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Abstract. Prediction of mineral phase assemblages is essen-
tial to better understand the dynamics of the solid Earth, such
as metamorphic processes, magmatism and the formation of
mineral ore deposits. While recently developed thermody-
namic databases allow the prediction of stable phase mineral
assemblages for an increasing range of pressure, temperature
and compositional spaces, the increasing complexity of these
databases results in a significant increase of computational
cost, hindering our ability to perform realistic models of re-
active fluid/magma transport. Presently, prediction of stable
phase equilibrium in complex systems is therefore largely
limited by how efficiently single phase minimization can be
performed, as more than 75 % of the total computational time
is generally dedicated to individual solution phase minimiza-
tion. This limitation becomes critical for non-ideal solution
phase models that involve both a large number of chemical
components, and mixing on a large number of sites, result-
ing in many inequality constraints of the form 0≤ xMl ≤ 1,
where xMl is the fraction of element l mixing on site M .

Here, we present a general reformulation of complex non-
ideal solution phases from the thermodynamic database of
Holland et al. (2018), which comprises equations of state
for multiple mineral solid solutions appearing in magmatic
systems, as well as multicomponent silicate melt and aque-
ous fluid phases. Using a nullspace approach, non-linear in-
equality constraints governing the site fractions are trans-
formed into equality constraints, and the resulting problem
is turned into an bound-constrained optimization problem,

subsequently optimized using efficient gradient-based meth-
ods. To test our formulation, we apply it to several equations
of state for solution phases known for their complexity and
compare the results of our approach against classical opti-
mization algorithms supporting inequality constraints.

We find that the the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm yields by far the best performance and sta-
bility with respect to the other investigated methods, improv-
ing the minimization time of individual solution phase by a
factor ≥ 10. We estimate that our new approach can improve
the computational time of stable phase equilibrium by a fac-
tor ≥ 5, thus potentially allowing to model realistic reactive
fluid/magmatic systems by directly integrating phase equilib-
rium calculations in multiphase thermomechanical codes.

1 Introduction

While the last decade has seen significant progress in thermo-
mechanical modeling of complex multiphase systems (e.g.,
Keller et al., 2013; Taylor-West and Katz, 2015; Keller
and Katz, 2016; Keller et al., 2017; Turner et al., 2017;
Keller and Suckale, 2019; Rummel et al., 2020; Katz et al.,
2022), the coupling with petrological modeling, when ad-
dressed at all, remains largely simplified (Riel et al., 2019).
There are two key obstacles. First, most phase equilibrium
modeling tools (e.g., Perple_X, Theriak_Domino, geoPS,
MELTS) (Connolly, 2005; de Capitani and Petrakakis, 2010;
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Xiang and Connolly, 2021; Ghiorso and Sack, 1995) have
been developed with the primary aim of producing phase
diagrams and do not offer useful interfaces to integrate
with (parallel) geodynamic codes. Second, phase equilibrium
modeling is generally achieved by solving a Gibbs energy
minimization problem which is computationally challenging.
Several numerical strategies have been developed to solve
such optimization problems (Ghiorso and Sack, 1995; Con-
nolly, 2005; de Capitani and Petrakakis, 2010; Piro, 2011;
Xiang and Connolly, 2021) and some of the most efficient al-
gorithms rely on repeated solution model minimization in or-
der to compute for the most stable mineral assemblage (e.g.,
de Capitani and Petrakakis, 2010; Xiang and Connolly, 2021;
Riel et al., 2022). Although computational performance have
been significantly increased over the past few years (Xiang
and Connolly, 2021; Riel et al., 2022),single point equilib-
rium prediction is still costly, with computational times of
the order of 10 to 100 ms (e.g., Riel et al., 2022). This limi-
tation effectively precludes direct coupling of phase equilib-
rium calculations with thermomechanical models, which re-
quires performing from thousands to hundreds of thousands
of such calculations every timestep.

In order to account for chemical separation in geodynamic
models, several computationally cheaper workarounds have
been used. This includes the use of pre-computed set of pseu-
dosections (e.g., Magni et al., 2014; Bouilhol et al., 2015;
Rummel et al., 2020), parameterizations (e.g., Jackson et al.,
2003, 2018; Hu et al., 2022; Wong and Keller, 2023) and the
ongoing development of neural networks (e.g., Leal et al.,
2020; Yuan et al., 2024; Candioti et al., 2024). In (Rum-
mel et al., 2020), the authors generated a database of pre-
computed results from phase-equilibria modeling covering
the explored/expected compositional, pressure and tempera-
ture range of the system. While this approach is powerful, it
suffers several limitations. First, to generate a relevant petro-
logical database, the geodynamic model has to be run multi-
ple times in order to characterize the effective pressure, tem-
perature and compositional range of the system. Second, the
database is by definition discrete which implies that a com-
positional tolerance has to be applied when computing the
stable phase equilibrium, thus leading to mass conservation
issues.

Although the heavy computational requirements of sta-
ble phase equilibrium modeling remains a major obstacle
for direct coupling, recently developed minimization tools
yielded a significant improvement in performance (Xiang
and Connolly, 2021; Riel et al., 2022). The recent perfor-
mance increase mainly results from combining/improving
existing minimization methods and making use of gradient-
based minimization of individual phases to speed up the
computations. Several gradient-based minimization methods
are currently employed in the different routines computing
phase equilibria. Theriak-Domino (de Capitani and Brown,
1987; de Capitani and Petrakakis, 2010) uses either steep-
est gradient or Newton-Raphson methods. Minimization of

Figure 1. Ratio of time spent solving the local problem of the equi-
librium composition and order in individual solution models (“to-
tal local”), to time spent solving the entire problem of establishing
which is the most stable of the possible phase equilibria (“global
minimization”), using MAGEMin (Riel et al., 2022) for two repre-
sentative test cases. Both tonalite and wet basalt bulk-rock composi-
tions are taken from (Holland et al., 2018). In total 619 points were
computed from 0 to 12 kbar and from 600 to 900 °C and from 800
to 1100 °C for the tonalite and the wet basalt case, respectively.

the solution phase model is achieved using a feasible start-
ing guess and continues until a bound or a site fraction con-
straint is violated. In our recent phase equilibrium calcula-
tion software MAGEMin (Riel et al., 2022), the analytical
expressions of the equations of state for solution phases are
passed to NLopt software package (Johnson, 2021). Subse-
quently, the objective function is minimized using the Con-
servative Convex Separable Approximation with Quadratic
penalty (CCSAQ) algorithm (Svanberg, 2002) which solves
for inequality-constrained nonlinear programming problems.
During the inner iterations, a series of convex sub-problems
approximating the objective function and the constraints are
generated and solved until the constraints are satisfied (Svan-
berg, 2002). This procedure is repeated until the solution
phase model is minimized. The phase equilibria calculator
GeoPS (Xiang and Connolly, 2021) uses the simulated an-
nealing (SA) method. Compared to gradient-based methods,
simulated-annealing is a probabilistic technique for approxi-
mating the global optimum of a given function (e.g., Pincus,
1970). Here, constraints can be accounted for as penalties on
the objective function.

The first release of MAGEMin followed the THERMO-
CALC software (Powell and Holland, 1988) in treating the
physicality of site fractions as a set of inequality constraints
expressed as functions of compositional and order variables
(Holland et al., 2018) (see e.g., Eq. 11). This approach en-
sures that all site fractions in the present solution phases
satisfy the condition ≥ 0. Furthermore, since the parame-

Geosci. Model Dev., 18, 6951–6962, 2025 https://doi.org/10.5194/gmd-18-6951-2025



N. Riel et al.: A bound-constrained formulation for complex solution phase minimization 6953

terisation of site fractions enforces that the sum of all site
fractions associated with a given site equals unity, this auto-
matically guarantees that all individual site fractions are also
≤ 1. However, the use of inequality constraint in gradient-
based methods, results in relatively slow performances and
occasional solver failure due to slight violation of inequal-
ity constraints. Using the first publicly released version of
MAGEMin (Riel et al., 2022), we find that the global min-
imization time is largely dominated by how fast gradient-
based minimization of individual solution phases can be per-
formed, with 75 % to 90 % of the computation time dedicated
to local minimization to find the equilibrium compositions
and state of order of solution models (see Fig. 1). Therefore,
it becomes critically important to improve the minimization
time of individual solution phase models to further speed-up
the overall phase-equilibrium computational time.

Here, we present a revised implementation of the compo-
sitional and order variables (xeos) of Holland et al. (2018)
within MAGEMin that avoids the need to express the site
fraction expressions as non-linear inequality constraints.
Elimination of these constraints allows using faster bound-
constrained optimization methods, thus considerably im-
proving performance and stability of the code. We compare
the accuracy and performance of two well-known gradient-
based optimization methods: the conjugate gradient (CG)
and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

2 Methodology

2.1 Solution phase formulation

At fixed pressure P and temperature T , the total Gibbs en-
ergy of solution phase λ is given by

Gλ =

Nλ∑
i=1

µi(λ)pi(λ). (1)

where Gλ [J] is the Gibbs energy of the solution phase λ, Nλ
the number of end-members of solution phase λ, pi(λ) [mol]
is the fraction of end-member i dissolved in solution phase
λ and µi(λ) [J mol−1] is the molar chemical potential of end-
member i in solution phase λ. An end-member is defined
as an independent instance of a solution phase, at a single
specified composition, for which the Gibbs energy is fully
defined as a function of pressure and temperature only. In a
given chemical system, the linear combinations of the end-
members span the complete crystallographic site-occupancy
space of the solution phase.

The molar chemical potential of a phase is a function of
the dissolved end-members within a solution phase (see Gan-
guly, 2001 for a review)

µi(λ) = g
0
i(λ)+RT ln(aid

i(λ))+ g
ex
i(λ), (2)

where R [J mol−1 K−1] is the ideal gas constant, T [K] is
the absolute temperature, aid

i(λ) [/] is the ideal activity, g0
i(λ)

[J mol−1] the reference molar Gibbs energy of the pure end-
member (Helgeson, 1978; Holland and Powell, 1998) and
gex
i(λ) [J mol−1] is the molar excess energy term (Powell and

Holland, 1993; Holland and Powell, 2003). The ideal ac-
tivity coefficient aid

i(λ) is generally defined as aid
i(λ) = pi(λ)

for molecular mixing, or else for mixing on crystallographic
sites as

aid
i(λ) = ci

∏
s

(Xs
es,i
)νs (3)

where Xs
es,i

is the site fraction of the element es,i that ap-
pears on site s in end-member i of phase λ, νs is the number
of atoms contained in mixing site s of λ, and ci is a normal-
ization constant that ensures that aid

i(λ) is unity for the pure
end-member i.

In the asymmetric formalism, gex
i is given by:

gex
i(λ) =−

Nλ−1∑
m=1

Nλ∑
n>m

(φ′m−φm)(φ
′
n−φn)

·Wm,n

(
2vi

vm+ vn

)
, (4)

where φm,n is the proportion of end-members
m,n weighted by the asymmetry parameters, as
φm,n = (pm,nvm,n)/(

∑Nλ
k=1pkvk), with vm,n,k the van

Laar parameters for end-members m,n,k. φ′m,n = 1 where
m= n and φ′m,n = 0 where m 6= n. Wm,n [J mol−1] is the
interaction energy between end-members m and n in the
solution.

In Holland et al. (2018), composition (the overall ratios of
elements) and order (the distribution of elements over mixing
sites) in an xeos are parameterized in terms of an independent
set of variables (see example below). Given this formulation,
the set of Eqs. (1) to (4) can be directly transformed into the
following Gibbs free energy minimization problem as func-
tion of the compositional and order variable xcv:

min Gλ(xcv)=

Nλ∑
i=1

µi(λ)pi(λ), (5)

subject to the site fraction of the element

Xs
es,i
≥ 0, (6)

and that the compositional and order variables xcv must be
within a lower (lbcv) and upper (ubcv) limit

lbcv ≤ xcv ≤ ubcv, (7)

where µi(λ), pi(λ), and Xs
es,i

are functions of the composi-
tional and order variables xcv, and, lbcv and ubcv are the lower
and upper bounds on the set of compositional and order vari-
ables xcv. The first derivative of f (xcv) is given by

∂f

∂xcv
= µi(λ)

∂pi(λ)

∂xcv
, (8)

https://doi.org/10.5194/gmd-18-6951-2025 Geosci. Model Dev., 18, 6951–6962, 2025



6954 N. Riel et al.: A bound-constrained formulation for complex solution phase minimization

and the first derivative of the inequality constraints on the site
fraction by

∂Xs
es,i

∂xcv
. (9)

2.2 A revised formulation

The solid solutions presented in Holland et al. (2018) are
formulated on the basis of exchanging chemical species on
a finite number of unique crystallographic sites (Bragg–
Williams-type formulation, see Myhill and Connolly, 2021
for more details). A key challenge with this formulation
is that minimization has to be performed while keeping
site fractions ≥ 0. Our previous implementation (Riel et al.,
2022) imposed these inequalities constraints directly using
NLopt (Johnson, 2021), which has a significantly higher nu-
merical cost compared to the bound-constrained minimiza-
tion algorithms. To simplify the optimization problem and
reduce computation time, we use an alternative nullspace
formulation (similar to HeFESTo, Stixrude and Lithgow-
Bertelloni, 2011), different from the compositional and or-
der variable approach used in e.g., Holland et al. (2018), that
transforms the non-linear inequality constraints on the site
fractions into linear equality constraints. This reformulation
is illustrated below using olivine as a representative example.

The olivine solid solution model (Holland et al., 2018)
contains 2 mixing sites M1 and M2 and represents a phase
that can be expressed by the general formula:

[Mg2+,Fe2+
]
M1
[Mg2+,Fe2+,Ca2+

]
M2SiO
4 (10)

Here Mg2+ and Fe2+ can be exchanged on crystallo-
graphic site M1 and Mg2+, Fe2+ and Ca2+ can be exchanged
on site crystallographic M2. In Holland et al. (2018), the site
fractions are expressed as:

XM1
Mg = 1− x+Q (11)

XM1
Fe = x−Q (12)

XM2
Mg = (1− x)(1− c)−Q (13)

XM2
Fe = x(1− c)+Q (14)

XM2
Ca = c (15)

where composition has been parameterized using the vari-
ables x = (XM1

Fe +X
M2
Fe )/(X

M1
Fe +X

M2
Fe +X

M1
Mg+X

M2
Mg) and c =

XM2
Ca , and order has been parameterized using the variable

Q= x− (XM1
Fe )/(X

M1
Fe +X

M1
Mg). Note that we have dropped

the ion charges in the notation of the equations.
This parameterisation ensures that the site fractions on

each of the individual sites are inherently normalized to 1.
Two other types of constraint might be built into the param-
eterisation in a more complex example: (i) charge balance:
if variably-charged ions were mixing, charge balance would
be maintained during compositional change, and (ii) equidis-
tribution: the xeos might be simplified by equating two site

fractions, typically involving minor elements. The resulting
set of composition and order variables is an independent set,
that fully and uniquely describes the site occupancies at a
given composition and state of order, subject to physical con-
straints arising from the lattice structure of the mineral. The
relationship between the number of composition and order
variables and the number of site fractions is then given by:

nsf = nxcv + neqnorm + neqcb + neqedist , (16)

with nsf the number of site fractions, nxcv the number of com-
positional and order variables, neqnorm the number of con-
straints arising from the normalization of site fractions on
a given site to 1, neqcb the number of charge balance equa-
tions, equal to 0 or 1, and neqedist the number of equidistribu-
tion constraints imposed. Collectively, the normalized charge
balance and equidistribution constraints form a set of linear
equalities among the site fractions.

In the revised implementation, we retrieve the set of equal-
ity constraints Ax = b for olivine from the site fractions
Xs
es
= {XM1

Mg,X
M1
Fe ,X

M2
Mg,X

M2
Fe ,X

M2
Ca }, and compositional and

order variables xcv = {x,c,Q} as follows. We first take the
partial derivatives of site fractions as functions of the com-
positional and order variables as:

∂Xs
es,i

∂xcv
=


−1 0 1
1 0 −1

c− 1 x− 1 −1
1− c −x 1

0 1 0

 , (17)

where Xs
es,i

is the site fraction of the element es,i that appears
on site s, xcv the set of compositional and order variables cv
and x, c the compositional and order variables of olivine as
defined in Holland et al. (2018). Next, we compute the matrix
of site mixing coefficients A using symbolic expressions as

A= Null
(( ∂Xe
∂xcv

)T)
=

[
1 1 0 0 0
0 0 1 1 1

]
, (18)

where Null stands for the null space. We then establish the
vector of constraints b as

b = {1,1}, (19)

which ensures that the sum of the site fractions of mixing
sitesXM1 andXM2 equal unity. Subsequently, given x = Xs

es
and by linearizing Ax = b we can return the set of linear
equalities on the olivine site fractions, which comprises two
site normalization expressions:

1×XM1
Mg + 1×XM1

Fe = 1.0, (20)

and

1×XM2
Mg + 1×XM2

Fe + 1×XM2
Ca = 1.0. (21)
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Note that, for more complex activity-composition models,
and depending on the arbitrary order in which the site frac-
tions are listed, the nullspace operation may not yield ex-
pressions that clearly represent the site normalization, charge
balance, and equidistribution constraints. However, it will al-
ways produce an independent set of linear equalities whose
total number is equal to the sum of the number of site normal-
ization constraints, the number of charge balance constraints,
and the number of equidistribution constraints. These equali-
ties are mathematically equivalent to the original constraints
and can be linearly recombined to recover their straightfor-
ward forms.

In the implementation of Riel et al. (2022), MAGEMin
solved for the equilibrium composition and state of order
of a phase in terms of the variables xcv, subject to the con-
straint that the values of site fractions should be≥ 0. To elim-
inate the site fraction inequalities from the implementation,
we now wish to solve directly for the site fractions, while
subjecting them to the equality constraints obtained via the
nullspace operation. The resulting problem can be expressed
as

min f (x), (22)

subject to

Ax = b, (23)

where x represent the n site-fractions and Ax = b is the set
of p equality constraints (Eq. 18). The linear equality con-
straints can now be eliminated from the problem, reducing
the number of variables solved for back to the number of
composition and ordering variables. This is accomplished
by parameterizing the feasible set of the constraint equa-
tion Ax = b using a particular solution x̂ ∈ Rn and a matrix
Nz ∈ Rn×(n−p) that spans the nullspace of A, such that:{
x | Ax = b

}
=

{
x̂+Nz | z ∈ Rn−p

}
. (24)

This parameterization can be obtained by performing a full
QR decomposition of the constraint matrix A, written as:

A=Q
[

R1
0

]
=
[
Q1 Q2

][R1
0

]
, (25)

where Q ∈ Rm×m is an orthogonal matrix whose columns
q1, . . .,qm form an orthonormal basis for Rm. These columns
are typically grouped into two blocks: Q1, which contains
the first p columns and spans the image (row space) of A,
and Q2, which contains the remaining m−p columns and
spans the nullspace of AT . With this decomposition, the set
of solutions to the linear equality constraints can be written
as:

x =Q1RT1 b+Q2z, (26)

where x̂ =Q1RT1 b is a particular solution to Ax = b, and
Q2z is any vector in the nullspace of A.

In other words, the use of the null space of A (Nz) pa-
rameterizes the space such that for any step 1z, x̂+Nz1z

remains in the feasible domain.
Using the elimination method, Eq. (1) becomes

min f (x)=Gλ(Xs
es,i
)=

Nλ∑
i=1

µi(λ)pi(λ), (27)

and the parameterized first derivative becomes

∂f

∂x
(z)=

∂Gλ

∂Xs
es,i

(z)= Nz
((

∂Gλ

∂x

)T
Nz
)T
, (28)

where Xs
es,i

is the site fraction of the element es,i that appears
on site s. Equation (27) is then minimized using the gradient
information given by Eq. (28) and the methods presented be-
low.

2.3 Gradient-type iterative methods

Given a bound-constrained optimization problem:

minf (x)

subject to x > ε
(29)

where f (x) is twice continuously differentiable, where ε is
a small number, typically ≤ 10−8. The general gradient-type
iterative method to solve this problem is of the form

xk+1 = xk +αkdk, (30)

for iteration k ≥ 0, where dk is the search direction and αk
is the step-length. In this study, we compute the step-length
using a Wolfe line search (Wolfe, 1969) such that the inequal-
ities

f (xk + γkαkdk)≤ f (xk)+ ργkαkg
T
k dk, (31)

and

gTk+1dk ≥ σgTk dk, (32)

are satisfied, where 0< ρ < σ < 1 and γx is the maximum
feasible step-length, computed as

γx =

{
1/min(xk+1− ε)

abs(dk)
, if any xk + dk ≤ 0

1, otherwise.
(33)

The maximum feasible step-length γx ensures that the val-
ues of site-fractions remain ≥ ε and form the bounds of the
problem. Iterations are then processed until a stopping crite-
rion is satisfied. Because solution phases are not necessarily
convex during global Gibbs energy minimization, we set the
stopping criteria using the relative change of the objective
function. The stopping criteria is met when

abs((fk − fk−1)/fk−1) < tol, (34)
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where tol is a small number typically ≤ 10−8.
If the descent direction dk is simply chosen to be dk =

−gk we obtain the steepest descent algorithm. However, this
approach is known to be prone to oscillation (e.g., Nocedal
et al., 2002) and slow convergence, and will therefore not be
explored. Instead, we test two bound-constrained optimiza-
tion methods that use the gradient information of the previous
iteration(s), namely the conjugate gradient and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method.

2.3.1 Conjugate gradient method

For the conjugate gradient method, the descent direction is
initialized for the first iteration increment k = 0 as

dk =−gk, (35)

and for increment k ≥ 1 as

dk =−gk +βkdk−1. (36)

Here, gk is the gradient g(x) of function f (x) at point xk ,
and βk is the conjugate gradient update parameter. Variants
of the conjugate gradient method are defined by using dif-
ferent update parameters βk (see for example Hestenes and
Stiefel, 1952; Rivaie et al., 2012, 2015). Here, we employ the
three-term conjugate gradient method presented by Liu et al.
(2018) with the update parameter βk defined in Rivaie et al.
(2015)

βk =
gTk (gk −gk−1− dk−1)

‖dk−1‖2
, (37)

and further extend the descent direction term as

dk =−gk +βkdk−1+ θkyk−1, (38)

where yk−1 = gk −gk−1 and

θk =−
gTk dk−1

‖dk−1‖2
. (39)

A useful property of the three-term conjugate gradient
method is that the search direction always satisfies the suf-
ficient descent condition without any line search (Liu et al.,
2018).

The descent direction is parameterized to satisfy the equal-
ity constraints (Eq. 18) such as

d
p
k = Nz(dTk Nz)T . (40)

2.3.2 BFGS method

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is a
well-known quasi-Newton method for solving unconstrained
and bound-constrained optimization problems (see for in-
stance Fletcher, 1987; Dennis and Schnabel, 1996). The
quasi-Newton descent direction is given by

dk =−B−1gk, (41)

where B−1 is the inverse of the Hessian matrix. Here, we ap-
proximate B−1 using the Sherman-Morrison formula (Sher-
man and Morrison, 1950) such as

B−1
k+1 = B−1

k +
(sTk yk + yTk B−1

k yk)(sks
T
k )

(sTk yk)
2

−
B−1
k yks

T
k + sky

T
k B−k 1

sTk yk
(42)

where sk = xk+1−xk , yk = gk+1−gk and B−1
k=0 is initialized

with the identity matrix.
Because of the relatively low dimensionality of the so-

lution phase model (< 20) we do not consider the limited-
memory BFGS method (L-BFGS) and instead update B−1

k

(Eq. 42) during every iteration. Once the problem has con-
verged (i.e., Eq. 34 is satisfied), we reset the Hessian matrix
inverse Bk−1 to the identity matrix and perform additional
iteration(s). This ensures that the problem converges to its
local minimum in the event the quality of the approximate
Hessian matrix inverse Bk−1 is degraded.

As for the conjugate gradient method, the descent di-
rection is parameterized to satisfy the equality constraints
(Eq. 18) such as

d
p
k = Nz(dTk Nz)T . (43)

3 Application

In order to test the bound-constrained solution phase for-
mulation, we selected, from the Holland et al. (2018) set of
xeos spaning 11 oxides (Na2O-CaO-K2O-FeO-MgO-Al2O3-
SiO2-H2O-TiO2-O-Cr2O3), three solution phases with com-
plex features including high-dimensional composition–order
spaces and geologically significant solvi: clinoamphibole
(Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-O),
clinopyroxene (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-
TiO2-O-Cr2O3) and spinel (FeO-MgO-Al2O3-TiO2-O-
Cr2O3) (Table 1). We use as starting points the set of feasible
points of each discretized solution phase. Discretization
of the solution phases is achieved using a compositional
variable step of 0.25 which yielded 5498, 4124 and 1521
feasible starting points (or pseudocompounds) for clino-
amphibole, clinopyroxene and spinel, respectively. Because
gradient-based minimization of solution phase models is
achieved with respect to a given Gibbs hyperplane (de
Capitani and Brown, 1987; de Capitani and Petrakakis,
2010; Xiang and Connolly, 2021; Riel et al., 2022), we
first compute the phase equilibrium at a given pressure,
temperature and bulk-rock composition to retrieve the global
minimum Gibbs hyperplane using MAGEMin (Table 1).
Although any other arbitrary Gibbs hyperplane can be used
for this test, we choose a global minimum hyperplane in
order to explore a known spinel solvus, All computations
were performed on a Linux (x86_64-linux-gnu) operating
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system, utilizing a 6-core 11th Gen Intel(R) Core(TM)
i5-11400H CPU running at 2.70 GHz.

The performance and reliability of the bound-constrained
formulations are tested against the inequality constrained for-
mulations using the Sequential Least-Squares Quadratic Pro-
gramming (SLSQP) (Kraft, 1988, 1994) and Conservative
Convex Separable Approximation with Quadratic penalty
(CCSAQ) methods (Svanberg, 2002). The minimizations us-
ing the SLSQP and CCSAQ methods were computed us-
ing the C implementation of NLopt (Jackson et al., 2018)
through MAGEMin as described in Riel et al. (2022) and
in the scripts provided in Supplement. Because the algo-
rithms explored in this study (Julia implementation of CG
and BFGS methods) exhibited similar accuracy with residual
≤ 10−13, the differences in algorithm accuracy are not dis-
cussed. Here, a minimization is considered successful when
the norm of the distance to the solution is ≤ 10−4.

4 Discussion

4.1 Algorithms performance and reliability

The box plots depicted in Fig. 2 illustrate that the perfor-
mance of the unconstrained CG method is comparable to that
of the inequality-constrained CCSAQ method (implemented
via NLopt). While the CG method outperforms CCSAQ
for amphibole, with minimization times of ∼ 2100 µs versus
∼ 4200 µs, respectively, the efficiency of CCSAQ is larger
for problems with lower dimensionality, such as clinopy-
roxene and spinel. The SLSQP method demonstrates supe-
rior efficiency, with average minimization times of ∼ 340 µs
for amphibole, ∼ 270 µs for clinopyroxene, and ∼ 120 µs for
spinel. However, the BFGS algorithm outperforms SLSQP,
achieving average minimization times of ∼ 220 µs for am-
phibole, 180 µs for clinopyroxene, and ∼ 100 µs for spinel;
a performance increase of 20 % to 50 %. Additionally, the
BFGS method’s convergence requires between 25 to 90 iter-
ations across different solution phase models, as indicated in
Fig. 3. Notably, the minimum time per iteration is influenced
by the dimensionality of the solution phase model, ranging
from ∼ 4.0 µs per iteration for clino-amphibole to ∼ 2.1 µs
for spinel (Fig. 3 and Table 1).

Although the average minimization time is a good indi-
cator of the raw performance of the algorithms, reliability of
the solvers is of key importance when computing phase equi-
libria. In this light, we find that the bound-constrained algo-
rithms (CG and BFGS) are far superior to the inequality con-
straints ones (CCSAQ and SLSQP). For instance, the bound-
constrained methods (BFGS and CG) successfully minimize
100 % of the tested starting points (Fig. 2) while the inequal-
ity constraints methods show a significant amount of unsuc-
cessful minimization reaching up to 50 % in some cases e.g.,
clino-amphibole minimization using SLSQP or spinel using
CCSAQ (Fig. 2). The unsuccessful minimizations are related

to violated inequality constraints and the inability for the al-
gorithms (SLSQP and CCSAQ) to go back to the feasible
domain.

Finally, we tested the BFGS algorithm for an equilibrium
between two phases separated by a solvus i.e., an objective
function containing more than one local minimum. The pa-
rameters of the test are given in Table 1 (spinel solvus) and
the results are shown in Fig. 4. The bound-constrained for-
mulation and the BFGS method perfectly captures the solvus
with consistent minimization time similar to those shown in
Fig. 2.

4.2 Minimization of perturbed systems

Minimization from discretized starting points allows quan-
tification and comparison of the raw performance and sta-
bility of the algorithms (CG, BFGS and CCSAQ, see
Fig. 2). However, a phase equilibrium calculation employ-
ing gradient-based methods generally involves finding a new
local minimum under slightly to moderately perturbed condi-
tions between global iterations (de Capitani and Petrakakis,
2010; Riel et al., 2022) i.e., that the distance between the
starting point and the ending point during local minimization
of individual phases is small. A measure of this distance can
be calculated as the variation of the norm of the Gibbs hyper-
plane: ‖10‖22, where 0 is the chemical potential of the pure
components of the system (oxides in our case, Table 1). In or-
der to test the performance of the SLSQP and BFGS methods
under small perturbations, we use as starting points the min-
ima obtained by tests 1 to 3 and apply a perturbation to the
Gibbs hyperplane (Table 1). The perturbation is set by apply-
ing a random rotation to the objective function which shifts
the local minimum from its current position. We explore the
effect of such perturbation by computing 10 000 random ro-
tations per solution phase yielding a range of chemical po-
tential ‖10‖22 varying from 0.0 to ca. 60.0. The results of
the minimizations of the rotated systems are presented in
Fig. 5a–c.

For perturbed conditions, we find that the minimization
time of the SLSQP algorithm does not scale with the norm
of the perturbation (‖10‖22) (Fig. 5a, b, c). This relationship
is independent of the tested solution phase model (Fig. 5a–
c). Instead, for the BFGS algorithm, the minimization time
scales with the norm of the perturbation (Fig. 5d–f). For a
‖10‖22 < 10.0 the minimization time is divided by a factor
of ca. 2.0 to 3.0 with respect to the mean raw minimization
time (Fig. 2) resulting in an average time of 70–80 µs for
clino-amphibole, 50–60 µs for clinopyroxene and 30–40 µs
for spinel.

We propose a revised xeos implementation using a
nullspace approach, that allows using bound-constrained,
rather than inequality-constrained, gradient-based optimisa-
tion methods. We tested the performance and computational
reliability of different algorithms and find that the BFGS
method yields the best performance, decreasing the mini-
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Table 1. Solution phase models parameters.

Tested phase clino-amphibole clinopyroxene spinel spinel solvus

Pressure [kbar] 5.0 12.0 12.0 3.26
Temperature [K] 923.15 1323.15 1323.15 1179.4
Number of points 4950 4121 1521 1521
Tested methods CCSAQ, SLSQP, CG, BFGS CCSAQ, SLSQP, CG, BFGS CCSAQ, SLSQP, CG, BFGS BFGS
Number of dimensions 17 13 10 10

Oxides Reference Gibbs hyperplane [J]

SiO2 −960.9655 −1011.909631 −1011.909631 −1001.730935
Al2O3 −1768.2476 −1829.092564 −1829.092564 −1818.611331
CaO −788.4474 −819.264126 −819.264126 −812.972365
MgO −678.9683 −695.467358 −695.467358 −689.113013
FeO −355.2975 −412.948568 −412.948568 −396.911228
K2O −914.9708 −971.890270 −971.890270 −966.511310
Na2O −839.9561 −876.544354 −876.544354 −882.719670
TiO2 −1008.3630 −1073.640927 −1073.640927 −1045.994137
O −263.7269 −276.590707 −276.590707 −249.181839
Cr2O3 −1262.6087 −1380.299631 −1380.299631 −1332.815844
H2O −368.4674 – – –

Figure 2. Minimization time box plot for tested solution phases and optimization methods. SLSQP, Sequential Least-Squares Quadratic
Programming (supporting both inequality and equality constraints); CCSAQ, Conservative Convex Separable Approximation with Quadratic
penalty; CG, conjugate gradiend; BFGS, Broyden-Fletcher-Goldfarb-Shanno. 5498, 4124 and 1521 starting points for clino-amphibole,
clinopyroxene and spinel, respectively. Starting points were generated by evenly sampling the entire feasible space following the method
presented in Riel et al. (2022). The numbers below the boxes show the number of successful minimizations over the total number of tested
points.
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Figure 3. Number of iterations versus minimization time for the
BFGS method. The red lines show the minimum minimization time
per iteration.

Figure 4. Minimization paths for an example of spinel solvus. The
spinel solvus has been computed using the Gibbs hyperplane pro-
vided in Table 1 which was computed using MAGEMin. Black dots,
starting point in the XMCr, X

T
Mg and XMTi site fraction sub-system;

yellow circles with black outline, local minimum of the solvus; red
and blue lines, minimization paths from starting point to local min-
imum. Note that the diagram only displays a 3D sub-system of the
full 10D system.

mization time of individual solution phases by a factor ≥ 10
compared to CG and CCSAQ methods and by a factor of
1.5 to 2.0 with respect to the SLSQP method (Fig. 2). Un-
der slight perturbations, the minimization time is further de-
creased by a factor of 2.0 reaching down to ≤ 100 µs for
clino-amphibole, ≤ 80 µs for clinopyroxene and ≤ 50 µs for
spinel.

Regarding computational reliability, bound-constrained
optimization methods(such as CG and BFGS), are clearly
preferable over methods with inequality constraints (CCSAQ
and SLSQP), which exhibit a considerable proportion of un-
successful minimizations.

Using an bound-constrained nullspace formulation and
the BFGS method, can therefore significantly improve the
performance of stable phase calculations. Given that in
MAGEMin, ≥ 75 % of the computational load is dedicated
to local minimization of solution phase models, we estimate
a general speed-up of stable phase equilibrium prediction by
a factor ≥ 5. Such improvement can potentially opens up the
possibility of performing 2D reactive models fluid/magma
transport.
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Figure 5. Minimization time for perturbed systems. (a–c) SLSQP algorithm applied to clino-amphibole, clinopyroxene and spinel, respec-
tively. (d–f) BFGS algorithm applied to clino-amphibole, clinopyroxene and spinel, respectively. ‖10‖22 is a measure of the distance between
the starting guess and the solution. Note that the inequality constrained SLSQP method does not show any correlation between the distance to
solution and the minimization. The BFGS method, instead, exhibits a clear trend of decreasing minimization for smaller distances to solution.
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