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S1 Methodology of the solver

S1.1 Time-stepping

The time scheme used is the symplectic position Verlet scheme which reads (Domínguez et al., 2021):
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and the density evolution follows:5

ρ
n+1/2
a = ρna +

∆t
2

dρa

dt

n

ρn+1
a = ρna

2−ϵn+1/2
a

2+ϵ
n+1/2
a

(S.2)
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To achieve optimal description of the fluid and keep computational time sensible, the time-step varies dynamically :

dt= CCFLmin(dt1,dt2,dt3) (S.3)
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in which, dt1 accounts for the Courant Friedrich Lewy (CFL) condition, dt2 accounts for both CFL condition and the numerical
viscosity and dt3 accounts for the physical viscosity, λ being a relaxation parameter of the time step. CCFL is a safety factor
based on the Courant Friedrich Lewy condition. In the paper, CCFL = 0.2.

S1.2 Wall Boundary condition15

Representing accurate velocity gradients is central to the performance of the solver to model debris-flow processes. Ensuring
a true no-slip condition with the bed of the channel as well as with the solid grains allows for the fluid phase gradients and the
fluid-solid interactions to be accurate. For this purpose, the modified Dynamic Boundary Condition (mDBC) (English et al.,
2021) is used. This method imposes velocity continuity in the flow and a no-slip condition can be accurately dealt with. This
no-slip condition is of high significance when dealing with highly viscous fluids.20

S1.3 Shifting

Particles in the flow do not maintain homogeneous distribution. The Lagrangian nature of SPH causes voids or particle clump-
ing to form. These voids create instabilities in the numerical solver. In order to artificially make the particle distribution more
homogeneous, the shifting method, based on Fick’s law of diffusion, was developped by Lind et al. (2012). This method shifts
particle in high concentration areas towards areas with lower concentration. The distance by which the particle is shifted is25
always dependent on the gradient of particle concentration in the neighbourhood of the particle.
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In this paper, the shifting implementation showed to have an influence on the macroscopic behaviour of the flow, as well as
the particle arrangement within the flow (Lapillonne et al., 2022). Thus, the shifting of Lind et al. (2012) was implemented. At
each time step, the particles are translated following a vector δra :

δra =−Al

2
h2W ∇C a (S.5)30

where Al is a shifting coefficient, Al = 0.5.

S1.4 Density diffusion term

In the governing equations, the term hc0Da is a density diffusion term. Density diffusion is a numerical method intended to
reduce density fluctuations in the flow by introducing a diffusive term. The stiffness of the equation of state does not react well
to the natural disordering of SPH particles: small amplitude, high frequency oscillations appear in the pressure and density35
fields, leading to instabilities. Density diffusion corrects the density field by introducing a diffusion coefficient, allowing for a
smoother density and pressure field.

In this work the density diffusion term introduced by Fourtakas et al. (2019) is used:
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with ρTab the total density, ρHab = ρ0
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)
the hydrostatic component of the density, Pab being the pressure40

difference between a and b, and δϕ = 0.1 a diffusion coefficient controlling the magnitude of this diffusion term.

S2 Velocity profiles of ID2

Figure S1. Root mean squared error on the velocity profiles at three positions in the flow
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S3 Stationarity of viscous surges simulations

Figure S2. Normalized velocity over time of Exp. Id1. Horizontal black line highlights u∗
f = 0.05.
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Figure S3. Normalized velocity over time of Exp. Id2. Horizontal black line highlights u∗
f = 0.05.

S4 Stationarity of mixture Poiseuille flow

Figure S4. Maximal velocity for all concentrations. Shaded areas show quartiles within the ±1cm extraction.
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S5 Stationarity of the debris flow simulations45

Figure S5. Normalized maximal flow height of the debris flow simulation for all concentrations. Flow height is normalized by the average
flow height over the period 20s to 75s.
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