED · (0.5− x0,RED,ts)

) (A7)

to get the inflection point x0,RED,ts :

x0,RED,ts =
1
βR
· log

(
1−RED05,ts

RED05,ts

)
+ 0.5. (A8)

Thus, the full equation to calculate the growth reducer for
any resource availability is

REDts =

1

1+ exp
(
−βRED ·

(
Rt −

(
1

βRED
· log

(
1−RED05,ts

RED05,ts

)
+ 0.5

))) (A9)

and with everything combined and simplified,

REDts =

1

1+ exp
(
−βRED ·

(
Rt −

[
1

βRED
·

(
−δRED ·

(
traitts −

(
1

δRED
· log

(
1−αRED,05
αRED,05

)
+φtrait

)))
+ 0.5

])) .
(A10)

Note the species-specific inflection point x0,RED,ts is in
square brackets.

Appendix B: Technical details of the
GrasslandTraitSim.jl model

The model is implemented as a Julia package and can be
used with the Julia programming language (Bezanson et al.,
2017). It can be used on all major operating systems (Linux,
MacOS, Windows). The model can be run on computers
with low hardware requirements. For example, a 10-year
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simulation involving 70 species typically takes less than
0.5 s to run on a standard personal computer. A graphical
user interface allows you to manually change parameter
values and see the influence of each parameter on the
simulation results (explained in more detail in the online
documentation, see data accessibility statement). The model
can be run on headless systems, but then the graphical user
interface is not available. Throughout the model, units are
used directly in the programming code using Unitful.jl, mak-
ing the model easier to understand and debug. The outputs
of the model have labelled axes using DimensionalData.jl,
making it easy to know which is the space, time, or species
axis. The package has extensive online documentation
with all the equations, tutorials on how to set up the input
data, and how to analyse the output (see data accessibility
statement). For each equation, there are interactive plots
to visualize the relationship between the variables and the
influence of the parameters. Flow charts are also available
online to give a quick overview of the sub-processes. The
model version described here can be installed in Julia using
import Pkg; Pkg.add("GrasslandTraitSim",
version = "1.0.0"). The newest version can be
installed using the same command without the version
argument. All dependencies will be installed with this
command. The model is open source and licensed under
the GNU GPLv3. Contributions are welcome and can be
made via GitHub. The development of the model is hosted
at https://github.com/felixnoessler/GrasslandTraitSim.jl
(last access: 8 September 2025), and new versions will be
published in the General Julia package registry.

Appendix C: Detailed description and data preparation
for the Biodiversity Exploratories dataset

We compiled input data for the model from different sources.
Management data were used directly from the Biodiversity
Exploratories project (timing and intensity of grazing, tim-
ing, and height of mowing events and total fertilization of ni-
trogen per year; Vogt et al., 2024). The exact dates of grazing
were not available, only the type of grazing, the number of
days, and the start and end month of a grazing period. We as-
sumed different numbers of consecutive grazing days (2 for
rotational grazing type I – “Portionsweide”, 5 for rotational
grazing type II – “Umtriebsweide”, and all days for perma-
nent grazing) and distributed them equally over the whole
grazing period. Potential evapotranspiration was used from
AMBAV, an agro-meteorological model that outputs “poten-
tial evaporation over grass” from weather stations in the three
regions (DWD Climate Data Center, 2019) and is therefore
the same for all sites of one region. Air temperature and pre-
cipitation were obtained for each site from the Biodiversity
Exploratories project (Wöllauer et al., 2023). Photosynthet-
ically activate radiation (PAR) was downloaded with a 3 h
resolution from Wang (2021), and the daily sum of PAR was

obtained by calculating the integral of a quadratic regression
to the PAR values. We calculated the PAR values per region.
We created region-specific PAR inputs due to the coarse reso-
lution of the PAR data. Soil texture (Schöning et al., 2021c),
rooting depth (Herold et al., 2021), bulk density (Schöning
et al., 2021d), and organic matter content (Schöning et al.,
2021b) were used from soil-sampling campaigns of the Bio-
diversity Exploratories project. The total nitrogen concentra-
tion was aggregated from 4 years to get a mean overall total
nitrogen concentration (Schöning et al., 2021b, e, a; Schön-
ing, 2023). The trait data were compiled from species that
are present in the grasslands of the Biodiversity Exploratories
project. Leaf area and leaf dry weight were sampled from in-
dividuals from sites of the Exploratories project (Prati et al.,
2021) to calculate the specific leaf area. The root surface area
per below-ground biomass, arbuscular mycorrhizal coloniza-
tion rate, and above-ground biomass per total biomass were
obtained from individuals that were grown in a greenhouse
experiment on sand (Bergmann and Rillig, 2022). The max-
imum height was obtained from Jäger et al. (2017) and the
leaf nitrogen per leaf mass from the TRY database (Kattge
et al., 2020, mainly from Gubsch et al., 2010; Pakeman et al.,
2008; Schroeder-Georgi et al., 2016). We decided to set leaf
biomass per above-ground biomass to 80 % for all species,
as values for the trait leaf biomass per plant biomass were
not available for many species. For 70 species, we had val-
ues for all the traits. We used a reduced set of 25 species as
input for the simulation (see Appendix C1). During initial-
ization, the initial above-ground and below-ground biomass
of 5000 kgha−1 was evenly distributed across all species.
The initial height was set to half of the maximum height of
each plant species. The initial soil water content was set to
180 mm, which assumes no drought stress in the beginning
of the simulation. For the calibration and validation data, we
used the cut above-ground biomass and the cover to com-
pare observed and simulated community trait distributions.
The biomass was cut once per year on every site at a height
of 4 cm (Hinderling et al., 2024). Each year, the cover of
plant species was estimated on an area of 16 m2 (Hinderling
and Keller, 2023). Whereas we used input data from 2006
to 2022, we used only calibration data from 2010 to 2022 to
allow for an initialization phase of the grassland model.

C1 Reducing the number of species from 70 to 25 for
the Biodiversity Exploratories dataset

For calibration, we reduced the number of simulated species
from 70 to 25. We calculated new trait values for the 25
species by forming groups of species with similar trait val-
ues and calculating the mean trait values within each of the
25 groups. To do this, we first standardized the trait values by
min–max normalization to a range of [0, 1] to give each trait
value equal weight in the distance calculation. We then calcu-
lated the Manhattan distance between all 70 species. We ap-
plied a hierarchical clustering (“hclust” function from “stats”
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package, R Core Team, 2024), formed 25 groups, and cal-
culated the mean of the non-standardized trait values to ob-
tain the trait values for 25 virtual species. A comparison of
the simulated community dynamics with 70 and 25 species
showed that lowering the number of species did not change
the general community patterns (see Fig. F4).

Appendix D: Calculating the distance between two
community trait distributions

The earth mover’s distance, which is also called the Wasser-
stein distance, can be used to calculate the distance be-
tween two discrete distributions (Rubner et al., 2000; Vil-
lani, 2009; Bernton et al., 2019; for application in movement
ecology, see Potts et al., 2014; Kranstauber et al., 2017). The
cost is computed as the product of the amount of probabil-
ity mass transported and the distance it is moved. We used
the implementation in the Python package “scipy” (“wasser-
stein_distance_nd” function; Virtanen et al., 2020). With this
function, the trait values of both distributions are given as
“u_values” and “v_values” (matrices, each row with trait val-
ues for one species), and the respective cover or biomass
proportions are given as “u_weights” and “v_weights”. We
standardized the trait values by z-score normalization ((x−
x)/std(x)) to give each trait an equal weight in the calcula-
tion of the earth mover’s distance.

Appendix E: Technical details on running the Markov
chain Monte Carlo routine

For both datasets, we used the Haario-Bardenet Markov
chain Monte Carlo with the Python software package PINTS
(Clerx et al., 2019). We called our Julia package Grassland-
TraitSim.jl from Python. We ran four independent chains
for 75 000 iterations (150 000 for the FAO dataset) and dis-
carded the first half of the iterations as warm-up. The first
5000 iterations were used as an adaption-free initial phase.
We checked that all four chains converged to the same poste-
rior region by visually examining the trace plots (see Figs. F2
and F7) and by checking that all rhat values were less than
1.01 (not shown; Vehtari et al., 2021). We compared how
much the posterior shifted in comparison to the prior den-
sities and interpreted this as how much uncertainty was re-
duced (see Figs. F1 and F6). We also compared how much
uncertainty was reduced while simulating trajectories with
GrasslandTraitSim.jl from the prior and from the posterior
(comparing the prior predictive with the posterior predictive
distribution, see Figs. F3 and F5).

For both datasets, we used the one-step-ahead prediction
method (predict until next data point, evaluate prediction, re-
set state variables to data point, and repeat the procedure).
By using this method and not explicitly estimating the hid-
den state of the above-ground biomass (e.g. by a state space
model), we ignored the observational error and only consid-
ered the process error. We assumed that the observational er-
ror is small and decided to keep the calibration method sim-
pler by not estimating the hidden states.

Geosci. Model Dev., 18, 7077–7128, 2025 https://doi.org/10.5194/gmd-18-7077-2025
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Appendix F: Supporting figures and tables

Figure F1. Pair plot of the posterior densities for calibration with the FAO dataset. In the right upper plots, the marginal posterior densities
(histograms) are shown, together with the prior densities (red lines). The first half of the iterations were discarded as warm-up.
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Figure F2. Trace plot and prior and posterior densities for calibration with the FAO dataset. Different colours represent the different Markov
chains. In the density plot, the prior density (red line) and the posterior densities are visible. The first half of the iterations were discarded as
warm-up.
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Figure F3. Prior and posterior predictive checks for the FAO dataset. Simulations with parameters drawn from the prior distribution or from
the posterior distribution (grey lines) are compared to measured above-ground biomass (blue dots).
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Figure F4. Comparison of community dynamics (above-ground biomass and community-weighted mean traits) with 70 species and with the
reduced set of 25 species. The trait values of the 25 species were derived by calculating the mean trait values of 25 groups that were built
from the dataset with the trait values of all 70 species (see Appendix C1).
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Figure F5. Prior and posterior predictive checks for two sites of the Biodiversity Exploratories dataset. The predicted above-ground biomass,
based on simulations with parameters drawn from either the prior or the posterior distributions, is compared to the measured above-ground
biomass.
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Figure F6. Pair plot of the posterior densities for calibration with the Biodiversity Exploratories dataset. In the right upper plots, the marginal
posterior densities (histograms) are shown, together with the prior densities (red lines). The first half of the iterations were discarded as warm-
up.
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Figure F7. Trace plot and prior and posterior densities for calibration with the Biodiversity Exploratories dataset. Different colours represent
the different Markov chains. In the density plot, the prior density (red line) and the posterior densities are visible. The first half of the
iterations were discarded as warm-up.
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Figure F8. Development of the community trait distribution over time for validation sites, with the highest (SEG20) and the lowest (HEG47)
mean absolute error for the distance between simulated and observed community trait distribution (for the selection, see Fig. 6). The simulated
(red) and observed (grey) densities are calculated using kernel density estimation by including the biomass proportion of the species as
weights. The trait values of the species are constant (horizontal black lines on the left). To analyse correlations between traits, the observed
and simulated trait distributions are shown in a pair plot for 2018 in Figs. F9 and F10.
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Figure F9. Simulated (red) and observationally derived (black) community trait distribution for the grassland site AEG31 of the Schwäbische
Alb region (Germany) in 2018. The AEG31 site has the greatest distance between the simulated and the observationally derived community
trait distribution over all years (see Fig. 6).
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Figure F10. Simulated (red) and observationally derived (black) community trait distribution for the grassland site AEG41 of the Schwäbis-
che Alb region (Germany) in 2018. The AEG41 site has the shortest distance between the simulated and observationally derived community
trait distribution over all years (see Fig. 6).
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Table F3. Input variables of the GrasslandTraitSim.jl model. The dimensions of the variables are given in the subscript of the symbols: t per
day and s per species.

Symbol Variable description Unit

Climate

PARt photosynthetic active radiation MJha−1

Tt mean air temperature °C
Pt precipitation mm
PETt potential evapotranspiration mm

Management

CUTt cutting height for mowing m or NaN
LDt livestock density ha−1 or NaN
F fertilization (may vary from year to year) kgNha−1 yr−1

Soil

SND sand content (proportion ∈ [0,1]) −

SLT silt content (proportion ∈ [0,1]) −

CLY clay content (proportion ∈ [0,1]) −

OM organic matter content (proportion ∈ [0,1]) −

BLK bulk density gcm−3

RD rooting depth of plants mm
N total nitrogen in the soil gNkg−1

Morphological plant traits

maxheights maximum plant height m
slas specific leaf area m2 kg−1

lncs leaf nitrogen content per leaf mass mgg−1

rsas root surface area per below-ground biomass m2 g−1

amcs arbuscular mycorrhizal colonization rate −

abps above-ground biomass per total biomass −

lbps leaf biomass per above-ground biomass −
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Table F4. Parameters of the model and the references for the parameter values. In the reference column, we denote whether a parameter is
calibrated with the Biodiversity Exploratories (BE) or the FAO dataset, whether the parameter is set manually by comparing time series with
data or if the parameter value is derived from literature. For the parameters calibrated using the FAO dataset, we set prior distributions based
on the literature, as shown in Table F6.

Symbol Parameter Value Unit Reference

Reference traits

φTRSA reference root surface area per total biomass, used in
nutrient stress function and maintenance costs for
root function

≈ 0.023 m2 g−1 calibrated with BE dataset

φTAMC reference arbuscular mycorrhiza colonization rate per
total biomass, used in nutrient stress function and
maintenance costs for mycorrhizae function

≈ 0.11 − calibrated with BE dataset

φsla reference specific leaf area, used in senescence
function

0.012 m2 g−1 manually adjusted for BE
dataset, close to community
mean

Light interception and competition

γRUEmax maximum radiation use efficiency 0.003 kgMJ−1 Schapendonk et al. (1998)

γRUE,k light extinction coefficient 0.6 − Schapendonk et al. (1998)

αRUE,cwmH reduction factor of radiation use efficiency at a height
of 0.2 m ∈ [0,1]

≈ 0.989 − calibrated with FAO dataset

Water stress

αWAT,rsa,05 water stress growth reduction factor for species with
mean trait TRSA= φTRSA, when the plant-available
water equals Wp,t = 0.5

≈ 0.41 − calibrated with BE dataset

βWAT,rsa slope of the logistic function that relates the
plant-available water to the water stress growth
reduction factor

7.5 − manually adjusted for BE
dataset

δWAT,rsa controls how strongly species differ in their water
stress growth reduction from the mean response

≈ 4.1 gm−2 calibrated with BE dataset

Nutrient stress

ωNUT,F controls the influence of the fertilization rate on the
nutrient index

0.4 kgN−1 ha−1 yr manually adjusted for BE
dataset

ωNUT,N controls the influence of the total soil nitrogen on the
nutrient index

2 gN−1 kg manually adjusted for BE
dataset

αNUT,TSB reference value, if the sum of the product of trait
similarity and biomass of all species equals∑

TS ·B < 1,
∑

TS ·B = 1,
∑

TS ·B > 1, the
nutrient adjustment factor NUTadj,ts is higher than 1,
1, and lower than 1, respectively

5000 kgha−1 manually adjusted for the BE
dataset

αNUT,maxadj maximum of the nutrient adjustment factor 2 − manually adjusted for BE
dataset

βNUT,TS scaling factor for the trait similarity matrix 2 − manually adjusted for BE
dataset

Geosci. Model Dev., 18, 7077–7128, 2025 https://doi.org/10.5194/gmd-18-7077-2025
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Table F4. Continued.

Symbol Parameter Value Unit Reference

αNUT,amc,05 nutrient stress based on arbuscular mycorrhiza
colonization growth reduction factor for species with
mean trait TAMC= φTAMC, when the plant-available
nutrients equal Np,ts = 0.5

≈ 0.79 − calibrated with BE dataset

αNUT,rsa,05 nutrient stress based on root surface area growth
reduction factor for species with mean trait
TRSA= φTRSA, when the plant-available nutrients
equal Np,ts = 0.5

≈ 0.76 − calibrated with BE dataset

βNUT,amc slope of the logistic function that relates the plant
available nutrients to the nutrient stress growth
reduction factor based on arbuscular mycorrhiza
colonization

7.5 − manually adjusted for BE
dataset

βNUT,rsa slope of the logistic function that relates the
plant-available nutrients to the nutrient stress growth
reduction factor based on root surface area

7.5 − manually adjusted for BE
dataset

δNUT,amc controls how strongly species differ in their nutrient
stress growth reduction based on arbuscular
mycorrhiza colonization from the mean response

≈ 6.1 − calibrated with BE dataset

δNUT,rsa controls how strongly species differ in their nutrient
stress growth reduction based on root surface area
from the mean response

≈ 19.2 gm−2 calibrated with BE dataset

Maintenance costs for roots and mycorrhizae

κROOT,amc maximum growth reduction due to maintenance costs
for mycorrhizae based on arbuscular mycorrhiza
colonization rate

≈ 0.28 − calibrated with BE dataset

κROOT,rsa maximum growth reduction due to maintenance costs
for fine roots based on root surface area

≈ 0.07 − calibrated with BE dataset

Environmental and seasonal growth adjustment

γRAD,1 controls the steepness of the linear decrease in
radiation use efficiency for high PARt values

4.45×10−6 MJ−1 ha Schapendonk et al. (1998)

γRAD,2 threshold value of PARt from which starts a linear
decrease in radiation use efficiency

5× 104 MJha−1 Schapendonk et al. (1998)

ωTEMP,T1 minimum temperature for growth 4 °C Jouven et al. (2006)

ωTEMP,T2 lower limit of optimum temperature for growth 10 °C Schapendonk et al. (1998)

ωTEMP,T3 upper limit of optimum temperature for growth 20 °C Jouven et al. (2006)

ωTEMP,T4 maximum temperature for growth 35 °C Moulin et al. (2021)
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Table F4. Continued.

Symbol Parameter Value Unit Reference

ζSEA,ST1 threshold of the cumulative temperature since the
beginning of the current year; the seasonality factor
starts to decrease from ζSEAmax to ζSEAmin above
ζSEA,ST1 − 100 °C

≈ 400 °C calibrated with FAO dataset

ζSEA,ST2 threshold of the cumulative temperature since the
beginning of the current year, above which the
seasonality factor is set to ζSEAmin

≈ 1460 °C calibrated with FAO dataset

ζSEAmin minimum value of the seasonal growth effect ≈ 0.84 − calibrated with FAO dataset

ζSEAmax maximum value of the seasonal growth effect ≈ 2.16 − calibrated with FAO dataset

Senescence

αSEN basic senescence rate ≈ 0.012 month−1 calibrated with FAO dataset

βSEN,sla controls the influence of the specific leaf area on the
senescence rate

2.5 − manually adjusted for BE
dataset

ψSEN,ST1 Threshold of the cumulative temperature since the
beginning of the current year, above which the
senescence begins to increase

≈ 1731 °C calibrated with FAO dataset

ψSEN,ST2 threshold of the cumulative temperature since the
beginning of the current year, above which the
senescence reaches the maximum senescence rate
ψSENmax

≈ 2933 °C calibrated with FAO dataset

ψSENmax Maximum senescence rate ≈ 1.77 − calibrated with FAO dataset

Management

βGRZ,lnc controls the influence of leaf nitrogen per leaf mass
on grazer preference

3 − manually adjusted for BE
dataset

βGRZ,H controls the influence of height on grazer preference 1 − manually adjusted for BE
dataset

ηGRZ scaling factor that controls at which biomass density
additional feed is supplied by farmers, fixed for
calibration

2 − manually adjusted for BE
dataset

κGRZ consumption of dry biomass per livestock and day 22 kgha−1 Gillet (2008)

εGRZ,minH minimum height that is reachable by grazers 0.05 m cf. Hirata et al. (2010)

Water dynamics

βSND,WHC,
βSLT,WHC,
βCLY,WHC,
βOM,WHC,
βBLK,WHC

slope parameter relating the sand, silt, clay, organic
matter content, and bulk density to the soil water
content at the water-holding capacity

0.5678,
0.9228,
0.9135,
0.6103,
−0.2696

−,
−,
−,
−,
cm3 g−1

Gupta and Larson (1979) for
all five parameter values

βSND,PWP,
βSLT,PWP,
βCLY,PWP,
βOM,PWP,
βBLK,PWP

slope parameter relating the sand, silt, clay, organic
matter content, and bulk density to the soil water
content at the permanent wilting point

−0.0059,
0.1142,
0.5766,
0.2228,
0.02671

−,
−,
−,
−,
cm3 g−1

Gupta and Larson (1979) for
all five parameter values
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Table F5. Overview of the model equations and their references. New means that the equations are newly composed for the grassland model
and were not adopted from other grassland models.

Eq. Topic References

Main biomass dynamic

1 main biomass dynamic similar to Schapendonk et al. (1998), Moulin et al. (2021)
2 ratio between above-ground and below-ground biomass new
3 change in above-ground biomass new
4 change in below-ground biomass new
5 actual growth similar to Schapendonk et al. (1998), Moulin et al. (2021)

Light interception and competition

6 potential growth Eq. (1) of Lacasa et al. (2021), Monsi and Saeki (2005);
7 fraction of the radiation that is intercepted for the Beer–Lambert equation, see Monsi and Saeki

(2005), Lacasa et al. (2021); added influence of the
community height

8 community-weighted mean height general equation
9 total leaf area index general equation
10 leaf area index Watson (1947)
11 light interception in vertical layers of the sward similar to Taubert et al. (2012)
12 vertical layers method for light competition similar to Taubert et al. (2012)

General form of the growth reducer for nutrient and water stress

13 species-specific inflection point of logistic growth reduction
function for nutrient and water stress

new

14 logistic growth reduction function for nutrient and water stress new

Nutrient stress

15 nutrient stress growth reduction factor new
16 arbuscular mycorrhizal colonization rate per total biomass new
17 root surface area per total biomass new
18 plant-available nutrients
19 nutrient adjustment factor based on biomass and trait similarity new
20 normalized arbuscular mycorrhizal colonization rate general equation
21 normalized root surface area per below-ground biomass general equation
22 trait dissimilarity index new
23 trait similarity calculation new
24 trait similarity as matrix new

Water stress

25 plant-available water Moulin et al. (2021)

Maintenance costs for roots and mycorrhizae

26 costs for roots and mycorrhizae growth reduction factor new
27 costs for fine root reduction factor new
28 costs for mycorrhizae growth reduction factor new

Environmental and seasonal growth adjustment

29 environmental and seasonal growth adjustment Moulin et al. (2021)
30 growth reduction based on too high radiation Schapendonk et al. (1998)
31 temperature growth reducer function Schapendonk et al. (1998), Jouven et al. (2006), Moulin

et al. (2021)
32 seasonal growth adjustment Jouven et al. (2006), Moulin et al. (2021)
33 yearly accumulated temperature Jouven et al. (2006), Moulin et al. (2021)
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Table F5. Continued.

Eq. Topic References

Senescence

34 senescence rate Moulin et al. (2021); added influence of specific leaf area
35 seasonality of senescence Moulin et al. (2021)

Management

36 biomass losses due to management similar to Moulin et al. (2021)

37 mown biomass influence of plant height to mowing tolerance similar to the
λ in Moulin et al. (2021)

38 grazed biomass partly based on Moulin et al. (2021); added influence of
leaf nitrogen content and height on grazer preference

41 influence of leaf nitrogen per leaf mass on grazer preference new

42 community-weighted mean leaf nitrogen content general equation

Plant height dynamics

43 change in the plant height new

Water dynamics

44 main soil water dynamic Schapendonk et al. (1998), Moulin et al. (2021)

45 evaporation Moulin et al. (2021)

46 transpiration simplified/modified from Moulin et al. (2021)

47 actual evapotranspiration Moulin et al. (2021)

48 water drainage and run-off Moulin et al. (2021)

49 fraction of the soil that can be filled with water at the
water-holding capacity

Gupta and Larson (1979)

50 fraction of the soil that can be filled with water at the
permanent wilting point

Gupta and Larson (1979)

51 water-holding capacity in the rooting zone Gupta and Larson (1979)

52 permanent wilting point in the rooting zone Gupta and Larson (1979)
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Table F6. Prior distributions for calibration with the FAO dataset.

Parameter Prior distribution Reference for prior

αSEN truncated(Normal(0.01, 0.002);
lower= 0.005, upper= 0.02)

we assumed a relatively low basis senescence rate per month

ψSENmax truncated(Normal(1.5, 0.5);
lower= 1, upper= 3)

Moulin et al. (2021) used 3 [−]

ψSEN,ST1 truncated(Normal(1800, 200);
lower= 1200, upper= 2500)∗

Moulin et al. (2021) used 775 [°C]

ψSEN,ST2 truncated(Normal(3000, 200);
lower= 2500, upper= 4000)

Moulin et al. (2021) used 3000 [°C]

ζSEAmin Beta(3, 1) Jouven et al. (2006) used 0.67 [−]

ζSEAmax truncated(Normal(1, 2);
lower= 1, upper= 5)

Jouven et al. (2006) used 1.33 [−]

ζSEA,ST1 truncated(Normal(800, 200);
lower= 250, upper= 1200)

Jouven et al. (2006) used 775 [°C]

ζSEA,ST2 truncated(Normal(1800, 200);
lower= 1200, upper= 2500)

Jouven et al. (2006) used 1450 [°C]

αRUE,cwmH Beta(8, 2) we assumed a small effect; if the parameter is 1, the process
would have no effect

σ 2 truncated(Normal(0, 5);
lower= 0.0)

wide prior; we compared measured and simulated biomass in
[t · ha−1]

∗Note that we assumed higher values for φSEN,ST1 because we calibrated our model for lower altitudes compared to Moulin et al. (2021), as more heat is
accumulated over the year before the senescence starts to increase in autumn.
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Table F7. Overview of experiments with location, year, and whether an experiment is used for calibration for the FAO dataset. If an experi-
ment is not used for calibration, it is used for validation. We used only the subset of the experiments that were irrigated.

Experiment Location Year Used for
number (lat, long) calibration?

FAO01 UK, Crossnacreevy (54.53, −5.85) 1982 x
FAO05 Switzerland, Changins (46.4, 6.23) 1983 x
FAO07 Switzerland, Changins (46.4, 6.23) 1984 x
FAO09 Switzerland, Changins (46.4, 6.23) 1985 x
FAO19 France, Rennes (48.12, −1.68) 1984 x
FAO21 France, Rennes (48.12, −1.68) 1985 x
FAO28 Romania, Cluj−Napoca (46.77, 23.6) 1986 x
FAO33 Belgium, Michamps (50.05, 5.8) 1984 x
FAO35 Belgium, Michamps (50.05, 5.8) 1985 x
FAO43 Spain, La Coruna (43.37, −8.4) 1983
FAO45 Spain, La Coruna (43.37, −8.4) 1984
FAO47 Spain, La Coruna (43.37, −8.4) 1985
FAO51 Italy, Carmagnola (44.85, 7.72) 1983
FAO53 Italy, Carmagnola (44.85, 7.72) 1984
FAO55 the Netherlands, Wageningen (51.97, 5.67) 1983
FAO57 the Netherlands, Wageningen (51.97, 5.67) 1984
FAO59 Italy, Lodi (45.32, 9.5) 1983
FAO61 Italy, Lodi (45.32, 9.5) 1984
FAO63 Italy, Lodi (45.32, 9.5) 1985
FAO65 UK, North Wyke (50.77, −3.9) 1983
FAO67 UK, North Wyke (50.77, −3.9) 1984
FAO69 UK, North Wyke (50.77, −3.9) 1985
FAO71 the Netherlands, Zegveld (52.12, 4.85) 1984
FAO73 the Netherlands, Zegveld (52.12, 4.85) 1985
FAO75 UK, Crossnacreevy (54.53, −5.85) 1983
FAO77 UK, Crossnacreevy (54.53, −5.85) 1984

Table F8. Prior distributions for calibration with the Biodiversity Exploratories dataset. The prior distributions for the parameters, which
are rather theoretical, were set so that the simulated trajectories were close to the measured above-ground biomass and to the community-
weighted mean traits.

Parameter Prior distribution

αWAT,rsa,05 Beta(4, 1)
δWAT,rsa Uniform(0, 25)
αNUT,rsa,05 Beta(4, 1)
αNUT,amc,05 Beta(4, 1)
δNUT,rsa Uniform(0, 25)
δNUT,amc Uniform(0, 12.5)
κROOT,rsa truncated(Normal(0.0, 0.05); lower= 0, upper= 0.5)
κROOT,amc truncated(Normal(0.25, 0.05); lower= 0, upper= 0.5)
φTRSA truncated(Normal(0.02, 0.01); lower= 0.0, upper= 0.1)
φTAMC truncated(Normal(0.1, 0.02); lower= 0.05, upper= 0.25)
σ 2

wasserstein truncated(Normal(0, 5); lower= 0.0)
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Table F9. Overview of sites with location, dominant land use, and whether a site is used for calibration of the Biodiversity Exploratories
dataset from the Schwäbische Alb region. If a site is not used for calibration, it is used for validation.

Site Location Dominant Used for
code (lat, long) land use calibration?

AEG01 Schwäbische Alb (48.4, 9.34) mainly mown x
AEG02 Schwäbische Alb (48.38, 9.47) mainly mown x
AEG03 Schwäbische Alb (48.41, 9.53) mainly mown x
AEG04 Schwäbische Alb (48.38, 9.42) mown and grazed x
AEG05 Schwäbische Alb (48.4, 9.44) mown and grazed
AEG06 Schwäbische Alb (48.4, 9.44) mown and grazed
AEG08 Schwäbische Alb (48.42, 9.49) mown and grazed
AEG10 Schwäbische Alb (48.38, 9.21) mainly mown
AEG11 Schwäbische Alb (48.49, 9.35) mainly mown
AEG12 Schwäbische Alb (48.39, 9.35) mainly mown
AEG13 Schwäbische Alb (48.39, 9.36) mainly mown
AEG14 Schwäbische Alb (48.38, 9.52) mainly mown
AEG15 Schwäbische Alb (48.49, 9.45) mainly mown
AEG17 Schwäbische Alb (48.4, 9.52) mainly mown
AEG18 Schwäbische Alb (48.38, 9.52) mainly mown
AEG22 Schwäbische Alb (48.4, 9.51) mainly mown
AEG23 Schwäbische Alb (48.42, 9.51) mainly mown
AEG24 Schwäbische Alb (48.4, 9.49) mown and grazed
AEG29 Schwäbische Alb (48.42, 9.36) mown and grazed
AEG31 Schwäbische Alb (48.46, 9.46) mown and grazed
AEG35 Schwäbische Alb (48.48, 9.29) mainly mown
AEG36 Schwäbische Alb (48.48, 9.3) mainly mown
AEG37 Schwäbische Alb (48.4, 9.41) mainly mown
AEG38 Schwäbische Alb (48.44, 9.43) mainly mown
AEG39 Schwäbische Alb (48.39, 9.43) mainly mown
AEG40 Schwäbische Alb (48.41, 9.57) mainly mown
AEG41 Schwäbische Alb (48.37, 9.4) mainly mown
AEG42 Schwäbische Alb (48.4, 9.38) mown and grazed
AEG45 Schwäbische Alb (48.4, 9.46) mainly mown
AEG50 Schwäbische Alb (48.41, 9.47) mainly mown
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Table F10. Overview of sites with location, dominant land use, and whether a site is used for calibration of the Biodiversity Exploratories
dataset from the Hainich region. If a site is not used for calibration, it is used for validation.

Site Location Dominant Used for
code (lat, long) land use calibration?

HEG01 Hainich (50.97, 10.41) mainly mown x
HEG02 Hainich (51.0, 10.43) mown and grazed x
HEG03 Hainich (51.0, 10.43) mown and grazed x
HEG06 Hainich (51.21, 10.39) mown and grazed x
HEG04 Hainich (51.11, 10.44) mainly mown
HEG05 Hainich (51.22, 10.32) mown and grazed
HEG10 Hainich (51.28, 10.45) mainly mown
HEG11 Hainich (51.28, 10.46) mainly mown
HEG13 Hainich (51.26, 10.38) mown and grazed
HEG14 Hainich (51.29, 10.44) mown and grazed
HEG15 Hainich (51.07, 10.49) mown and grazed
HEG22 Hainich (51.03, 10.32) mown and grazed
HEG23 Hainich (51.13, 10.34) mown and grazed
HEG24 Hainich (51.1, 10.35) mown and grazed
HEG26 Hainich (51.28, 10.37) mainly mown
HEG27 Hainich (51.09, 10.6) mainly mown
HEG28 Hainich (51.27, 10.5) mainly mown
HEG29 Hainich (51.26, 10.5) mown and grazed
HEG30 Hainich (51.2, 10.36) mainly mown
HEG31 Hainich (51.17, 10.22) mown and grazed
HEG32 Hainich (51.08, 10.57) mown and grazed
HEG33 Hainich (51.11, 10.43) mown and grazed
HEG34 Hainich (51.21, 10.39) mown and grazed
HEG37 Hainich (51.03, 10.51) mown and grazed
HEG47 Hainich (51.28, 10.37) mown and grazed
HEG48 Hainich (51.29, 10.38) mainly mown
HEG49 Hainich (51.28, 10.39) mainly mown
HEG50 Hainich (51.28, 10.42) mown and grazed
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Table F11. Overview of sites with location, dominant land use, and whether a site is used for calibration of the Biodiversity Exploratories
dataset from the Schorfheide-Chorin region. If a site is not used for calibration, it is used for validation.

Site Location Dominant Used for
code (lat, long) land use calibration?

SEG01 Schorfheide-Chorin (53.09, 13.97) mainly mown x
SEG02 Schorfheide-Chorin (53.09, 13.98) mown and grazed x
SEG03 Schorfheide-Chorin (53.1, 13.99) mainly mown x
SEG08 Schorfheide-Chorin (53.11, 14.02) mown and grazed x
SEG04 Schorfheide-Chorin (53.11, 14.0) mainly mown
SEG05 Schorfheide-Chorin (53.11, 14.0) mainly mown
SEG10 Schorfheide-Chorin (53.11, 14.0) mainly mown
SEG11 Schorfheide-Chorin (53.11, 13.99) mainly mown
SEG12 Schorfheide-Chorin (53.09, 13.97) mainly mown
SEG13 Schorfheide-Chorin (52.97, 13.82) mainly mown
SEG14 Schorfheide-Chorin (53.09, 13.98) mown and grazed
SEG15 Schorfheide-Chorin (53.11, 14.01) mainly mown
SEG17 Schorfheide-Chorin (53.1, 13.63) mown and grazed
SEG18 Schorfheide-Chorin (53.14, 13.88) mainly mown
SEG19 Schorfheide-Chorin (53.12, 14.01) mown and grazed
SEG23 Schorfheide-Chorin (53.11, 14.03) mainly mown
SEG24 Schorfheide-Chorin (53.09, 14.0) mainly mown
SEG25 Schorfheide-Chorin (53.11, 13.62) mainly mown
SEG26 Schorfheide-Chorin (53.11, 14.02) mainly mown
SEG27 Schorfheide-Chorin (53.12, 13.71) mainly mown
SEG28 Schorfheide-Chorin (53.09, 14.01) mainly mown
SEG29 Schorfheide-Chorin (53.09, 14.0) mainly mown
SEG30 Schorfheide-Chorin (53.15, 13.83) mainly mown
SEG31 Schorfheide-Chorin (53.15, 13.84) mainly mown
SEG32 Schorfheide-Chorin (53.15, 13.83) mainly mown
SEG39 Schorfheide-Chorin (52.98, 13.82) mown and grazed
SEG41 Schorfheide-Chorin (53.12, 13.85) mainly grazed
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Table F12. Sensitivity of above-ground biomass of Lolium perenne
to changes in parameter values for all experiments in the FAO
dataset. The default parameter values are listed in Table F4. We
decreased (θ−) and increased (θ+) each parameter one at a time
by 1 % (local sensitivity analysis). We calculated the output vari-
able (denoted by Y ) with one parameter decreased, one parameter
increased, and the default parameters to calculate the following quo-
tient:

(
Y (θ+)−Y (θ−)

)
/(2·0.01·Y (θ)). We calculated the ratio for

each time point and for all the experiments and took the overall aver-
age. All parameters not listed here have no influence on the biomass
dynamic without soil water and nutrient growth limitation. The pa-
rameters are ordered from positive to small positive/negative effect
to negative effect on the above-ground biomass.

Parameter Sensitivity of above-ground biomass
to parameter changes

γRUEmax 1.465
αRUE,cwmH 1.251
ζSEAmin 0.836
γRUE,k 0.680
ζSEAmax 0.628
φsla 0.454
ζSEA,ST2 0.354
γRAD,2 0.339
φTAMC 0.124
ωTEMP,T3 0.047
ψSEN,ST2 0.043
ψSEN,ST1 0.031
ωTEMP,T4 0.015
φTRSA 0.004
ζSEA,ST1 −0.012
ωTEMP,T1 −0.012
ωTEMP,T2 −0.047
ψSENmax −0.066
κROOT,rsa −0.076
κROOT,amc −0.152
αSEN −0.183
γRAD,1 −0.283
βSEN,sla −0.333

Table F13. Sensitivity of the total above-ground biomass to changes
in parameter values for all sites in the Biodiversity Exploratories
dataset. The default parameter values are listed in Table F4. We de-
creased (θ−) and increased (θ+) each parameter one at a time by
1 % (local sensitivity analysis). We calculated the output variable
(denoted by Y ) with one parameter decreased, one parameter in-
creased, and the default parameters to calculate the following quo-
tient:

(
Y (θ+)−Y (θ−)

)
/(2 · 0.01 ·Y (θ)). We calculated the ratio

for each time point and for all the sites and took the overall average.
The parameters are sorted into positive (left columns) and negative
effect or almost no effect (right columns) on the total above-ground
biomass.

Parameter Sensitivity of total Parameter Sensitivity of total
above-ground above-ground

biomass to biomass to
parameter parameter

changes changes

φsla 2.91 βCLY,PWP −1.26
γRUEmax 2.32 αSEN −1.23
αRUE,cwmH 1.84 βSEN,sla −1.11
γRUE,k 1.49 βBLK,WHC −0.69
βSLT,WHC 1.46 ψSENmax −0.67
ζSEAmax 1.41 ωTEMP,T 2 −0.39
βCLY,WHC 1.26 γRAD,1 −0.39
αWAT,rsa,05 1.11 βWAT,rsa −0.3
ζSEAmin 0.9 βSLT,PWP −0.28
γRAD,2 0.45 κROOT,rsa −0.17
ζSEA,ST2 0.45 κROOT,amc −0.16
δWAT,rsa 0.44 ωTEMP,T 1 −0.13
ψSEN,ST2 0.24 βBLK,PWP −0.11
ζSEA,ST1 0.22 κGRZ −0.09
εGRZ,minH 0.18 φTRSA −0.06
ψSEN,ST1 0.12 βOM,PWP −0.05
φTAMC 0.1 αNUT,maxadj −0.05
βSND,WHC 0.1 βGRZ,lnc −0.02
βOM,WHC 0.09 βNUT,rsa −0.01
αNUT,rsa,05 0.07 ωTEMP,T4 0.0
αNUT,TSB 0.07 δNUT,amc 0.0
ηGRZ 0.07 αNUT,amc,05 0.0
δNUT,rsa 0.05 βNUT,amc 0.0
ωTEMP,T 3 0.01 ωNUT,F 0.0
ωNUT,N 0.01 βSND,PWP 0.0
βNUT,TS 0.01
βGRZ,H 0.01

Code and data availability. The model code, scripts for
calibration, and raw and processed data for the cal-
ibration and validation can be found on Zenodo at
https://doi.org/10.5281/zenodo.14011849 (Nößler, 2025). This
work is partly based on data of the Biodiversity Exploratories
programme (DFG Priority Programme 1374). These datasets are
publicly available from the Biodiversity Exploratories Information
System (https://doi.org/10.17616/R32P9Q, re3data.org, 2025)
(with links to the specific datasets in the reference section) and are
included in the Zenodo repository. The documentation of the model
with installation instructions and tutorials can be found online at
https://felixnoessler.github.io/GrasslandTraitSim.jl/ (last access:
8 September 2025).
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pel, J., Buitenwerf, R., and Svenning, J.: Integrating
functional traits into trophic rewilding science, J. Ecol.,
https://doi.org/10.1111/1365-2745.14307, 2024.

Barber, S. A. and Silberbush, M.: Plant Root Morphology
and Nutrient Uptake, in: Roots, Nutrient and Water Influx,
and Plant Growth, ASA Special Publications, 49, 65–87,
https://doi.org/10.2134/asaspecpub49.c4, 1984.

Bergmann, J. and Rillig, M.: Fine root and mycorrhizal traits of
82 grassland species measured in a greenhouse experiment on
sand, 2018, Biodiversity Exploratories Information System [data
set], https://www.bexis.uni-jena.de/ddm/data/Showdata/26546?
version=2 (last access: 8 September 2025), 2022.

Bergmann, J., Weigelt, A., van der Plas, F., Laughlin, D. C., Kuyper,
T. W., Guerrero-Ramirez, N., Valverde-Barrantes, O. J., Bruel-
heide, H., Freschet, G. T., Iversen, C. M., Kattge, J., McCor-
mack, M. L., Meier, I. C., Rillig, M. C., Roumet, C., Sem-
chenko, M., Sweeney, C. J., van Ruijven, J., York, L. M., and
Mommer, L.: The fungal collaboration gradient dominates the
root economics space in plants, Science Advances, 6, eaba3756,
https://doi.org/10.1126/sciadv.aba3756, 2020.

Bernton, E., Jacob, P. E., Gerber, M., and Robert, C. P.: On
parameter estimation with the Wasserstein distance, Infor-
mation and Inference: A Journal of the IMA, 8, 657–676,
https://doi.org/10.1093/imaiai/iaz003, 2019.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Ju-
lia: A fresh approach to numerical computing, SIAM Rev. Soc.
Ind. Appl. Math., 59, 65–98, https://doi.org/10.1137/141000671,
2017.

Bonanomi, G., Giannino, F., Mazzoleni, S., and Setälä, H.: Negative
Plant-Soil Feedback and Species Coexistence, Oikos, 111, 311–
321, https://doi.org/10.1111/j.0030-1299.2005.13975.x, 2005.

Bouman, B., Schapendonk, A., Stol, W., and van Kraalingen, D.:
Description of the growth model LINGRA as implemented in
CGMS, Quantitative Approaches in Systems Analysis, 7, 1–56,
ISBN: 978-90-73384-47-7, 1996.

Boval, M. and Sauvant, D.: Ingestive behaviour of grazing
ruminants: Meta-analysis of the components linking bite
mass to daily intake, Anim. Feed Sci. Tech., 278, 115014,
https://doi.org/10.1016/j.anifeedsci.2021.115014, 2021.

Buzhdygan, O. Y., Meyer, S. T., Weisser, W. W., Eisenhauer, N.,
Ebeling, A., Borrett, S. R., Buchmann, N., Cortois, R., De Deyn,
G. B., de Kroon, H., Gleixner, G., Hertzog, L. R., Hines, J.,
Lange, M., Mommer, L., Ravenek, J., Scherber, C., Scherer-
Lorenzen, M., Scheu, S., Schmid, B., Steinauer, K., Strecker, T.,

https://doi.org/10.5194/gmd-18-7077-2025 Geosci. Model Dev., 18, 7077–7128, 2025

https://doi.org/10.1126/science.1204498
https://doi.org/10.1046/j.1365-2745.1999.00365.x
https://doi.org/10.1111/nph.15986
https://doi.org/10.1111/1365-2745.14307
https://doi.org/10.2134/asaspecpub49.c4
https://www.bexis.uni-jena.de/ddm/data/Showdata/26546?version=2
https://www.bexis.uni-jena.de/ddm/data/Showdata/26546?version=2
https://doi.org/10.1126/sciadv.aba3756
https://doi.org/10.1093/imaiai/iaz003
https://doi.org/10.1137/141000671
https://doi.org/10.1111/j.0030-1299.2005.13975.x
https://doi.org/10.1016/j.anifeedsci.2021.115014


7124 F. Nößler et al.: The trait-based grassland model GrasslandTraitSim.jl

Tietjen, B., Vogel, A., Weigelt, A., and Petermann, J. S.: Bio-
diversity increases multitrophic energy use efficiency, flow and
storage in grasslands, Nature Ecology & Evolution, 4, 393–405,
https://doi.org/10.1038/s41559-020-1123-8, 2020.

Caldwell, M. M.: Root Structure: The Considerable Cost of
Belowground Function, in: Topics in Plant Population Bi-
ology, edited by: Solbrig, O. T., Jain, S., Johnson, G. B.,
and Raven, P. H., Macmillan Education UK, London, 408–
427, https://doi.org/10.1007/978-1-349-04627-0_18, ISBN 978-
1-349-04627-0, 1979.

Canarini, A., Kaiser, C., Merchant, A., Richter, A., and Wanek, W.:
Root Exudation of Primary Metabolites: Mechanisms and Their
Roles in Plant Responses to Environmental Stimuli, Front. Plant
Sci., 10, https://doi.org/10.3389/fpls.2019.00157, 2019.

Chalmandrier, L., Hartig, F., Laughlin, D. C., Lischke, H., Pichler,
M., Stouffer, D. B., and Pellissier, L.: Linking functional traits
and demography to model species-rich communities, Nat. Com-
mun., 12, https://doi.org/10.1038/s41467-021-22630-1, 2021.

Chen, S., Wang, W., Xu, W., Wang, Y., Wan, H., Chen, D.,
Tang, Z., Tang, X., Zhou, G., Xie, Z., Zhou, D., Shangguan,
Z., Huang, J., He, J.-S., Wang, Y., Sheng, J., Tang, L., Li,
X., Dong, M., Wu, Y., Wang, Q., Wang, Z., Wu, J., Chapin,
F. S., and Bai, Y.: Plant diversity enhances productivity and
soil carbon storage, P. Natl. Acad. Sci. USA, 115, 4027–4032,
https://doi.org/10.1073/pnas.1700298114, 2018.

Clark, J. S., Carpenter, S. R., Barber, M., Collins, S., Dobson, A.,
Foley, J. A., Lodge, D. M., Pascual, M., Pielke Jr., R., and Pizer,
W.: Ecological forecasts: an emerging imperative, Science, 293,
657–660, https://doi.org/10.1126/science.293.5530.657, 2001.

Clerx, M., Robinson, M., Lambert, B., Lei, C. L., Ghosh, S., Mi-
rams, G. R., and Gavaghan, D. J.: Probabilistic Inference on
Noisy Time Series (PINTS), Journal of Open Research Software,
7, 23, https://doi.org/10.5334/jors.252, 2019.

Confalonieri, R.: CoSMo: A simple approach for reproduc-
ing plant community dynamics using a single instance
of generic crop simulators, Ecol. Model., 286, 1–10,
https://doi.org/10.1016/j.ecolmodel.2014.04.019, 2014.

Dee, L. E., Ferraro, P. J., Severen, C. N., Kimmel, K. A., Borer,
E. T., Byrnes, J. E. K., Clark, A. T., Hautier, Y., Hector, A., Ray-
naud, X., Reich, P. B., Wright, A. J., Arnillas, C. A., Davies,
K. F., MacDougall, A., Mori, A. S., Smith, M. D., Adler, P. B.,
Bakker, J. D., Brauman, K. A., Cowles, J., Komatsu, K., Knops,
J. M. H., McCulley, R. L., Moore, J. L., Morgan, J. W., Ohlert,
T., Power, S. A., Sullivan, L. L., Stevens, C., and Loreau, M.:
Clarifying the effect of biodiversity on productivity in natural
ecosystems with longitudinal data and methods for causal infer-
ence, Nat. Commun., 14, 2607, https://doi.org/10.1038/s41467-
023-37194-5, 2023.

Dickson, T. L., Mittelbach, G. G., Reynolds, H. L., and Gross,
K. L.: Height and clonality traits determine plant com-
munity responses to fertilization, Ecology, 95, 2443–2452,
https://doi.org/10.1890/13-1875.1, 2014.

Díaz, S., Lavorel, S., McIntyre, S., Falczuk, V., Casanoves, F.,
Milchunas, D. G., Skarpe, C., Rusch, G., Sternberg, M., Noy-
Meir, I., Landsberg, J., Zhang, W., Clark, H., and Campbell,
B. D.: Plant trait responses to grazing – a global synthesis,
Glob. Change Biol., 13, 313–341, https://doi.org/10.1111/j.1365-
2486.2006.01288.x, 2007.

DWD Climate Data Center: Calculated daily values for
different characteristic elements of soil and crops,
https://opendata.dwd.de/climate_environment/CDC/derived_
germany/soil/daily/historical/ (last access: 3 September 2023),
2019.

European Environment Agency, Kühn, E., Pettersson, L., Strien,
A., Õunap, E., Warren, M., Settele, J., Švitra, G., Botham, M.,
Regan, E., Prokofev, I., Swaay, C., Stefanescu, C., Heliölä,
J., Popov, S., Roth, T., Leopold, P., Verovnik, R., Fontaine,
B., Musche, M., Julliard, R., Collins, S., Goloshchapova, S.,
Öberg, S., Cornish, N., Brereton, T., Titeux, N., Harpke,
A., and Roy, D.: The European grassland butterfly indica-
tor – 1990–2011, Publications Office of the European Union,
https://doi.org/10.2800/89760, 2013.

Eurostat: Main farm land use by NUTS 2 regions,
https://doi.org/10.2908/ef_lus_main, 2020.

Falster, D. S. and Westoby, M.: Plant height and evo-
lutionary games, Trends Ecol. Evol., 18, 337–343,
https://doi.org/10.1016/s0169-5347(03)00061-2, 2003.

Fartmann, T.: Routledge Handbook of Insect Conservation,
Chap. Insect Conservation in Grasslands, Routledge, ISBN
9781003285793, https://doi.org/10.4324/9781003285793, 2024.

Fischer, M., Bossdorf, O., Gockel, S., Hänsel, F., Hemp, A., Hes-
senmöller, D., Korte, G., Nieschulze, J., Pfeiffer, S., Prati, D.,
Renner, S., Schöning, I., Schumacher, U., Wells, K., Buscot, F.,
Kalko, E. K. V., Linsenmair, K. E., Schulze, E.-D., and Weisser,
W. W.: Implementing large-scale and long-term functional bio-
diversity research: The Biodiversity Exploratories, Basic Appl.
Ecol., 11, 473–485, https://doi.org/10.1016/j.baae.2010.07.009,
2010.

Fort, H.: On predicting species yields in multispecies com-
munities: Quantifying the accuracy of the linear Lotka-
Volterra generalized model, Ecol. Model., 387, 154–162,
https://doi.org/10.1016/j.ecolmodel.2018.09.009, 2018.

Funk, J. L., Larson, J. E., Ames, G. M., Butterfield, B. J., Cavender-
Bares, J., Firn, J., Laughlin, D. C., Sutton-Grier, A. E., Williams,
L., and Wright, J.: Revisiting the Holy Grail: using plant func-
tional traits to understand ecological processes, Biol. Rev., 92,
1156–1173, https://doi.org/10.1111/brv.12275, 2017.

Geijzendorffer, I. R., van der Werf, W., Bianchi, F. J.
J. A., and Schulte, R. P. O.: Sustained dynamic tran-
sience in a Lotka-Volterra competition model system
for grassland species, Ecol. Model., 222, 2817–2824,
https://doi.org/10.1016/j.ecolmodel.2011.05.029, 2011.

George, E., Marschner, H., and Jakobsen, I.: Role of Arbus-
cular Mycorrhizal Fungi in Uptake of Phosphorus and Ni-
trogen From Soil, CRC Cr. Rev. Biotechn., 15, 257–270,
https://doi.org/10.3109/07388559509147412, 1995.

Gillet, F.: Modelling vegetation dynamics in heterogeneous
pasture-woodland landscapes, Ecol. Model., 217, 1–18,
https://doi.org/10.1016/j.ecolmodel.2008.05.013, 2008.

Goossens, E. P., Minden, V., Van Poucke, F., and Olde Venterink,
H.: Negative plant-soil feedbacks disproportionally affect dom-
inant plants, facilitating coexistence in plant communities, npj
Biodiversity, 2, 27, https://doi.org/10.1038/s44185-023-00032-4,
2023.

Gossner, M. M., Lewinsohn, T. M., Kahl, T., et al.: Land-
use intensification causes multitrophic homogeniza-

Geosci. Model Dev., 18, 7077–7128, 2025 https://doi.org/10.5194/gmd-18-7077-2025

https://doi.org/10.1038/s41559-020-1123-8
https://doi.org/10.1007/978-1-349-04627-0_18
https://doi.org/10.3389/fpls.2019.00157
https://doi.org/10.1038/s41467-021-22630-1
https://doi.org/10.1073/pnas.1700298114
https://doi.org/10.1126/science.293.5530.657
https://doi.org/10.5334/jors.252
https://doi.org/10.1016/j.ecolmodel.2014.04.019
https://doi.org/10.1038/s41467-023-37194-5
https://doi.org/10.1038/s41467-023-37194-5
https://doi.org/10.1890/13-1875.1
https://doi.org/10.1111/j.1365-2486.2006.01288.x
https://doi.org/10.1111/j.1365-2486.2006.01288.x
https://opendata.dwd.de/climate_environment/CDC/derived_germany/soil/daily/historical/
https://opendata.dwd.de/climate_environment/CDC/derived_germany/soil/daily/historical/
https://doi.org/10.2800/89760
https://doi.org/10.2908/ef_lus_main
https://doi.org/10.1016/s0169-5347(03)00061-2
https://doi.org/10.4324/9781003285793
https://doi.org/10.1016/j.baae.2010.07.009
https://doi.org/10.1016/j.ecolmodel.2018.09.009
https://doi.org/10.1111/brv.12275
https://doi.org/10.1016/j.ecolmodel.2011.05.029
https://doi.org/10.3109/07388559509147412
https://doi.org/10.1016/j.ecolmodel.2008.05.013
https://doi.org/10.1038/s44185-023-00032-4


F. Nößler et al.: The trait-based grassland model GrasslandTraitSim.jl 7125

tion of grassland communities, Nature, 540, 266–269,
https://doi.org/10.1038/nature20575, 2016.

Gough, L., Gross, K. L., Cleland, E. E., Clark, C. M., Collins,
S. L., Fargione, J. E., Pennings, S. C., and Suding, K. N.: In-
corporating clonal growth form clarifies the role of plant height
in response to nitrogen addition, Oecologia, 169, 1053–1062,
https://doi.org/10.1007/s00442-012-2264-5, 2012.

Griffin-Nolan, R. J., Blumenthal, D. M., Collins, S. L., Farkas, T. E.,
Hoffman, A. M., Mueller, K. E., Ocheltree, T. W., Smith, M. D.,
Whitney, K. D., and Knapp, A. K.: Shifts in plant functional com-
position following long-term drought in grasslands, J. Ecol., 107,
2133–2148, https://doi.org/10.1111/1365-2745.13252, 2019.

Grime, J. P.: Evidence for the Existence of Three Primary Strate-
gies in Plants and Its Relevance to Ecological and Evolu-
tionary Theory, The American Naturalist, 111, 1169–1194,
https://doi.org/10.1086/283244, 1977.

Gross, K. L. and Mittelbach, G. G.: Negative effects of fer-
tilization on grassland species richness are stronger when
tall clonal species are present, Folia Geobot., 52, 401–409,
https://doi.org/10.1007/s12224-017-9300-5, 2017.

Gubsch, M., Buchmann, N., Schmid, B., Schulze, E.-D., Lipowsky,
A., and Roscher, C.: Differential effects of plant diversity on
functional trait variation of grass species, Ann. Bot., 107, 157–
169, https://doi.org/10.1093/aob/mcq220, 2010.

Gupta, S. C. and Larson, W. E.: Estimating soil water retention
characteristics from particle size distribution, organic matter per-
cent, and bulk density, Water Resour. Res., 15, 1633–1635,
https://doi.org/10.1029/WR015i006p01633, 1979.

Haario, H., Saksman, E., and Tamminen, J.: An Adap-
tive Metropolis Algorithm, Bernoulli, 7, 223–242,
https://doi.org/10.2307/3318737, 2001.

Heger, T.: Light availability experienced in the field af-
fects ability of following generations to respond to shad-
ing in an annual grassland plant, J. Ecol., 104, 1432–1440,
https://doi.org/10.1111/1365-2745.12607, 2016.

Hejcman, M., Klaudisová, M., Schellberg, J., and Honsová, D.: The
Rengen Grassland Experiment: Plant species composition after
64 years of fertilizer application, Agr. Ecosyst. Environ., 122,
259–266, https://doi.org/10.1016/j.agee.2006.12.036, 2007.

Hejcman, M., Hejcmanová, P., Pavlů, V., and Beneš, J.: Origin and
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