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Abstract. The atmospheric weighted mean temperature (Tm)
is a key parameter in global navigation satellite system
(GNSS) water vapour retrieval and can convert the zenith wet
delay (ZWD) into precipitable water vapour (PWV). How-
ever, there are some shortcomings in the existing Tm models,
such as the detailed time-varying vertical adjustment rate not
being considered. In addition, the spatiotemporal character-
istics of Tm need to be further refined. Therefore, we devel-
oped a new global high-precision and high-spatiotemporal-
resolution Tm model considering time-varying vertical ad-
justment rate using the latest European Centre for Medium-
Range Weather Forecasts Reanalysis 5 (ERA5) atmospheric
reanalysis data. Firstly, a new global grid Tm vertical ad-
justment rate model (NGGTm-H) was developed using
the sliding-window algorithm. Secondly, the daily variation
characteristics of Tm and its relationships with geographical
situations were investigated. Finally, a new global hybrid-
grid Tm model (NGGTm) considering time-varying vertical
adjustment rate was developed. To verify the effectiveness
of the proposed model, the NGGTm model was compared
with the Bevis and global pressure and temperature 3 (GPT3)
models using the Tm data recorded at 378 radiosonde stations
in 2017 and the surface gridded Tm data calculated from the
ERA5 reanalysis data. The results show that taking the sur-
face gridded Tm data of ERA5 as reference values, the av-
erage root-mean-square error (RMSE) value calculated by
the NGGTm model was 2.84 K, which was lower with 0.50,
0.18 and 0.06 K than those of the Bevis, GPT3-5 and GPT3-1
models, respectively. Meanwhile, taking the Tm from the ra-

diosonde stations as the reference values, the mean bias and
RMSE of the NGGTm model were 0.10 and 3.30 K, respec-
tively, which exhibit the best accuracy and stability among
the Bevis, GPT3-5 and GPT3-1 models.

1 Introduction

Precipitable water vapour (PWV), a basic component of
the water cycle of the Earth, is a key parameter in climate
variation and material and energy exchange research per-
formed at the global scale (Huang et al., 2023b; Ding et
al., 2022). PWV directly affects the ground temperature and
air humidity (Rocken et al., 1997). Furthermore, PWV is
highly active in the Earth’s atmosphere and plays a crucial
role in the formation and evolution of weather. Its tempo-
ral and spatial variations are essential for the development
of clouds and rainfall (Philipona et al., 2005; Jin and Luo,
2009). Understanding the exact spatiotemporal features of
global PWV variations holds immense practical importance
for monitoring and forecasting catastrophic weather events
and conducting research on climate change. However, PWV
is highly susceptible to the underlying terrain, seasonal vari-
ations and other climate changes, causing its spatial distri-
bution to change unevenly and rapidly over time. There-
fore, accurately monitoring PWV poses a significant chal-
lenge (Wang et al., 2007; Wang and Zhang, 2009). Currently,
the methods for deriving PWV mainly include radiosonde,
ground-based detection, microwave radiometer and satellite
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remote sensing inversion methods (Alexandrov et al., 2009;
Gui et al., 2017; Zeng et al., 2019). Each technology has its
own set of advantages and limitations. Radiosondes, for ex-
ample, are highly accurate in measuring meteorological pa-
rameters but are limited by their low spatiotemporal resolu-
tion, high observation costs and inability to provide real-time
or near-real-time updates on PWV changes (Zhai and Es-
kridge, 1996). Microwave radiometers that operate in the mi-
crowave region of the electromagnetic spectrum, and satel-
lite remote sensing that relies on infrared band detection, of-
fer high detection accuracies. However, their effectiveness
is limited by interference from weather conditions such as
cloud, fog, rain and snow. In addition, these instruments are
unable to provide profile information of PWV in the vertical
direction, and this shortcoming restricts their applicability in
PWV detection tasks (Dalu, 1986; Gao and Kaufman, 2003).

The global navigation satellite system (GNSS) has be-
come a crucial technology for real-time and high-precision
PWV detection with advantages of all-weather capability, a
high temporal resolution, low costs and weather resistance
(Zhao et al., 2018; Jiang et al., 2017; Manandhar et al., 2017;
Huang et al., 2022). The precision of GNSS-derived PWV
can be as high as 1 to 1.5 mm, with a temporal resolution of
0.5 h (Rocken et al., 1993; Adams et al., 2011). PWV can
be inverted by multiplying the wet component of the zenith
total delay (ZTD) with the water vapour conversion factor.
The ZTD consists of two parts: the zenith hydrostatic de-
lay (ZHD) and the zenith wet delay (ZWD). The ZTD is
an important factor affecting high precision GNSS position-
ing and also the basic data for GNSS atmospheric research
(Huang et al., 2023a; Zhu et al., 2022). According to the
high-precision observation data provided by the GNSS base
station network, high-precision ZTD information can be ob-
tained through data processing with high-precision GNSS
data processing software. The ZHD values, with strong vari-
ation regularity, can be calculated by a simple model using
surface pressure data to obtain an accuracy at the millimetre
level. However, the variation in ZWD influenced mainly by
water vapour is difficult to investigate (Vedel et al., 2001).
The ZWD can be computed by subtracting the ZHD from
the ZTD. Among the parameters involved in PWV inversion,
the atmospheric weighted mean temperature (Tm) is the key
parameter for calculating the water vapour conversion factor.
The accuracy of GNSS tropospheric water vapour retrievals
can be significantly improved by using high-precision Tm
data.

High precision Tm data can typically be calculated by in-
tegrating radiosonde data, atmospheric reanalysis data and
numerical weather prediction data. However, the distribu-
tion of radiosonde stations is uneven, and there is a time
delay in releasing atmospheric reanalysis data. In addition,
numerical weather prediction data are subject to certain lim-
itations, including low temporal resolution and slow update
speed, which renders them unsuitable for real-time or near-
real-time PWV monitoring (Zhang et al., 2017). To improve

the calculation efficiency of Tm, it is necessary to build a
real-time and high-precision Tm model to meet the needs
of GNSS PWV inversion. Existing Tm models can be di-
vided into two categories: meteorological parameter models
and non-meteorological parameter models. By analysing the
correlation between the surface temperature (Ts) and Tm and
utilising 2 yr profile information from 13 radiosonde stations
in North America, the Bevis formula was developed through
linear regression analysis (Bevis et al., 1992). This formula
can successfully retrieve PWV information in the zenith di-
rection of the station using GPS observation data and intro-
duced the concept of GPS in meteorological research for the
first time. The linear regression model remains a reliable and
convenient tool that is still widely used today. However, it
is important to note that the coefficients of this model ex-
hibit distinct characteristics based on the region and season
in which it is applied. Therefore, recalculating the parame-
ters of the model is necessary when applying the model in
other regions (Ross and Rosenfeld, 1997; Emardson et al.,
1998). With the continuous development of GNSS PWV de-
tection technology, many researchers have refined and ex-
panded the Bevis model regionally and developed other Tm
models based on measured meteorological parameters. In ad-
dition to Ts, Tm is also related to Ps and es. The global single-
factor Tm model and multifactor Tm model were developed,
which showed better accuracy and reliability (Yao et al.,
2014b). To achieve better results in the global range, Yao et
al. (2014a) proposed a Tm linear regression model in each lat-
itude interval region using the European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalysis data. In ad-
dition, neural network algorithms can be used to establish Tm
models that can produce corresponding Tm values by simply
using Ts information as the input. The accuracy of this model
depends on the precision of the input Ts information. When
highly precise Ts data were used, the model accuracy was in-
creased (Ding, 2018). The above models have achieved good
results when providing the required measured meteorologi-
cal parameters, but most of the GNSS stations in the world do
not have supporting meteorological sensors installed, leading
to great difficulty in measuring meteorological parameters
in real-time. Therefore, these models are difficult to apply
to real-time or near-real-time GNSS PWV detection tasks.
To address this issue, many researchers have developed Tm
models (empirical models) that run without measured mete-
orological parameters. For example, Zhu et al. (2021) devel-
oped a new Tm model taking climate differences into account
in the Shanxi region. The non-meteorological parameter Tm
model (named the Emardson model) was developed to take
the annual cycle variation into account by using radiosonde
data collected in Europe over many years, which was capa-
ble of meeting the requirement for GNSS PWV detection
(Emardson and Derks, 2000). Therefore, the model has been
widely used in real-time GNSS meteorology research. In ad-
dition, the vertical adjustment rate is the key parameter in the
Tm vertical adjustment. Taking the vertical adjustment rate
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into account can not only improve the Tm model accuracy,
but also shows significant improvement in regions with un-
dulating terrain (Huang et al., 2023c; Sun et al., 2021; Yao
et al., 2018). The Tm vertical adjustment rate is an effective
means of adjusting Tm to consider the varying topography
height. Therefore, investigating the spatiotemporal variation
characteristics of the Tm vertical adjustment rate and devel-
oping a Tm vertical adjustment rate model have high applica-
tion values in Tm vertical and spatial interpolation tasks. Al-
though the aforementioned models excel in certain regions
and possess unique strengths, they are not suitable for cal-
culating Tm at the global level. Yao et al. (2012) developed
the first new global atmospheric weighted average temper-
ature model (GWMT) using data from 135 radiosonde sta-
tions worldwide over several years. This new model can es-
timate the Tm value at any location by simply inputting the
station location and the day of the year (DOY); the method
has been applied to real-time GNSS PWV inversion stud-
ies worldwide. However, because the radiosonde data used
in the GWMT model are all located on land, there is a cer-
tain systematic bias in ocean areas. To address this issue, the
GTm-II model, GTm-III model and GTm-H model were de-
veloped (Yao et al., 2013). GPT series models which include
GPT, GPT2, GPT2w and GPT3 also show excellent perfor-
mance worldwide (Landskron and Böhm, 2018; Böhm et al.,
2007, 2015; Yang et al., 2020). Although the latest GPT3
model is currently the most representative empirical model
with a high precision on the global scale, GPT3 model does
not take into account vertical adjustment or detailed Tm ver-
tical adjustment rate. Thus, it is necessary to develop a new
model to improve the real-time high-precision global empiri-
cal Tm model and to select appropriate data sources for model
development.

The global Tm models mentioned above were established
without accounting for the detailed time-varying vertical ad-
justment rate. Therefore, in this study, our aim was to develop
a global Tm model that takes into account time-varying verti-
cal adjustment rate and high-precision capabilities. To attain
this objective we first investigated the spatiotemporal vari-
ations and characteristics of the vertical adjustment rate of
global Tm and developed a new global grid vertical adjust-
ment rate model (NGGTm-H). Second, a new global hybrid-
grid model (NGGTm) for the estimation of atmospheric
weighted mean temperature considering time-varying verti-
cal adjustment rate was developed by using profile gridded
Tm data calculated by integrating the latest European Centre
for Medium-Range Weather Forecasts ReAnalysis 5 (ERA5)
reanalysis data. To verify the effectiveness of the new model,
the NGGTm model was compared with the Bevis and GPT3
models using Tm data from radiosonde stations and ERA5
reanalysis data.

The rest of our paper is organised as follows. In Sect. 2, we
introduce the data, the method of obtaining Tm and the inver-
sion method of PWV. In Sect. 3, we analyse the spatiotem-
poral characteristics of the Tm vertical adjustment rate and

develop a Tm vertical adjustment rate model. In Sect. 4, we
analyse the Tm temporal characteristics and develop a global
Tm model (NGGTm). In Sect. 5, we describe the experiments
on the validation of NGGTm. Finally, in Sect. 6, we provide
the conclusions and suggestions for future work.

2 Data and methodology

2.1 Data

The ERA5 atmospheric reanalysis data, provided by
ECMWF (https://cds.climate.copernicus.eu/datasets, last ac-
cess: 23 September 2025), is the fifth-generation global cli-
mate reanalysis dataset. This dataset provides hourly surface-
level parameters and pressure-level data with a horizon-
tal resolution of 0.25°× 0.25° (latitude× longitude) and a
vertical resolution of 37 levels. ERA5 data can provide
high-resolution and relatively complete surface-level and
pressure-level data and are thus expected to be widely used
in the future. The radiosonde station data can be downloaded
for free from the University of Wyoming (http://weather.
uwyo.edu/upperair/sounding.shtml, last access: 23 Septem-
ber 2025). This product provides meteorological layered data
and surficial parameters such as PWV from the ground to the
near-Earth space (an altitude of approximately 30 km) and
provides radiosonde data twice a day (00:00 and 12:00 UTC);
these data are often used as reference values for model verifi-
cation tasks. The ERA5 gridded data from 2012 to 2017 and
the radiosonde data in 2017 on the global scale were used to
analyse and develop the model in this study.

2.2 Methodology

Tm is the key parameter used to convert ZWD into PWV. Us-
ing atmospheric reanalysis data, radiosonde data and other
data, highly accurate Tm information can be obtained by in-
tegral calculation. In addition, the modelling method can also
obtain Tm values at a high accuracy and with a high calcula-
tion efficiency. The specific Tm integral calculation formula
is expressed as follows:

Tm =

∫ htop
hbot

e
T

dH∫ htop
hbot

e

T 2 dH
, (1)

where hbot and htop are, respectively, the heights at the bot-
tom and top of the integration calculation, Tm is the atmo-
spheric weighted mean temperature at hbot, e is the water
vapour pressure (hPa), T is the temperature (K) and H is
the height (m). The height corresponding to Tm is denoted
by hbot. Different values of hbot correspond to different val-
ues of Tm. Therefore, the layered Tm can be calculated using
Eq. (1).

The modelling methods used to calculate Tm can be di-
vided into two categories: (1) Tm models based on measured
meteorological parameters, of which the most representative
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is the Bevis model (Tm = 70.2+0.72Ts), namely, the Tm lin-
ear regression model, and (2) non-meteorological parameter
Tm models, of which the most classical is the GPT series
model. The GPT3 model, the latest model in the GPT se-
ries, has a high accuracy in calculating global Tm. The GPT3
model formula used to calculate Tm can be expressed as fol-
lows:

T GPT3
m =a0+ a1 cos

(
2π

DOY
365.25

)
+ b1 sin

(
2π

DOY
365.25

)
+ a2 cos

(
4π

DOY
365.25

)
+ b2 sin

(
4π

DOY
365.25

)
, (2)

where T GPT3
m denotes Tm calculated by the GPT3 model, a0

denotes the average annual value of Tm, a1 and b1 denote the
annual cycle coefficient of Tm, a2 and b2 denote the semian-
nual cycle coefficient of Tm and DOY denotes the day of the
year.

PWV refers to the total water vapour content of a vertical
column per unit area in the atmosphere and can be converted
from ZWD using the following formula:

PWV=5×ZWD, (3)

where 5 denotes the PWV conversion factor. This conver-
sion factor can be expressed as follows:

5=
106

ρwRv
(
k′2+ k3/Tm

) , (4)

where Rv denotes the water vapour gas constant, k′2
and k3 are constants (k′2 = 22.97 KhPa−1 and k3 =

375463 K2 hPa−1) and the other parameters are described
above. Therefore, Tm is the key parameter in the GNSS PWV
inversion.

To facilitate the subsequent test of the accuracy of the Tm
values calculated using the atmospheric reanalysis data and
the performance of the new Tm model, this study uses the bias
and root-mean-square error (RMSE) as the accuracy evalua-
tion indicators. The formulas are expressed as follows:

bias=
1
N

∑N

i=1

(
Tmi

M−Tmi
R
)
, (5)

RMSE=

√
1
N

∑N

i=1

(
Tmi

M−Tmi
R
)2
, (6)

where N denotes the number of samples, Tmi
M denotes the

calculated value of the atmospheric reanalysis data or model
and Tmi

R denotes the reference value.

3 Development of the Tm vertical adjustment rate
model

3.1 Analysis of the spatiotemporal characteristics of
the Tm vertical adjustment rate

Given the discernible variations in topography and the sig-
nificant range of height at a global scale, there can be consid-

erable disparities between the height of atmospheric reanal-
ysis data grid points and the actual heights of the ground-
based GNSS receiver (named target height), so it is neces-
sary to adjust Tm vertically. The previous study has analysed
this topic and concluded that there is an approximately linear
relationship between the layered Tm data and hbot (Huang
et al., 2019). To further analyse the variation in Tm with
height, six representative ERA5 reanalysis data grid points
((60° N, 90° W), (60° N, 90° E), (0°, 90° W), (0°, 90° E),
(60° S, 90° W) and (60° S, 90° E)) were selected globally to
analyse the layered Tm data and corresponding height data
on 1 January 2017. The results are shown in Fig. 1.

Figure 1 shows that the layered Tm data of six representa-
tive ERA5 reanalysis data grid cells exhibit approximate lin-
ear change relationships with height. Moreover, the layered
Tm data gradually decrease with increasing height. There-
fore, the slope of the fitting line represents the vertical ad-
justment rate of Tm, and this relation can be expressed as

Tm = γ × δh+ l, (7)

where γ denotes the vertical adjustment rate of Tm, δh de-
notes the height difference and l denotes a constant.

To investigate the variation relationship between the verti-
cal adjustment rate of Tm and time at the global scale, six rep-
resentative ERA5 reanalysis data grid points were selected
to calculate the vertical adjustment rate of Tm from 2012 to
2016. Furthermore, the time series for the vertical adjustment
rate of the daily mean Tm from 2012 to 2016 was obtained
and used to achieve seasonal fitting by the cosine function of
the annual and semiannual periods. The results are shown in
Fig. 2.

Figure 2 shows the obvious seasonal variations in the verti-
cal adjustment rate of Tm calculated using the ERA5 reanaly-
sis data at six representative grid points. From Fig. 2c and d,
the annual and semiannual variations in the vertical adjust-
ment rate of Tm are relatively slight at the grid points located
on the Equator. However, From Fig. 2e and f, the vertical
adjustment rate of Tm at the grid points located in the high-
latitude areas of the Southern Hemisphere exhibit relatively
large variation ranges and show obvious annual and semian-
nual variations, whereas those in the high-latitude areas of
the Northern Hemisphere show slight variation ranges and
obvious annual and semiannual cycle variations from Fig. 2a
and b. The main reason for these results is that most of the
high-latitude areas of the Southern Hemisphere are oceans
and are thus not affected by complex climates.

Hence, a clear seasonal pattern is evident in the vertical
adjustment rate of Tm, and the variation patterns vary across
different regions. The vertical adjustment rate of Tm was then
calculated with a temporal resolution of 1 h from 2012 to
2016 at the global scale. The annual mean value, annual cycle
amplitude, semiannual cycle amplitude and daily cycle am-
plitude of the vertical adjustment rate of Tm were calculated
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Figure 1. Tm changes with height at six representative ERA5 reanalysis data gridded points on 1 January 2017. (a) (60° N, 90° W). (b) (0°,
90° W). (c) (60° S, 90° E). (d) (60° N, 90° E). (e) (0°, 90° E). (f) (60° S, 90° W).

Figure 2. The time-series variations in the Tm vertical adjustment rate from the ERA5 reanalysis data at six representative grid points.
(a) (60° N, 90° W). (b) (60° N, 90° E). (c) (0°, 90° W). (d) (0°, 90° E). (e) (60° S, 90° W). (f) (60° S, 90° E).
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by using Eq. (8) at selected grid points at the global scale.
The utilised formula is expressed as follows:

γ =A0+A1 cos
(

2π
DOY

365.25

)
+A2 sin

(
2π

DOY
365.25

)
+A3 cos

(
4π

DOY
365.25

)
+A4 sin

(
4π

DOY
365.25

)
+A5 cos

(
2π

HOD
24

)
+A6 sin

(
2π

HOD
24

)
, (8)

where γ is the vertical adjustment rate of Tm; A0 is the an-
nual mean value of the vertical adjustment rate of Tm; (A1,
A2) are the annual cycle coefficients for the vertical adjust-
ment rate of Tm; (A3, A4) are the semiannual cycle coeffi-
cients for the vertical adjustment rate of Tm; (A5, A6) are the
daily cycle coefficients for the vertical adjustment rate of Tm;
DOY is the day of the year; and the hour of the day (HOD)
is the UTC time. The above coefficients were calculated at
each grid point based on a least-square adjustment by using
all selected grid points in the world from 2012 to 2016. The
results are shown in Fig. 3.

As shown in Fig. 3, a strong correlation was found be-
tween the annual mean Tm vertical adjustment rate and lat-
itude. Regarding the annual cycle amplitude of the vertical
adjustment rate of Tm, obvious annual cycle amplitude val-
ues were observed in most land areas, especially over the
Antarctic continent, though these amplitudes were relatively
small in the ocean and coastal areas located in the middle and
low latitudes of the Northern and Southern Hemispheres. In
addition, a sea–land difference was observed in the semian-
nual cycle amplitude of the Tm vertical adjustment rate. The
daily cycle amplitude of the vertical adjustment rate of Tm re-
mained at approximately 0.06 Kkm−1. Since the daily vari-
ation in the vertical adjustment rate of Tm can be overshad-
owed by the annual and semiannual variations, we focused
on optimising and simplifying the model coefficients when
developing the Tm vertical adjustment rate model.

The above analysis demonstrated that the variation law
of the vertical adjustment rate of Tm differs spatially. This
makes it difficult to accurately grasp the variation law of the
vertical adjustment rate of Tm in developing a global uni-
form model for the vertical adjustment rate of Tm. Therefore,
we presents a solution to the issue of coefficient redundancy
that can occur when developing a model from individual grid
points. Specifically, a sliding-window algorithm was intro-
duced to develop the Tm vertical adjustment rate model, lead-
ing to optimised coefficients and improved accuracy, stability
and applicability of the model. Note that the sliding-window
algorithm has been used in the previous study, which exhibits
a superior performance (Huang et al., 2019).

3.2 Development of NGGTm-H

The ERA5 reanalysis data with a horizontal resolution of
0.25°×0.25° were selected as the data source to develop the

model in this study. We divided global segments into regular
windows with the same horizontal resolution as the ERA5
reanalysis data. The specific process was as follows: start-
ing from the first window, by using the data of nine gridded
points in each window, the model coefficients of the corre-
sponding window were calculated in order from west to east
and from north to south and stored at the geometric centre of
the corresponding window. Finally, all the coefficients for the
global Tm vertical adjustment rate model were obtained. As
shown in Fig. 4, blue dots denote ERA5 gridded points, and
red dots denote centre points of the window; the red rectangle
denotes the size of the sliding window.

To investigate the influence of the window size on the
model precision and optimise the model coefficients as much
as possible, three different window sizes, with resolutions
of 0.5°× 0.5°, 1°× 1° and 2°× 2°, were selected to develop
the model. The window with the resolutions of 0.5°× 0.5°,
1°× 1° and 2°× 2° contains 9, 25 and 49 gridded points, re-
spectively. As mentioned above, it was necessary to consider
the characteristics of the annual and semiannual cycles when
developing the model. Therefore, the formula of the global
Tm vertical adjustment rate model in each window can be
expressed as follows:

γ i =Ai0+A
i
1 cos

(
2π

DOY
365.25

)
+Ai2 sin

(
2π

DOY
365.25

)
+Ai3 cos

(
4π

DOY
365.25

)
+Ai4 sin

(
4π

DOY
365.25

)
, (9)

where i is the number of windows; γ i is the vertical adjust-
ment rate of Tm in the ith window; Ai0 is the annual mean
value of the vertical adjustment rate of Tm in the ith window;
(Ai1, Ai2) are the annual cycle coefficients of the vertical ad-
justment rate of Tm in the ith window; (Ai3, Ai4) are the semi-
annual cycle coefficients of the vertical adjustment rate of Tm
in the ith window; DOY is the day of the year. We also use

T T
m = T

S
m − γ

i(HT
−H S), (10)

where T T
m is the Tm value at the target height; T S

m is the Tm
value at the surface; γ i is the vertical adjustment rate of Tm
at the window where the target point is located; HT is the
height of the target point; H S is the height at surface.

The five coefficients required in the Tm vertical adjustment
rate model in all windows of the world were calculated by
the least-squares adjustment using ERA5 analysis. Then, the
above coefficients were stored at the geometric centres of the
windows with resolutions of 0.5°×0.5°, 1°×1° and 2°×2°.
Finally, a global real-time and high-precision Tm vertical ad-
justment rate model was developed and named NGGTm-H
(this model contains three models with different resolutions:
NGGTm-H1, NGGTm-H2 and NGGTm-H3). The Tm ver-
tical adjustment was calculated by combining Eqs. (9) and
(10) and using the position and DOY.
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Figure 3. The distributions of the annual mean value and amplitudes of the Tm vertical adjustment rate calculated using global ERA5
reanalysis data. (a) Annual average value. (b) Annual cycle amplitude. (c) Semiannual cycle amplitude. (d) Daily cycle amplitude.

Figure 4. The realisation process of the sliding-window algorithm.

3.3 Validation of NGGTm-H

To validate the precision and applicability of the spatial in-
terpolation method using the NGGTm-H model at the global
scale, the Tm data collected at 378 radiosonde stations around
the world in 2017 were used as reference values. The alti-

tude of radiosonde stations ranges from 0 to 4500 m, mostly
within 2000 m. The integrated surface Tm data at four grid
points were adjusted to the heights of the radiosonde stations.
Then, the adjusted Tm values at these four grid points were
interpolated to the positions of the radiosonde stations using
the inverse distance-weighted method. The statistical results
of the bias and RMSE values of the spatially interpolated Tm
values from all radiosonde stations are listed in Table 1.

From Table 1, as the resolution of the model increased,
the mean bias of the NGGTm-H model gradually decreased.
The mean bias of the NGGTm-H1 model was smallest, at
0.12 K. Compared to those of the NGGTm-H2 model and
the NGGTm-H3 model, the mean bias of the NGGTm-H1
model was reduced by only 0.02 and 0.03 K, respectively.
Positive mean biases with relatively small absolute values
were obtained for the NGGTm-H model at the three reso-
lutions taking Tm data from radiosonde stations as reference
values. The main reason for these results was that the major-
ity of radiosonde stations are located in land areas. The ver-
tical adjustment values of Tm obtained using the NGGTm-H
model were slightly larger in land areas but smaller in marine
areas than the reference values. However, a small number of
radiosonde stations distributed in marine areas was suscepti-
ble to the influence of marine climate, resulting in the verti-
cal adjustment values of the model being apparently smaller
than the reference values. Therefore, the positive biases were
smaller than the absolute value of the negative biases. In ad-
dition, the precision of the NGGTm-H1 model showed the
best result with a mean RMSE of 1.18 K. Thus, NGGTm-H1
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Table 1. The precision statistics obtained for the three resolutions of the NGGTm-H model tested using Tm data from global radiosonde
stations in 2017 (unit: k).

Model Bias RMSE

Minimum Maximum Mean Minimum Maximum Mean

NGGTm-H1 −4.43 3.31 0.12 0.38 4.53 1.18
NGGTm-H2 −4.52 3.42 0.14 0.35 4.55 1.21
NGGTm-H3 −4.57 3.39 0.15 0.41 4.62 1.23

model had a certain improvement compared to the NGGTm-
H2 and NGGTm-H3 models.

4 Development of a global model considering
time-varying vertical adjustment rate: NGGTm

4.1 Analysis of Tm temporal characteristics

The NGGTm-H model was described in Sect. 3, it can verti-
cally adjust the given Tm at the surface to the target height.
In order to directly obtain Tm at any height, it is necessary
to develop a Tm model whose hbot is at the surface (named
as surface Tm model). Analysing the spatiotemporal charac-
teristics of Tm is crucial for developing Tm models. Relevant
studies have shown that Tm undergoes diurnal variations (Sun
et al., 2019). To further analyse the temporal characteristics
in Tm in depth at the global scale, we calculated the annual
mean value, annual cycle amplitude, semiannual cycle am-
plitude, daily cycle amplitude and semidaily cycle amplitude
at all grid points using the least-squares adjustment using sur-
face gridded Tm data calculated from all the ERA5 reanalysis
data recorded from 2012 to 2016 worldwide. The results are
shown in Fig. 5.

As shown in Fig. 5, strong correlations were found be-
tween the annual mean Tm value and latitude and between
the annual Tm cycle amplitude and latitude. The semiannual
cycle amplitude of Tm also exhibited a certain correlation
with latitude, and a certain sea–land difference was observed.
In summary, Tm not only undergoes significant annual and
semiannual variations but also experiences significant daily
and semidiurnal variation.

4.2 Development of the NGGTm model

As mentioned above, it was necessary to consider the
time-varying vertical adjustment rate and detailed temporal
variations when developing high-precision global Tm mod-
els. Therefore, a new global Tm model considering time-
varying vertical adjustment rate was developed which used
the integrated surface Tm of ERA5 reanalysis recorded from
2012 to 2016 on the basis of NGGTm-H1 model. Because
of the significant variations in the horizontal direction of Tm
compared to vertical adjustment rate according to Figs. 5a
and 3a, it was necessary to develop surface Tm models at each

gridded point instead of using sliding windows. This new Tm
model is a hybrid-grid model, as the surface Tm model was
developed at each gridded point and the NGGTm-H1 model
was developed at the geometric centre of the sliding window.
The model formulae are expressed as follows:

T G
m =B0+B1 cos

(
2π

HOD
24

)
+B2 sin

(
2π

HOD
24

)
+B3 cos

(
4π

HOD
24

)
+B4 sin

(
4π

HOD
24

)
, (11)
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)
+ bi3 cos

(
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365.25

)
+ bi4 sin

(
4π

DOY
365.25

)
, (12)

where T G
m is the Tm value at the gridded points; Bi is the

daily variation coefficient of Tm; HOD is the UTC time. After
Eq. (12) was used to expand Eq. (11), bij (i = 0,1,2,3,4 and
j = 0,1,2,3,4), which represents the 25 coefficient terms of
the model, was calculated. DOY is the day of the year.

The 25 model coefficients were calculated by the least-
squares adjustment at all global reanalysis data grid points,
which used the surface gridded Tm data with a temporal res-
olution of 1 h. The above coefficients were stored at the grid
points with a horizontal resolution of 0.25°× 0.25°. Finally,
the NGGTm model considering time-varying vertical adjust-
ment rate was developed. The input parameters for this model
are location and time only, which makes it convenient for
users. Here, we introduce the use of NGGTm. First, users
need to find the window where target points are in, extract
the five model coefficients of Eq. (9) for the centre point of
the window, and input the DOY to calculate γ . Second, users
need to find the four surrounding grid points, extract 100
model coefficients of the surface Tm model (Eqs. 11 and 12)
for four grid points, and input HOD and DOY into Eqs. (11)
and (12) to calculate the Tm at surface. Then values of Tm at
the surface are vertically adjusted to the height of the target
point using Eq. (10). Finally, Tm at the target point is obtained
using inverse distance-weighted interpolation using the four
adjusted Tm.
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Figure 5. The distributions of the annual mean value and amplitudes of Tm calculated using global ERA5 reanalysis data. (a) Annual mean
value. (b) Annual cycle amplitude. (c) Semiannual cycle amplitude. (d) Daily cycle amplitude. (e) Half-day cycle amplitude.

5 Validation of NGGTm

5.1 Comparison to gridded Tm data

In this section, to validate the accuracy of the new model,
The NGGTm model was used to calculate the Tm values at
all of the grid points at the global scale, which compared
with the Bevis and GPT3 model. The surface gridded Tm
data with a temporal resolution of 1 h derived from the ERA5
reanalysis data in 2017 were selected as reference values.
We defined the GPT3 model with two horizontal resolutions
of 1°× 1° and 5°× 5° as GPT3-1 and GPT3-5, respectively,
which makes it convenient to describe. The Ts data required
by the Bevis model to calculate Tm were derived from the
GPT3-1 model. The statistical results are listed in Table 2,
and shown in Figs. 6 and 7.

From Table 2, it can be seen that the mean bias of the Be-
vis model was 0.66 K, which indicated that the Tm values
calculated by the Bevis model were all larger than the ref-
erence values. The mean biases of the GPT3-5 model and
the GPT3-1 model were −0.30 and −0.28 K, respectively,
which demonstrated that the Tm values calculated by the
GPT3 model were slightly smaller than the reference val-
ues. The mean bias of the NGGTm model was only−0.09 K,
which was the smallest absolute mean bias value among all
the analysed models. This result shows that the Tm values
calculated by this model were close to the reference values
overall, which demonstrated that the NGGTm model per-
formed better than the other models. In terms of the variation
ranges of the bias, the bias variation range of the GPT3-1

model shows improvement compared to that of the GPT3-5
model, which had the largest bias variation range. The main
reason for the above results may be that the GPT3 model did
not consider the influence of height in its calculation of Tm,
which resulted in the relatively large bias in the calculated Tm
values in high-elevation areas. The variation range of the bias
for the GPT3-1 model was smaller than that of the GPT3-5
model, which indicated that improving the model resolution
can help improve the stability of the model. Compared with
the Bevis model, GPT3-5 model and GPT3-1 model, the vari-
ation range of the bias of the NGGTm model was extremely
small, ranging from −1.35 to 1.59 K, which indicated that
the stability of the NGGTm model was better than those of
the other analysed models. In addition, the mean RMSE of
the NGGTm model was only 2.84 K, which exhibited im-
provements of 0.5, 0.18 and 0.06 K over the Bevis model, the
GPT3-5 model and the GPT3-1 model, respectively. These
results show that the Tm values calculated by the NGGTm
model had the highest precision among all analysed mod-
els. In terms of the variation ranges of RMSE, the variation
ranges of RMSE for the GPT3-5 model and GPT3-1 model
were larger than those of the other models. The RMSE varia-
tion range of the GPT3-1 model was smaller than that of the
GPT3-5 model. Compared with the other models, the RMSE
of the NGGTm model had the smallest variation range, rang-
ing from 0.72 to 6.33 K, which demonstrated that the pre-
cision and stability of the NGGTm model were better than
those of the other analysed models.

Figure 6 shows that the absolute bias values were relatively
small for the Bevis model in the mid-latitude areas. The main
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Table 2. The precision statistics of the bias and RMSE values of the four models tested using global surface gridded Tm data from the ERA5
reanalysis product in 2017 (unit: k).

Model Bias RMSE

Minimum Maximum Mean Minimum Maximum Mean

Bevis −9.11 9.64 0.66 0.58 9.78 3.34
GPT3-5 −15.61 22.88 −0.30 0.73 23.12 3.02
GPT3-1 −10.13 11.51 −0.28 0.68 12.88 2.90
NGGTm −1.35 1.59 −0.09 0.72 6.33 2.84

Figure 6. The bias distributions of the four models tested using global surface gridded Tm data from the ERA5 reanalysis product in 2017.
(a) Bevis model. (b) GPT3-5 model. (c) GPT3-1 model. (d) NGGTm model.

reason for this result may be the Bevis model was devel-
oped based on radiosonde data in North America. Larger
absolute bias values were observed for the GPT3-5 model
in relatively high-elevation areas, such as the Qinghai-Tibet
Plateau, western South America, and parts of Antarctica. The
main reason for this result may be that the GPT3 model did
not take any Tm vertical adjustment into account. The ab-
solute bias values of the GPT3-1 model were smaller than
those of the GPT3-5 model in most parts of the world. Al-
though relatively large absolute bias values were still shown
for the GPT3-1 model in relatively high-elevation areas, a
significant improvement can be seen. Therefore, the perfor-
mance and stability of the model can be significantly im-
proved by increasing the resolution of the model. The bias of
the NGGTm model remained at approximately 0 K, signifi-
cantly better than those of the other models. In conclusion,
the NGGTm model shows excellent stability and applicabil-
ity at the global scale.

From Fig. 7, relatively large RMSEs obtained for the Be-
vis model are shown in some areas, which indicated that the
Bevis model performed poorly in the Qinghai-Tibet Plateau,
northeastern Asia, the coasts of western and southwestern
Africa, the Arctic Ocean and Antarctica. Relatively large
RMSEs obtained for the GPT3-5 model are shown in west-
ern North America, western South America and the Qinghai-
Tibet Plateau. The GPT3-1 model had a certain accuracy im-
provement compared with the GPT3-5 model in these areas.
Furthermore, increasing the resolution of the model can im-
prove the model precision of calculating Tm. The NGGTm
model had small RMSEs around the world, which demon-
strated higher precision especially at low latitudes. The NG-
GTm model performed significantly better than the Bevis
model, the GPT3-5 model and GPT3-1 model.
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Figure 7. The RMSE distributions of the four models tested using global surface gridded Tm data from the ERA5 reanalysis product in 2017.
(a) Bevis model. (b) GPT3-5 model. (c) GPT3-1 model. (d) NGGTm model.

5.2 Comparison to radiosonde data

To further validate the performance of the NGGTm model,
the Tm data from 378 radiosonde stations around the world
in 2017 were selected as reference values. The precision of
the NGGTm model when calculating Tm at these stations was
validated and compared with the other three models. The Ts
data required by the Bevis model to calculate Tm were de-
rived from the radiosonde stations. The statistical results are
listed in Table 3, and shown in Figs. 8 and 9.

From Table 3, the mean bias of the NGGTm model was
only 0.10 K, with the smallest absolute value among the anal-
ysed models. The bias range of the NGGTm model was also
the smallest, ranging from −4.31 to 3.78 K, which demon-
strated that the NGGTm model performed better than the
other models. In addition, the mean RMSE of the NGGTm
model was only 3.30 K, which exhibited improvements of
0.27 K (8 %), 0.35 K (11 %) and 0.18 K (5 %) over the Bevis
model, GPT3-5 model and GPT3-1 model, respectively. The
RMSE range of the NGGTm model was the smallest, rang-
ing from 0.99 to 5.17 K, indicating that the NGGTm model
had the best precision and stability at the global scale.

From Fig. 8, the Bevis model showed relatively obvious
negative biases in low latitudes and obvious positive biases
in middle and high latitudes, with a trend of increasing abso-
lute biases from low latitudes to high latitudes. The GPT3-
5 model and GPT3-1 model performed similarly, with rela-
tively large absolute bias values on the Qinghai-Tibet Plateau
and in western North America because the GPT3 model did

not consider the relationship between Tm and height. The
absolute bias values of the NGGTm model were relatively
small at the global scale, with values of approximately 0 K.
These results demonstrated that the stability of the NGGTm
model was better than those of the other analysed models at
the global scale.

Figure 9 shows all models exhibited relatively small RM-
SEs at low latitudes and relatively large RMSE values at high
latitudes, with a trend of increasing RMSEs from low lati-
tudes to high latitudes. The main reason for this result may
be the seasonal variation in Tm is strengthened with increas-
ing latitude. In addition, the GPT3-5 model showed relatively
large RMSEs at a few radiosonde stations on the Qinghai-
Tibet Plateau, whereas the GPT3-1 model exhibited a cer-
tain improvement for the reasons mentioned above. The NG-
GTm model still had a significant improvement compared
with other models at the global scale, which demonstrated
that the NGGTm model had the best precision and stability.

Since there are strong correlations between Tm and both
elevation and latitude, to further analyse the relationship be-
tween the precision of Tm calculated by the four models and
the elevation variation, the 378 radiosonde stations around
the world were divided into five intervals with an elevation
span of 500 m for each interval. The bias and RMSE values
at these 378 radiosonde stations were then calculated accord-
ing to the above intervals. The results are shown in Fig. 10.

From Fig. 10, the Bevis model exhibited a positive corre-
lation between bias and elevation. The main reason for this
result may be that the Bevis model was developed by using
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Table 3. The precision statistics of bias and RMSE for the four models tested using global Tm data from 378 radiosonde stations in 2017
(unit: k).

Model Bias RMSE

Minimum Maximum Mean Minimum Maximum Mean

Bevis −4.98 6.49 0.39 0.98 7.05 3.57
GPT3-5 −13.79 4.48 −1.00 0.99 13.90 3.65
GPT3-1 −5.66 4.49 −0.79 0.98 6.23 3.48
NGGTm −4.31 3.78 0.10 0.99 5.17 3.30

Figure 8. The bias distributions of the four models tested using global Tm data from 378 radiosonde stations in 2017. (a) Bevis model.
(b) GPT3-5 model. (c) GPT3-1 model. (d) NGGTm model.

radiosonde data collected in low-elevation North America,
leading to the poor applicability in relatively high-elevation
areas. The GPT3-5 model and GPT3-1 model exhibited neg-
ative biases in all elevation intervals. Whereas the NGGTm
model exhibited relatively small absolute biases in all ele-
vation intervals, especially those below 2000 m. Therefore,
the NGGTm model exhibited extremely significant stability
in all elevation intervals compared with other models at the
global scale. In addition, the Bevis model showed smaller
RMSEs than the GPT3-5 model at elevations below 1500 m.
The RMSEs of the GPT3-1 model were smaller than those
of the GPT3-5 model at all elevation intervals, which fur-
ther indicated that increasing the resolution of the model can
improve the precision and stability of the results. The RM-
SEs of the NGGTm model were smaller than those of the
Bevis model, GPT3-5 model and GPT3-1 model in all eleva-
tion intervals. In conclusion, the NGGTm model showed the

best precision and stability compared with the other analysed
models in all elevation intervals.

To further analyse the relationship between the precision
of four models and the latitude variation, the 378 radiosonde
stations around the world were divided into several intervals
with a latitude interval of 15°. Few radiosonde stations are lo-
cated at high latitudes. The high-latitude areas in the North-
ern and Southern Hemispheres were divided into intervals
with latitude intervals of 15°. The bias and RMSE values
corresponding to the 378 radiosonde stations were calculated
according to the above intervals. The results are shown in
Fig. 11.

From Fig. 11, the Bevis model obtained relatively large ab-
solute biases in most latitude ranges, which exhibited signif-
icantly positive biases in high latitudes and significantly neg-
ative biases in low latitudes. The GPT3-5 and GPT3-1 mod-
els exhibited negative biases with relatively small absolute
values at most latitudes and negative biases with relatively
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Figure 9. The RMSE distributions of the four models tested using global Tm data from 378 radiosonde stations in 2017. (a) Bevis model.
(b) GPT3-5 model. (c) GPT3-1 model. (d) NGGTm model.

Figure 10. The bias and RMSE distributions within different eleva-
tion intervals for the four models tested using global Tm data from
378 radiosonde stations in 2017. (a) Bias. (b) RMSE.

large absolute values in the high-latitude areas of the South-
ern Hemisphere, which can be observed especially for the
GPT3-5 model. The NGGTm model exhibited small absolute
biases in all latitude ranges. In addition, all models showed
small RMSEs in low-latitude areas but relatively large RM-
SEs in high-latitude areas. The RMSEs gradually increased
with increasing latitude for all models. Compared to the other

Figure 11. The bias and RMSE distributions in different latitude
ranges obtained for the four models tested using Tm data recorded
at 378 radiosonde stations globally in 2017. (a) Bias. (b) RMSE.

models, the NGGTm model had the best accuracy in all lati-
tude ranges, especially in the high-latitude areas of the South-
ern Hemisphere. In summary, the NGGTm model showed a
high accuracy and stability for calculating Tm at all latitudes.

6 Conclusion

Tm is the key parameter of GNSS PWV inversion tasks and
in the detection of PWV changes. Developing a real-time and
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high-precision Tm vertical adjustment rate model is neces-
sary for Tm vertical adjustment. By analysing the relationship
between Tm and height, an approximately linear relationship
between Tm and height can be found in the near-Earth space.
Therefore, a linear function was used to fit the vertical ad-
justment rate of Tm. Based on an in-depth analysis of the de-
tailed temporal variations in the Tm vertical adjustment rate,
a sliding-window algorithm was introduced to develop the
NGGTm-H model with horizontal resolutions of 0.5°×0.5°,
1°× 1° and 2°× 2°. The user can obtain the corresponding
vertically adjusted Tm value in real time by providing only
the coordinate information of any position and DOY. The
NGGTm-H model can achieved excellent results in the pre-
cision verification performed by combining ERA5 reanalysis
data and radiosonde data that were not used in the modelling
process.

Based on the development of the Tm vertical adjustment
rate model and taking into account the effects of the detailed
temporal characteristics of Tm, NGGTm model was devel-
oped. The accuracy and applicability of the NGGTm model
were then verified by global radiosonde data and ERA5 re-
analysis data that were not used in the modelling process,
which compared with those of the Bevis model and GPT3
model. The results show that the NGGTm model had the best
performance and stability among the tested models. Com-
pared to the Bevis model and GPT3 model, with increasing
height, the performance improvement of the NGGTm model
was more significant. The accuracy of the NGGTm model
was also significantly improved with increasing latitude. In
general, the NGGTm model can provide real-time and high-
precision Tm information without requiring the input of mea-
sured meteorological parameters at the global scale. This
model has broad application prospects in real-time GNSS
PWV detection research.

This study only verifies the stability and applicability of
the NGGTm model, whereas the model has not yet been ap-
plied to GNSS PWV retrieval tasks. Therefore, the effective-
ness of the NGGTm model in retrieving atmospheric PWV
will be further investigated in future study.
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