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Abstract. The smash software is a differentiable and re-
gionalizable framework enabling modular high-resolution
hydrological modeling and data assimilation, from catch-
ment to regional and country scales, for water research and
operational applications. smash combines various process-
based conceptual operators for vertical and lateral flows,
which can be hybridized with a descriptor-to-parameter neu-
ral network for regionalization. smash features an efficient,
differentiable Fortran solver using Tapenade to automatically
derive the adjoint model that supports CPU forward–inverse
parallel computing and spatially distributed optimization of
large parameter vectors thanks to an accurate cost gradi-
ent, interfaced in Python using f90wrap. This article presents
smash algorithms and their open-source code, documenta-
tion, and tutorials. It highlights foundational research, bench-
marking on state-of-the-art datasets, and readiness for sci-
entific and operational use. To ensure reproducibility, open-
source datasets are used to demonstrate the main functionali-
ties of smash, including parallel computation performances
and the application of multiple spatially distributed concep-
tual model structures over a large catchment sample. These
functionalities include uniform or spatially distributed cali-
bration and regionalization by learning the relation between
descriptors and parameters. The provided Python tool allows
application to any other catchment from globally available
datasets. Using CAMELS, as per recent articles, a median
Kling–Gupta efficiency (KGE) > 0.8 is obtained in local
spatially distributed calibration for daily Génie Rural (GR)-
like and variable infiltration capacity (VIC)-like model struc-
tures at dx = 1′30′′ (∼ 3km) and KGE> 0.6 in spatiotempo-
ral validation in a regionalization context. The regionaliza-

tion of a high-resolution hourly GR-like model structure at
dx = 500m over a difficult Mediterranean flash-flood-prone
case results in a Nash–Sutcliffe efficiency (NSE) > 0.6 in
spatiotemporal validation. The proposed differentiable and
regionalizable spatially distributed modeling framework is
designed for gradient-based variational data assimilation, ap-
plicable to initial state (not shown) and parameter estima-
tion at multiple timescales, and is intended for collaborative
research and operational applications. Additionally, smash
supports the implementation of other differentiable hydro-
logical and hydraulic models, as well as hybrid physics–AI
models, further enhancing its versatility and applicability.

1 Introduction

Hydrological models are indispensable tools for understand-
ing the functioning of hydrosystems, flood and low-flow
forecasting, sustainable water management and infrastruc-
ture design, environmental protection, and adaptation to a
changing climate. Indeed, measurements of hydrological re-
sponses are not ubiquitously available (e.g., Beven, 2011),
while “everywhere relevant” (Bierkens et al., 2015) estima-
tion of hydrological state fluxes is expected. A model is
hence needed to extend and predict those quantities of in-
terest based on available data.

High-resolution spatial datasets have become increasingly
accessible, often on a global scale, and enable the description
of topography–soil–vegetation properties and atmospheric
variables. Examples include the ECMWF atmospheric re-
analysis version 5 (ERA5) (Hersbach et al., 2020) and Multi-
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Source Weighted-Ensemble Precipitation (MSWEP) rainfall
product (Beck et al., 2019), flow directions IHU (Eilander
et al., 2021) from MERIT terrain elevations (Yamazaki et al.,
2017), the SoilGrids pedology (Hengl et al., 2017), and daily
discharge from Caravan-CAMELS (Kratzert et al., 2023; Ad-
dor et al., 2017), which are used hereafter. Such data can
be directly exploited by grid-based spatially distributed hy-
drological models, whose development at “hyper-resolution”
(1km2 or finer) is recognized as a “grand challenge for hy-
drology” to address water problems facing society (Wood
et al., 2011; Bierkens et al., 2015).

Hydrological responses result from combined nonlinear
vertical and lateral physical processes occurring at multi-
ple scales in the critical zone, and their limited observabil-
ity (e.g., Beven, 1989; Milly, 1994; Blöschl and Sivapalan,
1995; Refsgaard, 1997; Vereecken et al., 2019) makes hy-
drological modeling uncertain and difficult (e.g., Liu and
Gupta, 2007)). In the absence of directly exploitable first
principles in hydrology (e.g., Dooge, 1986), as opposed to
flow mechanistic equations in continuous media such as
river hydraulics, meteorology, or oceanography, and given
the high heterogeneities of continental hydrosystem com-
partments and the lack of “scale-relevant theories” (Beven,
1987), process-based hydrological models generally include
a certain amount of empiricism. This represents an avenue
for the fusion of data assimilation (DA) and uncertainty
quantification (UQ) with machine learning (ML) and deep
learning (DL) techniques to better exploit the informative
richness of multi-source data.

The differentiability of the forward numerical model
is a key enabler for gradient-based optimization of high-
dimensional parameter vectors, for example, in variational
data assimilation for 1D or 2D hydraulic models (Mon-
nier et al., 2016; Brisset et al., 2018) or in spatialized hy-
drology (Castaings et al., 2009; Jay-Allemand et al., 2020).
While differentiability may appear unnecessary for simple
lumped hydrological models with only a few parameters,
where sampling-based calibration or gradient-free methods
remain efficient, the situation changes drastically for spa-
tially distributed models involving thousands of parameters.
In such high-dimensional settings, exhaustive sampling be-
comes computationally infeasible. Numerical differentiabil-
ity enables the computation of accurate gradients of the cost
function or model outputs with respect to high-dimensional
parameters, thereby facilitating the use of efficient gradient-
based optimization methods. This is particularly important
when coupling physical models with neural networks requir-
ing accurate gradients, as demonstrated in recent work on
learnable regionalization (Huynh et al., 2024b) and internal
flux correction (Huynh et al., 2024a), with large-scale evalu-
ations in Huynh et al. (2025). These approaches rely on nu-
merically differentiable solvers and accurate gradients, en-
abling thousands of parameters to be trained effectively. This
perspective aligns with Shen et al. (2023), who emphasize
the importance and potential of differentiable modeling in

geosciences, highlighting how it can enhance learning, infer-
ence, and integration of physical knowledge within hybrid
modeling frameworks.

The “resolution–complexity continuum” (Clark et al.,
2017) has been explored over the past 5 decades through
various modeling approaches, ranging from point-scale pro-
cesses numerically integrated at larger scales to spatially
lumped representations of system responses (Hrachowitz and
Clark, 2017). Among the diverse hydrological models and
their underlying hypotheses, components generally describe
water storage and transfer (e.g., Fenicia et al., 2011) through
various combinations and parameterizations of vertical and
lateral storage-flux operators. Several model comparison ex-
periments have analyzed differences between various model-
ing approaches, evaluating performance in terms of stream-
flow modeling (Perrin et al., 2001; Reed et al., 2004; Duan
et al., 2006; Orth et al., 2015) and internal states such as
soil moisture (Orth et al., 2015; Bouaziz et al., 2021). Orth
et al. (2015) concluded that “added complexity does not
necessarily lead to improved performance of hydrological
models”. Notably, parsimonious conceptual models, whether
lumped or semi-lumped, have performed efficiently in large-
sample studies (e.g., the Génie Rural (GR) model in Per-
rin et al., 2001, GRSD model in De Lavenne et al., 2019,
GR and MORDOR models in Mathevet et al., 2020, FUSE
models in Lane et al., 2019, and references therein). Large-
sample studies have also been undertaken with spatially
distributed models, including variable infiltration capacity
(VIC) (Mizukami et al., 2017) with a multiscale parame-
ter regionalization (MPR) (Samaniego et al., 2010) or with
pixel-wise calibration on global maps of streamflow charac-
teristics (Yang et al., 2019), a gridded version of Hydrol-
ogiska Byråns Vattenbalansavdelning (HBV) applied with
MPR-like descriptor-to-parameter regressions on a global
dataset (Beck et al., 2020), GloFas (Hirpa et al., 2018),
National Hydrologic Model (NHM) (Towler et al., 2023),
Wflow (Aerts et al., 2022; van Verseveld et al., 2024), and
runoff-relevant parameters of Energy Exascale Earth System
Model (E3SM) using a surrogate-assisted Bayesian frame-
work (Xu et al., 2022). Differentiable numerical hydrologi-
cal modeling has made significant progress in recent years
(spatially distributed variational data assimilation (VDA)
in Castaings et al., 2009; Lee et al., 2012; Jay-Allemand
et al., 2020) for large catchment sample studies with hy-
brid physics–AI, both with lumped approaches (e.g., Feng
et al., 2024) and with high-resolution spatially distributed
frameworks (Huynh et al., 2024b, 2025). These large-sample
studies enable more general and statistically sound analy-
ses of model performances (Andréassian et al., 2009; Gupta
et al., 2014), addressing large-scale challenges with consis-
tent methodologies across various scales and conditions.

All hydrological models are inherently conceptual, and
calibration or learning is generally required due to limita-
tions and uncertainties in their structure, parameter repre-
sentativity, data availability, and initial and boundary condi-
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tions. These models are typically calibrated and validated us-
ing discharge time series at the catchment outlet(s) (Sebben
et al., 2013). However, calibrating hydrological model pa-
rameters from sparse and integrative discharge data is a chal-
lenging inverse problem complicated by equifinality issues
(Bertalanffy, 1968; Beven, 1993, 2001), especially for dis-
tributed models with a large number of cells and param-
eters (“curse of dimensionality”). Using spatially uniform
parameters may not be the best way to exploit a spatially
distributed model (under-parameterization), while fully dis-
tributed parameter calibration, which requires a gradient-
based approach (Castaings et al., 2009; Lee et al., 2012; Jay-
Allemand et al., 2020), faces over-parameterization. There-
fore, a parameter regionalization approach using multi-linear
descriptor-to-parameter transfer functions has been proposed
for distributed models (Beck et al., 2020). More recently, this
approach has been advanced with regionalization neural net-
works (Huynh et al., 2024b) integrated into the differentiable
spatialized smashmodel (Colleoni et al., 2022), which is the
focus of the present article, introducing a new numerical code
and conducting original tests on a large sample of catchments
with open-source data. This approach also enables learning
via cost functions based on hydrological signatures, which
are obtained using automatic signal analysis algorithms ap-
plicable to large samples with smash (Huynh et al., 2023).

This article presents the computational framework smash
dedicated to Spatially distributed Modeling and ASsimila-
tion for Hydrology. The smash framework combines verti-
cal and lateral flow operators, either process-based concep-
tual or hybrid with neural networks (which allows learn-
ing regionalization relations between descriptors and pa-
rameters), and performs high-dimensional optimization from
multi-source data. It is based on an efficient and automat-
ically differentiable Fortran solver enabling CPU parallel
computing, which is interfaced in Python using f90wrap
(Kermode, 2020; Jay-Allemand et al., 2022) (https://github.
com/jameskermode/f90wrap, last access: 25 July 2025). This
open-source smash code, version v1.0 (https://github.com/
DassHydro/smash, last access: 25 July 2025), is presented
here in terms of mathematical formulation, numerical mod-
eling approach, and functionalities, and full details can be
found in our research articles from which this software stems
(Colleoni et al., 2022; Huynh et al., 2023, 2024b) and in the
online documentation (https://smash.recover.inrae.fr, last ac-
cess: 25 July 2025). Note that smash has also been devel-
oped for operational applications. It is the core solver of the
French flash flood forecasting system (Piotte et al., 2020).
The proposed framework leverages adjoint-based VDA, en-
abling the simultaneous inference of high-dimensional and
spatially distributed parameters (as illustrated) and initial
states (implementation available and tested in smash v1.0
but not shown), applicable at both long and short timescales.

This article is organized as follows. Section 2 describes the
smash forward model and the inverse algorithm. In Sect. 3
we describe the smash build system framework, documen-

tation, and computational performance. Some applications
of smash are demonstrated in Sect. 4 using open-source
datasets, focusing on the contiguous US (CONUS) and on a
high-resolution flash-flood-prone case study in France. Sec-
tion 5 illustrates other aspects of smash not presented in
Sect. 4, followed by conclusions in Sect. 6.

2 Model and optimization algorithm description

The smash framework contains various hydrological model
structures with varying vertical and lateral flow operators and
spatialized routing schemes. It is designed to simulate dis-
charge hydrographs and hydrological states at any spatial lo-
cation within a structured mesh, and it reproduces the hydro-
logical response of contrasted catchments by taking advan-
tage of spatially distributed meteorological forcings, phys-
iographic data, and hydrometric observations. Cost function
gradient maps with respect to tunable parameters are a key
feature of smash and can easily be combined to gradients
of external operators, such as a regionalization neural net-
work (Huynh et al., 2024b) with a chain rule in the context
of high-dimensional optimization.

2.1 Forward model statement

Let �⊂ R2 denote a 2D spatial domain that can contain one
to many gauges, with x ∈� being the spatial coordinate, t ∈
]0,T ] the physical time, and D� a drainage plan over�. The
spatially distributed rainfall–runoff model M is a dynamic
operator projecting the input fields of atmospheric forcings
I onto the fields of surface discharge Q, internal states h,
and internal fluxes q, as expressed in Eq. (1):

U(x, t)=
[
Q,h,q

]
(x, t)

=M(D�;I(x, t); [θ ,h0](x)) , (1)

withU(x, t) being the modeled state-flux variables and θ and
h0 being the spatially distributed parameters and initial states
of the hydrological model.

The spatially distributed rainfall–runoff model M is ob-
tained by partial composition (each operator taking various
other input data and parameters) of the flow operators as fol-
lows:

M=Mhy ( . ,Mrr ( . ,Msnw)) . (2)

Several process-based conceptual operators are available
in smash for composing a model:

– Snow operator Msnw. This optional operator simulates
melt flux mlt(x, t), which feeds the hydrological opera-
tor in addition to rain.

– zero: no module

– ssn: degree-day module
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– Hydrological operator Mrr. The simulation occurs at
the pixel scale of elementary runoff qt (x, t), feeding the
routing operator.

– gr4: GR-like module (Perrin et al., 2003; Mathevet,
2005)

– gr5: GR-like module (Le Moine, 2008; Ficchì et al.,
2019)

– grd: GR-like module (Perrin et al., 2003; Jay-
Allemand et al., 2020)

– loieau: GR-like module (Perrin et al., 2003; Folton
and Arnaud, 2020)

– vic3l: VIC-like module adapted from Liang et al.
(1994)

– Routing operator Mhy. Runoff is routed from pixel to
pixel to obtain spatiotemporal discharge Q(x, t).

– lag0: instantaneous module

– lr: linear reservoir module

– kw: kinematic wave module (a classical 1D con-
ceptual kinematic wave model, applied over a D8
drainage plan D� without channel and solved
numerically using a linearized implicit scheme)
(Chow et al., 1998).

The operator chaining principle is schematized in Fig. 1
with input data and internal states and fluxes. The op-
erators available in smash are listed above and further
detailed in Appendix D and in the online documentation
(https://smash.recover.inrae.fr/math_num_documentation/
forward_structure.html, last access: 25 July 2025).

Originally, a differentiable descriptor-to-parameter map-
ping φ can be used to constrain spatially distributed concep-
tual parameters θ(x) and initial states h0(x) from physical
descriptors D(x) for regionalization learning (Huynh et al.,
2024b):

[θ ,h0](x)= φ(D (x) ,ρ), ∀x ∈�, (3)

withD being theND-dimensional vector of physical descrip-
tor maps covering the spatial domain � and ρ being the vec-
tor of the tunable regionalization parameters of the available
mappings (written for θ only for brevity).

1. The first component is a set P of multiple regression op-
erators for each parameter of the forward hydrological
model M:

θk(x,D,ρk)= sk

(
αk,0+

ND∑
d=1

αk,dD
βk,d
d (x)

)
,

∀k ∈ [1. . .Nθ ] (4)

where sk(z)= lk+ (uk− lk)/
(
1+ e−z

)
, and ∀z ∈ R is a

transformation based on a sigmoid function with values

in [lk,uk] imposing constraints onto the forward model
such that lk < θk(x) < uk, ∀x ∈�. The bounds lk and
uk associated with each conceptual parameter θk are
spatially uniform. The regional parameter control vec-

tor used for estimation in this case is ρ ≡
[(
ρk
)Nθ
k=1

]T
≡[(

αk,0,
(
αk,d ,βk,d

)ND
d=1

)Nθ
k=1

]T

, and a multiple linear re-

gression mapping is obtained by imposing βk,d = 1.

2. The second component is an artificial neural network
(ANN) denoted N , consisting of a multi-layer percep-
tron, aimed at learning the descriptor-to-parameter map-
ping such that

θ(x,D,ρ)=N (D(x),W ,b) ,∀x ∈�, (5)

where W and b are the weights and biases of the neu-
ral network composed of NL dense layers respectively.
The architecture of the neural network and the forward
propagation is detailed in Huynh et al. (2024b). Note
that an output layer consisting of a scaling transforma-
tion is used to impose bound constraints as above. The
regional control vector in this case is ρ ≡ [W ,b]T

≡[(
W j ,bj

)NL
j=1

]T
.

Note the following:

– The available mappings for φ are also implemented to
predict the initial state vector h0 using physical de-
scriptor fields that can include previous states and can
be used for short-range data assimilation (not studied
here).

– By construction, the complete forward model M is
learnable in terms of parameter regionalization, through
the regionalization mapping φ embedded into M that is
also differentiable, and its parameters ρ can be trained
using a cost gradient as explained hereafter.

2.2 Inverse algorithm

Given observed and simulated discharge time series Q∗ =
(Q∗g=1...NG)

T and Q= (Qg=1...NG)
T, with NG being the

number of gauges over the study domain �, the model misfit
to multi-site observations is measured through a cost func-
tion J that can be written as

J (Q∗,Q)=

NG∑
g=1

wgjg

(
Q∗g,Qg

)
+ jreg, (6)

with wg being the weight associated with the cost function

jg at each gauge g, where
∑Ng
g=1wg = 1. This multi-gauge

observation cost function is also used for mono-gauge cali-
bration with NG = 1. A regularization term jreg can be con-
sidered for ill-posed inverse problems (Jay-Allemand et al.,
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Figure 1. Flowchart of input data, operator chaining to obtain the forward differentiable model M that includes a learnable regionalization
mapping φ (Huynh et al., 2024b), and simulated states and fluxes. The forward model M is obtained by partial composition (each operator
taking various other input data and parameters) of the flow operators M=Mhy ( . ,Mrr ( . ,Msnw)).

2020, 2024). In this study, equal weights were assigned to
each gauge (i.e., wg = 1/NG), which corresponds to mini-
mizing the average of the individual cost functions. Addi-
tionally, no regularization term was applied.

The gauge cost function is defined as

jg(Q
∗
g,Qg)=

NC∑
c=1

wcjc

(
Q∗g,Qg

)
, (7)

with jc being based on any efficiency metric (e.g., Nash–
Sutcliffe efficiency, NSE; Kling–Gupta efficiency, KGE;
Gupta et al., 2009) or a signature-based cost function in-
cluding NC continuous and event-based components (Huynh
et al., 2023) and wc being their relative weights. For the
multi-score calibration strategy using continuous NSE and
event-based flood signatures, see Huynh et al. (2023).

The global cost function J is defined as a convex and dif-
ferentiable function, involving the response of the forward
model M through its output Q, and consequently depends
on the model parameters θ and hence on the parameters ρ of
the regional mapping φ when used (Eq. 3).

Therefore, the optimization problem is formulated as in
Eq. (8):

ρ̂ = argmin
ρ
J
(
Q∗,M(.,φ(.,ρ))

)
. (8)

This high-dimensional inverse problem can be tackled with
gradient-based optimization algorithms. A limited-memory
quasi-Newton approach, such as L-BFGS-B (Zhu et al.,
1997), is suitable for smooth objective functions, while
an adaptive learning rate approach, exemplified by Adam
(Kingma and Ba, 2014), is effective for non-smooth ob-
jective functions. These approaches necessitate obtaining

the gradient ∇ρJ of the cost function with respect to the
tunable control parameter ρ obtained by solving the ad-
joint DρM of the forward model M. The adjoint model
is obtained by automatic differentiation using the Tapenade
engine (Hascoet and Pascual, 2013) (https://team.inria.fr/
ecuador/fr/tapenade/, last access: 25 July 2025). The com-
plete forward model and VDA process are illustrated in
Fig. 2.

3 Computational software and performance

In this section, we focus on code architecture, documenta-
tion, and computational performance. smash is based on a
computationally efficient Fortran core enabling parallel com-
putations over large domains with OpenMP (Dagum and
Menon, 1998) (https://www.openmp.org, last access: 25 July
2025) and is automatically differentiable with the Tapenade
engine (Hascoet and Pascual, 2013) to generate the numer-
ical adjoint model. It is interfaced in Python using f90wrap
(Kermode, 2020) to provide a user-friendly and versatile in-
terface for quick learning and efficient development and to
make the wealth of Python modules and libraries (Table 1)
developed by a large and active community directly acces-
sible (data pre-/post-processing, geographic information sys-
tem, deep learning, etc.).

3.1 From sources to ready-to-use Python library

smash contains a Python core for all user interface func-
tions, both pre- and post-processing, and a Fortran core (with
a few C files) for high-performance numerical computations.
In order to produce a Python library, including binary files,
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Figure 2. Flowchart of the inverse algorithm that uses the cost gradient ∇ρJ with respect to the tunable control parameter ρ obtained by
solving the adjoint model DρM of the forward model M, which is obtained by automatic source code differentiation and enabling accurate
gradient computation (adapted from VDA course Monnier, 2024).

Table 1. External Python libraries used by smash.

Library Website Reference Description

NumPy https://numpy.org (last access: 25 July 2025) Harris et al. (2020) Numerical computing
SciPy https://scipy.org (last access: 25 July 2025) Virtanen et al. (2020)

pandas https://pandas.pydata.org (last access: 25 July 2025) pandas development team (2020) Data analysis and manipulation tool

f90wrap https://github.com/jameskermode/f90wrap (last access: 25 July 2025) Kermode (2020) Fortran-to-Python interface generator

Rasterio https://rasterio.readthedocs.io/en/stable (last access: 25 July 2025) Input/output
h5py https://docs.h5py.org/en/stable (last access: 25 July 2025)

which can be installed directly from the package manager,
PyPI (https://pypi.org, last access: 25 July 2025), several
steps are necessary. The first step is to generate the Fortran
adjoint file from the Fortran sources. This is done via the
Tapenade automatic differentiation engine (Hascoet and Pas-
cual, 2013), which requires the use of Java. Next, the For-
tran code is wrapped for use in Python. f90wrap (Kermode,
2020) builds on the capabilities of the popular F2PY (https:
//numpy.org/doc/stable/f2py, last access: 25 July 2025) util-
ity by generating a simpler Fortran interface to the original
Fortran sources, which is then suitable for wrapping with
F2PY, together with a higher-level Pythonic wrapper that
makes the existence of an additional layer transparent to the
final user. The entire build system (except for the generation
of the adjoint file, which is external for debugging reasons)
is handled by meson (https://mesonbuild.com, last access:
25 July 2025), a multi-platform, multi-language open-source
build system that allows us to generate smash binaries on
Linux, macOS, and Windows quite easily (Fig. 3).

3.2 Documentation

The smash online documentation (Fig. 4) is divided into
four main sections:

– Getting started. This section describes how to in-
stall smash from the Python package index PyPI

(https://smash.recover.inrae.fr/getting_started, last ac-
cess: 25 July 2025).

– User guide. This section provides step-by-step ex-
amples (and scripts) from basic (simulation run) to
complex (regionalization) applications of smash and
input data conventions (https://smash.recover.inrae.fr/
user_guide, last access: 25 July 2025).

– API reference. This section details the different modules
and the application programming interface. Modules
are documented using the NumPy-style Python doc-
string (https://smash.recover.inrae.fr/api_reference, last
access: 25 July 2025) .

– Math/num documentation. This last section details
the conceptual and mathematical basis of the for-
ward and inverse modeling problems, their numer-
ical resolution, and their optimization and estima-
tion algorithms (https://smash.recover.inrae.fr/math_
num_documentation, last access: 25 July 2025).

All documentation is implemented using Sphinx (https://
www.sphinx-doc.org/en/master, last access: 25 July 2025) to
automatically compile and update an online version.
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Figure 3. The smash build system framework. It starts with source
files written in Fortran and Python (0). In intermediate step (1), For-
tran sources are processed by Tapenade to generate the adjoint code
and wrapped using f90wrap to create Python interfaces (f90wrap-
itf). The F2PY tool is then used to generate a Fortran/C/Python
binding from the wrapped interfaces. During compilation step (2),
the original Fortran sources, adjoint code, and f90wrap-itf are com-
piled with appropriate compilers to produce a binary Python/C ex-
tension module. Finally, in installation step (3), the Python module
is assembled, combining the original Python sources with f90wrap-
itf and the compiled binary Python/C extension module, making the
high-performance Fortran code accessible from Python.

3.3 Computational performance

In this section, we compare the performance of smash in
terms of computation time and memory usage between di-
rect and adjoint runs (an adjoint run is equivalent to a single
call to the adjoint modelDρM here). The aim is to highlight
the resources required to run smash on configurations simi-
lar to real cases. We compare smash over three zones, Sar-
dinia, Great Britain/Ireland, and North America, at a spatial
resolution of 1′30′′ (∼ 3km× 3km) over a period of 1 year,
from 31 July 2010–31 July 2011, randomly chosen at a daily
time step. These three zones were chosen simply to provide
three zones of variable surface area (Fig. 5). In addition to
the three zones, with smash enabling different assemblies
of operators, two structures are compared, s1 and s2, repre-
senting the simplest (Msnw: zero, Mrr: grd, and Mhy: lag0)
and the most complex (Msnw: ssn, Mrr: vic3l, and Mhy:
kw) structures in terms of the number of operations per cell
respectively. All the simulations (1 year of simulation at a

daily time step) were run on a server with AMD EPYC 7643
CPUs (Appendix E) and 255 GB of RAM.

The range of computation times across all simulations
(Fig. 6) varies from approximately 0.1 s for a direct run with
eight threads in the Sardinia region using the s1 structure
to just over an hour for an adjoint run with one thread in
the North America region using the s2 structure. Systemat-
ically, regardless of the region, number of threads, or type
of run, the difference in computation time between the s1
and s2 structures is about a factor of 2. Regarding the differ-
ences between a direct run and an adjoint run, the computa-
tion time factor varies depending on the number of threads,
ranging from a factor of 12 for 1 thread to a factor of 6 for
16 threads. This difference highlights better thread scaling
for the adjoint run, with a speedup of around 4 for a direct
run and 7 for an adjoint run with 16 threads, likely because
the adjoint run is more computationally demanding than the
forward run. It is worth noting that in the case of the Sar-
dinia region, which has the fewest grid cells, thread scaling
is poor compared to the other two regions, even reaching the
limit where thread overhead increases the computation time.
Although the time-stepping loop cannot be parallelized, and
the routing scheme in smash must be solved sequentially
from upstream to downstream, allowing only partial paral-
lelization over the entire spatial domain, the approach still
offers a substantial reduction in computation time.

Regarding memory usage (Table 2), values range from
0.17 GB for a direct run in the Sardinia region with the s1
structure to 27 GB for an adjoint run in the North America
region with the s2 structure. Systematically, memory usage
is higher in the adjoint run than in the direct run and scales
with the size of the domain. The main contributor to memory
usage in the adjoint run is the forward sweep, which includes
a time-stepping loop where iteration n depends on the results
of previous iterations. The memory allocation during the for-
ward sweep is freed during the backward sweep, but it still
results in a significant memory peak. This memory peak has
been considerably reduced in the smash version presented
here by including checkpoints within the time-stepping loop.
These checkpoints allow us to alternate between forward and
backward sweeps, leading to much smaller memory peaks
compared to a single sweep. The downside of using check-
points is the increase in computation time, but this was con-
sidered less significant compared to the memory saving (see
Hascoet and Pascual, 2013, for further details about forward
and backward sweeps and checkpointing).

In conclusion, these computation times and memory us-
age demonstrate the feasibility of the model for large-scale
applications. The critical point is parameter estimation. In
the case of parameter estimation using a gradient-based op-
timizer, one or more adjoint runs are evaluated at each iter-
ation, significantly multiplying the total computation time.
As an example, Huynh et al. (2024b) performed a calibration
at a spatial resolution of 1 km over a domain of more than
20 000 cells and at a temporal resolution of 1 h over a period
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Figure 4. smash documentation home page accessible at https://smash.recover.inrae.fr (last access: 25 July 2025).

Table 2. Memory usage in gigabyte (GB) for both direct and adjoint
run simulations over a period of 1 year at a daily time step.

Zone Structure Memory Memory
usage usage
(GB) (GB)
direct adjoint
run run

Sardinia s1 0.17 0.18
s2 0.18 0.20

Great Britain/Ireland s1 0.37 0.46
s2 0.52 0.86

North America s1 7.64 11.27
s2 12.7 26.68

of 4 years. The calibration required 350 calls to the adjoint
model, resulting in a computation time of around 180 h. Cur-
rently, memory usage in the adjoint run is less of a limiting
factor than computation time for large-domain applications.
Thus, further improving computation time is a priority to ex-
pand the model’s application to finer spatial and temporal
scales.

4 Applications

4.1 Numerical experiments presented

The main functionalities and operators of smash are illus-
trated in open-source global datasets over the contiguous
US (CONUS) (Table 3, Fig. 7) and in a higher-resolution
open-source regional dataset in France (Table 4, Fig. 7).
Models in CONUS will be at a spatial resolution of 1′30′′

(∼ 3km×3km) and daily time step, while higher-resolution
models will be set up in France at 500 m spatial resolution
and an hourly time step. The numerical results presented are
as follows:

– split-sample temporal cross-validation of different
model structure combinations over CONUS (Sect. 4.2)

Geosci. Model Dev., 18, 7003–7034, 2025 https://doi.org/10.5194/gmd-18-7003-2025
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Figure 5. Spatial representations of the three different geographical regions used in the performance benchmarks.

– regionalization over CONUS (Sect. 4.3)

– high-resolution regionalization over the Aude River in
France (Sect. 4.4).

4.2 CONUS – CAMELS: split-sample temporal
cross-validation

4.2.1 Numerical experiment settings

A set of 482 catchments (Fig. 7) is modeled with the follow-
ing experimental design:

– A set of hydrological models is considered, includ-
ing four GR-like structures (Perrin et al., 2003)
(Mrr: gr4, gr5, grd, loieau) and one VIC-like struc-
ture (Liang et al., 1994) (Mrr: vic3l). The way
in which these models are integrated into smash,
which differs from the original models, is described
in the documentation (https://smash.recover.inrae.fr/

math_num_documentation/forward_structure.html, last
access: 25 July 2025) in the forward structure section.
For each hydrological model, the same snow module
(Msnw: ssn) and routing module (Mhy: kw) are used.
A description of the calibrated parameters is provided
in Appendix A.

– A split-sample temporal validation procedure (Klemeš,
1983) is set up, splitting the time window covered by
hydrometric data into two complementary subsets over
sub-periods of 7 years: p1 (from 1 August 2000 to
31 July 2007) and p2 (from 1 August 2007 to 31 July
2014) are both used for calibration and validation. For
each period, the 10 preceding years are used as model
“warm-up”.

– Two calibration mappings on each catchment are tested,
including spatially uniform parameters (gradient-free
optimization) and spatially distributed parameters
(gradient-based optimization).

https://doi.org/10.5194/gmd-18-7003-2025 Geosci. Model Dev., 18, 7003–7034, 2025
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Figure 6. Benchmarking results for both direct (a–c) and adjoint (d–f) run simulations over a period of 1 year at a daily time step, using
varying numbers of threads (from 1 to 16). Each plot corresponds to a different geographical region: Sardinia, Great Britain/Ireland, and
North America from left to right.

– A single-gauge cost function based on the KGE (J =
1−KGE) is used.

4.2.2 Results

The performance of the models resulting from the spa-
tially uniform or distributed calibration is evaluated using
the Kling–Gupta efficiency (KGE) for both the calibration
and the validation in period p2 only for brevity in this soft-
ware article (Fig. 8). Overall, performance is satisfactory,
with a median between 0.8 and 0.87 for KGE over the cal-
ibration period and between 0.72 and 0.78 for KGE over
the validation period. With regard to the calibration method,
for any model, calibration and validation performances are
better with a spatially distributed calibration. This is an ex-
pected result for the calibration period, given that spatially
distributed calibration is over-parameterized and offers the
maximum level of flexibility in the search for the optimal

set of parameters, unlike spatially uniform calibration, which
is under-parameterized, imposing a single parameter set for
each catchment. However, despite this over-parameterization
with calibration of spatially distributed parameters, which
can lead to over-fitting over the calibration period, the models
offer good performance in temporal validation. The differ-
ences between the structures are mainly explained by (i) the
varying levels of model complexity, two parameters for the
grd model and four for the gr5 model, and (ii) the expert
knowledge of the different models, which influences, among
other things, the choice of initial values, bounds, and param-
eters to be optimized. The smash historical development
based on the GR-like models led to much more substantial
expert knowledge than for the VIC-like model recently im-
plemented. Summary statistics of the calibrated parameters
are provided in Appendix A.

Concerning the spatial distribution of KGE values (Fig. 9),
the results for the gr4 hydrological model after a spatially
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Table 3. Model input data from open-source databases available worldwide used over CONUS: atmospheric forcings I = {P ,N ,E,T },
flow direction map D�, physical descriptors D = {d1, . . .,d6} for regionalization based on the Beck et al. (2020) study, and discharge time
series Q∗. The liquid and solid precipitation, P and N , derived from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) (Beck
et al., 2019), is divided into liquid and solid parts using a parametric S-shaped curve (Garavaglia et al., 2017) and is disaggregated from
0.1 to 0.025°. The temperature and potential evapotranspiration, T and E, derived from ERA5 (Hersbach et al., 2020), are disaggregated
from 0.25 to 0.025°, using the Oudin formula (Oudin et al., 2005) to obtain the potential evapotranspiration. The flow direction, D�, from
MERIT Hydro IHU (Eilander et al., 2021), was upscaled from 0.008 to 0.025° using pyflwdir (https://github.com/Deltares/pyflwdir, last
access: 25 July 2025) (Eilander, 2023). The topographic slope, d1, is derived from MERIT DEM (Yamazaki et al., 2017), upscaled from
0.008 to 0.025° using the gdaldem slope (https://gdal.org/en/latest/programs/gdaldem.html, last access: 25 July 2025). The sand and clay
content, d2 and d3, from SoilGrids (Hengl et al., 2017), was upscaled and reprojected from 250 m to 0.025°. The meteo-climatic data, d4, d5,
and d6, are derived from P and E. The discharge time series,Q∗, comes from Caravan-CAMELS (Kratzert et al., 2023; Addor et al., 2017).

Notation Type Description Unit Source

P Atmospheric forcing Liquid precipitation (mmd−1) MSWEP (Beck et al., 2019)

N Atmospheric forcing Solid precipitation (mmd−1) MSWEP (Beck et al., 2019)

E Atmospheric forcing Potential evapotranspiration using Oudin
formula (Oudin et al., 2005)

(mmd−1) ERA5 temperature (Hersbach et al., 2020)

T Atmospheric forcing Temperature (°C) ERA5 temperature (Hersbach et al., 2020)

D� Topography Flow direction (–) MERIT Hydro IHU (Eilander et al., 2021)

d1 (slope) Topography Topographic slope (°) MERIT (Yamazaki et al., 2017)

d2 (sand) Soil Sand content, averaged over all layers (gkg−1) SoilGrids (Hengl et al., 2017)

d3 (clay) Soil Clay content, averaged over all layers (gkg−1) SoilGrids (Hengl et al., 2017)

d4 (prcp) Meteo-climatic Mean annual precipitation (mmyr−1) MSWEP (Beck et al., 2019)

d5 (pet) Meteo-climatic Mean annual potential evapotranspiration using
the Oudin (Oudin et al., 2005)

(mmyr−1) ERA5 temperature (Hersbach et al., 2020)

d6 (hi) Meteo-climatic Mean annual humidity index (ratio of
precipitation to potential evapotranspiration)

(–) MSWEP (Beck et al., 2019), ERA5 temperature
(Hersbach et al., 2020)

Q∗ Hydrometric Discharge time series (m3 s−1) Caravan-CAMELS (Kratzert et al., 2023;
Addor et al., 2017)

Figure 7. Location of the catchments for the CONUS (a) and France (b) applications. For the split-sample test over CONUS, all 482
catchments from the CAMELS dataset (Addor et al., 2017) are used (orange and black circles), whereas for the regionalization, a subset of
398 catchments is used (only orange circles), removing catchments whose performance is less than 0.75 KGE from local calibration. For
the France application over the Aude River, a set of 25 sub-catchments is used for regionalization, with 12 upstream catchments (red-shaded
regions) and 13 downstream catchments (gray-shaded regions).
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Table 4. Model input data from national open-source databases used over the Aude River in France: atmospheric forcings I = {P ,E}, flow
direction map D�, physical descriptorsD = {d1, . . .,d7} for regionalization, and discharge time seriesQ∗. The liquid precipitation,P , comes
from the ANTILOPE J+1 Météo-France product (Champeaux et al., 2009), a radar–gauge reanalysis disaggregated from 1 km to 500 m. The
potential evapotranspiration, E, is derived from the SAFRAN Météo-France temperature (Quintana-Seguí et al., 2008; Vidal et al., 2010)
disaggregated from 8 km to 500 m, using the Oudin formula (Oudin et al., 2005) to obtain daily interannual potential evapotranspiration.
The flow direction, D�, comes from HydroDem (Leblois and Sauquet, 1999). The land cover data, d1, d2, d3, and d4, are derived from
CORINE Land Cover 2018 (https://doi.org/10.2909/71c95a07-e296-44fc-b22b-415f42acfdf0, last access: 25 July 2025), rasterized at 50 m
and upscaled to 500 m using the average resampling method. The topographic slope, d5, is derived from the HydroDem DEM (Leblois
and Sauquet, 1999) using the gdaldem slope. The drainage density, d6, comes from Organde et al. (2013), representing the number of cells
crossed by a river. The percentage of karst, d7, comes from BDLISA (https://bdlisa.eaufrance.fr, last access: 25 July 2025), rasterized at 50 m
and upscaled to 500 m using the average resampling method. The discharge time series, Q∗, comes from the HydroPortail Service Central
Vigicrues (https://hydro.eaufrance.fr, last access: 25 July 2025).

Notation Type Description Unit Source

P Atmospheric forcing Liquid precipitation (mmh−1) Antilope J+1 from Météo-France (Champeaux
et al., 2009)

E Atmospheric forcing Potential evapotranspiration using the Oudin
formula (Oudin et al., 2005)

(mmh−1) SAFRAN temperature from Météo-France
(Quintana-Seguí et al., 2008; Vidal et al., 2010)

D� Topography Flow direction (–) HydroDem (Leblois and Sauquet, 1999)

d1 (artif) Land cover Artificial cover rate (–) CORINE Land Cover 2018

d2 (forest) Land cover Forest cover rate (–) CORINE Land Cover 2018

d3 (veg) Land cover Vegetation cover rate (–) CORINE Land Cover 2018

d4 (ow) Land cover Open water cover rate (–) CORINE Land Cover 2018

d5 (slope) Topography Topographic slope (°) HydroDem (Leblois and Sauquet, 1999)

d6 (ddr) Topography Drainage density (–) Organde et al. (2013)

d7 (karst) Hydrogeology Percentage of karst (%) BDLISA (https://bdlisa.eaufrance.fr, last
access: 25 July 2025)

Q∗ Hydrometric Discharge time series (m3 s−1) HydroPortail SCHAPI (https://hydro.
eaufrance.fr, last access: 25 July 2025)

distributed calibration show that the best performances are
located over the east and west sides of CONUS, while the
worst performances are located over the Great Plains area.
This spatial pattern of hydrological model performance has
also been obtained in other studies (Newman et al., 2015;
Beck et al., 2016; Mizukami et al., 2017).

4.3 CONUS – CAMELS: regionalization

4.3.1 Numerical experiment settings

A set of 398 catchments (Fig. 7) from the CAMELS dataset
(Addor et al., 2017) is evaluated in a regionalization context
at a spatial resolution of 1′30′′ and at a daily time step using
worldwide databases (Table 3). The experimental design is
as follows:

– A subset of catchments from Sect. 4.2 is selected, elim-
inating catchments where KGE< 0.75 from local cal-
ibration. This selection is made in order to avoid in-

troducing catchments whose performance could greatly
degrade the calibration metric in a multi-gauge context.

– One hydrological model is considered, which is identi-
cal to the gr4 model in Sect. 4.2 with the same snow and
routing module (Msnw: ssn, Mrr: gr4, and Mhy: kw).
A description of the calibrated parameters is provided
in Appendix B.

– A spatiotemporal validation procedure is set up by the
following:

– splitting the time window covered by hydromet-
ric data into two complementary subsets over sub-
periods of 7 years: p1 (from 1 August 2000 to
31 July 2007) and p2 (from 1 August 2007 to
31 July 2014), with p1 used as the calibration pe-
riod and p2 as the validation period (for each pe-
riod, 10 years is used as model “warm-up”);

– randomly splitting the catchment set into four
groups, calibrating on three of the groups with the
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Figure 8. Comparison of the Kling–Gupta efficiency (KGE) performance of different smash hydrological models under spatially uniform
and distributed calibration. The models evaluated include gr4, gr5, grd, loieau, and vic3l. Panel (a) shows results for the calibration, while
panel (b) displays results for temporal validation in period p2. For each model, results are shown for spatially uniform (solid boxes) and
spatially distributed (hatched boxes) calibrations, with the median value highlighted at the top of the boxplot.

Figure 9. Spatial distribution of the Kling–Gupta efficiency (KGE) scores across different catchments for the gr4 model under local cali-
bration with spatially distributed parameters. Panel (a) shows KGE scores during the calibration period, while panel (b) shows results for
temporal validation, using the p2 period.

fourth group held out and used for validation, and
then rotating them such that each group is used for
validation once.

– Three calibration mappings across the whole CONUS
are tested:

– Uniform. Spatially uniform parameters (gradient-
free optimization) are used.

– Multi-linear. Multiple linear regression is used as
a transfer function from descriptors to spatialized
parameters (gradient-based optimization).

– ANN. A multi-layer perceptron composed of three
hidden layers is used as a transfer function from de-

scriptors to spatialized parameters (gradient-based
optimization).

– A multi-gauge cost function is used based on the aver-
age KGE of the calibrated catchments (J = 1

NG

∑NG1−
KGE).

– A final calibration is performed over the total period
p1+p2, including all gauges with the ANN mapping
and the same multi-gauge cost function used to analyze
the output model parameters and their correlations with
input descriptors.
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Figure 10. Spatiotemporal validation performance over period p2. The boxplots in panel (a) represent the distribution of Kling–Gupta effi-
ciency (KGE) scores for three calibration methods: uniform, multi-linear, and artificial neural network (ANN). Median values are displayed
at the top of each boxplot. The map in panel (b) illustrates the spatial distribution of the KGE values for the ANN mapping across different
catchments.

4.3.2 Results

The regional calibration over the CAMELS dataset was per-
formed on four groups of randomly selected catchments, as
explained above. The performances in the spatial and/or tem-
poral validation are shown in Fig. 10 and detailed by catch-
ment group in Table B2 for the ANN mapping, which is the
best performer. In the spatiotemporal validation, the most
challenging extrapolation case, a uniform mapping leads to
a median KGE of 0.5, while the two regionalization meth-
ods result in a KGE of 0.61 or 0.63 respectively for multi-
linear and ANN mapping. These fairly good performances,
obtained with a relatively simple setup in terms of descrip-
tors and cost function in particular, are comparable with re-
gionalization works in the literature (Mizukami et al., 2019;
Beck et al., 2020; Feng et al., 2024). In a manner similar to
the previous section (Sect. 4.2), the worst performances are
found in the Great Plains and, more clearly than in the local
calibrations, in the western part of the country.

Following the evaluation of performance in spatiotempo-
ral validation, a regional calibration with the ANN mapping
over the period including p1 and p2 and with all gauges is
carried out. This calibration enables us to analyze the cor-
relations between the physiographic descriptors and the pa-
rameters obtained (Fig. 11) in a more robust way than with
the various spatiotemporal validation groups. The correlation
matrix highlights significant linear correlations, notably be-
tween the melt coefficient (kmlt) and the topographical slope
(d1), the size of the production reservoir (cp) and the mean
annual rainfall (d4), and the moisture content (d6) and the
routing parameters (akw, bkw) with the same moisture con-
tent (d6). Conversely, the exchange parameter (kexc), a pa-
rameter directly affecting the model’s mass balance in a non-

conservative way, shows almost no linear correlation with the
descriptors and is almost spatially uniform over the whole
domain around the value of 0. While a detailed regionaliza-
tion study on CAMELS datasets using our original adjoint-
based algorithms is beyond the scope of this software article,
the achieved performance across this large sample already
showcases the algorithm’s potential for global applicability.
It also demonstrates the algorithm’s effectiveness in enforc-
ing spatially distributed hydrologic model constraints at the
pixel scale, leading to seamless parameter maps at a reason-
able computational cost. Regarding computation times, the
calibration with ANN mapping over periods p1 and p2 took
95 h. This calibration involved 350 iterations, corresponding
to 350 calls to the adjoint model, and was performed using 16
threads. For comparison, a single adjoint model run takes ap-
proximately 16 min, whereas a direct model run takes around
5 min using the same number of threads.

Finally, leveraging the fully distributed nature of smash,
regional streamflow maps can be generated. An example is
shown in Fig. 12, which illustrates the dynamics of Hurri-
cane Katrina over a 6 d period from 27 August to 1 Septem-
ber 2005. Notably, the routing model used in this exercise,
the kinematic wave, was applied uniformly across the entire
domain, including areas outside its validity range, such as
downstream of major rivers on flat topography. Further work
focuses on enriching smash with hydraulic models, starting
with a 1D and 2D dynamic wave model that neglects the con-
vective acceleration term but retains local acceleration and
pressure gradient terms (Bates et al., 2010) for numerical
implementation simplicity. Additionally, physics-based dif-
ferential equations for hydrologic water balance at the pixel
scale will be incorporated. Hybrid physics–AI formulations,
which embed neural networks capable of learning param-
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Figure 11. Analysis of input descriptors and output model parameters for the ANN mapping. Spatial distribution of physical descriptors
(d1–d6) in the top panel, with details provided in Table 3. Spatial distribution of calibrated hydrological parameters (kmlt, cp, ct, kexc, akw,
bkw) in the lower-left panel and linear correlation between descriptors and parameters in the lower-right panel.

eterization and potentially uncertain model operators from
data, can be explored thanks to the differentiable nature of
the models within smash.

4.4 France – Aude River: high-resolution
regionalization

4.4.1 Numerical experiment settings

A set of 35 catchments (Fig. 7) over the Aude River in France
(Addor et al., 2017) is evaluated in a regionalization context
at a spatial resolution of 500 m and at an hourly time step
using national databases (Table 4). This section is similar to
the previous one, using the same regionalization method, but
with differences in the gauges selected for calibration and
validation and differences in the cost function. This section
focuses on national data at a finer spatiotemporal scale, ap-
plying the method at the watershed level, which is more rel-
evant for operational flood forecasting. The experimental de-
sign is as follows:

– One hydrological model is considered, identical to the
gr4 model in Sect. 4.2 with the same routing module
but without any snow modeling given the limited im-
pact of snow in this Mediterranean basin (Msnw: zero,
Mrr: gr4, Mhy: kw). A description of the calibrated pa-
rameters is provided in Appendix C.

– A spatiotemporal validation procedure is set up by the
following:

– splitting the time window covered by hydromet-
ric data into two complementary subsets over sub-
periods of 4 years: p1 (from 1 August 2015 to
31 July 2019) and p2 (from 1 August 2019 to
31 July 2023), with p1 used as the calibration pe-
riod and p2 as the validation period (for each pe-
riod, 1 year is used as model “warm-up”)

– splitting the catchment set into two groups, up-
stream and downstream, calibrating on the up-
stream group and validating on the downstream
group.

– Three calibration mappings across the whole Aude
River are tested:

– Uniform. Spatially uniform parameters (gradient-
free optimization) are used.

– Multi-linear. Multiple linear regression is used as
the transfer function from descriptors to spatialized
parameters (gradient-based optimization).

– ANN. A multi-layer perceptron composed of three
hidden layers is used as the transfer function from
descriptors to spatialized parameters (gradient-
based optimization).
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Figure 12. Streamflow dynamics during Hurricane Katrina from 27 August to 1 September 2005 for the ANN mapping. Each panel depicts
the streamflow distribution across the affected region. To visualize the temporal evolution of the spatialized discharge pattern, note that the
kinematic wave routing was applied on flat topography, i.e., out of its validity range.

Figure 13. Performance in spatiotemporal validation over period p2 using calibration on upstream gauges (triangles). The boxplots in panel
(a) represent the distribution of Nash–Sutcliffe efficiency (NSE) scores for the three calibration methods: uniform, multi-linear, and ANN.
Median values are displayed at the top of each boxplot. The map in panel (b) illustrates the spatial distribution of the NSE values for the
ANN mapping for the downstream validation catchments.

– A multi-gauge cost function is used based on the
average NSE of the calibrated catchments (J =

1
NG

∑NG(1−NSE)).
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Figure 14. Analysis of input descriptors and output model parameters for the ANN descriptor-to-parameter mapping. Spatial distribution of
physical descriptors (d1–d7) in the top panel, with details provided in Table 4. Spatial distribution of calibrated hydrological parameters (cp,
ct, kexc, akw, bkw) in the lower-left panel and linear correlation between descriptors and parameters in the lower-right panel.

Figure 15. Observed and simulated streamflow of the six most downstream gauges of the Aude River for the ANN mapping. Each panel
represents streamflow (m3 s−1) for a specific gauge. The dashed black lines indicate observed values (Obs), while the solid red lines represent
simulated values (Sim).

4.4.2 Results

The results of the regional mappings were validated on
downstream gauges following Huynh et al. (2024b). The

spatiotemporal validation performance, which assesses the
model outside of the calibration gauges and period, is par-
ticularly challenging at such a high resolution and given the
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Figure 16. Spatially distributed gradients of the cost function J with respect to the model parameters at initial and final iterations for ANN
mapping. The first row shows the gradients ∇θ∗J at the initial iteration, while the second row presents the gradients ∇

θ̂
J at the final iteration

after optimization. Each column corresponds to the partial derivative of J with respect to a specific parameter: cp, ct, kexc, akw, and bkw.
These gradients are used in the optimization process of the control vector ρ using ∇ρJ =∇θJ.∇ρθ with θ =N (.,ρ), where N is the
multi-layer perceptron used.

complex variabilities of physical factors and hydrological re-
sponses over this Mediterranean flash-flood-prone case. The
results are shown in validation only, for brevity again, in
Fig. 13. A uniform mapping yields a poor median NSE of
0.15, while descriptor-to-parameter mappings achieve 0.62
and 0.69 for multi-linear and ANN approaches respectively.
Conceptual parameter maps obtained by learning from phys-
ical descriptors are shown in Fig. 14 for the ANN mapping
only (with the best NSE result). The correlation matrix high-
lights significant correlations, especially between production
capacity (cp) and topographic slope (d5) and between ex-
change parameter (kexc) or routing parameter (akw) and topo-
graphic slope (d5). For each parameter, a correlation is also
found with vegetation cover rate (d3) or forest cover rate (d2).
This illustrates the interpretability of our neural-network-
based regionalization algorithm in the space of conceptual
model parameters. Regarding computation times, the calibra-
tion with ANN mapping over period p1 took 31 h. This cal-
ibration involved 350 iterations, corresponding to 350 calls
to the adjoint model, and was performed using 10 threads.
For comparison, a single adjoint model run takes approxi-
mately 6 min, whereas a direct model run takes around 1 min
and 30 s using the same number of threads. A key feature
of smash is its ability to accurately and efficiently com-
pute spatially distributed cost gradients, as shown in Fig. 16

in the conceptual parameter (θ ) space for interpretability, in
the case of a differentiable spatially distributed hydrological
model that includes an NN-based regionalization mapping
and a kinematic wave routing model (the partial differential
equation numerical solver also being differentiated). Finally,
simulated hydrographs are plotted for the six most down-
stream validation gauges in Fig. 15, with better reproduction
for most downstream gauges in the present test configura-
tion with the calibrated ANN regionalization (in agreements
with results of Huynh et al., 2024b, over the whole French
Mediterranean region).

These performances are very encouraging since they were
obtained with a relatively simple regionalization setup in
a complex flash-flood-prone area. Further research with
smash will focus on improving the versatility of the hy-
drological model to better account for high rainfall inten-
sities (e.g., Peredo et al., 2022) or groundwater/karstic ef-
fects, with classical or hybrid differential equations capable
of learning from data at multiple scales, and to enrich region-
alization algorithms with advanced cost functions and spatial
relaxation/regularization strategies. These improvements are
necessary to better extract information with the VDA algo-
rithm from multiple discharge gauges and other data sources
(descriptors, satellite moisture, temperature, etc.). Addition-
ally, incorporating more realistic hydraulic routing embed-
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ded within the differentiable hydrologic model will also en-
able the integration of hydraulic information (water levels,
flow videos, etc.), as introduced in Pujol et al. (2022).

5 Other smash features

In addition to the core differentiable spatialized hydrologi-
cal solvers and regionalization learning algorithms illustrated
above, smash enables performing the following:

– automatic hydrograph segmentation and flood detection
over large samples (Huynh et al., 2023);

– parameter calibration using signature-based cost func-
tions (Huynh et al., 2023) in addition to continuous met-
rics;

– parameter calibration using a spatial regularization term
(Jay-Allemand et al., 2020);

– initial state estimation, including with regionalization
mapping, even over short time windows, which is appli-
cable to short-range VDA for operational forecasting;

– simulation of discharge ensembles from rainfall ensem-
ble forecasting;

– Bayesian approach for parameter estimation and uncer-
tainty quantification, with the consideration of structural
model errors and observation errors.

6 Conclusions

The recently released smash framework represents an ad-
vancement in modular, regionalizable, and differentiable nu-
merical modeling, as well as in hydrological data assimi-
lation. This conclusion synthesizes the key principles, im-
plementation features, performance indicators, and future
prospects of smash, as presented in this article.
smash is built around three foundational principles: a

modular operator chaining, enabling flexible representation
of vertical and lateral hydrological processes; a regionaliza-
tion mapping through hybrid approaches, combining concep-
tual models with descriptor-to-parameter neural networks;
and a robust inverse algorithm that supports VDA.

The software leverages automatic differentiation to facili-
tate gradient-based calibration. Its seamless integration with
Python via f90wrap ensures user-friendly access and flexibil-
ity, complemented by an automatic build system that simpli-
fies deployment. Furthermore, smash supports parallel com-
puting on CPUs, significantly accelerating computations for
large-scale applications.

In terms of hydrological modeling, smash achieves inter-
esting results. Using CAMELS datasets, a median KGE>
0.8 is observed in local spatially distributed calibration
for daily GR-like and VIC-like model structures at dx =

1′30′′ (∼ 3km). Additionally, regionalization learning across
CONUS of conceptual parameters from physical descrip-
tors yields KGE> 0.6 in spatiotemporal validation. High-
resolution hourly modeling at dx = 500m for Mediterranean
flash-flood scenarios demonstrates NSE> 0.6.

Planned enhancements to smash include the integration
of additional differentiable hydrological, hydraulic, and land
surface models; the expansion of hybrid physics–AI frame-
works; and the refinement of data assimilation techniques.
These advancements aim to further improve model accuracy,
computational efficiency, and applicability in both research
and operational settings.
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Appendix A: CONUS – CAMELS: split-sample
temporal cross-validation

Table A1. Summary of model operators and their associated parameters. For each operator, the parameter name, description, initial value,
and allowable value range are provided.

Operator name Parameter name Parameter description Parameter initial value Parameter range

Msnw: ssn kmlt Melt coefficient (mm°C−1 d−1) 1 [0.01, 100]

Mrr: gr4 cp Maximum capacity of the production reservoir (mm) 200 [1, 2000]
ct Maximum capacity of the transfer reservoir (mm) 500 [1, 2000]
kexc Exchange coefficient (mmd−1) 0 [−50, 50]

Mrr: gr5 cp Maximum capacity of the production reservoir (mm) 200 [1, 2000]
ct Maximum capacity of the transfer reservoir (mm) 500 [1, 2000]
kexc Exchange coefficient (mmd−1) 0 [−50, 50]
aexc Exchange threshold (–) 0 [0.001, 0.999]

Mrr: grd cp Maximum capacity of the production reservoir (mm) 200 [1, 5000]
ct Maximum capacity of the transfer reservoir (mm) 500 [1, 5000]

Mrr: loieau ca Maximum capacity of the production reservoir (mm) 200 [1, 2000]
cc Maximum capacity of the transfer reservoir (mm) 500 [1, 2000]
kb Transfer coefficient (–) 1 [0.01, 4]

Mrr: vic3l b Variable infiltration curve parameter (–) 0.1 [0.001, 0.4]
cusl Maximum capacity of the upper soil layer (mm) 100 [10, 500]
cmsl Maximum capacity of the medium soil layer (mm) 100 [50, 1000]
cbsl Maximum capacity of the bottom soil layer (mm) 100 [500, 2500]
ks Saturated hydraulic conductivity (mmd−1) 20 Not optimized
pbc Brooks and Corey exponent (–) 10 Not optimized
ds Nonlinear baseflow threshold maximum velocity (–) 0.01 [0.001, 1]
dsm Maximum velocity of baseflow (mmd−1) 0.5 [0.2, 1]
ws Nonlinear baseflow threshold soil moisture (–) 0.8 [0.1, 1]

Mhy: kw akw Alpha kinematic wave parameter (–) 5 [0.001, 50]
bkw Beta kinematic wave parameter (–) 0.6 [0.001, 1]
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Table A2. Summary statistics of the calibrated parameters across the set of 482 catchments. For each parameter, the median, standard
deviation, and coefficient of variation (µ/σ ) are reported for the two calibration configurations: spatially uniform (“Uniform”) and spatially
distributed (“Distributed”). For the spatially distributed calibration, statistics were computed based on the spatial average of parameter values
within each catchment.

Model name Parameter name Median Standard deviation Coefficient of variation
(Uniform || Distributed) (Uniform || Distributed) (Uniform || Distributed)

gr4 kmlt 1.49 || 1.68 18.30 || 18.34 3.14 || 2.92
cp 96.27 || 104.98 247.65 || 240.72 1.39 || 1.37
ct 24.86 || 30.42 278.39 || 262.29 2.56 || 2.41
kexc 0.19 || 0.05 7.70 || 7.96 −6.77 || −5.01
akw 3.61 || 3.55 13.57 || 13.57 1.51 || 1.52
bkw 0.34 || 0.34 0.42 || 0.42 0.96 || 0.96

gr5 kmlt 1.43 || 1.64 17.72 || 17.67 3.25 || 3.09
cp 90.03 || 89.75 211.25 || 201.84 1.32 || 1.32
ct 23.01 || 31.56 317.23 || 310.26 2.72 || 2.60
kexc 0.06 || −0.01 4.52 || 4.90 −21.66 || −15.81
aexc 0.14 || 0.13 0.20 || 0.20 0.96 || 0.97
akw 3.97 || 3.81 15.64 || 15.64 1.45 || 1.46
bkw 0.34 || 0.34 0.41 || 0.41 0.95 || 0.95

grd kmlt 1.39 || 1.76 18.24 || 18.32 3.23 || 2.91
cp 62.13 || 95.86 617.23 || 715.60 2.53 || 2.17
ct 38.84 || 44.99 356.07 || 384.23 2.84 || 2.59
akw 1.89 || 1.96 18.74 || 18.72 1.55 || 1.55
bkw 0.34 || 0.33 0.42 || 0.42 0.92 || 0.92

loieau kmlt 1.46 || 1.65 18.10 || 18.14 3.13 || 2.94
ca 134.24 || 306.95 303.37 || 320.17 1.33 || 0.82
cc 14.27 || 72.51 333.68 || 375.33 2.81 || 1.67
kb 1.10 || 1.17 0.55 || 0.55 0.48 || 0.47
akw 2.66 || 3.65 14.36 || 14.35 1.64 || 1.48
bkw 0.38 || 0.38 0.43 || 0.41 0.92 || 0.89

vic3l kmlt 1.62 || 1.98 18.23 || 18.15 2.86 || 2.59
b 0.15 || 0.14 0.15 || 0.15 0.80 || 0.83
cusl 84.36 || 86.63 122.29 || 121.54 1.03 || 1.00
cmsl 170.56 || 178.35 361.36 || 359.62 1.01 || 1.01
cbsl 1799.74 || 1799.74 704.74 || 702.97 0.44 || 0.44
ds 0.12 || 0.12 0.33 || 0.32 1.26 || 1.24
dsm 0.50 || 0.50 0.23 || 0.23 0.45 || 0.45
ws 0.80 || 0.80 0.26 || 0.26 0.34 || 0.34
akw 50.00 || 49.45 19.93 || 19.89 0.60 || 0.60
bkw 0.44 || 0.43 0.31 || 0.30 0.64 || 0.64
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Appendix B: CONUS – CAMELS: regionalization

Table B1. Summary of model operators and their associated parameters. For each operator, the parameter name, description, initial value,
and allowable value range are provided.

Operator name Parameter name Parameter description Parameter initial value Parameter range

Msnw: ssn kmlt Melt coefficient (mm°C−1 d−1) 1 [0.01, 100]

Mrr: gr4 cp Maximum capacity of the production reservoir (mm) 200 [1, 2000]
ct Maximum capacity of the transfer reservoir (mm) 500 [1, 2000]
kexc Exchange coefficient (mmd−1) 0 [−50, 0]

Mhy: kw akw Alpha kinematic wave parameter (–) 5 [0.001, 50]
bkw Beta kinematic wave parameter (–) 0.6 [0.001, 1]

Table B2. Median KGE obtained in regionalization mapping calibration–validation over four groups of randomly selected basins.

Group Calibration KGE50 Spatial validation KGE50 Temporal validation KGE50 Spatiotemporal validation KGE50

0 0.65 0.62 0.65 0.65
1 0.62 0.58 0.65 0.58
2 0.65 0.65 0.64 0.67
3 0.65 0.63 0.65 0.63

Appendix C: France – Aude: high-resolution
regionalization

Table C1. Summary of model operators and their associated parameters. For each operator, the parameter name, description, initial value,
and allowable value range are provided.

Operator name Parameter name Parameter description Parameter initial value Parameter range

Mrr: gr4 cp Maximum capacity of the production reservoir (mm) 200 [1, 2000]
ct Maximum capacity of the transfer reservoir (mm) 500 [1, 2000]
kexc Exchange coefficient (mmh−1) 0 [−20, 0]

Mhy: kw akw Alpha kinematic wave parameter (–) 5 [0.001, 50]
bkw Beta kinematic wave parameter (–) 0.6 [0.001, 1]

Appendix D: smash operators

This section describes the various operators available in
smash with mathematical or numerical expressions, input
data [I ,D](x, t), tunable conceptual parameters θ(x, t), and
simulated states and fluxes U(x, t)=

[
Q,h,q

]
(x, t). These

operators are written below for a given pixel x of the 2D
spatial domain � and for a time t in the simulation window
]0,T ].

D1 Snow operator Msnw

– zero

This snow operator simply means that there is no snow
operator.

mlt(x, t)= 0

Here mlt is the melt flux.
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– ssn

This snow operator is a simple degree-day snow opera-
tor.

Update the snow reservoir state hs for t∗ ∈ ]t − 1, t[:

hs(x, t
∗)= hs(x, t − 1)+ S(x, t).

Compute the melt flux mlt:

mlt(x, t)={
0 if Te(x, t)≤ 0

min(hs(x, t
∗),kmlt(x) · Te(x, t)) otherwise.

Update the snow reservoir state hs:

hs(x, t)= hs(x, t
∗)−mlt(x, t),

with mlt being the melt flux, S the snow, Te the temper-
ature, kmlt the melt coefficient, and hs the state of the
snow reservoir.

D2 Hydrological operator Mhy

– gr4

This hydrological operator is derived from the GR4
model (Perrin et al., 2003).

Interception Compute interception evapotranspiration
ei:

ei(x, t)=min
(
E(x, t), P (x, t)+mlt(x, t)

+ h̃i(x, t − 1) · ci(x)
)
.

Compute the neutralized precipitation pn and evap-
otranspiration en:

pn(x, t)=max
(
0, P (x, t)+mlt(x, t)

− ci(x)(1− h̃i(x, t − 1))− ei(x, t)
)

en(x, t)= E(x, t)− ei(x, t).

Update the normalized interception reservoir state
h̃i:

h̃i(x, t)= h̃i(x, t − 1)

+
P(x, t)+mlt(x, t)+ ei(x, t)−pn(x, t)

ci(x)
.

Production Compute the production infiltrating pre-
cipitation ps and evapotranspiration es:

ps(x, t)=cp(x)
(

1− h̃p(x, t − 1)2
)

·

tanh
(
pn(x,t)
cp(x)

)
1+ h̃p(x, t − 1) tanh

(
pn(x,t)
cp(x)

)
es(x, t)= h̃p(x, t − 1) · cp(x) ·

(
2− h̃p(x, t − 1)

)
·

tanh
(
en(x,t)
cp(x)

)
1+

(
1− h̃p(x, t − 1)

)
tanh

(
en(x,t)
cp(x)

) .
Update the normalized production reservoir state
h̃p:

h̃p(x, t
∗)= h̃p(x, t − 1)+

ps(x, t)− es(x, t)

cp(x)
.

Compute the production runoff pr:

pr(x, t)=
0 if pn(x, t)≤ 0

pn(x, t)−
(
h̃p(x, t

∗)− h̃p(x, t − 1)
)
cp(x)

otherwise.

Compute the production percolation perc:

perc(x, t)= h̃p(x, t
∗) · cp(x)

·

1−

(
1+

(
4
9
h̃p(x, t

∗)

)4
)−1/4

 .
Update the normalized production reservoir state
h̃p:

h̃p(x, t)= h̃p(x, t
∗)−

perc(x, t)

cp(x)
.

Exchange Compute the exchange flux lexc:

lexc(x, t)= kexc(x) · h̃t(x, t − 1)7/2.

Transfer Split the production runoff pr into two
branches (transfer and direct), prr and prd:

prr(x, t)= 0.9(pr(x, t)+perc(x, t))+ lexc(x, t)

prd(x, t)= 0.1(pr(x, t)+perc(x, t)) .

Update the normalized transfer reservoir state h̃t:

h̃t(x, t
∗)=max

(
0, h̃t(x, t − 1)+

prr(x, t)

ct(x)

)
.
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Compute the transfer branch elemental discharge
qr :

qr(x, t)= h̃t(x, t
∗) · ct(x)

−

((
h̃t(x, t

∗) · ct(x)
)−4
+ ct(x)

−4
)−1/4

.

Update the normalized transfer reservoir state h̃t:

h̃t(x, t)= h̃t(x, t
∗)−

qr(x, t)

ct(x)
.

Compute the direct branch elemental discharge qd :

qd(x, t)=max(0, prd(x, t)+ lexc(x, t)) .

Compute the elemental discharge qt :

qt (x, t)= qr(x, t)+ qd(x, t),

with qt being the elemental discharge, P the pre-
cipitation, E the potential evapotranspiration, mlt
the melt flux from the snow operator, ci the max-
imum capacity of the interception reservoir, cp the
maximum capacity of the production reservoir, ct
the maximum capacity of the transfer reservoir, kexc
the exchange coefficient, h̃i the state of the normal-
ized interception reservoir, h̃p the state of the nor-
malized production reservoir, and h̃t the state of the
normalized transfer reservoir.

– gr5

This hydrological operator is derived from the GR4
model (Le Moine, 2008). It consists of a GR4-like
model structure (see above) with a modified exchange
flux with two parameters to account for seasonal varia-
tions.

Interception Same as gr4 Interception

Production Same as gr4 Production

Exchange Compute the exchange flux lexc:

lexc(x, t)= kexc(x) · h̃t(x, t − 1)7/2.

Transfer Same as gr4 Transfer, with qt being the ele-
mental discharge, P the precipitation, E the poten-
tial evapotranspiration, mlt the melt flux from the
snow operator, ci the maximum capacity of the in-
terception reservoir, cp the maximum capacity of
the production reservoir, ct the maximum capacity
of the transfer reservoir, kexc the exchange coeffi-
cient, aexc the exchange threshold, h̃i the state of
the normalized interception reservoir, h̃p the state
of the normalized production reservoir, and h̃t the
state of the normalized transfer reservoir.

– grd

This hydrological operator is derived from the GR mod-
els and is a simplified structure used in Jay-Allemand
et al. (2020).

Interception Compute the interception evapotranspira-
tion ei:

ei(x, t)=min(E(x, t), P (x, t)+mlt(x, t)) .

Compute the neutralized precipitation pn and evap-
otranspiration en:

pn(x, t)=max(0, P (x, t)+mlt(x, t)− ei(x, t))

en(x, t)= E(x, t)− ei(x, t).

Production Same as gr4 Production

Transfer Update the normalized transfer reservoir state
h̃t:

h̃t(x, t
∗)=max

(
0, h̃t(x, t − 1)+

pr(x, t)

ct(x)

)
.

Compute the transfer branch elemental discharge
qr :

qr(x, t)= h̃t(x, t
∗) · ct(x)

−

((
h̃t(x, t

∗) · ct(x)
)−4
+ ct(x)

−4
)−1/4

.

Update the normalized transfer reservoir state h̃t:

h̃t(x, t)= h̃t(x, t
∗)−

qr(x, t)

ct(x)
.

Compute the elemental discharge qt :

qt (x, t)= qr(x, t),

with qt being the elemental discharge, P the pre-
cipitation, E the potential evapotranspiration, mlt
the melt flux from the snow operator, cp the max-
imum capacity of the production reservoir, ct the
maximum capacity of the transfer reservoir, h̃p the
state of the normalized production reservoir, and h̃t
the state of the normalized transfer reservoir.

– loieau

This hydrological operator is derived from the GR
model (Folton and Arnaud, 2020).

Interception Same as gr4 Interception

Production Same as gr4 Production
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Transfer Split the production runoff pr into two
branches (transfer and direct), prr and prd:

prr(x, t)= 0.9(pr(x, t)+perc(x, t))

prd(x, t)= 0.1(pr(x, t)+perc(x, t)) .

Update the normalized transfer reservoir state h̃c:

h̃c(x, t
∗)=max

(
0, h̃c(x, t − 1)+

prr(x, t)

cc(x)

)
.

Compute the transfer branch elemental discharge
qr :

qr(x, t)= h̃c(x, t
∗) · cc(x)

−

((
h̃c(x, t

∗) · cc(x)
)−3
+ cc(x)

−3
)−1/3

.

Update the normalized transfer reservoir state h̃c:

h̃c(x, t)= h̃c(x, t
∗)−

qr(x, t)

cc(x)
.

Compute the direct branch elemental discharge qd :

qd(x, t)=max(0, prd(x, t)) .

Compute the elemental discharge qt :

qt (x, t)= kb(x) · (qr(x, t)+ qd(x, t)) ,

with qt being the elemental discharge, P the precip-
itation, E the potential evapotranspiration, mlt the
melt flux from the snow operator, ca the maximum
capacity of the production reservoir, cc the maxi-
mum capacity of the transfer reservoir, kb the trans-
fer coefficient, h̃a the state of the normalized pro-
duction reservoir, and h̃c the state of the normalized
transfer reservoir.

– vic3l
This hydrological operator is derived from the VIC
model (Liang et al., 1994).

Canopy layer interception Compute the canopy layer
interception evapotranspiration ec:

ec(x, t)=min
(
E(x, t)h̃cl(x, t − 1)2/3,

P (x, t)+mlt(x, t)+ h̃cl(x, t − 1)
)
.

Compute the neutralized precipitation pn and evap-
otranspiration en:

pn(x, t)=max
(
0, P (x, t)+mlt(x, t)

− (1− h̃cl(x, t − 1))− ec(x, t)
)

en(x, t)= E(x, t)− ec(x, t).

Update the normalized canopy layer interception
state h̃cl:

h̃cl(x, t)= h̃cl(x, t − 1)+P(x, t)
− ec(x, t)−pn(x, t).

Upper soil layer evapotranspiration Compute the
maximum infiltration im and the corresponding soil
saturation infiltration i0:

im(x, t)= (1+ b(x))cusl(x)

i0(x, t)= im(x, t)

·

(
1− (1− ˜husl(x, t − 1))1/(1−b(x))

)
.

Compute the upper soil layer evapotranspiration es:

es(x, t)=

{
en(x, t) if i0(x, t)≥ im(x, t)

β(x, t)en(x, t) otherwise,

with β being the ARNO evapotranspiration beta
function (Todini, 1996).

Update the normalized upper soil layer reservoir
state ˜husl:

˜husl(x, t)= ˜husl(x, t − 1)−
es(x, t)

cusl(x)
.

Infiltration Compute the maximum capacity cumsl, soil
moisture wumsl, and relative state humsl of the first
two layers:

cumsl(x)= cusl(x)+ cmsl(x)

wumsl(x, t − 1)= ˜husl(x, t − 1)cusl(x)

+ ˜hmsl(x, t − 1)cmsl(x)

humsl(x, t − 1)=
wumsl(x, t − 1)
cumsl(x)

.

Compute maximum im and infiltration i0:

im(x, t)= (1+ b(x))cumsl(x)

i0(x, t)= im(x, t)

·

(
1− (1−humsl(x, t − 1))1/(1−b(x))

)
.

Compute infiltration i:

i(x, t)=



cumsl(x)−wumsl(x, t − 1)

if i0(x, t)+pn(x, t) > im(x, t)

cumsl(x)−wumsl(x, t − 1)

−cumsl(x)
(

1− i0(x,t)+pn(x,t)
im(x,t)

)b(x)+1

otherwise.
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Distribute infiltration between the upper two layers:

iusl(x, t)=min
(
(1− ˜husl(x, t − 1))cusl(x),

i(x, t)
)

imsl(x, t)=min
(
(1− ˜hmsl(x, t − 1))cmsl(x),

i(x, t)− iusl(x, t)
)
.

Update the reservoir states:

˜husl(x, t)= ˜husl(x, t − 1)+ iusl(x, t)

˜hmsl(x, t)= ˜hmsl(x, t − 1)+ imsl(x, t).

Compute runoff:

qr(x, t)= pn(x, t)− (iusl(x, t)+ imsl(x, t)).

Drainage Compute the soil moisture in the first two
layers:

wusl(x, t − 1)= ˜husl(x, t − 1)cusl(x)

wmsl(x, t − 1)= ˜hmsl(x, t − 1)cmsl(x).

Compute the initial drainage flux:

dumsl(x, t
∗)= ks(x) · ˜husl(x, t − 1)pbc .

Update the drainage flux:

dumsl(x, t)=min
(
dumsl(x, t

∗),

min(wusl(x, t − 1), cmsl(x)−wmsl(x, t − 1))
)
.

Update normalized reservoir states:

˜husl(x, t)= ˜husl(x, t − 1)−
dumsl(x, t)

cusl(x)

˜hmsl(x, t)= ˜hmsl(x, t − 1)+
dumsl(x, t)

cmsl(x)
.

The same approach is performed for drainage be-
tween medium and bottom soil layers. For brevity,
we skip the first steps and directly give the update
equations.

Update the normalized medium and bottom reser-
voir states:

˜hmsl(x, t)= ˜hmsl(x, t − 1)−
dmbsl(x, t)

cmsl(x)

˜hbsl(x, t)= ˜hbsl(x, t − 1)+
dmbsl(x, t)

cbsl(x)
.

Baseflow Compute baseflow qb:

qb(x, t)=

dsm(x)ds (x)
ws(x)

˜hbsl(x, t − 1)

if ˜hbsl(x, t − 1)≤ ws(x)
dsm(x)ds (x)
ws(x)

˜hbsl(x, t − 1)

+dsm(x)
(

1− ds (x)
ws(x)

)(
˜hbsl(x,t−1)−ws(x)

1−ws(x)

)2

otherwise.

Update the normalized bottom soil layer reservoir:

˜hbsl(x, t)= ˜hbsl(x, t − 1)−
qb(x, t)

cbsl(x)
,

with qt being the elemental discharge, P the precip-
itation, E the potential evapotranspiration, mlt the
melt flux from the snow operator, b the variable in-
filtration curve parameter, cusl the maximum capac-
ity of the upper soil layer, cmsl the maximum capac-
ity of the medium soil layer, cbsl the maximum ca-
pacity of the bottom soil layer, ks the saturated hy-
draulic conductivity, pbc the Brooks and Corey ex-
ponent, dsm the maximum velocity of baseflow, ds
the nonlinear baseflow threshold maximum veloc-
ity, ws the nonlinear baseflow threshold soil mois-
ture, h̃cl the state of the normalized canopy layer,
˜husl the state of the normalized upper soil layer,
˜hmsl the state of the normalized medium soil layer,

and ˜hbsl the state of the normalized bottom soil
layer.

D3 Routing operator Mrr

– lag0
This routing operator is a simple aggregation of up-
stream discharge to downstream discharge following the
drainage plan.

Upstream discharge Compute the upstream discharge
qup:

qup(x, t)=

0 if �x =∅∑
k∈�x

Q(k, t) otherwise,

where �x is the set of upstream cells flowing into
cell x.

Surface discharge Compute the surface discharge Q:

Q(x, t)= qup(x, t)+α(x)qt (x, t),

where α(x) is a unit conversion factor from mm ·
1t−1 to m3

· s−1 for a single cell.
Q is the surface discharge, qt is the elemental dis-
charge, and �x is a 2D spatial domain that corre-
sponds to all upstream cells flowing into cell x, i.e.,
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the whole upstream catchment. Note that �x is a
subset of �, �x ⊂�, and for the most upstream
cells �x =∅.

– lr
This routing operator uses a linear reservoir to route up-
stream discharge to downstream discharge following the
drainage plan.

Upstream discharge Same as lag0 Upstream dis-
charge

Surface discharge Update the routing reservoir state
hlr:

hlr(x, t
∗)= hlr(x, t)+

1
β(x)

qup(x, t),

where β(x) is a conversion factor from mm ·1t−1

to m3
· s−1 for the entire upstream domain �x .

Compute the routed discharge qrt:

qrt(x, t)= hlr(x, t
∗)

(
1− exp

(
−1t

60× llr

))
.

Update the routing reservoir state hlr:

hlr(x, t)= hlr(x, t
∗)− qrt(x, t).

Compute the surface discharge Q:

Q(x, t)= β(x)qrt(x, t)+α(x)qt (x, t),

where α(x) is a conversion factor from mm ·1t−1

to m3
· s−1 for a single cell.

– kw
This routing operator is based on a conceptual 1D kine-
matic wave model that is numerically solved with a lin-
earized implicit numerical scheme (Chow et al., 1998).
This is applicable given the drainage plan D� (x) that
enables the routing problem to be reduced to 1D.

The kinematic wave model is a simplification of the 1D
Saint-Venant hydraulic equations.

First, the mass conservation equation is written as

∂A

∂t
+
∂Q

∂x
= q, (D1)

where ∂� denotes partial differentiation with respect to
time or space, A is the cross-sectional flow area, Q is
the discharge, and q represents lateral inflows.

The momentum equation is simplified by assuming that
the water surface slope equals the bed slope; i.e., the
flow is locally uniform and gradually varied:

S0 = Sf , (D2)

where S0 is the bed slope, and Sf is the friction slope.
This implies that the energy grade line is parallel to the
channel bottom.

This simplification leads to an empirical relation be-
tween discharge and flow area or depth, as described
by Chow et al. (1998):

A= akwQ
bkw , (D3)

where akw and bkw are two empirical constants that can
also be related to the Manning friction law.

Injecting the parameterization from Eq. (D3) into the
mass conservation equation (Eq. D1) yields the follow-
ing one-equation form of the kinematic wave model
(Chow et al., 1998):

∂Q

∂x
+ akwbkwQ

bkw−1 ∂Q

∂t
= q. (D4)

For the sake of clarity, the following variables are re-
named for this section and the finite-difference numeri-
cal scheme.

Table D1. Renamed variables.

Before After

Q(x, t) Q
j
i

Q(x, t − 1) Q
j−1
i

qt (x, t) q
j
i

qt (x, t − 1) q
j−1
i

Upstream discharge Same as lag0 Upstream discharge
with qup denoted Qj

i−1.

Surface discharge Compute the intermediate variables d1
and d2:

d1 =
1t

1x
,

d2 = akwbkw

(
Q
j−1
i +Q

j

i−1

2

)bkw−1

.

Compute the intermediate variables n1, n2, and n3:

n1 = d1Q
j

i−1,

n2 = d2Q
j−1
i ,

n3 = d1
q
j−1
i + q

j
i

2
.

Compute the surface discharge Qj
i :

Q
j
i =Q(x, t)=

n1+ n2+ n3

d1+ d2
,
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withQ being the surface discharge, qt the elemental dis-
charge, akw the alpha kinematic wave parameter, bkw the
beta kinematic wave parameter, and�x a 2D spatial do-
main that corresponds to all upstream cells flowing into
cell x. Note that �x is a subset of �, �x ⊂�, and for
the most upstream cells �x =∅.

Appendix E: CPU information

Architecture: x86_64
CPU op-mode(s): 32 bit, 64 bit
Address sizes: 48 bits physical, 48 bits virtual
Byte order: Little Endian

CPU(s): 192
On-line CPU(s) list: 0-191

Vendor ID: AuthenticAMD
Model name: AMD EPYC 7643 48-Core Processor
CPU family: 25
Model: 1
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
Stepping: 1
Frequency boost: enabled
CPU max MHz: 2300.0000
CPU min MHz: 1500.0000
BogoMIPS: 4591.48

Virtualization features:
Virtualization: AMD-V

Caches (sum of all):
L1d: 3 MiB (96 instances)
L1i: 3 MiB (96 instances)
L2: 48 MiB (96 instances)
L3: 512 MiB (16 instances)

NUMA:
NUMA node(s): 2
NUMA node0 CPU(s): 0-47,96-143
NUMA node1 CPU(s): 48-95,144-191

Code and data availability. The source code of smash, ver-
sion 1.0, is available and preserved on multiple platforms:
GitHub at https://github.com/DassHydro/smash/tree/v1.0.2
(last access: 25 July 2025), PyPI at https://pypi.org/project/
hydro-smash/1.0.2 (last access: 25 July 2025), and Zen-
odo at https://doi.org/10.5281/zenodo.14841726 (Colleoni
et al., 2025a) (last access: 25 July 2025). The datasets
presented in this paper are also available on Zenodo at
https://doi.org/10.5281/zenodo.14865491 (Colleoni et al.,
2025b) (last access: 25 July 2025). smash is released
under the GPL-3 license and is developed openly at
https://github.com/DassHydro/smash (last access: 25 July 2025).
The documentation is accessible at https://smash.recover.inrae.fr
(last access: 25 July 2025).
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