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Abstract. Rocks break if shear stresses exceed their strength.
It is therefore important for typical geoscientific applications
to take shear failure mechanism and the subsequent devel-
opment of mode-II shear bands or faults into account. Many
existing codes incorporate non-associated Drucker-Prager or
Mohr-Coulomb plasticity models to simulate this behavior.
Yet, when effective mean stress becomes extensional, for
example when fluid pressure becomes large, the dominant
failure mode changes to a mode-I (opening) mode, which
initiates plastic volumetric deformation. It is rather difficult
to represent both failure modes in numerical models in a
self-consistent manner, while also accounting for the non-
linear visco-elastic host rock rheology, which varies from
being nearly incompressible in the mantle to being com-
pressible in surface-near regions. Here, we present a sim-
ple plasticity model that is designed to overcome these dif-
ficulties. We employ a combination of a linearized Drucker-
Prager shear failure envelope with a circular tensile cap func-
tion in way that ensures continuity and smoothness of both
yield surface and flow potential in the entire stress space. A
Perzyna-type viscoplastic regularization ensures that the re-
sulting localization zones are mesh-insensitive. To deal with
the near incompressibility condition, a mixed two-field fi-
nite element formulation is employed. The local nonlinear
iterations at the integration-point level are used to determine
the stress increments. The global Newton-Raphson iterations
are applied to solve the discretized momentum and continu-
ity residual equations. The presented plasticity model is im-
plemented in an open-source 2D unstructured finite element
code GeoTech2D. The results of several typical test cases that
range from crustal scale deformation to the propagation of
fluid-induced tensile failure zones demonstrate rapid conver-

gence. The robustness of the solution scheme is enhanced by
the adaptive time stepping algorithm.

1 Introduction

Plastic deformation in brittle rocks manifests itself in two
ways: as mode-II shear faults, or as mode-I failure zones,
which results in an opening of the rock in a crack-like man-
ner and therefore produces volumetric strains. Having the
ability to simulate both faulting modes numerically in a self-
consistent manner is important to simulate near-surface brit-
tle deformation, or simulate cases where the fluid pressure is
high, such as during the initiation of hydraulic fractures or
magma-filled dykes.

Quasi-static long-term flow of viscous materials, such as
hot rocks in the Earth’s mantle or rocksalt in the salt di-
apirs, is nearly incompressible, which is well-known to re-
quire a stable discretization to avoid numerical artifacts, that
include volumetric and shear locking, pressure oscillations,
and hourglass modes (e.g., Zienkiewicz and Taylor, 2000).
Moreover, the same numerical problems occur when plas-
tic deformation dominates irrespective whether the flow is
incompressible or dilatant/contractant, since the volumetric
plastic deformation can be effectively viewed as a form of
kinematical constraint, which is similar to incompressibility
(e.g., de Borst and Groen, 1995).

Within the finite element framework, a typical approach
to deal with incompressibility is to use a so-called mixed
formulation which combines velocity (displacement incre-
ments) and pressure as primary variables. Yet not all inter-
polation types can be adopted since they need to satisfy a
set of stability criteria commonly known as the LBB condi-
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tions (e.g., Gatica, 2014). Examples of stable finite elements
types include the Taylor-Hood approximation on quadrilat-
eral and hexagonal shape e.g. Q2×Q1, which uses contin-
uous quadratic and linear polynomials for the velocity and
pressure, respectively. The discontinuous pressure version is
typically represented byQ2×P−1 elements (see e.g., Thieu-
lot and Bangerth, 2022, for an overview of most commonly
used combinations). The latter element is very widely used in
geodynamic simulations due to its reliability in dealing with
sharp jumps in viscosities (Kronbichler et al., 2012; May
et al., 2014; Deubelbeiss and Kaus, 2008).

The simplex element shape can also be used to construct
stable discretizations. A particular candidate is the conform-
ing triangular Crouzeix-Raviart element (P+2 ×P−1), which
uses quadratic interpolation enhanced with a bubble func-
tion for the velocities (displacement increments), and a lin-
ear discontinuous interpolation for pressure (Crouzeix and
Raviart, 1973). The triangular shape of the element facili-
tates discretizing complex geometrical domains, whereas the
discontinuous pressure interpolation enables enforcing mass
conservation at the element level and is in general advanta-
geous for difficult problems with abrupt material contrasts
(Pelletier et al., 1989). The element has been shown to be-
have robustly in practice (Dabrowski et al., 2008), and can
be generalized to 3D (Crouzeix and Raviart, 1973).

As an alternative to the stable finite elements, it is also
possible to apply a staggered grid finite difference discretiza-
tion (Harlow and Welch, 1965). This method is computation-
ally cheap and also demonstrates excellent and reliable per-
formance for the relevant problems (Gerya and Yuen, 2007;
Tackley, 2008; Kaus et al., 2016; Räss et al., 2017; Deubel-
beiss and Kaus, 2008). The staggered finite difference for-
mulation was proven to be a stable formulation for the in-
compressible (Shin and Strikwerda, 1997), and compressible
Stokes equations (Eymard et al., 2010), and was numerically
demonstrated to be LBB-stable (Gerya et al., 2013).

Despite that a number of stabilized equal-order interpo-
lation finite elements have been proposed (e.g. Dohrmann
and Bochev, 2004; Cioncolini and Boffi, 2019), their per-
formance does not practically bring a satisfactory level of
robustness for the cases of large parameter variation (Thieu-
lot and Bangerth, 2022). Selecting a stable discretization is
therefore an important milestone for successful numerical
implementation of the nonlinear rheological models that in-
volve nearly-incompressible material behavior.

Implementing plastic rheologies in the context of a two-
field formulation is not straightforward. The problem is
caused by the presence of stress-like variables (pressure)
among the primary unknowns, whereas stress integration al-
gorithms are typically formulated in a strain-driven fashion
(de Borst et al., 2012). Pressure-independent models, such as
J2-plasticity (Pastor et al., 1997), or incompressible Drucker-
Prager plasticity (Gerya and Yuen, 2007; May et al., 2014;
Kaus et al., 2016; Glerum et al., 2018) poses no additional
difficulty because pressure remains unaltered during the lo-

cal stress update. For nonzero dilatation cases, as well as for
plastic compaction or tensile failure modes, this is no longer
the case, and therefore at least two potential solutions may be
elaborated. The first approach computes deviatoric stresses
from the kinematical variables (velocities or displacement in-
crements) using the standard strain-driven algorithm, wheres
the globally discretized pressure is treated as an actual spher-
ical part of the Cauchy stress tensor (Commend, 2001; Com-
mend et al., 2004). This type of algorithms can be referred to
as true pressure formulation. The second approach treats the
globally discretized pressure as a trial visco-elastic pressure
(Duretz et al., 2021), which can be termed as trial pressure
formulation. Additionally, it should be noted that pressure
selection problems can be completely avoided by adopting
a mixed formulation that involves strains as global variables
(e.g., Benedetti et al., 2014). This approach is computation-
ally much more expensive and therefore beyond the scope of
this paper.

It is often quite difficult to describe different plastic failure
regimes, such as plastic compaction, or tensile failure (mode
I) and shear failure (mode II) with a single yield surface. A
standard approach is therefore to tackle this problem with
a multi-surface plasticity model. A two- or three-invariant
shear failure envelope is typically combined with compres-
sion and tensile caps (e.g., Sandler and Rubin, 1979). An
example of a plasticity model that handles a combination
of tensile and shear failure of concrete in plane stress for-
mulation can be found in Feenstra and de Borst (1996). In
general, a non-smooth intersection of the yield surface seg-
ments results in the complex algorithmic treatment of the cor-
ner regions in the stress space (e.g., Simo et al., 1988). To
avoid this difficulty, alternative smooth multi-surface mod-
els have been proposed where the focus was mostly placed
on enforcing continuity and differentiability of the yield sur-
face (Swan and Seo, 2000; Dolarevic and Ibrahimbegovic,
2007; Motamedi and Foster, 2015). This, however, does not
automatically guarantee continuity in the entire stress space.
Plotting isocontours of the yield surface can reveal typical
problems that include spurious elastic domains, singularity
points, erratic gradients, discontinuities, or non-convex re-
gions (e.g., Stupkiewicz et al., 2014; Golchin et al., 2021).
A squared version of the yield functions does not even en-
sure dimensional consistency between the segments (Swan
and Seo, 2000), or may lead to loss of convexity in the stress
space (Stupkiewicz et al., 2014). Complex stress integration
procedures are therefore required to determine the set of ac-
tive yield surface segments (Swan and Seo, 2000; Dolare-
vic and Ibrahimbegovic, 2007). All these problems lead to
severe algorithmic difficulties and convergence problems of
local stress update iterations.

To model rock failure, the tensile regime is more impor-
tant than plastic compaction as it is relevant for modeling
dyke propagation (e.g., Rivalta et al., 2015; Li et al., 2023). It
is therefore potentially advantageous to describe both failure
modes with a single smooth hyperbolic approximation of the
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Mohr-Coulomb yield surface (Abbo and Sloan, 1995). This
approach, however, completely fails when dilatation angles
go to zero, since the plastic flow potential becomes pressure-
insensitive in the tensile mode. Carol et al. (1997) proposed
an ad-hoc approach to restore the proper tensile behavior by
introducing a pressure-dependent dilation coefficient, how-
ever, at the cost of destroying the convexity of the flow po-
tential, which can be easily revealed by plotting its isocon-
tours. Li et al. (2023) adopted the same approximation, but
in their formulation, the amount of dilatation in flow poten-
tial is dependent on porosity rather than on pressure, which
lacks physical explanation. Other existing implementations
of tensile failure of rocks in the geodynamic community
(e.g., Rozhko et al., 2007; Keller et al., 2013; Kiss et al.,
2023) employ non-smooth yield surfaces, and are therefore
not guaranteed to produce well-defined stress integration al-
gorithms at least in the context of an implicit time integration
scheme.

Classical rate-independent plasticity models that incorpo-
rate strain softening, which is typically required by consti-
tutive models of rocks and soils (e.g., Read and Hegemier,
1984), are mathematically ill-posed. This results in the lack
of an intrinsic length-scale, severe mesh-dependence and
convergence issues (de Borst and Mühlhaus, 1992; Spiegel-
man et al., 2016). There are several approaches to reme-
diate this problem (e.g. Duretz et al., 2023), with the eas-
iest one being a viscoplastic rate-dependent regularization
(de Borst and Duretz, 2020). The latter assumes different
ways to formulate the constitutive equation for the viscoplas-
tic strain rate. Namely, Perzyna model (Perzyna, 1966) as-
sumes an explicit equation, Duvaut-Lions model (Duvaut and
Lions, 1972) is built upon a relatively simple generalization
of a rate-independent plasticity, whereas consistency model
(Wang et al., 1997; Heeres et al., 2002) introduces the con-
cept of a rate-dependent yield function. Irrespective of the
employed viscoplastic regularization, either Perzyna (e.g.,
Jacquey and Cacace, 2020a, b), Duvaut-Lions (e.g., Kiss
et al., 2023), or the consistency model (e.g., Duretz et al.,
2019; Li et al., 2023), a successful resolution of the mesh is-
sue simultaneously with the improvement of the global con-
vergence or stability of the time integration scheme can be
achieved.

To avoid potential misconceptions, it should be noted
that despite satisfactory practical performance of viscoplas-
tic regularizations, a rigorous theoretical framework proving
its effectiveness in quasi-static cases, such as considered in
this work, does not currently exist (e.g., de Borst and Duretz,
2020). Moreover, even for dynamic cases, questions have
recently been raised on the regularization potential of vis-
coplasticity, with some suggesting that it only works condi-
tionally (e.g., Jacquey et al., 2021), whereas others suggest
that it is unable to regularize a 1D simple shear setup (e.g.,
Stathas and Stefanou, 2022). Despite the lack of a solid the-
oretical background, we still advocate the use of viscoplas-
tic regularization motivated by its successful application to

multi-dimensional quasi-static cases, which can be traced
back to the earlier works of Zienkiewicz and Cormeau (1972)
and Zienkiewicz and Cormeau (1974) and which is fully sup-
ported by more recent publications we cite above, as well
as the results shown here. It should also be mentioned that
viscoplasticity extends beyond the regularization framework
and may represent a true physical deformation mechanism
that requires laboratory experiments to calibrate its material
parameters.

Building up on previous work, we present a visco-elasto-
viscoplastic rheological model that combines linear elastic
response with diffusion and dislocation viscous creep mech-
anisms and a relatively simple Perzyna-type viscoplastic
model. The yield surface is composed of a linear Drucker-
Prager shear failure envelop and a circular tensile cap in a
way that ensures dimensional consistency, convexity, conti-
nuity and differentiability throughout the entire stress space.
The model allows an arbitrary amount of dilatation in the
shear failure regime, without compromising the description
of tensile failure. The viscoplastic regularization enables the
incorporation of strain softening, such that spurious mesh de-
pendence is avoided and global convergence is ensured. We
provide algorithmic details necessary to compute the stresses
at the integration points and to solve the resulting global
system of nonlinear equilibrium equations with a Newton-
Raphson method, including the tangent matrix derivation.
The algorithms are implemented in a 2D finite element code
that employs stable conforming Crouzeix-Raviart elements,
along with incremental displacements and incremental trial
pressure as the primary unknowns. A number of examples
are given to demonstrate the numerical robustness of the
code. The plasticity model presented in this paper can be
readily implemented in any finite element or finite difference
code that uses a stable mixed two-field formulation.

2 Physical model

2.1 Volumetric-deviatoric decomposition

Throughout this paper, we assume a standard decomposition
of an arbitrary tensor (e.g. aij ) into its volumetric (spherical)
and deviatoric projections, which are given by, respectively,
in the index notation (Einstein summation convention is im-
plied):

tr
(
aij
)
= akk, dev

(
aij
)
= aij −

1
3
akkδij , (1)

where δij is the Kronecker delta or second order unit ten-
sor: δij = 1, for i = j , δij = 0, for i 6= j . For an arbitrary de-
viatoric tensor we additionally introduce an effective scalar
measure equal to the square root of its second invariant, de-
fined as:

aII =

(
1
2
aijaij

) 1
2
. (2)
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For the Cauchy stress tensor (σij ) the volumetric-deviatoric
decomposition into stress deviator (τij ) and mean stress or
pressure (p), which is assumed to be positive in compression,
is defined as:

σij = τij −p δij , τij = dev
(
σij
)
, p =−

1
3

tr
(
σij
)
. (3)

Equivalently, the strain rate tensor (ε̇ij ) can be decomposed
into a strain rate deviator (ε̇ij ) and a volumetric strain rate
(θ̇ ) by:

ε̇ij =
1
2

(
∂vi

∂xj
+
∂vj

∂xi

)
= ε̇ij +

1
3
θ̇ δij ,

ε̇ij = dev
(
ε̇ij
)
,

θ̇ = tr
(
ε̇ij
)
, (4)

where xi, i = 1,2,3 denote Cartesian coordinates, and vi are
the components of the spatial velocity vector.

2.2 Constitutive and conservation equations

The constitutive equations for the deviatoric stress assumes
additive decomposition of the deviatoric strain rate into elas-
tic, diffusion creep, dislocation creep and viscoplastic com-
ponents, respectively, as follows:

ε̇ij =ε̇
el
ij + ε̇

dif
ij + ε̇

dis
ij + ε̇

vp
ij =

�
τ ij

2G
+AD τij

+AN(τII)
n−1τij + λ̇ dev

(
∂Q

∂σij

)
. (5)

Here G denotes the elastic shear modulus, AD and AN are
the diffusion and dislocation creep prefactors, respectively,
n is the power-law exponent, Q is the plastic flow potential
function, and λ̇ is the magnitude of the viscoplastic strain rate
(viscoplastic multiplier), which can be explicitly formulated
for the Perzyna model (see Sect. 2.3 and 2.4). The Jaumann
objective stress rate is defined as:

�
τ ij =

∂τij

∂t
+ τikωkj −ωikτkj , (6)

where ω̇ij is the spin tensor, given by:

ω̇ij =
1
2

(
∂vi

∂xj
−
∂vj

∂xi

)
. (7)

The temperature-dependent creep prefactors are:

AD = BD exp
[
−
EL

RT

]
, AN = BN exp

[
−
EN

RT

]
, (8)

where BD, BN and ED, EN denote the corresponding con-
stants and activation enthalpies of the diffusion and disloca-
tion creep, respectively, T is the temperature, and R the gas
constant.

The volumetric constitutive equation, which can also be
termed as continuity equation, is defined similarly:

θ̇ = θ̇el
+ θ̇vp

=−
1
K

Dp
Dt
+ λ̇ tr

(
∂Q

∂σij

)
. (9)

Here the total volumetric strain rate is additively decomposed
into an elastic and viscoplastic component, K is the elastic
bulk modulus, and D/Dt is the material time derivative. A
simple uni-axial idealization of both deviatoric and volumet-
ric constitutive equations is illustrated in Fig. 1.

In case the volumetric response becomes much stiffer
compared to the deviatoric response (quasi-incompressible
limit), it becomes mandatory to revert to a mixed formulation
to compute accurate pressure fields. The continuity equation
is discretized at the global level, and pressure is treated as a
global independent variable. For incompressible Stokes flow,
the continuity equation simply reduces to a constraint of the
form θ̇ = 0, and pressure becomes a corresponding Lagrange
multiplier variable. Finally, the computed deviatoric stresses
and pressure should satisfy the global equilibrium equation
also known as Cauchy momentum equation, given by:

∂τij

∂xj
−
∂p

∂xi
+ ρgi = 0, (10)

where ρ is the material density, and gi are the components of
the gravity acceleration vector. Here, we only consider quasi-
static processes and hence explicitly ignore the inertial terms
in the momentum equation.

2.3 Perzyna viscoplasticity

To deal with mesh dependency issues and convergence prob-
lems, which are typical for rate-independent plasticity mod-
els (e.g., Spiegelman et al., 2016; Duretz et al., 2019) we
adopt a viscoplastic formulation following Perzyna (1966).
In contrast with the Duvaut-Lions or consistency models, it
has an explicit equation that defines the components of the
viscoplastic strain rate. Here we use the simplest form of the
Perzyna model without the power-law function, as it is de-
fined in e.g. Jacquey and Cacace (2020a, b). The magnitude
of the viscoplastic multiplier can be written as:

λ̇=
〈F 〉

ηvp , (11)

where ηvp is the viscoplastic regularization viscosity, F is
the rate-independent plastic yield function surrounded by
Macaulay brackets, which has the following meaning:

〈F 〉 =

{
F, F ≥ 0

0, otherwise
. (12)

The rate-independent plasticity is naturally recovered with
this formulation for ηvp

→ 0. Likewise, the viscoplastic de-
formation can be effectively switched off and the visco-
elastic solution can be enforced with the limit ηvp

→∞.
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Figure 1. Schematic uni-axial representation of the rheological model. Elastic, viscous and plastic deformations are idealized by the spring,
dashpot, and sliding frictional elements, receptively. (a) Deviatoric constitutive equation. (b) Volumetric constitutive equation.

Irrespective of the particular viscoplastic model, an addi-
tion of a regularization term implicitly introduces a length
scale in strain localization problems (e.g. Duretz et al., 2023).
It is important to note that regularization viscosity should not
be treated as a part of the rheological model, but rather as
a numerical parameter, which requires careful selection de-
pending on the process being modeled (Duretz et al., 2019).
There is also a trade-off between the sharpness of localiza-
tion and number of nonlinear iterations required to achieve
global convergence. In other words, increasing the amount
of regularization improves the convergence but simultane-
ously smears out the localization zone. In the context of the
Perzyna model, another issue requires additional attention.
Direct inspection of Eq. (11) reveals that viscoplastic strain
initiates only if stress violates the yield function constraint,
i.e. a certain amount of overstress occurs. This feature im-
poses an explicit restriction on the yield (overstress) function
to be continuous and convex in the entire stress space (Simo,
1989).

2.4 Smooth yield surface

Here we propose a simple two-surface plasticity model that
combines a linear Drucker-Prager shear failure envelop with
a circular tensile cap function in a manner that ensures its ap-
plicability in the context of Perzyna viscoplasticity (Fig. 2b).
A similar model was proposed by Swan and Seo (2000), but
continuity was only enforced at the yield surface, and dimen-
sional consistency was violated due to usage of the squared
versions of the yield functions. Our model requires four inde-
pendent material parameters, which include the friction an-
gle (ϕ), the dilation angle (ψ), the Mohr-Coulomb cohesion
(cMC), and the tensile strength (pT). The other model param-

eters can be computed from the primary ones via geometrical
transformations, which are omitted here for clarity. The over-
all parameter layout is schematically illustrated in Fig. 2d.

The Drucker-Prager cohesion (c), friction coefficient (k)
and dilatation coefficient (kq ) are computed as follows:

k = sinϕ, kq = sinψ, c = cMC cosϕ. (13)

This approach is rather simple, widely used in geodynamics
(Keller et al., 2013; Kaus et al., 2016; Kaus, 2010; Duretz
et al., 2021), and ensures that frictional strength is not sys-
tematically overestimated. For the details and alternative
methods we refer to e.g. Jiang and Xie (2011). To ensure that
the composite yield surface produces a continuous and dif-
ferential map two issues need to be addressed: (i) a delimiter
point between the segments must be selected such that they
intersect in a smooth manner (Fig. 2a), and (ii) the tensile cap
function must be scaled to eliminate the discontinuity outside
the yield surface (Fig. 2b). We therefore introduce the follow-
ing scaling coefficients, one for the yield surface (a), and one
for the flow potential (b):

a =
√

1+ k2, b =

√
1+ k2

q . (14)

The center coordinate and the radius of the cap function, re-
spectively, can be computed by enforcing the smooth inter-
section between both segments as:

py =
(
pT+

c

a

)(
1−

k

a

)−1

, Ry = py−pT. (15)

The coordinates of the delimiter point are therefore given by:

pd = py−Ry
k

a
, τd = kpd+ c. (16)
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Figure 2. Meridional plot of the smooth yield function and flow potential. (a) Yield function map without scaling (a = 1 in Eq. 18). (b) Yield
function map with scaling (a 6= 1 in Eq. 18). (c) Flow potential map above the yield surface (F > 0). (d) Schematic illustration of the yield
surface and flow potential parameters. Refer to the code availability section to access the script that generates the yield surface and flow
potential maps.

Finally, the center coordinate of the cap flow potential can
be assigned such that the transition between the tensile and
shear domains in the stress space passes through the delimiter
point (see Fig. 2c), which yields:

pq = pd+ kqτd. (17)

Having defined all necessary model parameters we are
ready to write down the equations for the yield function:

F =

{
τII− kp− c, τII

(
py−pd

)
≥ τd

(
py−p

)
a
(
R̂y −Ry

)
, otherwise

, (18)

and the corresponding flow potential:

Q=

{
τII− kq p− const, τII

(
pq −pd

)
≥ τd

(
pq −p

)
b
(
R̂q − const

)
, otherwise

. (19)

Here the radii of the points in the stress space for both the ten-
sile yield function and flow potential, respectively, are given
by:

R̂y =

√
τ 2

II+
(
p−py

)2
, R̂q =

√
τ 2

II+
(
p−pq

)2
. (20)

It should be pointed out that our model gives a simple ana-
lytical description of the stress space partitioning into shear
and tensile domains, and therefore no complex algorithm
is required to detect the active yield surface. In any point
above the yield surface the gradient of the flow potential is
uniquely defined, and hence the return mapping direction is
completely constrained. This property greatly simplifies the
implementation of the stress update algorithms. Since an ar-
bitrary amount of dilatation is allowed in our model, the re-
sulting flow potential function is non-associated, as is illus-
trated in Fig. 2c. The dilatation angle for the Drucker-Prager
part of the yield function does not affect the description of
the tensile failure, which implies that zero dilatation angle
cases are explicitly supported.

We complete the formulation of the plasticity model by di-
rectly differentiating Eq. (19) to obtain the required expres-
sions for the flow potential gradients:

∂Q

∂σij
= Bτ τij +Bpδij , (21)

where the prefactors are given by:
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(
Bτ ,Bp

)
=

(
1

2τII
,
kq
3

)
, τII

(
pq −pd

)
≥ τd

(
pq −p

)(
b

2R̂q
,−

b(p−pq )

3R̂q

)
, otherwise

. (22)

2.5 Strain softening

Plastic deformation in the rocks and soils is generally char-
acterized by the occurrence of the strain softening (see the
extensive review by Read and Hegemier, 1984, for the phys-
ical details and explanations of this phenomenon) . Here, we
parametrize strain softening for the Mohr-Coulomb friction
angle and cohesion as a linear function of the accumulated
deviatoric viscoplastic strain, defined as:

κ =

∫
t

ε̇
vp
II dt. (23)

The expressions for the friction angle and cohesion can be
formulated as follows:

ϕ =max
(
ϕinit
+Hϕκ, ϕ

min
)
,

cMC =max
(
cinit

MC+Hcκ, c
min
MC

)
, (24)

where the superscripts init and min denote the initial and sat-
urated values for the corresponding material parameters, Hϕ
and Hc are the hardening modulii for the friction angle and
cohesion, respectively. Note that the hardening modulii are
negative for softening cases.

To identify zones of tensile failure and dilatant shear plas-
ticity the accumulated volumetric viscoplastic strain can be
defined in a similar way:

χ =

∫
t

θ̇vp dt. (25)

3 Numerical formulation

3.1 Time discretization

To integrate the coupled nonlinear constitutive equations in
time we apply backward Euler implicit time discretization
which is unconditionally stable and first order accurate. All
rate quantities are presented by their unknown values at the
end of the time step and assumed to be constant during the
time step. In that case the computation of the incremental
quantities can be done trivially, e.g. for the deviatoric strain
rate tensor we can write:

1εij = ε̇ij 1t, (26)

where 1t = tn+1− tn is the time step, tn is the time in the
beginning, and tn+1 is the time in the end of the nth time

step. Similarly, the rate quantities can be estimated from their
corresponding increments as:

ε̇ij =
1εij

1t
. (27)

To simplify the notation we omit the indices at the end of
the time step for all quantities in the remainder of this paper,
e.g. for the pressure we write p instead of pn+1. For the con-
verged values from the previous time step we always include
the time step index, e.g. for the history pressure we write pn.

3.2 True pressure scheme

In the context of a mixed formulation, the globally dis-
cretized velocity (displacement increment) and pressure are
typically treated as primary unknowns. Since dilatant plas-
ticity, in general, involves pressure modifications during lo-
cal stress updates, we must decide how to interpret the global
pressure variable (which is obtained from solving the global
system of nonlinear equations). One of the approaches is
based on treating the global pressure as a true spherical part
of the Cauchy stress tensor (Commend et al., 2004). Hence,
the deviatoric stress, local pressure, and viscoplastic volu-
metric strain rate must be computed using a standard strain-
driven approach, solely as the functions of the strain rate, and
hence the velocity:

τij = τij
(
ε̇ij
)
, p = p

(
ε̇ij
)
, θ̇vp

= θ̇vp (ε̇ij ) . (28)

At this stage, the globally discretized pressure, denoted as
p∗, may differ from the locally computed pressure in the
integration points, i.e.: p∗ 6= p. Since the global pressure is
treated as a true pressure variable, the local pressure should
be discarded, and only the deviatoric stress and viscoplastic
volumetric strain rate should be used for the evaluation of the
time-discrete momentum and continuity residual equations,
respectively:

rm
i =

∂τij

∂xj
−
∂p∗

∂xi
+ ρgi,

rc
= θ̇ +

1
K

p∗−pn

1t
− θ̇vp. (29)

The addition of the viscoplastic strain rate to the continuity
residual ensures that the global pressure receives a feedback
from the volumetric viscoplasticity. Upon convergence of the
global nonlinear iterations, both pressure variables should
become approximately equal, i.e.: p∗ ≈ p.

3.3 Trial pressure scheme

The globally discretized pressure variable (p∗) can alterna-
tively be interpreted as a trial visco-elastic pressure (Duretz
et al., 2021). In this case, the deviatoric stress, local pressure,
and viscoplastic volumetric strain rate become functions of
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both strain rate and global pressure:

τij = τij
(
ε̇ij , p

∗
)
, p = p

(
ε̇ij , p

∗
)
,

θ̇vp
= θ̇vp (ε̇ij , p∗) . (30)

Specifically, the pressure update assumes the following dis-
crete form in this formulation (Duretz et al., 2021):

p = p∗+K θ̇vp 1t. (31)

We first formulate the time-discrete residual equations in-
volving both the updated deviatoric stress and pressure:

rm
i =

∂τij

∂xj
−
∂p

∂xi
+ ρgi, (32)

rc
= θ̇ +

1
K

p−pn

1t
− θ̇vp. (33)

Substituting Eq. (31) into the continuity residual equation
(Eq. 33) yields:

rc
= θ̇ +

1
K

p∗−pn

1t
. (34)

The viscoplastic volumetric strain rate simply cancels from
the global continuity residual. The reason for this is that the
local pressure update (Eq. 31) is derived by enforcing the
continuity equation in its complete form (Eq. 33). This im-
plies that the continuity residual (Eq. 33) is always balanced
at the level of the local stress update. The local pressure (p)
represents the true spherical part of the Cauchy stress tensor
upon achieving global convergence. The difference between
the global and local pressure does not vanish, i.e.: p∗ 6= p.
The global pressure (p∗) converges to the trial pressure value.
The global solver should therefore directly apply spatial dis-
cretization to the Eqs. (32) and (34). Using the Eq. (33) in
the global solver is not justified, since it is indistinguishable
from the Eq. (34).

3.4 Pressure scheme comparison

Both pressure schemes should theoretically deliver the same
results. However their convergence properties are not guar-
anteed to be the same. First, it should be noted that for
non-dilatant plasticity cases, the difference between the pres-
sure variables does not occur in either of the approaches, i.e.
p∗ = p. It might also be taken for granted that both schemes
should deliver the same linearization in this case. This as-
sumption does not hold when the yield function still de-
pends on pressure, i.e. F = F(p), such as for Drucker-Prager
plasticity with a zero dilatation coefficient. The true pres-
sure scheme would still imply that pressure used to evalu-
ate the yield function is estimated from the strain rates, i.e.:
p = p

(
ε̇ij
)
. The trial pressure scheme would instead directly

use the global pressure (p∗). Even when both pressure values
should theoretically be the same, at least for stable discretiza-
tions, this still formally leads to different functional depen-
dencies, different linearizations, and different convergence

properties. Only for the truly pressure-independent plasticity
models, like the Von Mises model, both schemes are guar-
anteed to be exactly same (which is irrelevant in the context
of rock failure modeling). It should be also noted that both
pressure schemes always deliver non-symmetric global tan-
gent matrices for the pressure-dependent plasticity models.
This statement holds even for completely associated models,
when the friction angle is equal to the dilatation angle. In
general, all dilatant plasticity models require the elastic bulk
modulus (K) to be finite, and both pressure schemes will fail
to handle dilatant plasticity cases for elastically incompress-
ible materials (K→∞).

A detailed analysis of the convergence properties of both
pressure schemes goes beyond the scope of this paper. Here,
we simply report our practical observations and conclusions.
We have thoroughly implemented, linearized and tested both
pressure schemes for the relevant dilatant and non-dilatant
plasticity cases (see Berlie, 2023, for further details). The
results demonstrate that the trial pressure scheme performs
more robustly compared to the true pressure formulation. In
the following, we therefore limit our discussion to the trial
pressure scheme.

3.5 Primary variable selection

Traditionally, velocity is selected as the primary kinemati-
cal variable to solve boundary value problems that involve
quasi-static deformation of viscous materials. However, this
is a suboptimal choice in the presence of highly nonlinear
rheologies and Dirichlet boundary conditions. The problem
is caused by the lack of time step control over the magni-
tude of the kinematical loading. With a velocity formulation,
the entire boundary velocity is applied instantly, which may
result in severe convergence problems. There is essentially
no measure that can be applied to mitigate this problem,
since boundary velocities are independent of the time step.
We therefore choose to use displacement increments (1ui)
rather than velocity as the primary kinematical variables in
this work. This approach has the advantage that kinematical
loading can be directly controlled by the time step, since the
velocity and displacement increments are related in the fol-
lowing manner:

1ui = vi 1t. (35)

This property opens the possibility to design an adaptive time
stepping algorithm. As soon as the selected time step is too
large to achieve convergence within a reasonable number of
iterations, the equilibrium iteration can be simply restarted
with a smaller time step magnitude, which implies a smaller
displacement step and therefore a smaller stress increment.

We emphasize that using displacement increments instead
of velocities imposes no restrictions on the type of rheology
that can be handled (viscous, elastic, viscoplastic, or combi-
nations thereof). Both velocities and strain rates are perfectly
defined in this formulation (see Eq. 27). Hence the stress in-
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tegration algorithm can be formulated using strain rates. For
instance the algorithm presented in Sect. 3.6 can be readily
used in the framework of a finite element or a finite differ-
ence code that uses a standard approach with the velocity as
a primary variable.

As the second global primary variable in the mixed formu-
lation, we select the trial pressure increment (1p∗). The total
trial pressure is thus defined as:

p∗ = pn+1p
∗. (36)

3.6 Local stress update algorithm

The integration of constitutive equations that include a
viscoplastic component is usually done with a two-stage
predictor-corrector procedure (see Appendix A for deriva-
tions). During the first stage, the magnitude of the viscoplas-
tic multiplier (λ̇) is assumed to be zero and the entire strain
rate is visco-elastic (predictor stage). The magnitude of the
trial visco-elastic deviatoric stress (τ ve

II ) can be obtained by
solving the following scalar nonlinear residual equation us-
ing the Newton-Raphson method (see Eq. A7):

rve
= ε̇∗II−AL τ

ve
II −AN

(
τ ve

II
)n
= 0, (37)

where the ε̇∗II is the effective deviatoric strain rate that de-
pends on the elastic stresses from the previous time step

ε̇∗ij = ε̇ij +
τ ∗ij

2G1t
, (38)

and AL is the effective linear stress term prefactor, which
combines elastic shear and diffusion creep constants:

AL =
1

2G1t
+AD. (39)

Here τ ∗ij denotes the rotated deviatoric stress from the pre-
vious time step (see the Appendix A for more details). Note
that stress rotation terms are usually computed using an al-
ternative incrementally-objective scheme (Thielmann et al.,
2015; Gerya, 2019), which produces asymptotically correct
results for finite time steps. The 3D generalization of this
algorithm was originally provided by Rubinstein and Atluri
(1983). The detailed explanation why using the Jaumann ob-
jective stress rate does not lead to the spurious stress oscilla-
tion for the rocks is provided in Thielmann et al. (2015). The
derivative of the visco-elastic scalar residual with respect to
the magnitude of the visco-elastic deviatoric stress is readily
evaluated as:

∂ rve

∂ τ ve
II
=−AL− n AN

(
τ ve

II
)n−1

. (40)

To ensure robust convergence of the nonlinear iteration we
use the following initial guess:

τ ve
II ≈

(
1
τL
+

1
τN

)−1

, τL =
ε̇∗II
AL
, τN =

(
ε̇∗II
AN

)1/n

, (41)

which represents the quasi-harmonic average of two closed-
form solutions obtained for each isolated creep mechanism.

During the second stage, the yield function is evaluated
using the trial stresses, i.e.: F = F

(
τ ve

II , p
∗
)
. If the trial

yield function is not violated (F < 0), the visco-elastic so-
lution is accepted, i.e.: τII = τ

ve
II , otherwise the viscoplas-

ticity stress constraints are enforced (corrector stage). This
step requires solving a coupled system of nonlinear equa-
tions with the residual vector (r) incorporating deviatoric
(Eq. A7), continuity (Eq. A14) and viscoplastic constraint
residuals (Eq. A17). The corresponding solution vector (x)
contains the effective deviatoric stress (τII), the local pressure
(p) and the viscoplastic multiplier (λ̇), as primary unknowns:

r =


ε̇∗II−AL τII−AN(τII)

n
− λ̇ Aτ

p−p∗

K1t
− λ̇ Ap

〈F 〉− λ̇ ηvp

=
[

0
0
0

]
,

x =

[
τII
p

λ̇

]
. (42)

Here the deviatoric and volumetric plastic constants, respec-
tively, are formulated as follows:(
Aτ ,Ap

)
=

(
1
2 ,kq

)
, τII

(
pq −pd

)
≥ τd

(
pq −p

)(
b τII
2R̂q

,−
b(p−pq )

R̂q

)
, otherwise

. (43)

A Newton-Raphson scheme is employed to update the so-
lution until a sufficiently small tolerance is obtained:

xk+1 = xk −α J−1
k rk, ‖rk‖< tol, (44)

where k is the iteration index, J the local Jacobian matrix of
the local stress update, and αmin < α < 1 the step length that
is optimally selected by a simple back-tracking line-search
algorithm guided by the Armijo rule (Armijo, 1966) to ensure
that the nonlinear residual is sufficiently reduced between the
iterations, i.e:

‖rk+1‖ ≤ γ ‖rk‖ , (45)

where 0< γ < 1 is the residual reduction parameter, which
is typically assigned to a rather large value γ = 0.9. To en-
sure progress of the nonlinear iteration, the step length is
bounded by a lower threshold αmin. We explicitly emphasize
the importance of the line search for the stability of the lo-
cal iteration algorithms. Despite having a completely smooth
yield surface and flow potential, the local iterations can still
produce closed loops in the stress space that never lead to
convergence when full steps are applied (Fig. 3a). A line
search algorithm resolves this issue (Fig. 3c).
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Figure 3. Convergence pattern of the nonlinear local iterations for
the corrector stage (ηvp

= 0) when the initial guess is relatively
far away from the yield surface. (a) Full Newton steps are applied
(α = 1). Closed loops and divergence of the algorithm is observed.
(b) Damped Newton steps are applied throughout (α = 0.1), which
results in a smooth pattern, but in a relatively large number of iter-
ations. (c) The step length is controlled by a line search algorithm
(γ = 0.9, αmin = 0.1). Fast convergence is obtained.

To initialize the nonlinear iteration we use the trial visco-
elastic stresses and assign the viscoplastic multiplier to zero:

x0 =

τ ve
II
p∗

0

 . (46)

Finally, the Jacobian matrix can be obtained by differentiat-
ing the residuals with respect to the unknowns:

J=

−AL− n AN(τII)
n−1
− λ̇ ∂Aτ

∂τII
−λ̇ ∂Aτ

∂p
−Aτ

−λ̇
∂Ap
∂τII

1
K1t
− λ̇

∂Ap
∂p

−Ap
∂F
∂τII

∂F
∂p

−ηvp

 , (47)

where the required stress derivatives of the plastic constants
(Aτ ), (Ap) and the yield function (F ) are given by Eqs. (A9),
(A16), and (A18), respectively. After convergence of the lo-
cal iterations, the deviatoric stresses are obtained as follows:

τij = τII nij , (48)

where the normalized deviatoric direction tensor is defined
as:

nij =
ε̇∗ij

ε̇∗II
. (49)

The corresponding update of the accumulated deviatoric vis-
coplastic strain is given by:

κ = κn+1κ, 1κ = λ̇ Aτ1t. (50)

To simplify the presentation of the material model in this pa-
per we apply the strain softening explicitly between the time
steps. During the local stress update, the yield function is
evaluated using the κ values in the beginning of the time step,
i.e. F(κn). The plastic strength parameters are instantly up-
dated according the Eqs. (50) and (24) once the converged
values of 1κ are computed. However, the presented algo-
rithm can be easily modified to include the viscoplastic strain
evolution in the local stress update in a coupled manner. This

Figure 4. Conforming triangular Crouzeix-Raviart finite element
(P+2 ×P−1). Displacement increments (1ue) are interpolated us-
ing quadratic shape functions enhanced with a bubble function in
the central node. Pressure increments (1p∗e ) are interpolated using
linear shape functions and assumed to be discontinuous between
elements. Element coordinates (xe) are stored only in the element
corners, and edges remain straight (subparametric element). His-
tory variables and material parameters are stored in the integration
points.

would imply updating 1κ during the iterations and using
F(κ) instead. Finally, the accumulated volumetric viscoplas-
tic strain is updated as follows:

χ = χn+1χ, 1χ = λ̇ Ap1t. (51)

3.7 Finite element formulation

We adopt the conforming Crouzeix-Raviart triangular finite
element (Crouzeix and Raviart, 1973) to discretize the mo-
mentum and continuity residual equations (Eqs. 32 and 34)
in the framework of a standard Galerkin procedure. The ele-
ment is LBB-stable and behaves robustly in practice. Since
significant accuracy deterioration was previously reported
for the isoparametric finite elements with curvilinear edges
(e.g. Lee and Bathe, 1993), we adopt a subparametric for-
mulation and keep the edges of the elements straight. For
the accurate evaluation of the element integrals we use an
efficient Gaussian quadrature rule specifically designed for
triangular elements (Dunavant, 1985). The 2D element has
6 integration points, where all the constitutive equations are
evaluated and all the history variables are stored. The details
of the finite element discretization are illustrated in Fig. 4.

In the reminder of this section we summarize the details of
the finite element discretization using the standard matrix no-
tation (Zienkiewicz and Taylor, 2000). The primary variables
are interpolated in the integration points as follows:

1u= Nu 1ue, 1p∗ = Np 1p∗e , (52)

where 1ue and 1p∗e are the displacement and the trial pres-
sure increment vectors of the element, respectively, and the
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corresponding interpolation matrices are given by:

Nu =
[
Nu1 0 . . . Nu7 0

0 Nu1 . . . 0 Nu7

]
,

Np =
[
Np1 . . . Np3

]
. (53)

Here Nui and Npi are respectively the displacement shape
function and the pressure shape function of the ith node.

We use Voigt notation to represent the second order sym-
metric tensors in the vector form. Hence for the total strain
increment (1ε), the deviatoric strain increment (1ε), and the
deviatoric stress (τ ) we can write:

1ε =


1εxx
1εyy
1εzz
1γxy

 , 1ε =


1εxx
1εyy
1εzz
1εxy

 , τ =


τxx
τyy
τzz
τxy

 , (54)

where γxy is the engineering shear strain, which is twice
larger than the corresponding tensor component, i.e. γxy =
2 εxy . The total strain increment vector is computed as:

1ε = B 1ue, B=


∂Nu1
∂x

0 . . . ∂Nu7
∂x

0
0 ∂Nu1

∂y
. . . 0 ∂Nu7

∂y

0 0 . . . 0 0
∂Nu1
∂y

∂Nu1
∂x

. . . ∂Nu7
∂y

∂Nu7
∂x

 . (55)

Here B is the differential operator matrix that contains the
derivatives of the displacement shape functions with respect
to the global coordinates. Note that the third row explicitly
enforces the plane strain kinematical constraint εzz = 0. The
deviatoric and volumetric strain increments, respectively, are
given by:

1ε = ID 1ε, 1θ =mT 1ε, (56)

where the corresponding projection matrices are as follows:

ID = I−
1
3
m mT , I=

1
2

2
2

2
1

 , m=

1
1
1
0

 . (57)

The history variables from the previous time step are as-
sumed to be stored directly in the integration points illus-
trated as diamonds in Fig. 4. These include the rotated his-
tory stress (τ ∗), the converged true pressure (pn), and the
accumulated deviatoric (κn) and volumetric (χn) viscoplas-
tic strains. The following estimate for the effective deviatoric
strain rate is readily available:

ε̇∗ =
1ε

1t
+

τ ∗

2G1t
. (58)

Combining the Eqs. (36) and (52) we can express the total
trial pressure in the integration point as:

p∗ = pn+Np 1p∗e . (59)

Finally, the scalar norm of the effective deviatoric strain rate
(ε̇∗II), and the unit deviatoric direction (n) can be evaluated
as:

ε̇∗II =

√
1
2

(
ε̇∗2xx + ε̇

∗2
yy + ε̇

∗2
zz

)
+ ε̇∗2xy, n=

ε̇∗

ε̇∗II
. (60)

At this stage, we are ready to invoke the local stress update
algorithm summarized in Sect. 3.6 to compute the deviatoric
stress (τ ) and true pressure (p), and hence the total Cauchy
stress:

σ = τ −p m. (61)

The weak forms of the time-discrete momentum and conti-
nuity residual equations (Eqs. 32 and 34) are given by:

ru =

∫
V

BT σ dV −
∫
V

NTu bdV −
∫
S

NTu t dS = 0,

rp =−

∫
V

NTp 1θ dV −
∫
V

NTp
1p∗

K
dV = 0,

(62)

where b = ρg are the gravity forces, and t is the traction
vector, which is integrated over the surface. The standard
Newton-Raphson iteration is employed to update the primary
variables until the global convergence is achieved:

[
1u
1p∗

]
k+1
=

[
1u
1p∗

]
k

−

[
Kuu Kup

Kpu Kpp

]−1

k

[
ru
rp

]
k

.

(63)

Here k denotes the iteration index, and the blocks of the cou-
pled tangent matrix are evaluated as follows:

Kuu =

∫
V

BT DB dV, Kup =−

∫
V

BT qNp dV,

Kpu =−

∫
V

NTp m
T BdV, Kpp =−

∫
V

NTp
1
K

Np dV,
(64)

where the tangent operators are given by:

D=
∂σ

∂1ε
=

(
2 ηeff ID +β1 n n

T
+β2 m nT

)
/1t,

q =
∂σ

∂p∗
= β3 n+β4m. (65)

Details of the derivations along with expressions for the co-
efficients ηeff, and β1−β4 are provided in Appendix B. It
should be noted that only completely pressure-independent
constitutive models (such as von Mises plasticity or non-
linear visco-elasticity) produce a symmetric tangent ma-
trix. In these cases, the stiffness coefficients assume the
following values: β2 = β3 = 0, β4 = 1. Any form of pres-
sure dependence in the constitutive model, including the
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fully-associated plasticity case, introduces non-symmetric
terms in the tangent matrix. This property of the mixed
two-field formulation contrasts with the classical strain-
driven approach which preserves symmetry for the associ-
ated pressure-dependent plasticity models.

The global Newton iteration is terminated as soon as the
following stopping criterion is satisfied:∣∣∣∣∣∣f int

−f ext
∣∣∣∣∣∣∣∣∣∣f ext∣∣∣∣ < tol, (66)

where the partition of the momentum residual vector into the
external and internal forces is defined as:

f int
=

∫
V

BT σ dV, f ext
=

∫
V

NTu bdV +
∫
S

NTu t dS = 0 (67)

There is no need to explicitly check the residual of the con-
tinuity equation, since it is typically satisfied to a very low
tolerance at every global iteration.

After achieving global convergence, velocities, deviatoric
strain rates, and volumetric strain rates, respectively, can be
computed for postprocessing purposes using:

v =
1u

1t
, ε̇ =

1ε

1t
, θ̇ =

1θ

1t
. (68)

3.8 Software implementation

To test the applicability and robustness of the yield surface
developed in this work, we implemented the algorithms pre-
sented in Sect. 3.6 and 3.7 in a compact Python finite ele-
ment code (GeoTech2D) that employs LBB-stable triangular
Crouziex-Raviart elements. We use an efficient array imple-
mentation from the NumPy package (Harris et al., 2020). The
finite element matrices are initially stored in coordinate for-
mat and subsequently assembled in a compressed sparse col-
umn format using the SciPy package (Virtanen et al., 2020).
Dabrowski et al. (2008) implemented a similar approach and
demonstrated that it has superior efficiency compared to a
direct assembly. The default sparse direct solver provided by
the SciPy package is used to solve the linearized system of
equations. We do not utilize the block structure of the tan-
gent matrix by adopting efficient approaches such as Powell-
Hestenes iterations (e.g. Dabrowski et al., 2008). Since we
only consider elastically compressible cases the robustness
of the direct solver is sufficient to perform a coupled fac-
torization. To improve the robustness and speed of the code,
iterative solvers could be added at later stage. Refer to the
code availability section to obtain the instructions on how to
access and run the code.

To generate the unstructured triangular grids we use the
Triangle mesh generator (Shewchuk, 1996), which we invoke
via the Python interface implemented in the MeshPy package
(Kloeckner et al., 2022). In the code availability section we
provide the links to access all the scripts that we used to gen-
erate the grids in this paper along with an example script that

demonstrates the basic features of the Triangle interface in
MeshPy, such as material regions, holes, and boundary mark-
ers. We use the pyEVTK package (Herrera, 2021) to store the
simulation results in the Visualization Toolkit (VTK) format
(Schroeder et al., 2006), which can be visualized with the
ParaView package (Ahrens et al., 2005). Whenever neces-
sary we use the scientific color maps (Crameri et al., 2020),
which prevent visual distortion of the data.

4 Benchmarks and applications

In this section we test the application of the developed plas-
ticity model to a number of relevant problems that involve
both mode-I and mode-II plastic failure. The material pa-
rameters, temporal and spatial discretization details, domain
geometry, and boundary conditions are described in Table 1.
Every problem we consider here is summarized in a single
column of this table, which is labeled with a keyword con-
cisely describing the essence of the setup (e.g. Crust or Ten-
sile, etc). References to the figures that demonstrate basic
results of a corresponding numerical simulation are also pro-
vided. Parameters related to different scenarios of the consid-
ered problems (e.g. extension vs. compression) are separated
by a slash.

4.1 0D stress integration test

The correctness of the stress integration algorithm imple-
mentation can be demonstrated by performing the so-called
0D deformation experiment (integration point test). The ma-
jor purpose of this test is to show that local iterations ade-
quately calculate stresses during the switch from the visco-
elastic deformation into mode-I failure, as well as during
the transition between mode-I and mode-II. Material prop-
erties are assumed to be homogeneous and magnitudes of
the background strain rates components are selected such
that three scenarios are generated, namely: (i) constant vol-
umetric strain rate is applied θ̇ 6= 0 (volumetric extension
test) (Fig. 5a), (ii) constant deviatoric strain rate is applied
ε̇II 6= 0 (deviatoric shear test) (Fig. 5b), and (iii) combination
of both strain rates is applied (mixed strain test) (Fig. 5c).
For simplicity we consider perfect plasticity case, i.e. we ig-
nore softening and deactivate viscoplastic regularization. All
three scenarios are initialized with zero stresses and subse-
quently, either pressure or deviatoric stress, or both, evolve
until mode-I failure is activated. At later stages the stress
evolution only occurs along the yield surface. For the con-
stant volumetric strain rate case, the pressure simply stops
changing when it reaches the tensile strength of the material
(Fig. 5a, d). In the deviatoric and mixed cases the mode-I
failure eventually switches to the mode-II when stress evo-
lution path passes through the delimiter point between the
yield surface segments (Fig. 5b, c, d). Due to the nonzero
dilatation angle, the pressure continues to grow even after
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Table 1. Material, discretization, and boundary condition parameters employed in presented models.

Parameter Units 0D Regularization Crust Tensile Brittle-ductile
Fig. 5a, b Fig. 6b, d Fig. 7a, b Fig. 8 Fig. 9

ρ [kg m−3] – – 3× 103 3× 103 3× 103

BD [Pa−1 s−1] 5× 10−21 – – – 5× 10−24

BN [Pa−n s−1] – – – – 8.8971× 10−25

EN [J mol−1] – – – – 1.9× 105

n [ ] – – – – 3.3
G [Pa] 1010 4× 1010 4× 1010 4× 1010 5× 1010

K [Pa] 2× 1011 6.4× 1010 6.4× 1010 6.4× 1010 1.1× 1011

ϕ [°] 30 30 30 30 30
ψ [°] 10 0 0 0 3
cinit

MC [Pa] 106 2× 107 2× 107 2× 107 2× 107

cmin
MC [Pa] – 5× 106 5× 106 5× 106 5× 106

Hc [Pa] – −108
−108

−108
−5×108

pT [Pa] −5× 105
−106/−107

−106
−106

−106

ηvp [Pa s] – 1019/5× 1018 1018 1018 1019

L [m] – 1 4× 104 4× 104 105

H [m] – 0.7 7× 103 7× 103 2.5× 104

A4 [m2] – 5× 10−6
− 3× 10−4 2.5× 103 2.5× 103 3.6× 103

− 2.5× 104

1t [year] 2 50 50 1 103

ε̇
bg
xx [s−1]×10−15 2.333/0 6.338/−6.338 15.844/−15.844 7.922 1
ε̇

bg
yy [s−1

]× 10−15 2.333/0 0/6.338 – – –
ε̇

bg
zz [s−1

]× 10−15 2.333/0 0 0 0 0
ε̇

bg
xy [s−1

]× 10−14 0/7 – – – –

Note: L – domain length, H – domain height, A4 – target triangular element area, ε̇bg
ij

– background strain rates.

switching to the mode-II regime. This behavior is caused by
a combination of the nonzero volumetric plastic strain and
overall incompressibility constraint (θ̇ = 0), which results in
elastic compression and associated pressure increase. In gen-
eral the stress integration tests deliver the expected results for
the considered loading scenarios.

4.2 Viscoplastic regularization test

In the next example, we test the effect of viscoplastic regu-
larization in a 2D setup that develops localized zones by ei-
ther mode-I or mode-II plasticity. Two combinations of back-
ground strain rate loading is considered that correspond ei-
ther to the uniaxial restrained extension (Fig. 6a, b), or to the
pure shear (Fig. 6c, d). For the extension case we plot the
accumulated volumetric viscoplastic strain (χ ), which indi-
cate loci of the tensile failure zones, whereas the deviatoric
counterpart (κ) is plotted for the pure share case, which cor-
responds to the shear bands. The test cases are performed for
different mesh resolutions. As expected, the non-regularized
plasticity models demonstrates severe mesh dependency of
both mode-I and mode-II plasticity cases, which results in
localization zones that are close to one element in width and
that have a maximum strain that depends on the mesh res-
olution (Fig. 6a, c). With a suitably tuned viscoplastic reg-

ularization viscosity, on the other hand, mesh independent
results are obtained (Fig. 6b, d), similar to earlier results for
mode-II plasticity (Duretz et al., 2019, 2023). It should be
noted that the Perzyna-type regularization we employ affects
both deviatoric and volumetric components of viscoplastic
strain rate via the viscoplastic multiplier (λ̇) (Eqs. 5, 9, and
11), and hence acts on mode-I and mode-II plasticity simul-
taneously. As previously reported by Duretz et al. (2019),
one of the apparent advantages of the regularized models is
its greatly improved convergence rate compared to the non-
regularized models. In particular a few high resolution non-
regularized models we tested here simply failed to converge
due to the residual stagnation (Fig. 6a, c). In contrast to that,
all the regularized models converged successfully within a
prescribed number of iterations for both mode-I and mode-
II cases (Fig. 6b, d). The typical convergence profiles of the
nonlinear iterations are discussed in more detail in Sect. 4.6.

4.3 Strain localization in the brittle crust

Next, we consider the deformation of the upper crust in
either extensional or compressional setting with an elasto-
viscoplastic rheology. This problem represents a standard
benchmark used in the geodynamics community to test var-
ious plasticity model implementations (see e.g. Kaus, 2010,
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Figure 5. Temporal evolution of the effective deviatoric stress and pressure for the 0D stress integration tests. (a) Volumetric extension
test θ̇ = 7× 10−15 s−1 (b) Deviatoric shear test ε̇II = 7× 10−14 s−1. (c) Mixed strain test (a combination of the volumetric extension and
deviatoric shear used in a and b). (d) Stress evolution patterns in the meridional profile for all three tests. Both mode-I and transition between
mode-I and mode-II are tested.

and references therein). To facilitate the localization we use
strain softening for cohesion parameter which is initiated
by random accumulated deviatoric viscoplastic strain per-
turbations that are clustered around the central upper part
of the domain. Subsequent deformation manifests itself in
formation of multiple incipient localization zones (Fig. 7a),
among which only few develop into fault zones at later stages
(Fig. 7b). Under extension, mode-I plastic failure occurs
close to the free surface, which is visible as vertically ori-
ented high strain rate zones in Fig. 7a. With increasing depth
and confining stress the localization switches again to mode-
II plasticity. Under compression, the mode-I failure does not
occur as mean stresses never become extensional. In general,
it takes more time and horizontal strain to develop the local-
ization zones in the compressional setting. In the considered
setup the formation of the faults finishes at about 2.4 kyr un-
der extension (Fig. 7b), whereas it still continues after about
7 kyr under compression (Fig. 7c). This can be explained by
the increased compressive strength due to the increased dy-
namic pressure caused by the tectonic shortening. The orien-
tation angles of the shear bands produced by the numerical
models is the major observation parameter that is compared
against the theoretical estimates for this benchmark problem.
We refer to Kaus (2010) for the overview of the existing es-
timates as well as for the extensive discussion regarding the
parameters that influence these orientations. Typically the re-
sult produced by the numerical models follow the theoretical

estimates of Arthur et al. (1978), given by:

αS =
π

4
±
ϕ+ψ

4
. (69)

Here αS stands for the dip angles of the shear bands. The pos-
itive sign in this expression corresponds to the extensional
setup, whereas the negative sign is attributed to compres-
sion. In general, normal faults are predicted to localize much
steeper compared to the thrust faults. Detailed inspection of
Fig. 7 reveals that Arthur’s estimates are reproduced quite
accurately in the presented simulations.

4.4 Tensile failure zone propagation

In this experiment, we consider propagation of a localized
tensile failure zone induced by elevated fluid pressure. Ac-
cording to the theory of poroelasticity (Biot, 1941) the pres-
sure variable in the momentum equation (Eq. 10) must be
replaced with the total pressure given by:

ptotal = p+αB pf, (70)

where pf denotes the fluid pressure in the rock pores, αB is
the Biot-Willis coefficient, which depends on the bulk mod-
ulii of the rock matrix and solid grains (Biot and Willis,
1957), and p is interpreted as the effective pressure that con-
trols the deformation and failure of the porous rock. Apart
from this single modification, the rest of the theory and no-
tation in this paper remains unaltered. For the current test
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Figure 6. Results of viscoplastic regularization tests. (a) Tensile localization test without regularization after 10 kyr. (b) Tensile localization
test with regularization (ηvp

= 1019) after 100 kyr. (c) Shear localization test without regularization after 1 kyr. (d) Shear localization test with
regularization (ηvp

= 5× 1018) after 3 kyr. Curves on the cross-sections are labeled with target triangular element areas (mesh resolutions).
Spatial distribution plots of χ and κ correspond to the highest resolution tested for each case.
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Figure 7. Spatial distribution of the deviatoric strain rate for the crustal strain localization problem. (a) Extension case after 1.8 kyr (incip-
ient localization) and 2.4 kyr (localized faults). (b) Compression case after 7 kyr. Approximate shear band orientation angles are explicitly
indicated. Note that the top of the domain is stress-free (representing the Earth’s surface).

we set the Biot-Willis coefficient to one, which simply cor-
responds to Terzaghi’s effective stress principle (Terzaghi,
1925). For all other tests in this paper, we set the Biot-Willis
coefficient to zero and thus ignore the effect of fluid pressure.

The initial fluid pressure distribution is assumed to be
homogeneous. We override it with a local perturbation of
180 MPa at the center point of the bottom boundary. The per-
turbation is assumed to decay around the center point follow-
ing a Gaussian distribution with standard deviation of 200 m
in the horizontal direction and 500 m in the vertical direction.
The initial fluid pressure perturbation is sufficiently large to
initiate tensile failure. Subsequently the excessive fluid pres-
sure is propagated to the regions where the accumulated vol-
umetric viscoplastic strain exceeds the prescribed limit, i.e.:
χ > χlim, which is assigned to a relatively low value e.g.
10−4. This explicit procedure effectively mimics Darcy flow
of the fluid into the enhanced permeability zone induced by
hydraulic fracturing, even when we do not model the actual
underlying physical processes related to fluid flow, in order
to focus on the mechanical aspects of tensile failure.

The positive feedback between the plastic strain and the
fluid pressure leads to a gradual propagation of the failure

zone in the vertical direction (Fig. 8a). The propagation ve-
locity of the zone is increasing as the localization progresses
towards the surface. The fluid pressure in the zone remains
almost the same as in the original perturbation due to the
lack of viscous dissipation (Fig. 8b), while the total pres-
sure rapidly decreases due to decreasing overburden weight
at shallower depths. Hence the effective pressure becomes
tensile and grows in magnitude, causing faster rock failure
at the tip of the zone and therefore faster propagation rates.
The velocities at the boundaries of the domain are essentially
controlled by the imposed background strain rates. However,
near the tip of the zone they reach values that are orders of
magnitude larger than at the boundaries (Fig. 8c), suggesting
that the dynamics of the system is mainly driven by the brit-
tle failure and associated elastic unloading. The animation of
the time evolution of the horizontal velocity field is provided
in the video supplement.

It should be noted that this setup is not intended to be in-
terpreted as dyke propagation through the brittle crust even
though it resembles it rather closely. The reasons for this are
numerous. We ignore thermal effects, do not represent real-
istic magma viscosities and densities in the model, describe
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Figure 8. Results of tensile failure zone propagation problem. (a) Accumulated volumetric viscoplastic strain distribution after 12 years
(onset) and 15 years (breakthrough). (b) Fluid pressure distribution after 12 and 15 years. (c) Horizontal velocity distribution after 12 years.

fluid flow by a simplified parametrization, etc. In reality,
dikes and hydraulic fractures form on much smaller length-
and time-scales, compared to what is represented here. More
realistic dyke propagation models would require much finer
numerical resolution.

4.5 Brittle-ductile transition

The tests so far focused on elasto-viscoplastic rheologies.
Yet, our numerical formulation can also deal with linear
and nonlinear creep laws combined with elasto-viscoplastic
failure models. To demonstrate that, our final test considers
a similar crustal extension setup we already introduced in
Sect. 4.3. However this time we significantly increase the
horizontal and vertical spans of the domain to be 100 ×
25 km. The domain is discretized with a variable grid res-
olution. The central upper part of the domain with a size of
40×7 km has a target element area of 3600 m2 (60 m average
mesh size), which is just slightly greater than in the crustal
extension setup. The background element area is assigned to
25 000 m2 (500 m average mesh size). Within a 20 km transi-
tion zone the element size is assumed to linearly grow from
the refined value to a background value to prevent sharp con-
trast in grid resolution. We assigned a background geother-
mal gradient to 20 °Ckm−1 and extend the crust in the hor-
izontal direction with a constant background strain rate. A
combination of the selected background geothermal gradi-
ent, a constant extension rate and a temperature- and stress-
dependent dry upper crust quartzite rheology (Schmalholz
et al., 2009) ensures that the brittle-ductile transition occurs
within the model domain, which is confirmed by a typical
strength envelope of the crust (Fig. 9c). In the brittle part of

the crust we again obtain a combination of mode-I and mode-
II plastic failure zones, which develop in the central part of
the domain (Fig. 9a, b). The localization is triggered by sim-
ilar random perturbations of the accumulated deviatoric vis-
coplastic strain as we used in the crustal setup (see Sect. 4.3
for the details). Peculiar features that we obtain in our mod-
els are the vertical mode-I failure zones that occur close to
the free surface where compressive strength is the smallest
due to limited overburden stress (Fig. 9b). It should be noted
that these features are not reproducible by the models that
do not include a tensile yield surface (Popov and Sobolev,
2008; Kaus, 2010; Duretz et al., 2021; Jacquey and Cacace,
2020a, b). The animation of the time evolution of the accu-
mulated deviatoric viscoplastic strain field is provided in the
video supplement.

4.6 Convergence of the global iterations

Global Newton-Raphson iteration, which we use in this
paper, is a powerful technique to solve nonlinear sys-
tems of equations. Nevertheless, it is well known that non-
regularized plasticity models usually demonstrate very poor
convergence rates, residual stagnation, or even divergence
caused by the unlimited residual growth. As previously re-
ported by e.g. Duretz et al. (2019), the positive side effect
of the viscoplastic regularization is its significantly more ro-
bust convergence properties compared to the non-regularized
cases. Here, we generally confirm this observation. For a typ-
ical crustal extension problem considered in Sect. 4.3 only
few (generally less than 10, and normally about 4–5) nonlin-
ear iterations are necessary to achieve a relative tolerance of
10−5 (Fig. 10). In cases where an overwhelming amount of
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Figure 9. Results of brittle-ductile transition problem. (a) Accumulated deviatoric viscoplastic strain distribution after 33.5 kyr. (b) Accumu-
lated volumetric viscoplastic strain distribution in a near-surface region. (c) Depth distribution of the effective deviatoric stress magnitude in
the far field. The top of the domain is stress-free.

loading is applied during a single time step, which typically
happens when a lot of fault zones are active simultaneously,
the residual starts to stagnate and the nonlinear solve fails
to converge within a prescribed number of iterations. In this
situation, we use an adaptive time stepping, which simply
halves the timestep and restarts the nonlinear solution proce-
dure. After a prescribed number of successfully converged
reduced times steps, the algorithm attempts to double the
time step magnitude again to avoid excessively refined time
discretization. It should finally be noted that the robustness
of the nonlinear solution can be potentially further improved
by a line search technique, similar to what we apply for the
local stress update. In this paper, however, we did not explore
this possibility for the global equilibrium iterations.

5 Conclusions

We proposed a relatively simple plasticity model that com-
bines a linearized Drucker-Prager shear failure envelope with
a circular tensile cap function in a way that ensures a glob-
ally smooth transition between these components. Similar
models were elaborated before, however, here we addition-
ally eliminate all singularities and discontinuities in the en-
tire stress space for both the composite yield surface, and its
corresponding flow potential. This important addition makes
our plasticity model a suitable candidate for implementation

Figure 10. Snapshot of the typical nonlinear global convergence
pattern for the crustal extension model (Sect. 4.3). Shown are the
logarithm of the relative momentum residual norm vs. the cumula-
tive iteration number. The partition of the momentum residual into
internal and external forces is given by Eq. (67). Green dashed line
represents the relative tolerance value used to terminate the itera-
tions. Stars indicate converged residual norms of the time steps.

in the context of Perzyna-type viscoplasticity, which is a key
component to obtain regularized solutions that are indepen-
dent of the mesh resolution. The proposed plasticity model
is characterized by a unique orientation of the flow poten-
tial gradient at any stress point, which in turn allows to for-
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mulate a relatively simple and robust local stress integration
algorithm. Nevertheless, we found it necessary to use a line
search algorithm to increase the stability of the local iter-
ations and to achieve a practically acceptable level of ro-
bustness. Our rheological model also supports an arbitrary
combination of viscoplasticity with linear and nonlinear vis-
cous creep mechanisms, elasticity and strain softening. The
amount of dilatation in the shear failure envelope does not af-
fect the formulation of the tensile cap surface, which implies
that zero dilatation angle cases are explicitly supported.

We implemented the proposed plasticity model in a new
unstructured finite element code that uses LBB-stable con-
forming triangular Crouzier-Raviart elements to treat the
near incompressibility constraint. Our mixed two-field for-
mulation employs increments of displacements and pressure
as primary variables. We found that treating the globally
discretized pressure variable as a trial visco-elastic pressure
(trial pressure scheme) performs superior compared to treat-
ing it as a true spherical part of the Cauchy stress tensor
(true pressure scheme). We also found that displacement in-
crements are advantageous compared to velocities as they
help to control kinematical loading by changing the time step
magnitude, while posing no restrictions on the type of rheol-
ogy employed.

A number of 0D and 2D examples are provided that
demonstrate the applicability of the proposed plasticity
model to a set of practically relevant cases that involve
both mode-I and mode-II plasticity. These range from fluid-
induced tensile failure zone propagation to strain localization
in the visco-elasto-plastic crust. In general, it can be con-
cluded that the algorithms and models presented in this work
are quite robust and can be easily implemented in the frame-
work of mixed finite element or staggered-grid finite differ-
ence formulations to simulate a wide range of geomechanical
applications.

Appendix A: Stress update

Applying the time discretization to the Jaumann stress rate
(Eq. 6) we obtain:

�
τ ij =

τij −
(
τij
)
n

1t
+ (τik)nωkj −ωik

(
τkj
)
n
. (A1)

Taking the deviatoric projection of plastic flow potential gra-
dient (Eq. 21) gives:

dev
(
∂Q

∂σij

)
= Bτ τij . (A2)

Upon substitution of both results in the deviatoric constitu-
tive equation (Eq. 5) we finally get:

ε̇ij−
1

2G

[
τij −

(
τij
)
n

1t
+ (τik)nωkj −ωik

(
τkj
)
n

]
−AD τij −AN(τII)

n−1τij − λ̇ Bτ τij = 0. (A3)

Rearranging the results yields:

ε̇∗ij −AL τij −AN(τII)
n−1τij − λ̇ Bτ τij = 0, (A4)

where the effective linear visco-elastic creep prefactor is de-
fined as:

AL =
1

2G1t
+AD, (A5)

and the effective deviatoric strain rate and rotated deviatoric
stresses from the previous time step, respectively, are given
by:

ε̇∗ij = ε̇ij +
τ ∗ij

2G1t
,

τ ∗ij =
(
τij
)
n
+1t

[
ωik
(
τkj
)
n
− (τik)nωkj

]
. (A6)

From Eq. (A4) it becomes obvious that the updated devia-
toric stress and the effective strain rate are proportional to
each other, which implies that all terms can be replaced with
their corresponding scalar norms:

ε̇∗II−AL τII−AN(τII)
n
− λ̇ Aτ = 0 (A7)

where the deviatoric plastic constant is computed as:

Aτ = Bτ τII =

{ 1
2 , τII

(
pq −pd

)
≥ τd

(
pq −p

)
b τII
2R̂q

, otherwise . (A8)

The stress derivatives of the deviatoric plastic constant are
given by:(
∂Aτ

∂τII
,
∂Aτ

∂p

)
=

(0,0) , τII
(
pq −pd

)
≥ τd

(
pq −p

)(
b
(
R̂2
q−τ

2
II

)
2R̂3

q

,−
bτII(p−pq )

2R̂3
q

)
, otherwise

. (A9)

For the continuity equation, we follow essentially the same
steps as for the deviatoric equation. By discretizing the pres-
sure time derivative we get:

Dp
Dt
=
p−pn

1t
. (A10)

The spherical part of the plastic flow potential gradient
(Eq. 21) reads:

tr
(
∂Q

∂σij

)
= 3Bp. (A11)

Substituting both terms in the continuity equation (Eq. 9)
gives:

θ̇ =−
p−pn

K1t
+ 3λ̇Bp. (A12)

Assuming zero viscoplastic multiplier, the volumetric strain
rate can be expressed in terms of the trial pressure as:

θ̇ =−
p∗−pn

K1t
. (A13)
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Combining the right hand sides of both equations and rear-
ranging the result, we finally obtain the local continuity resid-
ual:

p−p∗

K1t
− λ̇ Ap = 0, (A14)

where the volumetric plastic constant is computed as:

Ap = 3Bp =

{
kq , τII

(
pq −pd

)
≥ τd

(
pq −p

)
−
b(p−pq )

R̂q
, otherwise .

(A15)

The stress derivatives of the volumetric plastic constant are
given by:(
∂Ap

∂τII
,
∂Ap

∂p

)
=

(0,0) , τII
(
pq −pd

)
≥ τd

(
pq −p

)(
bτII(p−pq )

R̂3
q

,−
b
(
R̂2
q−(p−pq )

2
)

R̂3
q

)
, otherwise

. (A16)

Finally, the Perzyna viscoplastic constitutive equation
(Eq. 11) can be recast into a residual form:

λ̇=
〈F 〉

ηvp → 〈F 〉− λ̇ η
vp
= 0. (A17)

The stress derivatives of the composite yield surface are
given by:(
∂F

∂τII
,
∂F

∂p

)
=

(1,−k), τII
(
py−pd

)
≥ τd

(
py−p

)(
aτII
R̂y
,
a(p−py)

R̂y

)
, otherwise

. (A18)

Appendix B: Tangent operator

To simplify the notation, we omit the star superscript indicat-
ing the effective deviatoric strain rates (ε̇∗ij ) in the following
derivations. The linearization of the stress rotation terms, in
general, depends on the employed advection algorithm. It can
be relatively simple in case that rotation is performed in the
integration points or control volumes. However, linearization
of the rotation terms performed on the material particles dur-
ing the advection can be notoriously difficult. Since no gen-
eral algorithm can be provided we assume that stress rotation
terms do not contribute to the linearization, which is a fair
assumption for geoscientific applications as rocks reach their
ultimate yield stress and break when shear stresses do not ex-
ceed about 10 % of the elastic shear modulus. At this stress
level, stress rotation terms do not play a crucial role yet (see
e.g., Thielmann et al., 2015). We therefore limit the deriva-
tions to the linearization of the material nonlinearity.

Directly differentiating the Newton update Eq. (44) with
respect to the effective deviatoric strain rate (ε̇II), and the trial

pressure (p∗), assuming a unit step length (α = 1), yields the
following matrix:

A=


∂τII
∂ε̇II

∂τII
∂p∗

∂p
∂ε̇II

∂p
∂p∗

∂λ̇
∂ε̇II

∂λ̇
∂p∗

=−J−1

1 0
0 −

1
K1t

0 0

 , (B1)

which can be evaluated numerically after convergence of the
local iterations. The coefficients of this matrix represent the
numerical values of the correspondent derivatives. They can
be directly used in the evaluation of the tangent operator.

Next, we differentiate the expression for the volumetric-
deviatoric decomposition of the Cauchy stresses (Eq. 3) with
respect to the strain rate tensor, which yields:

∂σij

∂ε̇kl
=
∂τij

∂ε̇mn

∂ε̇mn

∂ε̇kl
− δij

∂p

∂ε̇II

∂ε̇II

∂ε̇mn

∂ε̇mn

∂ε̇kl
. (B2)

The derivative of the deviatoric strain rate (Eq. 4) with re-
spect to the total strain rate gives the unit deviatoric projec-
tion tensor, which is given by:

∂ε̇ij

∂ε̇kl
= IDijkl = Iijkl −

1
3
δij δkl,

Iijkl =
1
2

(
δikδj l + δilδjk

)
. (B3)

By differentiating the norm of the effective deviatoric tensor
with respect to the tensor itself, we obtain the scaled normal-
ized deviatoric direction tensor given by the Eq. (49):

∂ε̇II

∂ε̇kl
=

1
2
nkl . (B4)

The derivative of the deviatoric stress update expression
(Eq. 48) reads:

∂τij

∂ε̇kl
=
∂τII

∂ε̇II

∂ε̇II

∂ε̇kl
nij + τII

∂nij

∂ε̇kl
. (B5)

Finally, differentiating the expression for the deviatoric di-
rection tensor (Eq. 49) and using Eq. (B4) gives:

∂nij

∂ε̇kl
=

1
ε̇II

∂ε̇ij

∂ε̇kl
−
ε̇ij

ε̇2
II

∂ε̇II

∂ε̇kl
=

1
ε̇II

(
Iijkl −

1
2
nijnkl

)
. (B6)

Substituting Eqs. (B3)–(B6) into Eq. (B2), making use of the
matrix coefficients from Eq. (B1), and simplifying the result-
ing expression we get:

∂σij

∂ε̇kl
= 2 ηeffI

D
ijkl +β1nijnkl +β2δijnkl, (B7)

where the effective stiffness constants are given by:

ηeff =
τII

2 ε̇II
, β1 =

1
2
A11− ηeff, β2 =−

1
2
A21. (B8)
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The derivative of the Cauchy stress with respect to the
global pressure reads:

∂σij

∂p∗
=
∂τij

∂p∗
− δij

∂p

∂p∗
. (B9)

Differentiating the deviatoric stress update expression
(Eq. 48) and keeping in mind that the deviatoric direction
tensor does not depend on pressure, yields:

∂τij

∂p∗
=
∂τII

∂p∗
nij . (B10)

After substituting Eq. (B10) into Eq. (B9) and using the co-
efficients from Eq. (B1) we obtain:

∂σij

∂p∗
= β3nij +β4δij , (B11)

where the effective stiffness constants are given by:

β3 = A12, β4 =−A22. (B12)

For the visco-elastic case, A11 becomes the only non-trivial
matrix coefficient in the Eq. (B1). A quick inspection of
Eq. (47) along with Eq. (B1) reveals that it can be directly
evaluated as:

A11 =
(
AL+ n ANτ

n−1
II

)−1
. (B13)

Code and data availability. The current version of GeoTech2D
code is available from GitHub website https://github.com/
UniMainzGeo/GeoTech2D (last access: 7 October 2025) un-
der the MIT license. The exact version of the code used
in this work, the setup scripts to run the models, and
the mesh generation scripts are archived on Zenodo under
https://doi.org/10.5281/zenodo.15496843 (Popov and Kaus, 2025).
The script used to generate the yield surface and flow po-
tential maps (Fig. 2a, b, c) is available on Zenodo un-
der https://doi.org/10.5281/zenodo.16877978 (Popov, 2025). This
study neither produces nor relies on any new or existing data set.

Video supplement. A set of animations illustrating the evolution of
the shear and tensile localization zones is available on Zenodo under
https://doi.org/10.5281/zenodo.15496843 (Popov and Kaus, 2025).
The directory VIDEO contains the following animation files:

1. Tensile failure zone propagation problem (Sect. 4.4)

a. dyke_Pf_25.mp4 – fluid pressure
b. dyke_Vx_25.mp4 – horizontal velocity.

2. Brittle-ductile transition problem (Sect. 4.5)

a. ductile_EII.mp4 – effective deviatoric strain rate
b. ductile_aps.mp4 – accumulated deviatoric viscoplastic

strain.
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