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Abstract. Leaf senescence ends the growing season of de-
ciduous trees, affecting the amount of atmospheric CO; se-
questered by forests. Therefore, some climate models inte-
grate projected leaf senescence dates to simulate the carbon
cycle. Here, we developed a process-oriented model of leaf
senescence (the “DP3 model”) by testing 34 formulations
of the leaf development process based on the latest findings
on the regulation of leaf aging and senescence. The period
between leaf unfolding and leaf senescence was separated
into the subsequent young, mature, and old leaf phases, with
particular reactions to leaf aging and cold stress, photope-
riod stress, and dry stress. The DP3 model simulates daily
rates of aging and stress to predict dates of transition from
young to mature to old leaf, senescence induction dates, and
leaf senescence dates. This allows new hypotheses regarding
the regulation of leaf senescence to be tested. For example,
the DP3 model predicted an earlier onset of senescence in
warmer conditions, likely due to earlier leaf unfolding (ag-
ing) and increased cold and dry stress in spring, together with
longer-lasting senescence, likely due to the later accumula-
tion of photoperiod stress relative to leaf development and
decreased cold stress in summer and fall, which can be vali-
dated through experiments and in situ observations. The DP3
model and compared previous models were equally accurate
but less accurate than the Null model (average senescence
date observed in the calibration sample). This lower accu-
racy of the DP3 and compared models is likely due to noise
in the visually observed leaf senescence data, which blurs the
signal of the leaf senescence process, and to incorrect model

formulations. The model errors were similarly affected by
climate conditions and location among compared models (in-
cluding the Null model) and varied mostly due to the leaf
senescence data. Noisy leaf senescence data likely force the
models to resort to the mean observation, impeding infer-
ences from accuracy-based model comparisons about the leaf
senescence process. This calls for revised observation proto-
cols and methods that measure rather than estimate different
senescence stages, such as senescence induction and 50 % of
the leaves having changed color, e.g., based on greenness,
involving digital cameras and automated image assessment.

1 Introduction

Leaf senescence involves several processes and regulation
pathways, but the most important process is the degrada-
tion of chlorophyll and breakdown of chloroplasts to retrieve
nutrients, especially nitrogen, and to mobilize them in new
leaves in spring (Cooke and Weih, 2005; Keskitalo et al.,
2005; Lim et al., 2007; Rogers, 2017). A side effect of this
nutrient resorption is the change in leaf color from green to
yellow, orange, or red (Keskitalo et al., 2005, but see Wheeler
and Dietze, 2023). There have been many studies on how
the timing of leaf coloring is influenced by climatic condi-
tions (e.g., Bigler and Vitasse, 2021; Liu et al., 2018; Meier
et al., 2021). As these studies usually used the term “leaf
coloring” or “leaf senescence” to refer to a particular stage
of leaf senescence, we use “leaf senescence” as a collective
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term for the stages when a given relative amount of leaves
have changed color or have fallen, unless stated otherwise.

Leaf senescence marks the end of a process that has been
better understood over the last 10 years, mainly thanks to
studies in cell and molecular biology and in environmental
sciences. These studies have shown that leaf senescence re-
lates to leaf development state (e.g., Jan et al., 2019; Jibran
et al., 2013; Lim et al., 2007). On the one hand, the devel-
opment state of leaves depends on their age and thus on the
time since leaf unfolding and the state of carbohydrate sinks
(Jibran et al., 2013), which relates to photosynthetic activity
and nutrient availability (Paul and Foyer, 2001). While ear-
lier leaf unfolding was related to earlier leaf senescence (Fu
etal., 2014, 2019), an intense discussion has started about the
possibility of earlier leaf senescence due to increased photo-
synthetic activity (Kloos et al., 2024; Lu and Keenan, 2022;
Marqués et al., 2023; Norby, 2021; Zohner et al., 2023). On
the other hand, the development state of leaves is influenced
by hormone levels (Addicott, 1968; Jan et al., 2019; Jibran et
al., 2013; Lim et al., 2007), which are, among others, stimu-
lated by environmental stress caused by cold (Kloos et al.,
2024; Wang et al., 2022; Xie et al., 2015, 2018), drought
(Bigler and Vitasse, 2021; Marién et al., 2021; Tan et al,,
2023; but see Kloos et al., 2024; Xie et al., 2015, 2018), heat
(Bigler and Vitasse, 2021; Marién et al., 2021; Tan et al.,
2023; Xie et al., 2015, 2018), heavy rain (Kloos et al., 2024;
Xie et al., 2015, 2018), short days (Addicott, 1968; Keskitalo
et al., 2005; Singh et al., 2017; Tan et al., 2023; Wang et al.,
2022), and lack of nutrients (Fu et al., 2019; Tan et al., 2023).
In the early phase of leaf development (“young leaf”), senes-
cence cannot be induced, whereas aging and stress induce it
in later phases (“mature leaf” and “old leaf”’) and regulate the
rate of senescence (Fig. 1; Jan et al., 2019; Jibran et al., 2013;
Lim et al., 2007; Paul and Foyer, 2001; Tan et al., 2023).

As senescence induction depends on environmental con-
ditions, leaf senescence of deciduous trees shifts as climate
changes, which influences the timing and length of their
growing season and thus affects the amount of CO, absorbed
from the atmosphere (Meier et al., 2021; Menzel et al., 2020;
Piao et al., 2019; but see Marién et al., 2021). This links
the feedback loop between atmospheric CO, concentration
and climate to the feedback loop between climate and forests
and more generally to terrestrial ecosystems (Luo, 2007;
Richardson et al., 2013). Further, the amount of absorbed
COx, relates to the amount of sugars available for tree growth,
defense, and reproduction (Herms and Mattson, 1992; Tan et
al., 2023). Therefore, accurate projections of leaf senescence
dates under a changing climate are necessary for accurate
forecasts of both climate change and future species compo-
sition of temperate forests.

Leaf senescence dates are often projected using process-
oriented models. These models are usually based on the re-
sults of experiments testing the effect of various environ-
mental cues that are translated mathematically (Chuine et al.,
2013; Chuine and Régniere, 2017). Various process-oriented
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Figure 1. Leaf development. Starting with leaf unfolding, the young
leaf develops first into a mature leaf and then into an old leaf. During
the three phases of the young, mature, and old leaf, the leaf ages
continuously. With the transition from young to mature leaf, the
leaf becomes ready for senescence induction through environmental
stress (e.g., cold days). If senescence is not induced through stress
in the mature leaf, it certainly is through aging with the transition
from mature to old leaf. Thus, senescence cannot be induced during
the phase of the young leaf and the onset of senescence (i.e., the
senescence induction date) depends on the time since leaf unfolding
and on the environmental conditions since the transition from young
to mature leaf. Adapted from Fig. 1 in Jibran et al. (2013).

models of leaf senescence have been proposed over the last
20 years (Liu et al., 2020; Meier and Bigler, 2023). They
generally formulate leaf senescence as a one-way process
that starts shortly after summer solstice by accumulating a
daily rate of senescence until a threshold is reached (but see
Wheeler and Dietze, 2023). The daily rate is usually depen-
dent on temperature and day length, and the threshold is
either a constant or depends on leaf unfolding dates or on
environmental conditions during the growing season (e.g.,
Delpierre et al., 2009; Keenan and Richardson, 2015; Liu et
al., 2019; Zani et al., 2020).

Previous studies have shown that these leaf senescence
models are heavily biased towards the mean of the calibra-
tion sample (Meier et al., 2023) and are less efficient rela-
tively to leaf unfolding models (e.g., Liu et al., 2020; Meier
and Bigler, 2023). However, it is not yet clear whether this is
due to noisy phenological data and/or an incomplete process
formulation.

The phenological data used to train leaf senescence mod-
els have often been recordings of visual observations, which
cover long time periods and are species-specific (e.g., ongo-
ing since 1951 in the Swiss phenology network, 2025). How-
ever, the observations are noisy due to different observers
and small sample sizes. For leaf senescence, Liu et al. (2021)
showed, e.g., that the observer bias was 15 d (days; median)
and the sampling bias was 10d (median) for 10 trees ob-
served per population. These biases lead not only to noise
between sites but also within sites when observers and sam-
ples change. Such changes can lead to sudden changes in the
mean in the time series, as was found for some Swiss sites
(Auchmann et al., 2018; Swiss phenology network, 2025).
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Moreover, the observation protocols may differ between the
meteorological institutes and citizen-science-based networks
that are responsible for the recording in the different Euro-
pean countries (Menzel, 2013).

Current models formulate leaf senescence as the result
of an accumulated stress caused by cold and short days af-
ter summer solstice (Delpierre et al., 2009; Dufréne et al.,
2005; Keenan and Richardson, 2015; Lang et al., 2019; Liu
et al.,, 2019; Zani et al., 2020). Two models further con-
sider environmental conditions before summer solstice, ei-
ther through temperature and precipitation during the grow-
ing season (Liu et al., 2019) or through photosynthetic activ-
ity during the growing season (Zani et al., 2020), while one
model considers age through leaf unfolding dates (Keenan
and Richardson, 2015). However, in these models, environ-
mental conditions and age affect the amount of stress needed
for leaf senescence rather than senescence induction. In other
words, according to current models, senescence induction
depends only on stress caused by cold and short days af-
ter summer solstice, which considerably contrasts with cur-
rent knowledge (see above). None of the current models al-
lows for senescence induction due to aging or stress before
summer solstice. While two models consider stress that oc-
curred before summer solstice, senescence is always induced
after summer solstice. Finally, we are unaware if aging, stress
caused by other than cold and short days, and different stress
effects among the phases of leaf development have been
tested, as none of the corresponding studies mentioned tested
but discarded model formulations.

Here, we developed a new process-oriented model that
predicts leaf senescence dates based on the latest knowledge
of the physiological processes and drivers of leaf senescence.
Leaf senescence was formulated through a leaf development
process that starts at leaf unfolding and is driven by aging and
various types of abiotic stress. We tested 34 model formula-
tions of this process. Finally, the most accurate formulation
was evaluated with a particular focus on the differences be-
tween the predicted and observed dates (i.e., “model errors”).
We addressed the following research questions:

1. Which model formulation yields the most accurate pre-
dictions of leaf senescence dates?

2. How accurately does this model predict leaf senescence
dates compared to previous models?

3. How do the model errors relate to the phenological data,
climate, and site conditions?
2 Data and methods
2.1 Phenological data

The model was developed and evaluated with leaf phenol-
ogy data of common beech (Fagus sylvatica L.), which
was visually observed in Austria, Germany, Great Britain,
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and Switzerland between 1950 and 2022 (Fig. 2, Table 1,
Sect. S1.1 in the Supplement; PEP725, 2024; Swiss phenol-
ogy network, 2025; Templ et al., 2018). We used the phe-
nological stages, with 50 % of the leaves having unfolded as
well as 50 % and 100 % of the leaves having changed color
or having fallen (hereafter referred to as “leaf unfolding”
[LU], “leaf senescencesy” [LSsp], and “leaf senescencejgy”
[LS100], respectively, corresponding to BBCH15, BBCH95,
and BBCH97 according to Meier, 2018). The LSioo data
were recorded in Austria and Great Britain only.

We checked all site years with regards to the order and
completeness of the phenological observations. Observations
of LS50 and LS;gp that occurred between the day of year
(doy) 60 and 151 were discarded, as were observations of
LU that occurred after doy 180 or after LSsg or LS;go. Thus,
we considered only site years with an observation for LU that
was followed by either LS50 or LS;og, or by both LS5p and
later LS1q0, leaving 5018 sites.

From these sites, we made a pre-selection so that the
phenological and geographical range of the LS5y observa-
tions was evenly covered and all LS gy observations were
included. This involved splitting all 5018 sites into 8—10 bins
with equal spans for the average and standard deviation of
LS5¢ as well as for latitude, longitude, and elevation, so that
each bin contained at least two sites (e.g., the range between
doy 232 and 328 for the average LS5y was split into 10 bins
0f 9.7 d). From each bin, we chose the site with the most LS5
observations, with random choice if this applied to more than
one site. These sites were completed by all sites with an
LS00 observation, resulting in a pre-selection of 7137 LS5y
and 850 LSgp observations recorded at 244 and 106 sites,
respectively.

2.2 Driver data

For each phenological site, weather variables, elevation, and
the leaf area index (LAI) were approximated by the weighted
averages from octagons with a radius of 2.5km around the
phenological sites, and combined with the atmospheric CO»
concentration. Daily weather variables and elevation were
derived for each site from the E-OBS dataset (Copernicus
Climate Change Service, Climate Data Store, 2020; Cornes
et al., 2018), which contains interpolated data from a 100-
member ensemble driven with meteorological observations.
We extracted and approximated site elevation, maximum
temperature, mean temperature, minimum temperature, pre-
cipitation, relative humidity, and surface shortwave down-
welling radiation for 1950-2022. These temperature vari-
ables were corrected through day- and site-specific lapse
rates to account for elevational differences between the oc-
tagon averages and sites (i.e., the elevation according to the
phenology datasets or, if missing, according to EU-DEM,
2024, with a resolution of 25 m, and the location according to
the phenology datasets). These lapse rates were linearly re-
gressed from the grid cell of a particular site and the eight
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Figure 2. Selected phenological sites. Panel (a) locates the selected sites and indicates corresponding elevation (meters above sea level
(ma.s.l.)). In panel (b), the histograms illustrate the distributions of the site-specific average day of year (doy; left) and corresponding
standard deviation (right) per leaf senescence stage (i.e., 50 % and 100 % of the leaves having changed color or having fallen (LS5¢ and
LS9, respectively); rows). Panel (c) plots the site-specific average doy of LS5¢ and LS (grey and black circles, respectively) in relation
to site latitude (° N) (left), longitude (° E) (middle), and elevation (m a.s.l.) (right), together with the linear regression lines and corresponding
99 % confidence intervals. The linear regression explained site-specific average LS5q and average LS by latitude, longitude, and elevation
(Sect. S1.1.2). Corresponding estimates were plotted against latitude for mean longitude and mean elevation (left), against longitude for
mean latitude and mean elevation (middle), and against elevation for mean latitude and mean longitude.

neighboring grid cells, assuming an elevation of Oma.s.l.
(meters above sea level) for grid cells over the sea. Occa-
sional gaps in the regressed lapse rates were interpolated with
site-specific cubic splines. LAI per site was taken from the
remotely sensed monthly LAI (1981-2015) in the GIMMS-
LAI3g dataset (version 2; Mao and Yan, 2019). LAI is aver-
aged among years in this dataset, and thus we also used these
monthly LAI values for the years 1950-1980. Atmospheric
CO; concentrations were taken from a reconstructed dataset
for the years 1950-2013 and a remotely sensed dataset for the
years 2002-2022 (Cheng et al., 2022; Copernicus Climate
Change Service, Climate Data Store, 2018). Both datasets
provide monthly data, which we distilled into annual av-
erages. These averages were combined through weighted
means over the years 2002-2013 to assure a smooth tran-
sition between the datasets. As some monthly CO; observa-
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tions between 2002 and 2022 were missing, we used modeled
CO,; values derived from site-specific cubic splines based on
the remotely sensed data (Copernicus Climate Change Ser-
vice, Climate Data Store, 2018).

We further calculated for each site day length, daily
photosynthetic activity, and the daily Keetch and Byram
drought index (KBDI). Day length was calculated following
Brock (1981), using the latitude of each site (Sect. S1.2.1).
Daily sink limited photosynthetic activity was calculated
following Farquhar et al. (1980) and Collatz et al. (1991),
using daily surface shortwave downwelling radiation, day
length, and mean temperature together with monthly LATI av-
eraged among years and annual atmospheric CO; concentra-
tion (Sect. S1.2.2). The daily KBDI was calculated following
Keetch and Byram (1968), using precipitation and maximum
temperature (Sect. S1.2.3).
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Table 1. Observations of spring and fall leaf phenology.
Stage  Country Sites  Total number of site years Observation Range of observations  Source
(min.—max. per site) period [doy]
LS50 Austria 51 1011 (5-54) 1950-2015 209-321 PEP725
Germany 68 3238 (14-65) 1951-2015 196-331 PEP725
Great Britain 64 303 (2-6) 1999-2005  258-337 PEP725
Switzerland 61 2585 (6-72) 1951-2022 197-344 SPN
LSig0 Austria 43 578 (1-34) 1950-1986 263-335 PEP725
Great Britain 63 272 (1-6) 1999-2005  286-365 PEP725
LU Austria 51 1020 (5-54) 1950-2015 80-166 PEP725
Germany 68 3238 (14-65) 19512015 80-175 PEP725
Great Britain 64 331 (5-6) 1999-2005 85-140 PEP725
Switzerland 61 2585 (6-72) 19512022  67-161 SPN
Note: LU refers to the stage when 50 % of the leaves are unfolded. LSs5q and LS refer to the stages with 50 % and 100 % of the leaves,
respectively, having changed color or having fallen. The timing of these stages is given by the day of year (doy). A site year is a year for which an
observation of both LU and LS5 or LS was recorded at a given site. Two data sources were considered: PEP725 (Templ et al., 2018) and the
Swiss phenological network (SPN; Swiss phenology network, 2025).
2.3 Model conceptualization Sk,j = Y. 2)

Based on the process of leaf development according to Jibran
et al. (2013), we defined our model as a one-way process that
may be formulated with either two or three phases of leaf
development, i.e., either the phases mature and old leaf or
the phases young, mature, and old leaf (Figs. 1 and 3). After
leaf unfolding, the young leaf is insensitive to stress and ages
until it becomes a mature leaf (Fu et al., 2014; Jibran et al.,
2013; Keenan and Richardson, 2015). The mature leaf can be
affected by stress and ages until it becomes an old leaf (Jan
et al., 2019; Jibran et al., 2013; Lim et al., 2007). Senescence
induction may be caused by stress in the mature leaf or by
aging, in the case of which it coincides with the transition
from mature to old leaf, causing the leaf to change color and
to fall off (Jan et al., 2019; Jibran et al., 2013; Lim et al.,
2007).

Based on these definitions, we formulated the leaf devel-
opment process under the following assumptions. Aging may
be simulated either by photosynthetic activity (Jibran et al.,
2013; Paul and Foyer, 2001; Zohner et al., 2023) or, more
simply, by a number of days. Stress may be simulated by a
combination of sudden or gradual responses to the stressors
cold, shortening day length, drought, heat, frost, heavy rain,
and nutrient depletion (Bigler and Vitasse, 2021; Jan et al.,
2019; Jibran et al., 2013; Kloos et al., 2024; Marién et al.,
2021; Tan et al., 2023; Wang et al., 2022; Xie et al., 2015,
2018; Zohner et al., 2023). Senescence may be simulated in
linear, convex, or sigmoidal dependence on combined aging
and stress (Tan et al., 2023; Xie et al., 2015).

All formulations are based on daily states of aging, stress,
and senescence (Eq. 1), which are compared to correspond-
ing thresholds (Eq. 2):

i
Sk =D iy Reis M
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Here, Sk is the state on day j of either aging, stress, or
senescence (k). This state is formulated as the sum of the
corresponding rates on day i (Ry ;), which accumulated be-
tween the starting day #ox and j, until the threshold Yy is
reached. In other words, the daily aging rate (Raging,i) accu-
mulates from LU (#, aging = LU). The transition from young
leaf to mature leaf occurs when Saging,; reaches Yaging,1-
Thus, day j becomes fp siress and the accumulation of the
daily stress rate (Rsqess,i) starts, while Raging ; continues to
accumulate. While the transition from mature leaf to old leaf
occurs when Saging, j reaches Yaging,2, senescence is either
induced with this transition or already earlier due to Ssyress, ;
reaching Ysyess. Upon senescence induction, day j becomes
10, Senescence and the daily senescence rate (Rsenescence,i) Starts
to accumulate. Eventually, Ssepescence,j reaches Yprss, and
Y1.5,4» and respective LS50 and LS(o are marked by the cor-
responding days j.

RAging,i Was either set equal to the daily net photosynthetic
activity or to one (i.e., Apet [mol C dorl1[dd™y, respec-
tively), depending on the formulation (Eq. 3):

Anetis
Raging,i = { 1_net’l 3)

Rsiress,i was formulated as the sum of three to seven weighted
stressors (Dgress; Eqs. 4-6), always considering (1) cold days
(derived from minimum temperature; 7,, [°C]), (2) shorten-
ing days (derived from the difference in day length; § L [h],
with §L; = L; — L;—1), and (3) dry days (approximated by
KBDI; Q). In addition, some formulations of Rgyess also
considered (4) periods of heavy rainfall (approximated by
the 5d precipitation; Ps [mm], with Ps, being the sum of
Pi_4 to P;), (5) heat days (derived from maximum temper-
ature; T, [°C]), (6) nutrient depletion (approximated by the

Geosci. Model Dev., 18, 6963-6985, 2025
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Figure 3. Conceptualization of the leaf development model. The process of leaf development is defined by three subsequent phases of leaf
development, i.e., “young leaf”, “mature leaf”, and “old leaf” (light green, dark green, and orange horizontal arrows, respectively; a and c).
Alternatively, the process is simplified into two subsequent development phases, i.e., “mature leaf”, and “old leaf” (b, d). Senescence may be
induced by stress during the phase of the mature leaf (grey rhombuses; a, b) or by aging on the day of transition from the mature to the old
leaf (dm—o; ¢, d, respectively). The state of aging, stress, and senescence (y axes; SAging,i» SStress,i> ad SSenescence,i; Eq. 1 solid green,
red, and brown lines, respectively) for day i are derived from the corresponding daily rates (Egs. 3, 4, and 8) accumulated over time (x axis;
day of year (doy)). Starting from the leaf unfolding date (LU), these states simulate the leaf development, marked by transitions from the
young to the mature leaf (dy— ) and dpm— o as well as by the dates of senescence induction (SI) and of the phenological stages 50 % and
100 % leaf coloring or fall (LSs5o and LS, respectively). These transitions and stages occur when Saging i » SStress,i» @1d SSenescence,i feach
corresponding thresholds (Yaging, 1, YAging,2s YStress> YLS50> and Y1g,,,)- Sl is defined as the first day on which either Ygyress O Yaging,2 is
reached (a, b versus ¢, d, respectively) and marks the onset of senescence (grey horizontal arrow), during which the daily senescence rate

accumulates. If ST results from Yagjng 2 being reached, it coincides with dyy— . Dotted lines are auxiliary lines.

accumulated Ape since LU, due to the absence of soil data),
and/or (7) frost days (through a response to 7,, with lower
thresholds than for cold days; Table S3 in the Supplement):

Rstress,i = Z WDgyees X S (DStress,i) s 4)

DStress,i € {Tn; ) (SLi’ Qi5 PS,' ) T)C[ 5 Z;:dLUAl’let,lv Tl’li } 5 (5)
X),
f(x)z{ o ©

Here, w py,.., i the weight for the response [ f (x)] to Dsyress,
calculated according to g(x) or h(x) (Egs. 7 and 8):

1 ifx>a,

g(x):{ 0 ifx<a, D
1 if x < by,

he)y={ #5 ifbg<x <bi, (8)
0 if x > by.

While a marks the sudden boundary between an unstressed
and stressed state, bg and b; mark the lower and upper
bounds, respectively, between which stress gradually in-
creases (Fig. 4). Because stress results when x > g and x >

Geosci. Model Dev., 18, 6963-6985, 2025

by, the response to § L and 7;, was formulated as g(—4&L) and
g(—T,) as well as h(—46L) and h(—T,). This translates into
stress if §L < —a, 8L < —by, T, < —a, and T,, < —bg. For
example, if stress occurs suddenly or gradually when §L <
—0.01 h, then a = 0.01 h and by = 0.01 h, respectively. Note
that these are examples, see Table 3 for the calibrated values.

Rsenescence,i Was either formulated as the sum, product, or
exponential function of Raging; and Rsyess,i O of Saging,i
and Rsyress,i» Which yield linear, convex, and sigmoid curves,
respectively (Eq. 9):

wARAging,i + ws RStress,i

L Xs
SX (RAgmg,l x RStress,i) . 9)
1
X e”SAging,i (d’RSlress,i)

R Senescence,i —

wa and wg are the weights of Raging and Rsyress, Tespectively,
and sy is a scaling factor, all of which allowed us to hard code
Yiss, = 1, xs is the range bounded exponent of Rsyress, While
¢ and d are the parameters of the sigmoid curve that relates
Rstress and Saging (Lang et al., 2019).
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Figure 4. Response functions (solid red lines) of g(x) and A(x). In
panel (a), a marks the boundary value of x at which g(x) suddenly
changes from 0 to 1 (i.e., from no effect to an effect). In panel (b),
bo and b| mark the lower and upper bounds of x, respectively, be-
tween which f(x) gradually increases from O to 1. Dotted lines are
auxiliary lines.

2.4 Model calibration and validation

We selected the observations for the calibration and valida-
tion samples with different procedures. To have a low risk
of overfitting (i.e., the bias—variance trade-off; Sect. 2.2.2
in James et al., 2017), each calibration sample contained at
least 10 observations per calibrated parameter (Meier and
Bigler, 2023). We defined two calibration datasets: one to
calibrate a model that predicts both LS50 and LS1gp simul-
taneously, and one to calibrate a model that predicts LSs5g
only. For the two datasets, we identified the site years with
the most extreme conditions during the growing season, i.e.,
the hottest, coldest, and driest 10 d periods observed between
LU and LS5y as well as the shortest and longest growing
season observed in the pre-selected data (Sect. 2.1). For the
first dataset, hereafter called “LS50—LS1gp sample”, we ran-
domly selected 250 of these site years containing an obser-
vation for both LS5 and LSqg. For the second dataset, here-
after referred to as “LS5p sample”, we randomly selected 250
of these site years containing observations for LSsg. These
calibration samples were paired with validation samples that
contained all remaining LSsg and LSy observations or all
remaining L.Ssg observations, respectively. We drew both the
LS50 and LS50—LS100 samples twice. While model develop-
ment was based on the LSs50—LS;00 samples, model evalua-
tion was based on the LS50 sample to allow for a compari-
son with previously published models. All models were cali-
brated five times per drawn sample (i.e., 10 “calibration runs”
per model and LS5y sample or LS50-LS199 sample) by min-
imizing the root mean squared error (RMSE; Eq. S44) with
generalized simulated annealing and optimal, model-specific
controls (see Sect. S2.2; Xiang et al., 1997, 2017).
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2.5 Model development

We based our model on the most accurate formulation of
the leaf development process after testing different formula-
tions in several iterations (Fig. 5; see Table S3 for parameter
ranges). First, we defined the process structure based on sud-
den responses (g(x); Eq. 7) to the stressors for cold days,
shortening days, and dry days. In iteration 1, we tested the
definition of the aging rate (Raging) and of the senescence
rate (Rsenescence) based on the two phases of leaf develop-
ment “mature leaf” and “old leaf” (Fig. 3b and c). Raging
was formulated as a function of either the net photosynthetic
activity (Ape) or of the number of days (Eq. 3). Rsenescence
was formulated in linear, convex, or sigmoidal dependence
on combined aging and stress (through Raging Or the state
of aging (Saging) and through the stress rate (Rsgess)) in €i-
ther a sum, product, or exponential function (Eq. 9). In it-
eration 2, we tested the number of phases of leaf develop-
ment and added the phase “young leaf” (Fig. 3a and d). Thus,
we formulated Rggess With gradual responses (h(x); Eq. 8)
to the initial stressors and a forward selection of additional
stressors. In iteration 3, we considered each stressor for cold
days, shortening days, and dry days through % (x) rather than
g(x). In iteration 4, we considered one additional stressor,
i.e., heavy rain periods, heat days, nutrient depletion, or frost
days through g(x). In iteration 5, we considered the addi-
tional stressor through 4 (x) rather than g(x). In iteration 6,
the procedure of iterations 4 and 5 was repeated as long as
they resulted in a formulation that was selected for further
development.

The formulations to be further developed were selected ac-
cording to the accuracy of the corresponding model in pre-
dicting LSsg and LSiqp, i.e., through calibration with the
LSs0-LSi00 sample. This accuracy was assessed with the
Akaike information criterion corrected for small samples
(AICc; Eq. S41 in the Supplement; Akaike, 1974; Burnham
and Anderson, 2004), which accounts for both the goodness
of fit between the predicted and observed leaf senescence
dates and the number of free parameters. The AICc was cal-
culated for each calibration run (see Sect. 2.4) and the run
with the highest AICc per model was excluded. We further
developed the formulations of the two models with the low-
est median AICc across the given and all previous iterations.
Finally, the model with the lowest median AICc was selected
and further evaluated.

2.6 Model evaluation

First, we evaluated the functionality of the selected model.
We were particularly interested in the causes of senescence
induction that could be due to aging or stress (Fig. 3). We
counted how often aging versus stress induced senescence,
and we quantified the relative amount of accumulated stress
caused by each stressor at the time of senescence induction.
We compared both aging- and stress-induced senescence as
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Figure 5. Model development. The iterations of model development
are symbolized with rectangles. Selection of the best formulated
models (ellipses) was based on the Akaike information criterion
corrected for small samples (AICc; Eq. S41; Akaike, 1974; Burn-
ham and Anderson, 2004) and the final selection is marked in grey.
For the response functions g(x) and 4 (x), see Egs. (7) and (8).

well as the relative amounts of stress across mean annual
temperature (MAT; °C), mean annual KBDI (MAQ), latitude
(LAT; °N), and elevation (ELV; ma.s.l.) for the given year
and site. While MAT and MAQ were assumed to directly af-
fect cold and dry stress, LAT relates to day length through the
inclination angle of Earth (Brock, 1981), and ELV relates to
dry stress through decreasing nutrients with elevation (Huber
et al., 2007; Loomis et al., 2006). The evaluation was based
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on the calibration runs that resulted in the highest modified
Kling-Gupta efficiency (KGE'; Eq. S45; Gupta et al., 2009;
Kling et al., 2012), which combines bias, variability, and cor-
relation of the predicted and observed leaf senescence dates.

Second, we compared the accuracy of the selected model
to three previously published models, i.e., the CDD, DM2,
and PIA models. Because these models simulate only one
stage of leaf senescence, which usually is LS5g, we based
our comparison on this stage (Delpierre et al., 2009; Dufréne
et al., 2005; Zani et al., 2020). The CDD model determines
LSso by the time the cold degree days reaches a particular
threshold (Dufréne et al., 2005). The DM2 model accumu-
lates the product of temperature differences and day length
ratios to corresponding thresholds until the threshold that de-
termines LS5 is reached (Delpierre et al., 2009). The PIA
model accumulates temperatures and day lengths that are
combined in an exponential function, and derives the thresh-
old to determine LS50 from the photosynthetic activity dur-
ing the growing season (Zani et al., 2020). All these mod-
els were compared based on the calibration run that resulted
in the highest KGE'. Further, we compared the RMSE and
AICc as well as the Pearson correlation (p) across the en-
tire validation sample (00verall), across space (ospatial), and
across time (OTemporal)- PSpatial Was calculated across sites
based on their mean predicted and observed LS50. oTemporal
was calculated for each site, based on the yearly predicted
and observed LSsq.

Third, we estimated the extent to which the model error
(i.e., predicted minus observed LSsp) was affected by data
structure as well as by climatic and spatial deviations from
the LS5y calibration sample, using a linear mixed-effects
model (LMM; Pinheiro and Bates, 2000) and an analysis of
variance (ANOVA; Sect. S2.4; Fox, 2016). In the LMM, the
response variable “model error” was explained by the factor
variable “country” as well as the interaction of the factor vari-
able “model” with each of the differences between a site year
and the average of the calibration sample in MAT (§MAT),
MAQ (MAQ), the accumulated Aye; between LU and sum-
mer solstice (8 Apet), latitude (SLAT), and elevation (SELV).
The random intercept was grouped by “site”. The LMM was
fitted with fast restricted maximum likelihood (Wood, 2011),
and served as basis for the ANOVA. This type-IIl ANOVA
(Yates, 1934) quantified the impact of the explanatory vari-
ables on the variance of the model error that was explained
by the LMM. The impact attributable to data structure was
caused by the fixed effects of “country” and the standard de-
viation in the random intercepts grouped by “site”, while the
impacts attributable to climatic versus spatial deviations from
the calibration sample was caused by the effects of {MAT,
SMAQ, and S Ayt versus the effects of SLAT and SELYV, re-
spectively.
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2.7 Statistical software and reporting of results

We used the programming language R, together with the R
package data.table for data processing (Barrett et al., 2024).
In R, data from xslx files were extracted with the R pack-
age readr (Wickham et al., 2024), and data from netCDF
files were extracted and averaged with the R packages ncdf4
(Pierce, 2023), raster (Hijmans, 2023), sf (Pebesma, 2018;
Pebesma and Bivand, 2023), and sp (Bivand et al., 2013;
Pebesma and Bivand, 2005). Leap years were identified with
the function leap_year in the R package lubridate (Grole-
mund and Wickham, 2011). Gaps in the regressed lapse rates
were filled with the function na.spline in zoo (Zeileis and
Grothendieck, 2005). Seasonal splines of atmospheric CO2
concentrations were calculated with the function sm in npreg
(Helwig, 2024). The leaf senescence models were calibrated
with the R package GenSA (Xiang et al., 2013), while the
LMM was fitted with the R package mgcv (Wood, 2017)
and the ANOVA was calculated with the R package stats (R
Core Team, 2025). LMM estimates and 99 % confidence in-
tervals (i.e., significance level &« = 0.01) for combined coef-
ficients, e.g., the effect of SMAT for a given model, were cal-
culated with the Delta method (chap. 5.1.4 in Fox and Weis-
berg, 2019; chap. 9.9 in Wasserman, 2004) through the func-
tion deltaMethod in the R package car (Fox and Weisberg,
2019). For each LMM coefficient and ANOVA impact, we
expressed the most optimistic change of odds between the
null hypothesis (being zero; Hp) and alternative hypothesis
(being different from zero or greater than zero, respectively;
Hy) with the minimum Bayes factor (BFy), labeling Hy : H;
ratios of 1/1000 and 1/100 as “decisive” and “very strong”,
respectively (Held and Ott, 2018; Johnson, 2005). BFy; was
calculated from the p values and number of data with the
function tCalibrate in the R package pCalibrate (Held and
Ott, 2018). For the visualizations, we used the R packages
ggplot and ggpubr (Kassambara, 2020; Wickham, 2016), as
well as the R packages ggspatial and rnaturalearth for the
maps (Dunnington, 2023; Massicotte and South, 2023).

3 Results
3.1 Model formulation — the DP3 model

We tested 34 formulations of the leaf development process
through 1428 calibration runs, and found that three subse-
quent leaf development phases resulted in the most accurate
model (according to the AICc; Figs. 3a, c, 6, and S1-S2 in
the Supplement). In this model, the phase “young leaf” starts
with leaf unfolding. As a daily aging rate Raging accumu-
lates (Eq. 10), the simulated state of aging increases by 1
day per day. When this state reaches the threshold Yaging,1
(Egs. 1 and 2), the phase “mature leaf” begins. During this
phase, the leaf continues to age and is also sensitive to stress
caused by cold days, shortening days, and dry days, to which
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we hereafter refer to as “cold stress”, “photoperiod stress”,
and “dry stress”, respectively. This stress is summarized in
a daily stress rate (Rsgess; EQ. 11) and thus accumulated to
determine the state of stress. The first day that either the state
of stress or the state of aging reaches the respective thresh-
olds Ystress OF Yaging,2 (Egs. 1 and 2), senescence is induced,
while the phase “old leaf” starts only when the state of aging
reaches Yaging 2. Once senescence is induced, a daily senes-
cence rate (Rsenescence) in convex dependence on stress ac-
cumulates (Eq. 12) and determines the state of senescence.
The days this state reaches the thresholds Yiss, and Yis,,
(Egs. 1 and 2) correspond to the predicted dates of LSsg
and LS1qo, respectively. Hereafter, we refer to this model as
“DP3” model (Tables 2 and 3; Meier, 2025b, coded in R).

Raging,i = 1 (10)
Rsuess.i = weg (—Tn;) +wpg (—8L;) +wpg (Q)) (11)
Rsenescence,i = Sx stcfressyi (12)

Here, we, wp, and wp are the weights for the response func-
tions g(x) (Eq. 7) to the minimum temperature (7},), differ-
ence in day length (§ L), and KBDI (Q) on day i, respectively
(e.g., wpg(—3L;) results in the photoperiod stress on day 7).
sx 1is the scaling factor for Rsgess, Which is shaped by xg.

According to the DP3 model, leaf senescence was gener-
ally induced earlier during warmer years and at lower eleva-
tions (Fig. 7; Tables S5-S8). In average, senescence was in-
duced a month earlier when mean annual temperatures were
13—15 °C than when they were 4-6 °C (i.e., 29 May versus
22 June and 20 April versus 12 May when the DP3 model
was calibrated with the LSso—LS00 and LS5y samples, re-
spectively; hereafter referred to as “DP3ps,,-1Ls,,, model”
and “DP3;s,, model”; Sect. 2.4). Accordingly, senescence
induction was 20d earlier below 288 ma.s.l. than above
1150ma.s.l. (i.e., 5 June versus 25 June and 26 April ver-
sus 16 May based on the DP3y s, 15,,, and DP3 s, model,
respectively). Both the DP3pgs,,1s,,, model and DP3s,,
model predicted generally longer-lasting senescence (i.e., the
duration between senescence induction and LSsg or LS1qg)
during years of higher mean annual temperatures (Fig. S3;
Tables S5-S8).

Stress induced senescence 2 times and 40 times more of-
ten than aging according to the DP3ps,,-15,,, and DP3s,,
model, respectively (Fig. 7, Tables S5-S8). Thus, while ag-
ing was of negligible importance to senescence induction ac-
cording to the DP3s,, model, it mattered according to the
DP3s,,-15,4 model, particularly during years of medium
mean annual temperature (6-13 °C) as well as at sites of
medium latitude (48.3-55.6°N) and of low elevation (be-
low 576 ma.s.l.). At the time of senescence induction due
to stress, the amounts of accumulated photoperiod stress
and cold stress relative to total stress were 56 % versus
44 % (DP3Ls4,-Ls,4, model) and 77 % versus 23 % (DP3s,,
model), respectively, while the corresponding amounts of dry
stress were 0.5 % and 0.0 %. Photoperiod stress dominated
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Table 2. Input and output variables of the DP3 model.

Collective list Name Definition Unit  Format
Input - par Model parameters (see Table 3) - Vector
Data LU Observed leaf unfolding dates doy  Vector
id Unique identifier of each LU (character) - Vector

D; Daily number of days (i.e., 1 per day) - Matrix

Ty, Daily minimum temperature °C Matrix

SL; Daily difference in day length to previous day h Matrix

of Daily Keetch and Byram drought index - Matrix

- stages Leaf senescence stages to be predicted (character, defaults to LSpefauir) — Vector
Output — LS Predicted leaf senescence dates, including senescence induction (SI) doy  Matrix
Transitions dy—m Predicted timing of transition from young to mature leaf doy  Vector
dm—o Predicted timing of transition from mature to old leaf doy  Vector

Aging RAging, i Daily rate of aging - Matrix
SAging,i State of aging (i.e., accumulated Raging,; since LU) - Matrix

Stress Xcold, i Daily cold stress (i.e., wcg(—1y;)) - Matrix
Xphotoperiod,i ~ Daily photoperiod stress (i.e., wpg(—38L;)) - Matrix

XDry,i Daily dry stress (i.e., wpg(—Q;)) - Matrix

Rstress, i Daily rate of stress - Matrix

SStress, i State of stress (i.e., accumulated Rsyress,; Since dy—sm) - Matrix

Senescence Rsenescence, i Daily rate of senescence - Matrix
SSenescence, i State of senescence (i.e., accumulated Rsepescence,i Since SI) - Matrix

Note: daily variables refer to day i, and accumulated variables refer to the period until day i. The vector par contains the model parameters listed in Table 3. In the collective lists
data, aging, stress, and senescence, the rows of the matrices refer to the days of the year, while the columns refer to site years and are ordered identically between all matrices.
This order matches the order of the vectors in the collective lists data and transition. For the LS matrix, the rows refer to the site years and the columns refer to the senescence
induction date and the dates of the leaf senescence stages indicated by the vector stages. LU, LS, dy—, and din— o are given in day of year (doy; Meier, 2025b).

Table 3. Fitted parameters of the DP3 model.

Parameter Meaning Fitted value
LS50-LS100 LSs0
—ac Boundary below which cold stress is 1 versus 0 (referring to Ty, ) 2.55°C 0.06 °C
—ap Boundary below which photoperiod stress is 1 versus O (referring to §L;) —0.0587h  —0.0016h
ap Boundary above which dry stress is 1 versus O (referring to Q;) 176.94 183.82
we Weight of cold stress 0.14 0.29
wp Weight of photoperiod stress 0.02 0.52
wp Weight of dry stress 0.22 0.05
Sx Scaling factor of the senescence rate 0.59 0.35
XS Shape parameter of the stress rate 0.21 5.67
YAging, 1 Age threshold for the transition from young to mature leaf 41.59d 1.57d
YAging,2—Aging,1  The threshold of aging during the mature leaf phase 137.31d 71.58d
YAging,2 Theoretical age threshold for the transition from mature to old leaf 178.90d 73.14d
Y1800 Senescence threshold for LS (all leaves having changed color or having fallen) 5.95 -

Note: the parameters refer to Egs. (7) and (9)—(11) and were fitted for beech with the LS5y and LS50—LS oo samples (Sect. 2.4). All of the parameters were calibrated within
the initial ranges (Table S3) to their fitted value. To avoid fitted values of Yaging,1 > YAging,2, We used and calibrated Yaging,2— Aging, 1 instead of Yaging 2. The theoretical
threshold Yaging » Was not calibrated but calculated from Yaging 1 + YAging,2—Aging,1 and displayed for easier interpretation. The thresholds for stress (Ysyress) and LSsq
(YLSSO; i.e., the time of 50 % of the leaves having changed color or having fallen) were hard coded with Ygeqs = 1 and YLSSO = 1. The shortening of a day length of 0.0016 h
(ap, corresponding to 0.1 min) based on the LS5 calibration is reached on doys 175, 174, and 174 (i.e., 24, 23, and 23 June) at the exemplary minimum, median, and
maximum latitudes of our samples (i.e., 45.9° N, 47.8° N, and 58.0° N), respectively. Alternatively, the shortening of 0.0587 h (3.5 min) based on the LS5yp—-LS (g calibration
is reached on doys 252 and 202 (i.e., 9 September and 21 July) at the median and maximum latitudes of our samples, respectively, whereas it is never reached at the minimum
latitude.
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Figure 6. Tested model formulations. The tested formulations differed in their number of leaf development phases (i.e., two or three phases),
in their driver of the aging rate (i.e., days or photosynthetic activity (Apet)), their stress rate in response (i.e., g(x) or k(x)) to the stressors
cold, shortening, dry, heat, and frost days, heavy rain periods, and nutrient depletion, and their dependence of the senescence rate on aging
and stress (i.e., linear, convex, or sigmoid dependence as a the result of a sum, product, or exponential function, respectively). After each
iteration, we identified the two most accurate formulations across the given and all previous iterations (Fig. 5, Sect. 2.5). These formulation
were further developed through the next iteration. As soon as an iteration did not produce any new model formulations, we selected the more
accurately formulated model (“top formulation”; i.e., the “DP3” model). All formulations were tested for beech based on the LS50-LSog

sample (Sect. 2.4).

mostly in warm years and medium-elevation sites according
to the DP3ys,,-Ls,o, model, whereas it did so in cool years
and high-elevation sites according to the DP3; s, model. In
summary, photoperiod stress rather than cold and dry stress
induced leaf senescence, but the importance of these stres-
sors and their dependency on climatic conditions and loca-
tion differed between the DP3 s, 15,,, and DP3Ls,, mod-
els.

Accordingly, the relative importance of these stres-
sors for the duration of senescence differed between the
DP3ys5)-Ls;o and DP3ps,, model (Fig. S3; Tables S5-
S8). Photoperiod stress clearly dominated the progress from
senescence induction to LSsp according to the DP3js.,
model. However, according to the DP3| s,,s,,, model and
especially during cool years, cold stress was most important

https://doi.org/10.5194/gmd-18-6963-2025

between senescence induction and LSs(, whereas photope-
riod stress was most important between senescence induction
and LSqo.

3.2 Model accuracy

Leaf senescence dates were predicted with similar accu-
racy by the DP3 model as by previous models (Fig. 8; Ta-
ble 4). All models calibrated with the LS50 sample resulted
in an RMSE of ~ 15d, with the lowest RMSE for the Null
model (i.e., constant prediction of each the average LS50 and
LS1p0 observations in the calibration sample). The LS50—
LS19p sample yielded considerably higher RMSE for both
the DP315,)-15,o, and Null model, i.e., 23-25 and 18-21d,
respectively. Nevertheless, the DP3y s.,-1.s,,, model resulted

Geosci. Model Dev., 18, 6963-6985, 2025
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Figure 7. Senescence induction. Panels (a) and (b) are based on simulations by the DP3 model calibrated with the LS50—LS (g versus LS5
samples, respectively (Sect. 2.4). The top row of each panel shows the number of site years in the bins, which were equally distributed
among mean annual temperature (MAT; °C), mean annual Keetch and Byram drought index (MAQ), latitude (LAT; ° N), and elevation (ELV;
ma.s.l.). The second row of each panel visualizes the senescence induction (SI) dates in day of year (doy). While the mean and median
dates are marked with black dots and grey lines, respectively, the most extreme values are indicated with dots if outside £1.5 times the inner
quartile range from the 1st and 3rd quartiles and with whiskers otherwise. The third row of each panel illustrates the relative number of site
years during which senescence was induced by stress versus aging or by both stress and aging (i.e., both the accumulated stress and aging
rates reached their thresholds for SI on the same date). The bottom row of each panel shows the relative amounts of cold stress, photoperiod
stress (Photop.), and dry stress that accumulated at stress-caused SI.

in the highest overall correlation (poveranl Of 0.2 for LS1qp). S10). The standard deviation in the model error due to
The highest correlation across space was obtained with the the random intercepts was 9d. Depending on the model,
PIA model (pspatial 0f 0.4), while the DP3 model resulted the fixed effects of the climatic deviations ranged from

in the highest correlation across time (average PTemproal Of —22to —19d10°C™! (SMAT), from +3.6 to +9.0d 100!
0.05 according to DP3;s, and according to DP3ys5,-1.5,4, (SMAQ), and from +4.1 to +4.6d10mol C~! (8Aney), re-
for LS10p). spectively. The model-specific effects of the spatial devia-

tions SLAT and SELV ranged from +2.0 to +-2.1d°N~! and
3.3 Model error from 41.0 to 4+1.1d 100m~!, respectively. While the evi-

dence in the data was decisive (BFy; < 1/1000; Sect. 2.7) and
significant (p < 0.005) for an effect of the CDD model on the
model error different from zero, as well as for the individual
climatic deviations and SLAT, it was significant for corre-
sponding effects of the DM2 model as well as for SELV and
all individual countries. The evidence was neither decisive
nor significant for any effect different from zero of the inter-
action terms between the models and the climatic or spatial

The model errors according to the DP3 model and previ-
ous models were similarly affected by data structure and
climatic and spatial deviations from the calibration sample
as the Null model (Fig. 9a). The data structure was de-
scribed by the fixed effects of countries and the random in-
tercepts grouped by sites. The countries altered the model
error by —18 to +84d, depending on the model (Tables S9—
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Table 4. Model accuracy.

KGE’

Model Sample Stage RMSE AICc  poverall  PSpatial ~ PTemporal n
CDD LSsg LSso —0.13 16.1 57797 0.01 —-0.09 0.04 6887
DM2 LSs¢ LS50 —0.26 150 56862 0.02 —0.12 0.00 6887
PIA LS5g LSso -0.19 14.8 56701 0.10 0.44 —0.04 6887
DP3y g4, LSsg LSso —0.23 152 57083 0.02  -0.02 0.05 6887
Null LSs¢ LS50 NA 14.8 NA NA NA NA 6887
DP31gs-LS100 LS50-LSi00 LSso —0.01 25.0 63911 0.04 —0.06 0.03 6887
DP31ss,-1.S100  LSs0-LSi00  LSi00 0.14 232 NA 0.22 0.17 0.05 600
Null LSs50-LS100  LSsg NA 18.1 NA NA NA NA 6887
Null LSs50-LS100  LSi00 NA 21.7 NA NA NA NA 600

6975

Note: the Null model constantly predicts the average observation in the calibration sample (i.e., the stages with either 50 % or 100 % of the leaves
having changed color or having fallen: LS5 or LS, respectively). The modified Kling-Gupta efficiency (KGE’), root mean squared error (RMSE),
Akaike information criterion for small samples (AICc), and Pearson correlation overall, across space, and across time (pQverall PSpatial> and average
PTemporal (PTemporal); Tespectively) are explained in Sects. 2.6, S2.1, and S2.2. All of these metrics were calculated for the predicted and observed
dates in the validation samples LSs5q and LS50—LS (g (Sect. 2.4). Except for the RMSE, they result in NA if the variance of the predicted dates is

zero, which is the case for the Null model. In addition, the AICc for the stage LS| according to the model DP3L550

-LSjo Was omitted because n,

i.e., the number of observations in the validation sample, differed between LS{gg and LS5y. NA — not available.
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Figure 8. Temporal Pearson correlation (pTemporal)- The distribu-
tion of pTemporal per site between predicted and observed leaf senes-
cence (the dates when 50 % and 100 % of the leaves having changed
color or having fallen (LS5p and LS|, respectively)) is displayed
for each model. The DP3 model was calibrated twice, i.e., with
the LS50-LS oo sample (DP3y g,,_Ls,,,) and with the LS5 sample
(DP3| s,; Sect. 2.4), the latter of which was also used to calibrate
the CDD, DM2, and PIA models. The mean pTemporal (black rhom-
buses) is indicated above each box (p). The boxes indicate the inner
quartile range and the median (middle line). The most extreme val-
ues are indicated with dots if outside £1.5 times the inner quartile
range from the 1st and 3rd quartiles and with whiskers otherwise.

deviations. The LMM explained the model error with an ad-
justed R? of 0.44. Differences between the sites accounted
for 92 % of the variance in the model error explained by
the LMM, followed by the effects of § Apet and SMAT (6 %
and 2 %, respectively), whereas the effects of the models ac-
counted for 0.3 % (Fig. 9b; Table S11). In general, the model
errors according to the DP3 model and previous models be-
haved as those of the Null model and mainly varied due to
data structure.

https://doi.org/10.5194/gmd-18-6963-2025

4 Discussion
4.1 Model formulation

The DP3 model predicts leaf senescence dates through a
novel formulation that differs considerably from the formu-
lation of current models. This novel formulation may change
the way we see leaf senescence, i.e., as a consequence of
leaf development that relates to both aging and stress. Cur-
rent models start their simulation with the onset of senes-
cence, i.e., the senescence induction date, which they deter-
mine from day length and temperature (e.g., Delpierre et al.,
2009; Dufréne et al., 2005; Keenan and Richardson, 2015;
Lang et al., 2019; Liu et al., 2019; Zani et al., 2020). This
date is calibrated such that leaf senescence dates are pre-
dicted most accurately. In the DP3 model, and in addition
to this prerequisite, accumulated aging or accumulated stress
since leaf unfolding must have reached a given threshold
(i.e., Yaging,2 and Ysyress as well as Fig. 3¢ and a, respectively;
Table 3). In other words, while current models define the
senescence induction date backward, the DP3 model defines
it both backward and forward, arguably resulting in a more
robust definition. Moreover, as current models generally ig-
nore aging (but see the model by Keenan and Richardson,
2015, which considers the leaf unfolding date in the stress
threshold for leaf senescence), their formulation partially ig-
nores current knowledge (e.g., Field and Mooney, 1983; Guo
et al., 2021; Jibran et al., 2013; Lim et al., 2007). In addi-
tion, the models by Liu et al. (2019) and Zani et al. (2020)
postulate an effect of the conditions before senescence in-
duction on senescence duration, which remains speculative.
However, these conditions likely affect senescence induction
dates, possibly through photosynthetic activity (Zohner et al.,
2023) or through aging and stress (DP3 model).

The novel formulation of the DP3 model supports the ad-
vancement of leaf senescence research by postulating new

Geosci. Model Dev., 18, 6963-6985, 2025
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Figure 9. Model error versus data structure and climatic and spatial deviations. Panel (a) visualizes the LMM-based, model-specific estimated
fixed effects (dots) and 99 % confidence intervals (bars) of data structure described by “country”, climatic deviations described by mean
annual temperature (SMAT; d 10 °C~1), mean annual Keetch and Byram drought index (SMAQ; d 100~1), accumulated net photosynthetic
activity between leaf unfolding and summer solstice (8 Apet; d 10 mol C_l), and spatial deviations described by latitude (6LAT; d °N_1) and
elevation (SELV; d 100 m—!). These deviations were calculated as the difference between a given site year and the average in the calibration
sample. The colors indicate the countries Austria (AUT), Great Britain (GBR), Germany (GER), and Switzerland (SUI) as well as estimates
across countries (AC). The model error was calculated as the predicted minus the observed timing (x, ; — x, ;). Panel (b) shows, based
on the ANOVA, the relative impact of the explanatory variables on the variance in the model error as explained by the LMM. The random
intercepts in the LMM were grouped by “site”, also describing data structure. The bars indicate the impact of individual variables, while the
connected dots show the accumulated impact. The numbers above each bar state the impact, in bold in the case of combined significance and
decisiveness (i.e., p < 0.01 and BFy; < 1/1000).
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hypotheses. To our knowledge, it is the first process-based
leaf senescence model that (a) predicts leaf senescence dates
through daily leaf development status, (b) starts the simu-
lation with leaf unfolding, (c) differentiates between daily
aging and stress rates, and (d) predicts the dates of transi-
tion between the leaf developmental phases young, mature,
and old leaf as well as the senescence induction date. This
allows the development of several new hypotheses (Carley,
1999; Hauke et al., 2020), which may relate to the currently
disputed effect of climate change on productivity (Lu and
Keenan, 2022; Norby, 2021; Zani et al., 2020; Zohner et al.,
2023) and can be tested by controlled experiments. In par-
ticular, these hypotheses may concern (1) the duration of the
young leaf phase during which stress cannot induce senes-
cence, (2) the timing and cause (i.e., aging versus stress) of
senescence induction, and (3) the relative importance of the
stressors in relationship to climate and location, all of which
are further elaborated on here below.

The duration of the young leaf phase differed considerably
between the DP3y 55,1 5,0, and DP3; s, model (i.e., the DP3
models calibrated with the LS50-LS;gp versus LS5y sam-
ples; Sect. 2.4), i.e., 41d versus 1d, respectively. Because
the DP3 assumes that stress during this phase is irrelevant
for senescence induction, the duration of this phase affects
the induction and end of senescence (see below). Moreover,
corresponding projections under future climate scenarios are
also likely affected, as the probability of late spring frost
events will likely change under climate warming (Bigler and
Bugmann, 2018; Meier et al., 2018; Sangiiesa-Barreda et al.,
2021). Therefore, duration and characteristic of this young
leaf phase should be examined further, e.g., with controlled
experiments that apply continuous stress right after leaf un-
folding to determine until when stress is either completely
irrelevant for senescence induction or accumulates without
inducing senescence.

Senescence was induced in late spring/early summer and
more often by stress than by aging, but the induction dates
and the stress:aging ratios differed notably between the
DP31s5-15;0 and DP3ps., model. Senescence induction
dates predicted by the DP3ys,1s,, and DP3s,, models
differed by 40d, which matches the difference in the pre-
dicted duration of the young leaf phase (see above). As
stress during the young leaf phase does not affect the pre-
dicted leaf senescence dates by definition (Figs. 1, 3a, and
c), this result illustrates the importance of studying the ef-
fects of stress after leaf unfolding (see above). It also shows
that different combinations of calibrated model parameters
eventually yield similar predictions. Such compensating ef-
fects between different model parameters have also been re-
ported in previous studies (Chuine and Régniere, 2017; Van
der Meersch and Chuine, 2025), and explain the different
stress:aging ratios as well as the earlier senescence induc-
tion during warmer years and at lower elevations. On the one
hand, the ratio of stress to aging induced senescence shifts
in favor of stress with shorter young leaf phases, because
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more cold stress can accumulate in spring. On the other hand,
senescence must be induced earlier when senescence length-
ens to predict leaf senescence dates that are close to the av-
erage observation in the calibration sample, as suggested by
model accuracy and model error (see below). Longer senes-
cence, in turn, results from arguably reduced cold stress in
fall in warmer years and at lower sites. Nevertheless, ear-
lier induction and longer duration of senescence in warmer
years may also be a valid description of reality (Zohner et
al., 2023). However, Zohner et al. (2023) argue that senes-
cence induction dates relate negatively to pre-solstice pro-
ductivity (see also Zani et al., 2020), whereas we show that
these dates relate to particular interactions between aging
and stress rather than to productivity (see below; Egs. 3
and 10; Lu and Keenan, 2022; Marqués et al., 2023; Norby,
2021). Because such different mechanisms very likely affect
leaf senescence projections under climate warming, they cer-
tainly need further investigations.

How do aging and stress interact to predict earlier in-
duction and longer duration of senescence in warmer years
and at lower sites? The aging requirement for the transition
from mature to old leaf (i.e., Yaging,2; Table 3) represents
the longest possible duration from leaf unfolding to senes-
cence induction. Earlier senescence induction is only pos-
sible through sufficient stress between the transition from
young to mature leaf and senescence induction (i.e., Ystress;
Table 3), whereas stress after senescence induction relates
negatively to the duration of senescence. Thus, according
to the DP3 model, both earlier leaf unfolding and increased
stress in spring advance senescence induction, while reduced
stress in summer and fall lengthens senescence, which corre-
sponds to observed patterns. Leaves unfold earlier at lower
sites in general (Vitasse et al., 2009, 2013) and in warm
springs in particular (given that the buds have been suffi-
ciently chilled; Asse et al., 2018; Meier et al., 2021; Men-
zel et al., 2020). Warmer years have been shown to increase
cold stress in spring (i.e., through leaves unfolding overly
early in comparison to late frost; Asse et al., 2018; Meier
et al., 2018; Sangiiesa-Barreda et al., 2021) and relate pos-
itively to dry stress (i.e., through evapotranspiration; Allen
et al., 1994; Berdanier and Clark, 2018; Wu et al., 2022),
but leave photoperiod stress unaffected (Brock, 1981). Thus,
earlier senescence induction is likely due to earlier leaf un-
folding, and thus aging, and increased cold and dry stress in
spring, while the longer senescence duration is likely due to
the later accumulation of photoperiod stress relative to leaf
development and reduced cold stress in summer and fall.

Surprisingly at first, the DP3ps,,-1.5,,, model postulated
photoperiod rather than cold and dry stress as being the most
important stressor for senescence induction during warmer
years, whereas the DP3s,, model saw photoperiod stress
as being most important during cooler years. By definition,
stress only matters when it occurs after the transition from
young to mature leaf (Figs. 1, 3a, and c). Photoperiod stress
occurs, if at all, after this transition (i.e., after 21 July to
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9 September in the DP3j s,1s,,, model and after 2324 June
in the DP3Ls,, model, depending on latitude; Table 3) and
gains in importance quickly after the first occurrence unless
senescence is induced soon by either cold or dry stress. Cold
stress likely occurs in spring and fall, both before and af-
ter the transition from young to mature leaf. Thus, cold days
in spring are less likely to affect senescence induction the
later the young leaf phase ends, and vice versa. In addition,
more cold days in fall can be accumulated the later the young
leaf phase ends and the later photoperiod stress starts to ac-
cumulate, and vice versa. Therefore, on the one hand, the
long young leaf phase and late accumulation of photoperiod
stress in the DP3[ s.,1.5,,, model favor the accumulation of
cold stress in fall, which arguably decreases in warmer years,
making photoperiod stress relatively more important. On the
other hand, the short young leaf phase in the DP3s,, model
favors the accumulation of cold stress in spring, which likely
decreases in cooler years through leaves unfolding overly late
in comparison to late frost (Asse et al., 2018; Meier et al.,
2018; Sangiiesa-Barreda et al., 2021), making photoperiod
stress relatively more important.

4.2 Model accuracy

We compared the DP3 model to three previous models of leaf
senescence (i.e., the models CDD, DM2, and PIA; Delpierre
et al., 2009; Dufréne et al., 2005; Zani et al., 2020) based on
the LS50 calibration sample and found the RMSE of all com-
pared models to be above the RMSE for the Null model. This
may be explained by unrealistic model formulations, poor
model calibrations, and noisy data to drive and calibrate the
models, all of which we discuss here below.

While the formulations of the compared models differ,
they all build on the results of previous studies. For exam-
ple, according to all compared models, the leaf senescence
date advances due to cold temperatures, which was also ob-
served by Kloos et al. (2024), Wang et al. (2022), Wang and
Liu (2023), and Xie et al. (2015, 2018). Moreover, in all but
one model, shorter days cause earlier leaf senescence, which
is in agreement with Addicott (1968), Keskitalo et al. (2005),
Singh et al. (2017), Tan et al. (2023), and Wang et al. (2022).
Therefore, while the Null model predicted the leaf senes-
cence dates more accurately according to the RMSE, it is
unlikely that it is more realistically formulated than the com-
pared models. The currently most realistic model is arguably
the DP3 model (Jan et al., 2019; Jibran et al., 2013; Lim et
al., 2007), which makes it the first choice to study the leaf
senescence process (see above). Moreover, while the Null
model could be a good choice for predictions of leaf senes-
cence dates (i.e., accuracy), the most suited models for pre-
dictions of leaf senescence trends (i.e., precision) may have
to be identified yet.

We calibrated the compared models with the generalized
simulated annealing algorithm and with model-specific con-
trols (Sects. 2.4 and S2.1; Xiang et al., 1997, 2017). Algo-
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rithm and controls affect the accuracy of the calibrated mod-
els (Meier and Bigler, 2023). Therefore, we used general-
ized simulated annealing, which was shown to yield accurate
models of leaf phenology (Chuine et al., 1998; Meier and
Bigler, 2023) and has been used by many studies to calibrate
such models (e.g., Basler, 2016; Liu et al., 2019; Meier et al.,
2018; Zani et al., 2020). In addition, we used model-specific
controls selected to most accurately predict leaf senescence
dates for the same validation samples (Sect. S2.2) as the com-
parison to the Null model was based on. Possible overfitting
(James et al., 2017) through this procedure would have ben-
efited the compared models and is unlikely, as the number
of observations in the calibration samples was large enough
(Sect. 2.4; Jenkins and Quintana-Ascencio, 2020; Meier and
Bigler, 2023). Therefore, it is highly improbable that this pro-
cedure caused the models to be calibrated so poorly that they
are outperformed by the Null model.

All compared models were driven with daily weather data
from the E-OBS dataset (Cornes et al., 2018) and calibrated
and validated with leaf senescence data from the datasets of
MeteoSwiss and PEP725 (Swiss phenology network, 2025;
Templ et al., 2018). The E-OBS dataset has been used by
many studies (e.g., Bowling et al., 2024; Meng et al., 2021;
Schwaab et al., 2021; Zeng and Wolkovich, 2024), and we
are unaware of any difficulties concerning the daily weather
data used here. The MeteoSwiss and PEP725 datasets, how-
ever, compile visually observed leaf senescence data, and
such data are noisy due to different observers and small sam-
ple sizes (Liu et al., 2021): estimates of the leaf senescence
dates for individual trees varied by 15d (median, spread-
ing from 2 to 53 d) between observers and increased to 28 d
(median) for different samples of 10 trees. The data become
even noisier if the observers follow different protocols from
various institutions and countries (Menzel, 2013), eventually
blurring the signal of the leaf senescence process. Arguably,
the more this signal is blurred, the closer the simulations will
follow the mean observation in the data. Here, we used leaf
senescence data from 244 sites (i.e., probably at least 244 ob-
servers) and four countries (Sect. 2.1), which implies consid-
erable noise and thus a blurred signal of the leaf development
process. These data very likely forced the compared models
to predict leaf senescence dates close to the mean observa-
tion, impairing their accuracy.

4.3 Model error

While climatic and spatial deviations from the calibration
sample generally affected the model error, their model-
specific effects only differed insignificantly from the Null
model. In other words, the model error in the compared mod-
els reacted similarly to climatic and spatial deviations as the
model error of the Null model. This implies that the com-
pared models predicted leaf senescence dates closely to the
mean observation of the calibration sample and thus were
heavily biased to the mean (i.e., as the Null model). Possi-
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ble explanations for this are unrealistic model formulations,
poor model calibrations, and noisy data. Interestingly, Meier
et al. (2023), who reported a heavy bias towards the mean for
21 process-oriented models of leaf senescence, based their
study on leaf senescence data from 500 sites (i.e., probably
at least 500 observers) and at least three countries from the
PEP725 dataset (Templ et al., 2018). This supports our infer-
ence that the compared models resorted to the mean observa-
tion due to the used leaf senescence data rather than to model
formulations and model calibrations.

Moreover, leaf senescence data were most relevant for
the model error in the compared models, which was illus-
trated by the fixed effects of countries and the variation
caused by the random intercepts grouped by sites. These
effects of countries differed considerably between coun-
tries, demonstrating how different observation protocols (see
above; Menzel, 2013) add noise to leaf senescence data,
which to our knowledge has not yet been investigated. The
random intercepts grouped by sites varied considerably, and
corresponding differences among sites were attributed to a
substantial amount of the explained variance in the model er-
ror (chap. 23.3.2 in Fox, 2016). Meier et al. (2023) also noted
a large amount of the explained variance in the RMSE be-
ing attributed to differences between the sites. They reasoned
that this was caused by, among others, noisy leaf senescence
data (see above) and different interannual variability of ob-
servations between the sites (Cole and Sheldon, 2017; Cufar
et al., 2015; Li et al., 2022; Liu et al., 2020). It remains to
be seen if such site-specific interannual variability as well as
inter-site variability in leaf senescence dates would be pre-
dicted correctly by models calibrated with noise-free data.

4.4 Ways forward

While the DP3 model is likely the currently most realistic
process-oriented model of leaf senescence, it may be devel-
oped further by (1) testing other drought indices, (2) con-
sidering nutrient depletion in combination with drought, and
(3) ameliorating the formulation of the senescence rate. First,
while various indices summarize drought differently (Spe-
ich, 2019; Zargar et al., 2011), the KBDI used here can
be calculated from few data, being based on precipitation
and temperature. It should be tested, however, if other in-
dices, such as the standardized precipitation evapotranspira-
tion index (based on precipitation and temperature; Vicente-
Serrano et al., 2010) or the ratio of actual to potential evap-
otranspiration (based on precipitation, temperature, and soil
moisture; Bugmann and Cramer, 1998), may approximate the
effects of dry stress on leaf senescence more accurately. Sec-
ond, despite more accurate predictions of LS5y and LS
when nutrient depletion was disregarded (Figs. 6 and S1),
model errors indicated that LS5 and LS1go dates were pre-
dicted later than observed due to nutrient depletion as ap-
proximated by elevation (Fig. 9; Tables S9-S10). This can
be explained by higher elevation relating to increased nutri-
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ent depletion, which in turn fuels dry stress (Fu et al., 2014;
Huber et al., 2007; Loomis et al., 2006; Tan et al., 2023).
Consequently, drought indices that consider nutrient deple-
tion should be tested. Third, the DP3y s, 15,, model was
considerably less accurate than the DP3 s, model, implying
difficulties in the accurate, simultaneous prediction of LSs5q
and LSjgp. This points to an incorrectly formulated depen-
dency of the senescence rate on aging and stress (Egs. 1 and
12), and corresponding new formulations should be evalu-
ated.

In addition, because noisy data blur the signal of the
leaf development process, (1) alternative data may be used,
(2) observation protocols may be revised, and (3) visually
observed data may be carefully selected. First, alternative
data to calibrate and validate models of leaf senescence in-
clude data recorded with phenocams and remotely sensed
data in which leaf senescence dates are identified through
the measured greenness, machine learning algorithms, and
vegetation indices (Donnelly et al., 2022; Dronova and Tad-
deo, 2022; Gong et al., 2024; Richardson, 2023; Zeng et al.,
2020). While these data are species-specific if recorded with
phenocams, this may not be the case for remotely sensed data
(Joiner et al., 2016; Tang et al., 2016). Second, revised obser-
vation protocols should describe how to determine dates of
leaf senescence stages (i.e., senescence induction, LS50, and
LSigp at least) based on the measured, rather than estimated,
state of leaf senescence. Such a measurement could be based
on the greenness derived from images taken with consumer-
grade digital cameras (Ide and Oguma, 2013; Richardson et
al., 2018; Toomey et al., 2015; Zimmerman and Richardson,
2024). Moreover, a given observational time series should
be based on at least 25 trees which are measured every other
week (Liu et al., 2021; Morellato et al., 2010). Third, visually
observed leaf senescence data should be selected primarily
from the point of view of precision, e.g., by ensuring identi-
cal observation protocols and by sampling from cleaned data
with a minimum of breakpoints (i.e., sudden changes in the
mean). For this, the time series may be cleaned from out-
liers (Schaber et al., 2010) and separated through a break-
point analysis (Auchmann et al., 2018) before being sam-
pled, preferably through spatially and climatologically strat-
ified sampling, according to the research focus (e.g., gaining
insight into the underlying processes or producing most ac-
curate or most precise predictions; Meier and Bigler, 2023).

5 Conclusion

The DP3 model builds on three subsequent phases of leaf de-
velopment: the young, mature, and old leaf phase. The young
leaf is insensitive to stress and transfers into a mature leaf
solely due to aging. The mature leaf answers to aging and
stress, both of which may induce senescence. While aging
induces senescence with the transition from mature to old
leaf, stress may already do so during the mature leaf phase
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through combining cold stress, photoperiod stress, and dry
stress. The output of the DP3 model includes daily rates of
aging rates as well as of cold, photoperiod, and dry stress,
along with the dates of transition from young to mature to
old leaf, senescence induction dates, and the leaf senescence
dates. Thus, the DP3 model allows to develop testable hy-
potheses about the leaf senescence process, e.g., regarding
the effect of site conditions on the induction and duration of
senescence: the DP3 model predicted earlier onset of senes-
cence (i.e., senescence induction) under warmer conditions,
likely due to earlier leaf unfolding and thus aging, and in-
creased cold and drought stress in spring, as well as longer-
lasting senescence, likely due to the later accumulation of
photoperiod stress relative to leaf development and reduced
cold stress in summer and fall. Both these predictions and
their implied relationships with aging and stress can be tested
through experiments and in situ observations. This makes the
DP3 model an important tool in the research of leaf senes-
cence.

The accuracy of the DP3 model and of previous models
of leaf senescence was lower than the accuracy of the Null
model (i.e., the constant prediction of the average observa-
tion in the calibration sample). This was probably due to
model formulations that do not fully reflect the leaf senes-
cence process and, more importantly, to the leaf senescence
data used for calibration and validation. Visually observed
leaf senescence data are susceptible to observer bias and
based on observation protocols that are partly inconsistent
between countries. Such noisy data blur the signal of the leaf
senescence process, thereby probably forcing the models to
resort to the average observation. This leads to low accu-
racy, regardless of the model formulation, which hinders the
necessary further development of process-oriented models of
leaf senescence.

The model error of the compared models was similarly
affected by climatic and spatial deviations from the calibra-
tion sample across models, and varied mainly due to the leaf
senescence data. The similar effect of climatic and spatial
deviations on the model error across models (including the
Null model) illustrates that these models were heavily biased
towards the mean. Moreover, the degree of noise in the used
leaf senescence data is exemplified by these data accounting
for over 90 % of the explained variance in the model error.
Therefore, these data should be selected with particular at-
tention to precision, e.g., by using time series without sud-
den changes in the mean. Moreover, revised observation pro-
tocols should include senescence induction dates and rely on
measurements rather than visual estimates. Such measure-
ments may be based on the greenness of leaves to identify
the degree of color change, involving digital cameras and au-
tomated image assessment.

Code and data availability. The R code for the DP3
model is openly available on Zenodo (Meier, 2025b,
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https://doi.org/10.5281/zenodo.14749339), together with the
R code for the two-phase version of the DP3 model (“DP2 model”),
i.e., the DP3 model without young leaf phase. While all raw data
used are publicly available and referenced in Sect. 2, the predicted
leaf senescence dates analyzed and compared are openly accessible
at https://doi.org/10.5061/dryad.tht76hf97 (Meier, 2025a).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-6963-2025-supplement.
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