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Abstract. Several current models for the unsaturated soil hy-
draulic conductivity curve consider the conductivity of the
domains of capillary water in water-filled pores and adsorbed
water in films on soil grains, as well as an equivalent con-
ductivity for water vapour diffusion. These models rely on
unrealistic configuration of the domains. A junction model
is introduced that sidesteps this problem by assigning all liq-
uid water to films (dry range) or to capillaries (wet range).
Combined with a sigmoidal junction model for the soil wa-
ter retention curve, it has up to six fitting parameters, one
fewer than the other multi-domain models. Tests on data for
13 soils show that the junction model and an additive model
(that adds all domain conductivities) often produce good fits.
Models with six or more parameters may be overparameter-
ized for many soils, giving the more parsimonious junction
model an advantage, but for some soils, the extra parameter
of the additive model is needed to achieve a good fit. This pa-
per and a user manual document a Fortran code (KRIAfitter)
that uses the shuffled complex evolution algorithm to fit the
junction, additive, and four other conductivity models for any
combination of fixed and fitting parameters or their log trans-
forms. KRIAfitter either maps the root mean square error in
the entire parameter space in order to then constrain the pa-
rameter space around the likely global minimum or generates
many fits and uses those to calculate statistics for individual
parameters, as well as the covariance and correlation matri-
ces.

1 Introduction

Madi et al. (2018) revealed that many parameterizations
of the soil water retention curve (SWRC) gave physically
unrealistic near-saturated behaviour of the soil hydraulic
conductivity when applied in combination with Kosugi’s
(1999) generalized soil hydraulic conductivity parameteri-
zation. This motivated de Rooij et al. (2021) and de Rooij
(2022) to propose a closed-form expression for the SWRC
with a distinct air-entry value, such as in Ippisch et al. (2006);
a sigmoid shape in the intermediate range according to van
Genuchten (1980); and a logarithmic dry branch terminating
at a finite matric potential at which the soil was oven dry, with
the water content essentially zero. The volumetric water con-
tent and derivatives of the sigmoid and logarithmic branches
were matched at the matric potential of their junction accord-
ing to Rossi and Nimmo (1994). This SWRC model (termed
RIA, for Rossi–Ippisch adaptation) had a finite slope near
saturation, which remedied the problems of most existing pa-
rameterizations and also eliminated the asymptotic residual
water content at the dry end.

De Rooij et al. (2021) presented an analytical expression
for a soil hydraulic conductivity curve that could be used with
this new SWRC parameterization. This conductivity curve
was a special case of Kosugi’s (1999) parameterization. The
public discussion of de Rooij et al.’s paper (accessible on-
line) revealed the desirability of an alternative formulation
that could be fitted separately and had the capability to ac-
count for non-capillary flow.

Peters and Durner (2008) and Peters (2013) included non-
capillary flow in their model for the unsaturated hydraulic
conductivity curve (UHCC) by separating the total liquid wa-
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ter in a domain with adsorbed water (present as films on
the surface of the solid phase) and a domain with capil-
lary bound water. They combined parametric models for soil
water retention and unsaturated hydraulic conductivity for
both. By assuming instantaneous equilibrium between wa-
ter vapour pressure and the matric potential of liquid water,
Peters (2013) could also formulate a model for isothermal
vapour flow driven by the gradient in the matric potential.
Weber et al. (2019) formalized this approach in a modular
setup facilitating different choices for the parameterizations
chosen to represent the SWRC and the UHCC of the vari-
ous domains. In all three papers, the adsorbed and capillary-
bound water content were added to arrive at the total water
content. The hydraulic conductivities were also added to find
the total conductivity at a given matric potential. De Rooij
(2024a) posited that this additivity attribute requires that all
flow domains are arranged in parallel and developed aver-
aging models using the arithmetic and harmonic means of
the domain conductivities for domains in parallel and in se-
ries, respectively. He also offered a model using the geomet-
ric mean as an intermediate between the other two as well as
a non-weighted additive model akin to that of Peters (2013).
From his analysis it appears fundamentally impossible to de-
rive the bulk soil hydraulic conductivity from domain con-
ductivities based on domain volumes and configurations.

Given these complications, this paper introduces a new
model in which the film domain and the capillary domain do
not exist in parallel but instead are joined at a critical matric
potential below which all liquid water is in films and above
which all water is capillary-bound. This creates a junction
model for the soil hydraulic conductivity analogously to the
RIA parameterization for the SWRC. The vapour domain is
assumed to be parallel to the liquid-water domain. Together
with this new model, the paper documents a Fortran program
(KRIAfitter) that is able to fit the parameters of the junc-
tion model and all models introduced by de Rooij (2024a) to
unsaturated hydraulic conductivities observed for either dif-
ferent water content or different matric potentials (de Rooij,
2024b). All models operate in conjunction with the RIA pa-
rameterization of de Rooij (2022). The fitting code (RIAfit-
ter) for that model was thoroughly overhauled for this study,
which resulted in version 2.0 (de Rooij, 2024c). While KRI-
Afitter is the main focus of this paper, it is expected that RI-
Afitter and KRIAfitter will normally be used in tandem.

2 The junction models for the soil water retention and
hydraulic conductivity curves

2.1 The model for the soil water retention curve

This section presents the main equations from de Rooij
(2022) for clarity. He presented a unimodal model for the
SWRC.

θ(h)=


0, h≤ (1+ c)hdθ ,

θsβθ ln
[
(1+c)hdθ

h

]
, (1+ c)hdθ < h≤ hjθ ,

θs

(
1+|αθh|nθ

1+|αθhaeθ |
nθ

) 1
nθ
−1
, hjθ < h≤ haeθ ,

θs, h > haeθ,

(1a)

where h denotes the matric potential in equivalent water col-
umn (L); subscripts dθ and aeθ denote the value at which the
water content reaches zero and the air-entry value, respec-
tively; and subscript jθ indicates the value of h at which the
logarithmic and sigmoid branch are joined. The volumetric
water content is denoted by θ , with the subscript s denot-
ing its value at saturation. Parameters αθ (L−1) and nθ deter-
mine the shape of the sigmoid branch (van Genuchten, 1980),
while parameter βθ does so for the logarithmic branch. By
requiring the derivatives of the sigmoidal and logarithmic
branches to match at hjθ , parameter βθ can be expressed in
terms of the other parameters (de Rooij et al., 2021).

βθ = (nθ − 1)
∣∣αθhjθ

∣∣nθ (1+ |αθhaeθ |
nθ
)1− 1

nθ

×
(
1+

∣∣αθhjθ
∣∣nθ ) 1

nθ
−2

(1b)

De Rooij (2022) made hjθ a derived parameter with the
following expression:

hjθ = hd exp
(

1
1− nθ

)
. (1c)

The five fitting parameters then are haeθ , hdθ , θs, αθ ,
and nθ . All of them appear in the expressions for the UHCC
as well. Those that can have different values for the UHCC
have θ in their subscripts to avoid ambiguity in the remain-
der of the text. Equation (1c) does not guarantee continuity
at hjθ , so de Rooij (2022, 2024a) introduced a correction fac-
tor that is very small for most soils.

c = exp

 1

(nθ − 1)
[
|αθhdθ |exp

(
1

1−nθ

)]nθ
− 1 (1d)

This correction needs to be applied to hdθ in the logarith-
mic branch of the SWRC as shown in Eq. (1a). This correc-
tion needs to be carried over to the expression for the soil
hydraulic conductivity to liquid water in the UHCC.

2.2 The junction model for the unsaturated hydraulic
conductivity curve

A junction model analogous to that used for the SWRC above
gives a monotonically increasing UHCC with increasing ma-
tric potential. It requires that liquid soil water is entirely al-
located to either capillary-bound water or water adsorbed in
films, with the water abruptly changing its allocation when
the matric potential passes through the matric potential at
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the junction point hj (L), which will not necessarily be equal
to hjθ . Because the liquid phase in this model only occupies
a single domain at any given matric potential, the issue of the
correct averaging of the domain conductivities with its com-
plications (de Rooij, 2024a) becomes moot. The fact that the
conductivities (LT−1) for the film domain (Ka) and the cap-
illary domain (Kc) are intrinsic conductivities strictly valid
for their respective domains instead of bulk conductivities
(de Rooij, 2024a) is resolved implicitly through the fitted
values of the parameters, made possible because averaging
of domain conductivities is not needed.

The clear distinction between adsorbed and capillary-
bound water of Eqs. (1a–d) appears well suited for use with
the multi-domain conceptualization of Peters and Durner
(2008) and Peters (2013) and with the modular framework
presented by Weber et al. (2019). Weber et al.’s (2019) ap-
proach is tailored to additive formulations of the SWRC in
which capillary-bound and adsorbed water co-exist over the
full moisture range, but the SWRC of Eqs. (1a–d) has no
capillary-bound water for h < hjθ . Furthermore, a water film
on a soil particle is bounded on one side by a solid–liquid
interface and on the other by a liquid–gas interface. The ve-
locity profile in the water film is such that its gradient at the
liquid–gas interface equals zero (Eq. 8) of Or and Tuller,
2000). When a pore with a water film on its grain surfaces
takes in additional water and becomes fully saturated, the re-
gion previously occupied by the water film only has a solid–
liquid interface, while at the location of the former liquid–
gas interface, there is moving water and a non-zero gradient
in the velocity profile. This will increase the flow rate in the
region previously occupied by the film. Simple addition of
film and capillary conductivities may therefore not be accu-
rate. De Rooij (2024a) showed that it is fundamentally im-
possible to develop a physically based model for the UHCC
based on domain conductivities. The junction model intro-
duced here does not claim to have more solid physical bases
than other multi-domain UHCC models, but it is simpler than
the existing models. To implement the junction model, the
conductivity expressions were adapted as outlined below.

The intrinsic hydraulic conductivity of water in films is
modelled according to Peters (2013).

Ka(h)=Ks,a ·


0, h≤ hd(
h
ha

)−1.5
, hd < h≤ ha

1, h > ha

(2a)

Ks,a (LT−1) is the value of Ka when the domain with ad-
sorbed water is completely filled, and ha (L) is the matric
potential at which this occurs. The value of the exponent is
adopted from Peters (2013). Note that Ka(h) abruptly drops
to zero at hd (the matric potential at oven dryness, L), butKa
at that matric potential is so small that this will generally be
insignificant for practical use. The need to carry over the cor-

rection of hdθ in Eq. (1a) results in the following equality:

hd = (1+ c)hdθ . (2b)

In the junction model, ha is set equal to hj. For the range
in which capillary-bound water is present, Kosugi’s (1999)
model is used with κ = 1 (see de Rooij, 2024a) for the soil
hydraulic conductivity as if all water is capillary-bound, irre-
spective of the matric potential.

Kc,jun(h)=Ks,c,jun

×

{(
G(h)
G(hae)

)τ( 1−|αh|n−1G(h)

1−|αhae|
n−1G(hae)

)γ
, hj < h≤ hae,

1, h > hae,
(3a)

where

G(x)=
(
1+ |αx|n

) 1
n
−1
. (3b)

Here, Kc,jun is the unsaturated hydraulic conductivity of
the capillary domain in the junction model (LT−1) and
Ks,c,jun its value at saturation. The parameters hae (L),
α (L−1), and n are the equivalent of haeθ , αθ , and nθ , respec-
tively, in the equations for the SWRC. Mualem (1976) pro-
posed the value of 0.5 for τ and 2.0 for γ . Assouline (2001)
introduced a simpler expression by setting τ to 0.0.

Equations (1b) and (3a, b) establish a continuous conduc-
tivity curve if their values are matched at hj. This requires
that the following equality holds.

Ks,a =Ks,c,jun

(
G(hj)

G(hae)

)τ( 1−
∣∣αhj

∣∣n−1
G(hj)

1− |αhae|
n−1G(hae)

)γ
. (4)

Vapour flow is assumed to be diffusive under isothermal
conditions. The equilibrium between local vapour pressure
and matric potential is assumed to be instantaneous. The
model used is de Rooij’s (2024a) modification of that of Pe-
ters (2013). The equivalent water vapour bulk hydraulic con-
ductivity KB

v is

KB
v (h)=

ρsvMgDa

ρwR(T + 273.15)θ2
s
(θs− θ)

10
3 e

Mg
R(T+273.15)h. (5)

Because of the specific nature of the expressions and their
constants, units replace dimensions in the explanations of the
variables and parameters. The unit of KB

v is cmd−1, consis-
tent with those for the liquid-water conductivity. The diffu-
sion coefficient of water vapour in air at the ambient temper-
ature T (°C) is Da (cm2 d−1). The densities of saturated wa-
ter vapour and liquid water are ρsv and ρw (kgm−3), respec-
tively; M (kgmol−1) is the molar mass of water; g (cmd−2)
is the gravitational acceleration; and R is the universal gas
constant (kgcm2 d−2 K−1 mol−1).

The densities ρw and ρsv are temperature dependent. Pe-
ters (2013) provides an expression for the temperature de-
pendence of ρsv:

ρsv =
0.0010

T + 273.15
exp

[
31.3716− 6014.79

T+273.15
−0.00792495(T + 273.15)

]
. (6)
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The density of liquid water in the range between 0 and
40 °C was approximated according to Brutsaert (2005, p. 17).

ρw = 999.8505+ 0.06001T − 0.007917T 2

+ 4.1256× 10−5T 3 (7)

For the temperature-dependency of Da, the expression of
Dorsey (1940, p. 73) was converted to units of cm and day
and adapted to a reference temperature of 15 °C.

Da = 2.09× 104
(
T + 273.15

288.15

)1.75

(8)

The bulk vapour conductivity model does not have any fit-
ting parameters.

Combining Eqs. (1b), (3a), (4), and (5) gives the expres-
sion for the bulk hydraulic conductivity to water according
to the junction model, denoted as KB

jun (LT−1):

KB
jun(h)=K

B
v (h)+Ks,c,jun

×



0, h≤ hd,(
G(hj)

G(hae)

)τ( 1−|αhj|
n−1

G(hj)

1−|αhae|
n−1G(hae)

)γ (
h
hj

)−1.5
, hd < h≤ hj,(

G(h)
G(hae)

)τ( 1−|αh|n−1G(h)

1−|αhae|
n−1G(hae)

)γ
, hj < h≤ hae,

1, h > hae.

(9)

Obviously, the last term on the right-hand side represents
the hydraulic conductivity of the soil for liquid water. Here,
Ks,c,jun, γ , and τ are fitting parameters that appear only in
the expression for the UHCC, additionally to hae, α, and n,
which also feature in the RIA model for the SWRC. If de-
sired, some or all of the latter can be fitted independently
from those of the SWRC. Because Ks,a is not a fitting pa-
rameter, the junction model has one parameter fewer than
the models that average or add domain conductivities. In
fact, it has the same number of parameters as the Kosugi
model (de Rooij, 2024a) that does not consider adsorbed wa-
ter. The value of hj follows from that of hd and n according
to Eq. (1c). Hence, only if hd and/or n are fitted separately
for the UHCC can hj differ from hjθ . The curve described by
Eq. (9) has a discontinuous derivative at hj, allowing it to re-
produce the changing slope of the UHCC observed for some
soils.

It is worth noticing that in the limit for h� 0, the follow-
ing simplification holds for the wet branch of Eq. (9), where
hj < h≤ hae.(
G(h)

G(hae)

)τ( 1− |αh|n−1G(h)

1− |αhae|
n−1G(hae)

)γ

≈

(
h

hae

)τ(1−n)
,h� 0 (10)

This requires τ to be positive, which is stricter than the
limits set by Peters et al. (2011) and Peters (2014). It is phys-

ically plausible that the second factor on the left-hand side
decreases as h decreases. This is the case when γ is positive.

For coding purposes, Eq. (9) and the corresponding ex-
pression for Kosugi’s model as formulated by de Rooij
(2024a) can be cast in a form that separates terms that need
to be calculated once in the case that SWRC parameters are
fixed, terms that need to be calculated once for every iter-
ation, and terms that need to be calculated for every itera-
tion and every matric potential corresponding to an observed
point on the UHCC. The reformulated equations are given in
Appendix A.

3 Fitting the model parameters

The junction model (or any of the other UHCC model accom-
modated by KRIAfitter) does not require that the parameter
values fitted for the SWRC are assumed to be valid for the
UHCC as well. Nevertheless, physical consistency between
the SWRC and the UHCC requires that θs and the matric po-
tential at which liquid water is no longer present in the soil
(calculated as (1+ c)hdθ for the SWRC) are the same for
both curves. Hence, before KRIAfitter 1.0 (de Rooij, 2024b,
where the code, user manual, and example input and output
files can be downloaded) can be run to determine the values
of the parameters of the chosen UHCC model for a particular
soil, the parameters of the SWRC of Eqs. (1a–d) need to be
fitted using RIAfitter 2.0 (de Rooij, 2024c, which also hosts
its user manual) or higher versions, once they become avail-
able. The water content at saturation has to be prescribed in
the input for KRIAfitter because θs does not appear in the
equations for any of the hydraulic conductivity models. The
value of (1+ c)hdθ should not be fitted separately for the
SWRC and the UHCC because that would create a phys-
ically impossible situation where either a non-zero liquid-
water conductivity exists although no liquid water is present
or liquid water is present but is rendered immobile because
the liquid-water hydraulic conductivity is zero. Hence, θs is
fixed at the SWRC value, and hd is calculated according to
Eq. (2b) from SWRC parameters that are provided on input.

Both KRIAfitter and RIAfitter are coded in Fortran2008,
compiled on CygWin’s Fortran compiler for 64-bit Windows
computers, and tested on such a computer. All input and out-
put consist of ASCII files. Typical run times vary from sec-
onds to several minutes.

All hard-coded parameter values are placed in modules.
This allows users to modify them as needed by changing a
single value without having to inspect the entire code. The
user manuals list all hard-coded values and their respective
module.

3.1 The parameter fitting algorithm

KRIAfitter fits up to six or seven parameters for one of six
models for the unsaturated soil hydraulic conductivity, de-
pending on the model chosen by the user. For each of these
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models, the equivalent vapour conductivity can be included
or excluded, yielding 12 different conductivity models.

Each of k observed data points provided on input needs
to have an estimate of the standard deviation of the mea-
surement error of the matric potential or the volumetric wa-
ter content and of the associated soil hydraulic conductiv-
ity. These are used to calculate the weighted squared error
term wi assigned to the fit for data point i as follows:

wi =

(
Ko,i −Kf,i

dK
dx σx,i + σK,i

)2

, (11)

where K denotes the soil hydraulic conductivity (cmd−1);
x denotes either the matric potential h (cmH2O) or the vol-
umetric water content θ ; and σx and σK are the standard de-
viation of the measurement errors in the independent vari-
able (h or θ ) and in K , respectively. Subscript “o” denotes
an observed, and subscript “f” a fitted value. Subscript i de-
notes the number of the observation; hence, i ∈ {1, . . .,k}.
The slope dK/dx is evaluated at the observed value xo,i of
the independent variable and updated for every set of fitted
parameter values.

The individual termswi are used to compute the root mean
square error (RMSE) of the fitted vs. the observed values:

RMSE=


k∑
i=1
wi

k∑
i=1

(
dK
dx σx,i + σK,i

)−1


1
2

. (12)

In the code, the error standard deviations are scaled in such
a way that the arithmetic mean of σK,i equals 1 % of the
largest conductivity value in the input file with the observa-
tion data. The required scale factor is applied to σx,i as well
to conserve the relative weight of all observation errors.

The code minimizes the RMSE (the objective function) by
the shuffled complex evolution algorithm (SCE). A detailed
description of the algorithm and discussions of its parameters
are provided by Duan et al. (1992, 1993, 1994). A brief sum-
mary of the SCE algorithm is provided in the user manual
(de Rooij, 2024b).

The number of dimensions of the parameter space (de-
noted as NrOfDimensions in the code and below) is the num-
ber of parameters whose values are actually fitted as opposed
to being set to a fixed value by the user. The number of com-
plexes (sets of points in the parameter space) is determined
in one of two ways that can be selected by the user. It can
adhere to Duan et al. (1994) for any number of fitting param-
eters but with a minimum of two. This results in two com-
plexes for any of the conductivity models. Alternatively, the
number of complexes is 2×NrOfDimensions. This option
significantly increases the execution time. Test calculations
showed the quality of the fit occasionally improves. Per the
guidelines of Duan et al. (1994), the size of the complexes

and the number of evolution steps between shuffles equal
(2×NrOfDimensions)+ 1. The size of the subcomplexes is
NrOfDimensions+ 1. The number of offspring in each evo-
lution step is hard-coded as 1 (parameter SCEa in module
SCEBisParameters).

Thus, the algorithm replaces the single poorest-performing
point of each subcomplex during an evolution step by a new
point with a lower RMSE or a random point if a better-
performing point could not be found. It does so by

– first checking if a reflection point (further removed from
the centroid of the subcomplex than the point that will
be replaced) has a lower RMSE.

– If a parameter value of the reflection point is outside
the permitted range, it is made equal to the minimum or
maximum allowed value, whichever is the closest. If the
value of hj lies between hae and zero, and its value of hae
is increased to make hae slightly larger (less negative)
than hj.

– If the reflection point does not perform better than the
original point, a contraction point (closer to the cen-
troid) is checked.

– If neither point improves the RMSE, a random point in
the parameter space replaces the worst “parent” even if
its RMSE is larger.

After all evolution steps have been completed, all points
in the complexes (including those that evolved in the sub-
complexes) are reshuffled and assigned to new complexes.
The process of selecting subcomplexes and improving those
through evolution steps is repeated for the new complexes.
After each shuffle, the code checks for convergence. The
code terminates when the parameter fits converged or when
the user-set maximum number of evaluations of the objective
function has been exceeded. To check for convergence, the
code evaluates the following convergence criteria for each
fitting parameter after each shuffle. If none of the parameters
fails more than the user-specified maximum permitted num-
ber of criteria, convergence has been achieved.

1. In the best fits from the last set of shuffles, the range of
a parameter does not exceed both the absolute and the
relative user-specified tolerance. The number of shuffles
in the set is the maximum of 2 times the number of non-
fixed fitting parameters and the minimum required num-
ber of shuffles (hard-coded parameter MinimumStored-
Shuffles).

2. In the best fits from the last set of shuffles, the range of
the objective function does not exceed its absolute user-
specified tolerance.

3. The parameter range in the final complexes does not ex-
ceed the maximum internally set permissible value.

https://doi.org/10.5194/gmd-18-6921-2025 Geosci. Model Dev., 18, 6921–6950, 2025



6926 G. H. de Rooij: The junction model for the unsaturated soil hydraulic conductivity curve

4. The volume of the hypercube enveloping the final com-
plexes does not exceed the maximum internally set per-
missible value.

5. The parameter range in the most successful complex
(minus the point with the highest RMSE) does not ex-
ceed the internally set maximum permissible value.

6. The volume of the hypercube enveloping the most
successful complex (minus the point with the highest
RMSE) does not exceed the internally set maximum
permissible value.

7. A parameter does not exceed both the absolute and the
relative user-specified tolerance in the final complexes.

8. A parameter does not exceed both the absolute and the
relative user-specified tolerance in the most successful
complex (without the point with the highest RMSE).

9. The change of the objective function between consec-
utive shuffles does not exceed the user-specified toler-
ance.

10. The RMSE of the fit does not exceed a user-specified
tolerance.

Criteria 2, 4, 6, 9, and 10 apply to all parameters simulta-
neously. For large numbers of parameters, a hypercube that
occupies only a small fraction of the hypercube defined by
the ranges of the fitting parameters can still allow for an
excessively wide range for the individual parameters. The
permissible volume therefore becomes smaller with an in-
creasing number of fitting parameters. It is determined by
a preset value (hard-coded parameter SCEHyperVolumeTol-
erance1D) raised to a power equal to the number of fitting
parameters.

3.2 Validity of parameter values and their
combinations

The SCE algorithm requires a finite parameter space in all di-
mensions, so permitted ranges of all parameters are required
on input. The code checks the sign of all minimum and max-
imum values, corrects them if needed, and places the mini-
mum and maximum value in correct order if needed. For hae,
α, n,Ks,c,Ks,a, γ , and τ , physical or mathematical limits are
implemented in subroutine RangeChecker, and the parameter
range is forced to be within these bounds if needed. The rou-
tine also checks limits on θs and hd, but since these param-
eters are fixed, these should be redundant. They are retained
in case users wish to modify the code or use the routine for
other purposes.

During the fitting process, for those models for which
bothKs,a andKs,c are fitting parameters, the code makes sure
the former never exceeds the latter. Similarly, hj should not
be closer to zero than hae. If it is, the value of hae is modified.

If that parameter is fixed, the value of n is modified. Round-
off errors can create a combination of values for hd, hj, and n
that violate Eq. (1c). If that is the case, n is modified as well.

3.3 Configuring the fitting process

In addition to the Boolean input parameter “FewComplexes”
that governs the number of complexes (Sect. 3.1), there are
three others and a Boolean array that steer the fitting process
(Table 1). This section explains their use.

Variable “UseMap” determines if the code generates a reg-
ular grid of map points with their associated RMSE that cov-
ers the parameter space. The density of the grid is calculated
from the maximum number of points supplied by the user,
but a minimum number of points is generated that overrides
a smaller user-supplied number. For parameters that are log-
transformed, the map points are equidistant on the logarith-
mic scale. The map is used to modify the parameter space
in order to focus on a hypercube in which the lowest values
of the RMSE are concentrated. If the code finds that these
values occur close to a boundary of the parameter space, the
range of a parameter can be expanded somewhat.

A small number of parameter optimization runs is per-
formed (hard-coded as 3) within the updated parameter
space. In optimization run 1, the first complexes are filled
with points that have the lowest RMSE values. The second
run adds some random noise to the parameter values of these
points to have slightly different initial complexes. The re-
maining run fills the complexes with randomly generated
points.

If no map is desired, a larger number of runs is performed
(hard-coded as 50; see below), all of them with randomly
generated points that fill the first complexes. This larger num-
ber of runs allows for the calculation of statistics of the pa-
rameter value populations.

Array “LogTransformedParameters” specifies for each pa-
rameter whether untransformed values or log transforms of
their absolute values (base 10) should be fitted. In the lat-
ter case, the corresponding dimension of the parameter space
will be log-transformed as well, and the reflection and con-
traction steps are performed on log-transformed values. The
fitted values that are written to output are back-transformed,
but the statistics (mean, standard deviation, correlations and
covariances) are for the log-transformed absolute values.

Any parameter can be fixed at a desired value by setting
the upper and lower limit equal to that value. In that case,
dummy values need to be provided for the absolute and rel-
ative tolerances and for the corresponding element of Log-
TransformedParameters. For the specific case that hae and
hj should be equal to those of the SWRC, hae and n will
have to be fixed to the SWRC values. This can be achieved
through input parameter AlphaOnly. In that case, all input
for hae and n is treated as dummy values, except for their
identifying names that will be used in the output.

Geosci. Model Dev., 18, 6921–6950, 2025 https://doi.org/10.5194/gmd-18-6921-2025



G. H. de Rooij: The junction model for the unsaturated soil hydraulic conductivity curve 6927

Table 1. Boolean variables/arrays that guide the parameter fitting process.

Variable/array name Effect when TRUE Effect when FALSE

AlphaOnly hae and n will be fixed at the SWRC
values

hae are n fitted when their upper and
lower limit differ

FewComplexes the number of complexes is determined
according to Duan et al. (1994) but is not
smaller than 2

the number of complexes is twice the
number of fitting parameters

LogK RMSE calculated from log transforms of
observed and fitted conductivities

RMSE calculated from untransformed
conductivities

LogTransformedParameters(I) (array
element I)

the log-transformed parameter(I) will be
fitted

the untransformed parameter(I) will be
fitted

UseMap a small number of fits is performed based
on a map of the RMSE in the parameter
space

a large number of fits is performed, and
parameter statistics are calculated

Finally, the user can specify if the untransformed or log-
transformed unsaturated soil hydraulic conductivity should
be fitted through input parameter LogK. In the latter
case, both the observed and fitted conductivities are log-
transformed before the RMSE is computed. In that case, the
error standard deviations for the observed conductivities ap-
ply to the log-transformed values. The user manual offers
some guidance on how to estimate these.

Generating a map of the RMSE in the parameter space of
course increases computation time, especially if the number
of dimensions is high. It can help constrain (or expand) the
parameter space and give the initial complexes some guid-
ance about the location of the global minimum. This can be
advantageous if one is not sure about the range of the param-
eter values.

Executing many runs (in the case no map is generated) also
increases processor time. If the output shows a large num-
ber of random points compared to the number of reflection
and contraction points, it is possible that the minimum was
found multiple times. If that is the case, it is recommended
to increase the probability of convergence by allowing more
criteria to fail (the test runs gave good results for setting this
number to 7). When doing so, the maximum number of iter-
ations can also be reduced. If it is limited to 3000, most fits
will probably still converge.

When a map is generated, the output includes the mean
and standard deviation of the RMSE values of a random sam-
ple of the map points, as well as the cumulative probability
density function of the RMSE in the parameter space and
its histogram (also based on the sample). This information
shows if there is a large portion of the parameter space in
which the RMSE hardly varies, if there is a well-defined min-
imum, etc. For each run, correlation matrices of the parame-
ter values are provided based on a sampling of the final itera-
tions. These samples will include randomly generated points,

so the reported correlations will underestimate the true cor-
relations.

If no map is generated, the mean, population standard de-
viation, and histogram of all fitting parameters (or their log-
transformed values) are written to output, as well as covari-
ance and correlation matrices. These statistics are based on
the fits of all runs, so they are expected to reflect the true
values well. This information can be used, for instance, to
sample the multivariate distribution of the parameter values
in order to carry out a Monte Carlo study to examine the ef-
fect of parameter uncertainty on the uncertainty of the output
of numerical models for unsaturated flow (de Jong van Lier
et al., 2024).

It may be useful to run KRIAfitter with a map of the
RMSE, check the updated parameter ranges in the output (see
the user manual for details), copy these to the input file, and
run KRIAfitter again without a map. In this way, the parame-
ter space is better defined, and one obtains reliable parameter
statistics.

4 Model evaluation

4.1 Fitting procedure

The first 13 soils in Table 1 of Weber et al. (2019) were used
to evaluate the conductivity models. Instead of Ver P36 C1g
in that table (P26 is a typo), we used UNSODA soil 4142,
which refers to the same pair of samples. For all these soils,
the data points span a wide range of matric potentials, and
both retention and conductivity data are available.

First, the SWRC parameters were fitted, once with free hd
and once with (1+ c)hdθ fixed at −106.8 cmH2O (Schnei-
der and Goss, 2012). Parameters αθ and hdθ were log-
transformed because they can vary over several orders of
magnitude (de Rooij, 2022). The error standard deviations
were based on guesstimates of the accuracy of observed wa-
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Table 2. The sets of fitting parameters used in the model evaluation. N.B. θs, and hd are fixed for all sets.

Set no. Set name Fixed parameters Fitting parameters

1 All free none hae, α, n, Ks,c, Ks,a (when applicable), γ , τ
2 Alpha only hae, hj as for the SWRC α, Ks,c, Ks,a (when applicable), γ , τ
3 Assouline τ = 0.0 (Assouline, 2001) hae, α, n, Ks,c, Ks,a (when applicable), γ
4 Mualem γ = 2.0, τ = 0.5 (Mualem, 1976) hae, α, n, Ks,c, Ks,a (when applicable)
5 SWRC fixed hae, α, and n as for the SWRC Ks,c, Ks,a (when applicable), γ , τ

ter content and matric potentials. These resulted in error
bands r with units depending on the variable. The corre-
sponding error standard deviation of r/

√
12 was found by as-

suming the error to be uniformly distributed within that band
(Abramowitz and Stegun, 1964, p. 930). Because soil water
retention data points obtained with pressure plate extractors
(Dane and Hopmans, 2002) were found to be unreliable af-
ter the data sets were created (Bittelli and Flury, 2009), ma-
tric potentials below −1000 cmH2O were assigned an error
band of ± 0.1 ho (with the subscript o denoting an observed
value).

The parameter space bounds were improved by fits that
used the map of the RMSE, and then the improved ranges
were used to generate a fit without map. In a few cases
(Pachappa, Rehovot sand, SM−1005, UNSODA 4650), the
data points were distributed so unevenly that the weights of
the data points needed to be modified to compensate for that.
For all soils, the fit without a map and with fixed (1+ c)hdθ
gave the lowest AICc value. Therefore, these parameter val-
ues were used in the fits of the UHCC models. The fits also
provided two estimates of the bulk soil hydraulic conductiv-
ity at saturation based on Eqs. (1) and (15) of Timlin et al.
(1999). The latter estimate could only be calculated if hae < 0
and n < 3 (de Rooij, 2024a). If the data range of conductivity
data required it, these estimates were included in the file with
observation data and given the same error standard deviations
as the other points.

Then, the five conductivity models of de Rooij (2024a) and
the junction model (Eq. 2b) were fitted, with α,Ks,c, andKs,a
log-transformed and the fits performed on log-transformed
conductivity values. For each model, five sets of parameters
were fitted (Table 2).

In set 2, all critical values of the matric potential (hd,
hae, and hj) are set to the values determined for the SWRC.
By fixing both hj and hd, n is determined as well through
Eq. (1c). Of the parameters that also occur in the SWRC,
only α remains as a fitting parameter (hence “alpha only”).

As was the case for the SWRC, these fits were first per-
formed using the map of the RMSE to better define parameter
ranges. Then the fit was repeated with the improved ranges.
If the upper limit of Ks,a exceeded the lower limit of Ks,c, it
was capped at the value of the latter. Up to 7 of the 10 con-
vergence criteria were allowed to be missed, and the max-
imum number of evaluations of the objective function was

3000. The error standard deviations were estimated for the
largest observed conductivity only (see the user manual for
details) and then assigned to all data points so that the data
were all weighted equally. The only exception was soil UN-
SODA 4010, where the first three observations and the two
estimates of the saturated bulk conductivity KB

s had to be
given more weight to obtain good fits. Vapour flow was al-
ways included. All data were from laboratory measurements,
so the temperature was set at 20 °C.

This required 780 runs of KRIAfitter, in which 20 670 fits
were performed in total (3 fits per run with a map, 50 with-
out). In the vast majority of cases, fits converged after several
hundred evaluations of the objective function. The best fits of
the runs without map are discussed below.

4.2 Fitting results

The RIA parameterization (Eqs. 1a–d) fits the intermedi-
ate and wet range quite well for a wide range of shapes
of the curves, as the graphs in Appendix B show. Because
the retention data points in the dry range are unreliable (see
above), their weighting factors are smaller than those of the
other data points. With the pF (defined as log(−h) with h in
cm equivalent water column) of oven dryness fixed at 6.8, the
fitted dry branches are drier than the observations to vary-
ing degrees, consistent with the expectation that pressure
plate data tend to underestimate |h|. For Pachappa, the fitted
value of haeθ is −15.6 cmH2O, which seems a bit arbitrary,
but with data points missing for matric potentials between
0.0 and −47.0 cmH2O, the code has insufficient information
for a reliable estimate. The desirability of additional points
to guide the estimation of haeθ also seems apparent to a more
moderate degree for SM–1005 and UNSODA 2571.

Appendix B also shows the 30 fits of the UHCC for each
soil separated into one graph each for every of the five sets
of fitting parameters listed above. The curves are arranged in
the same order as that list when read from left to right and
top to bottom. The main findings from a visual analysis of
the collection of graphs are presented below. For consistency
between this text, Appendix B, and the user manual, the var-
ious conductivity models are referred to by their identifying
three-character labels as follows:

– ADV: the unweighted additive model, with vapour flow
(de Rooij, 2024a);
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– AMV: the arithmetic mean model, with vapour flow
(de Rooij, 2024a);

– GMV: the geometric mean model, with vapour flow
(de Rooij, 2024a);

– HMV: the harmonic mean model, with vapour flow
(de Rooij, 2024a);

– JUV: the junction model, with vapour flow (Eq. 2b);

– KGV: the Kosugi model with capillary water only, with
vapour flow (de Rooij, 2024a).

The main points to observe from a qualitative analysis
of the collection of graphs in Appendix B follow. Pachappa
(Fig. B2) is the only soil for which K(θ ) was fitted instead
of K(h). Despite the number of fitting parameters ranging
from three to seven, the fits show only minor variations lim-
ited to the dry range, which has a single data point.

Pachepsky (Fig. B3) has K(h) data over a wide range
but not at saturation. In view of the small amount of noise
in the data, Ks,c and Ks,a are both fitted without providing
estimates of saturated bulk soil hydraulic conductivity KB

s
(LT−1). The estimates based on the fitted SWRC are 182
and 110 cmd−1. For the fit with all SWRC parameters fixed
(set no. 5 in Table 2), all fitted saturated conductivities are
well below these and often even below observed values be-
low saturation. For fitting parameter sets 1 through 4, only
JUV and KGV have plausible values ofKB

s . GMV and HMV
underperform overall. JUV gives the best overall fits when all
parameters are fitted (set 1) or τ is fixed at zero (set 3).

The UHCC for Rehovot sand (Fig. B4) has a steep descent
that transitions abruptly into a gentler slope. This shape can
only be reproduced by ADV and AMV and when all seven
parameters are fitted (set 1) or τ is fixed at zero (set 3).

The shape of SM–6–62 (Fig. B5) is accurately fitted by
ADV, AMV, and JUV if 6 to 8 parameters can be fitted. All do
well for set 1 (all parameters free) and set 3 (one parameter
fixed). ADV and AMV also give good fits for set 4 (with
γ and τ fixed to Mualem’s (1976) values, leaving only four
fitting parameters for JUV), although the conductivity may
stay high for too long as the soil desaturates.

The fits for SM–22–88 (Fig. B6) are the best for sets 1
and 3. JUV does particularly well if all parameters are free
(set 1), and AMV and ADV have an extra parameter and still
do well if τ is fixed (set 3).

The UHCC of SM–35–119 (Fig. B7) is fitted well by all
conductivity models for all sets except set 4 (all SWRC pa-
rameters fixed). For set 1, the spread between the fitted curves
is remarkably high in the data-free wet range.

For SM–41–127 (Fig. B8), ADV, AMV, JUV, and KGV
all do well if all parameters are free (set 1). For the other
sets, the somewhat isolated driest point is only fitted well by
ADV and AMV. The observation range covers only a narrow
pF–range, resulting in considerable spread outside this range.

Table 3. Combinations of conductivity models and fitted parameter
sets (see main text for the parameter sets corresponding to the listed
numbers) that give the lowest root mean square errors (RMSEs) and
values of the corrected Akaike’s information criterion (AICc) for
soils with acceptable fits of both the soil water retention curve and
the unsaturated hydraulic conductivity curve.

Soil Model–parameter set combination
that gives the lowest value
of the indicated criterion

RMSE AICc

Pachepsky ADV, 1 ADV, 2
Rehovot sand AMV, 1 AMV, 3
SM–6–62 ADV, 1 ADV, 1
SM–22–88 ADV, 1 ADV, 4
SM–35–119 JUV, 3 JUV, 3
SM–41–127 AMV, 1 AMV, 4
SM–1005 JUV, 1 JUV, 1
UNSODA 2571 AMV, 1 JUV, 5
UNSODA 4031 JUV, 1 JUV, 4
UNSODA 4142 ADV, 1 ADV, 4

The spread is contained at saturation by the values estimated
from the corresponding SWRC.

The data points for SM–1005 (Fig. B9) are grouped in two
clusters. HMV and GMV consistently underperform. ADV
and JUV give good fits for up to one fixed parameter (sets 1
and 3), and because of its extra parameter, ADV still does
well with two fixed parameters (set 4). Interestingly, AMV
gives a curvy fit for set 4 that matches the data well.

The UHCC of UNSODA 2571 (Fig. B10) is linear on the
double-log scale and fitted well for all sets by all models ex-
cept HMV. The spread in the dry range is large, with ADV
and AMV separated from the other models.

The peculiar shape of the UHCC of UNSODA 4010
(Fig. B11) cannot be fitted properly by any model. ADV,
JUV, and KGV give somewhat acceptable fits for set 2 (with
α the only free SWRC parameter).

The wet range of the UHCC of UNSODA 4031 (Fig. B12)
is fitted poorly by HMV and especially GMV. For sets 1
and 3, all other models give good fits over the entire data
range, with limited spread outside that range.

For UNSODA 4142 (Fig. B13), most models give good
and comparable fits for sets 1–3, except AMV, GMV, and
HMV in the wet range for set 1 and AMV and GMV for set 3.
ADV tends to give higher conductivities in the dry range than
the other models. The fits of JUV and KGV are nearly iden-
tical for all sets.

None of the fits for UNSODA 4650 (Fig. B14) are very
good because the data points appear in two disjointed clusters
with a discontinuity between them that can only be somewhat
captured by ADV and AMV.

In many cases, GMV and HMV underestimate the con-
ductivity in the wet range. This is related to the effect of the
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Table 4. Root mean square errors (RMSEs) and values of the corrected Akaike’s information criterion (AICc) for additive (ADV), junction
(JUV), and capillary water only (KGV) conductivity models fitted to data for Pachappa. Best values for a particular conductivity model are
in italics. The overall best values are bold.

Fitted set no. RMSE AICc

ADV JUV KGV ADV JUV KGV

1 0.05141 0.05141 0.05141 33.71 −2.959 −2.959
2 0.16318 0.16248 0.16243 4.116 −6.985 −6.985
3 0.05121 0.05122 0.05121 −3.045 −21.38 −21.38
4 0.05751 0.05782 0.05782 −18.83 −29.71 −29.71
5 0.16148 0.16382 0.16382 −7.114 −14.13 −14.13

Table 5. Similar to Table 3 but for Pachepsky’s soil.

Fitted set no. RMSE AICc

ADV JUV KGV ADV JUV KGV

1 0.16141 0.17154 0.35483 −44.37 −45.45 −7.656
2 0.16157 0.39162 0.39055 −52.37 −9.748 −9.891
3 0.16164 0.17152 0.35177 −48.54 −49.26 −11.91
4 0.17625 0.27293 0.36717 −47.84 −28.52 −13.10
5 0.19529 0.46275 0.46215 −45.93 −41.65 −4.232

value of Ka (much lower than Kc) on the geometric and har-
monic means of the two. Even though the upper limit ofKs,c
was permitted to be about 20 times the measured saturated
conductivity during the fitting process, this often was still in-
sufficient to let the mean reach the observed values.

In 75 % of the plots, KGV closely tracks JUV. For a model
that lacks representation of water adsorbed in films, KGV
performs remarkably well. AMV overlaps ADV in the wet
range at times, but the curves tend to separate in the dry end.
ADV often has the highest conductivity in the dry range of
all models until they all coalesce on the vapour conductivity,
which is the only non-zero component of the bulk conduc-
tivity for h≤−106.8 cmH2O, where liquid water ceases to
exist.

JUV and KGV have one parameter fewer than the other
models, yet JUV in particular tends to be among the best
overall fits for a given soil based on the visual inspection of
the full set of graphs. If it does so even when sharing the
top spot with other models in the same set (e.g. Pachepsky,
SM–35–119, SM–1005), this means it can match the perfor-
mance of other models with fewer parameters. This suggests
that ADV and the averaging models may be overparameter-
ized, especially if all their seven parameters are fitted. On
the other hand, for the Rehovot sand, ADV and AMV are the
only models that are versatile enough to produce good fits, so
the extra parameter may be needed at times. Although AMV
and ADV often diverge in the dry range, AMV does not ap-
pear to substantially increase the fitting prowess provided by
the combination of JUV and ADV. From the fits it appears
that with only ADV and JUV, the best possible result (based

on visual inspection) can be found for all soils used in the
test.

This can be explored further through the goodness-of-
fit measures and parameter correlation matrices. The time
needed do so for all 390 fits presented in Appendix B is
prohibitive. Instead, of the 30 combinations of conductivity
model and fitting parameter set for each soil, the ones that
give the smallest values of the RMSE and of Akaike’s infor-
mation criterion corrected for small sample sizes (Hurvich
and Tsai, 1989; denoted as AICc) are identified. Only soils
for which the visual analysis showed that both the SWRC
and the UHCC were fitted well at least once are included
in Table 3. The soils not considered are Pachappa (question-
able value of haeθ in the SWRC due to the lack of data in
the wet range), UNSODA 4010, and UNSODA 4650 (both
because none of the combinations could fit the conductivity
curve well).

Based on the minimal RMSE, ADV performs the best for
four soils and AMV and JUV for three. The most flexible pa-
rameter set (no. 1) prevails nine times and the second-most
flexible one (no. 3) one time. But if the required number of
fitting parameters is accounted for using the AICc instead of
the RMSE, ADV and JUV both achieve the minimum AICc
four times and AMV twice. Set 4, with γ and τ fixed to
Mualem’s (1976) values, performs the best four times; sets 1
and 3 twice; and sets 2 and 5 once.

A more detailed analysis is carried out for a subset of soils.
Based on Table 3, only ADV and JUV are considered as they
are the overall best-performing models, with KGV included
to see to what degree the more advanced models outperform
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Table 6. Similar to Table 3 but for SM–35–119.

Fitted set no. RMSE AICc

ADV JUV KGV ADV JUV KGV

1 0.00933 0.00791 0.00795 −137.9 −150.3 −150.1
2 0.01934 0.05568 0.05425 −119.4 −81.24 −82.28
3 0.00887 0.00789 0.00796 −145.7 −155.2 −154.9
4 0.00925 0.03033 0.01561 −148.9 −105.5 −132.1
5 0.03274 0.11391 0.11256 −102.5 −56.23 −56.70

Table 7. Similar to Table 3 but for UNSODA 2571.

Fitted set no. RMSE AICc

ADV JUV KGV ADV JUV KGV

1 0.06683 0.08567 0.08666 Invalid ∞ ∞

2 0.08050 0.08976 0.08976 63.69 9.429 9.429
3 0.04128 0.08881 0.08880 ∞ 65.26 65.26
4 0.07918 0.08883 0.08882 63.42 9.263 9.262
5 0.08188 0.09421 0.09421 7.961 −8.462 −8.462

the classical model. This analysis serves two purposes: an
evaluation of conductivity models and fitting parameters sets
and a demonstration of ways to interrogate the output of KRI-
Afitter.

The members of this subset of soils must have a good fit
of the SWRC so that spillover effects from that fit do not
cloud the assessment of the conductivity models. The subset
must also represent different shapes of the SWRC and the
UHCC and different qualities of conductivity data. Pachep-
sky’s soil has a sigmoidal SWRC and conductivity data that
cover a wide range. SM–35–119 has an SWRC with three lin-
ear branches and conductivity data over a narrow range, with
estimated saturated conductivity values. UNSODA 2571 has
a power-law type SWRC (Brooks and Corey, 1964) and con-
ductivity data over an intermediate range. The subset is com-
pleted by Pachappa because it is the only soil for which the
conductivity data have θ as the independent variable.

The values of the RMSE and AICc of each of the fits dis-
cussed above are presented in Tables 4–7. If only one of two
identical values is designated optimal in these tables, they are
different when more significant digits are considered.

Values of AICc should never be compared between soils.
Because the error standard deviations are scaled by the code
using the maximum conductivity value in the input file with
the measurements (see the user manual), RMSE values for
different soil cannot be compared either.

Because ADV has one fitting parameter more than both
JUV and KGV, it achieves the lowest RMSE for three out of
four soils, albeit with a shared first place for Pachappa. JUV
has the lowest RMSE for SM–35–119. The three RMSE val-
ues for Pachappa are nearly identical, and all are achieved by
set 3, with τ fixed at 0.0 (Table 4). For each soil, the lowest

RMSE is achieved by fitting either set 1 (one case: Pachep-
sky; Table 5) or set 3 (three cases: Tables 4, 5, and 7).

The more parsimonious sets of fitting parameters not sur-
prisingly tend to achieve the smallest AICc values: sets 2, 3,
4, and 5 all achieve the lowest AICc for one soil. Note that
UNSODA 2571 (Table 7) has only eight data points, which
means that for six fitting parameters, AICc becomes infinite,
and beyond that incalculable (see the user manual and Hur-
vich and Tsai, 1989, for details). JUV is the most successful
conductivity model in terms of minimizing AICc, with KGV
close behind. JUV has the lowest AICc for Pachappa with
set 4, for SM–35–119 with set 3, and for UNSODA 2571
with set 5 (Tables 4, 6, and 7). In all cases, KGV performs
equally well or slightly worse. On average, 6 parameters are
needed to achieve the lowest RMSE and 4.25 to achieve the
lowest AICc.

Figure 1 shows the pairs of best fits based on RMSE
and AICc values. Only the case for which the difference in
the number of fitting parameters between RMSE and AICc-
based fits is larger than two results in significantly differ-
ent fits. The other three are indistinguishable or, in one case,
identical.

The output of KRIAfitter when no map of the RMSE
is generated permits an inspection of the correlation struc-
ture. The breadth of parameter correlations can be assessed
by determining from the correlation matrix in file SCEfit-
tingK.OUT the number of data pairs for which the absolute
value of the correlation coefficients exceeds a threshold. Ta-
ble 8 shows the results for this threshold set to 0.8. There is
no consistency for any of the conductivity models or fitted
parameter sets between soils. Apparently, the properties of
the input data set have far more influence.
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Figure 1. The fits that had either the smallest value of the root mean square error (RMSE) or Akaike’s information criterion corrected for
small samples (AICc) of all fits, i.e. those fits that are identified by the bold values in Tables 4–7. For Pachappa, the best-performing UHCC
models were ADV (RMSE) and JUV (AICc), for Pachepsky ADV (both RMSE and AICc), for SM–35–119 JUV (both RMSE and AICc),
and for UNSODA 2571 ADV (RMSE) and JUV (AICc).

Table 9 lists the correlation coefficients (R) with the max-
imum absolute value. Intriguingly, the only consistency here
appears to be that the sets with the largest (set 1) and small-
est (set 5) number of fitting parameters have the fewest data
pairs with very high correlation coefficients (R2 > 0.9, cor-
responding to |R|> 0.95). For set 5, this is understandable:
with three (JUV, KGV) or four (ADV) parameters resulting
in three or six possible parameter pairs, there is limited op-
portunity for different parameter combinations that give the
same RMSE across a range of values. And these will only
give high R values if the resulting relationship between the
parameter values is linear.

Finally, Table 10 gives the parameter pairs for which R2 >

0.9. Here too, the dominant effect of the input data is appar-
ent, but there also appears to be an effect of the set of fitting
parameters. Parameter pair (α,τ ) appears six times, five of
which are for Pachappa. The three appearances of (α,n) are
also for Pachappa and for fitting parameter set 4. Seven of

the eight appearances of (γ,τ ) are for set 2, and all four ap-
pearances of (n,γ ) are for set 3 for models JUV or KGV.
All things considered, no general guidelines can be given.
Parameter correlations therefore need to be examined on a
case-by-case basis. If highly correlated parameters are found,
the means and standard deviations of the individual parame-
ters that are also provided in file SCEfittingK.OUT can help
determine a suitable value at which to fix one of the parame-
ters, if so desired.

5 Conclusions

The graphs in Appendix B, the combinations of models and
fitted parameter sets that minimize AICc in Table 3 and the
quality of the fits in Fig. 1 all indicate that all UHCC curves
that can be fitted by at least one of the full set of six mod-
els can probably also be fitted by ADV and/or JUV without
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Table 8. Number of data pairs with |R|> 0.8 for selected soils,
conductivity models, and fitted parameter sets (see main text).

Soil Fitted set no. Conductivity model

ADV JUV KGV

Pachappa 1 1 2 2
2 1 1 1
3 3 2 1
4 6 1 1
5 0 0 0

Pachepsky 1 0 1 1
2 3 2 1
3 2 1 1
4 2 0 1
5 1 0 0

SM–35–119 1 0 0 0
2 0 1 1
3 0 1 1
4 0 1 1
5 0 1 0

UNSODA 2571 1 0 0 0
2 1 1 1
3 0 1 1
4 1 1 2
5 1 1 1

Table 9. The maximum value of |R| for any parameter pair for
selected soils, conductivity models, and fitted parameter sets (see
main text). Values that give R2 > 0.9 are in italics.

Soil Fitted set no. Conductivity model

ADV JUV KGV

Pachappa 1 −0.8314 0.8457 0.8593
2 −0.9384 −0.9641 −0.9641
3 −0.9698 −0.9909 −0.9543
4 −0.9999 −0.9575 −0.9575
5 0.7061 0.6658 0.6658

Pachepsky 1 0.7377 −0.8471 −0.9264
2 −0.9922 −1.0000 −0.9999
3 −0.9937 −0.8818 −0.9573
4 −0.8525 0.6331 0.8486
5 0.8638 −0.5860 0.1933

SM–35–119 1 0.6823 −0.6732 −0.6346
2 0.4730 −1.0000 −1.0000
3 0.5543 −0.9520 −0.9693
4 −0.4134 −0.8938 −0.8941
5 0.7729 0.9703 0.3751

UNSODA 2571 1 −0.7285 −0.6723 −0.7554
2 −0.8201 −1.0000 −1.0000
3 −0.7916 −0.9731 −0.9659
4 −0.9047 −0.8784 −0.8758
5 −0.9951 −0.8032 −0.8426

Table 10. The parameter pairs that give the R2 > 0.9 pair for se-
lected soils, conductivity models, and fitted parameter sets (see
main text).

Soil Fitted set no. Conductivity model

ADV JUV KGV

Pachappa 1 – – –
2 – α, τ α, τ
3 α, τ α, τ α, τ
4 α, n α, n α, n
5 – – –

Pachepsky 1 – – –
2 γ , τ γ , τ γ , τ
3 α, τ – n, τ
4 – – –
5 – – –

SM–35–119 1 – – –
2 – γ , τ γ , τ
3 – n, γ n, γ
4 – – –
5 – Ks,a, τ –

UNSODA 2571 1 – – –
2 – γ , τ γ , τ
3 – n, γ n, γ
4 – – –
5 γ , τ – –

the need for implausibly high values of Ks,c that arise from
averaging hydraulic conductivities.

Many of the fitted curves depicted in Appendix B are re-
markably similar despite different numbers of fitted param-
eters. Only 3 out of 10 soils in Table 3 have the same com-
bination minimizing both the RMSE and the AICc. In only
three cases in Table 3 is the AICc minimal for a model with
six or more parameters. The two top panels of Fig. 1 have in-
distinguishable plots based on fits with different numbers of
parameters. All this suggests that conductivity models with
six or seven fitting parameters are overparameterized for the
UHCC of many soils. The junction model and the classical
Kosugi model have one parameter fewer than the other mod-
els tested in this study and cannot have more than six. Of
the two, only the junction model has the ability to reduce its
slope abruptly in the dry range (best visible for the UHCC
plots for soils SM–6–62, SM–22–88, and SM–1005 in Ap-
pendix B). Of the models that incorporate different domains
of water in the soil, the junction model is the only one that
sidesteps the fundamental impossibility of correctly averag-
ing or adding domain conductivities (de Rooij, 2024a). To-
gether with its parsimony, this makes the junction model an
attractive alternative to existing conductivity models.
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Appendix A

The expressions for the unsaturated hydraulic conductivity
have terms and factors that only depend on the parameters of
the SWRC. Other factors depend on the conductivity param-
eters. Finally, there are terms and factors that depend on the
matric potential.

The efficiency of the parameter fitting algorithm for the
case when all SWRC parameters are fixed was improved by
taking this into account. The equations of the conductivity
models were rearranged into separate terms and factors. Be-
low, the rearranged equations are given. The symbols for the
new factors (two characters and a number) reflect their names
in the parameter estimation code, except for KG5, which is
termed SWRCGhae in the code.

For Kosugi’s (1999) model (de Rooij, 2024a) and the ad-
ditive model (de Rooij, 2024a), the rearranged equations are
as follows:

K(h)=Ks

×



0, h≤ hd,{
βln

[
hd
h

]}τ(KG1− β
|h|

KG4

)γ
, hd < h≤ hj,(

G(h)
KG5

)τ(KG2+ F(h)−KG3
KG5

KG4

)γ
, hj < h≤ hae,

1, h > hae,

(A1a)

F(h)=
|αh|nG(h)

|h|
, (A1b)

KG1=
β

|hd|
, (A1c)

KG2= KG1−
β∣∣hj
∣∣ , (A1d)

KG3=

∣∣αhj
∣∣nG(hj)∣∣hj
∣∣ , (A1e)

KG4= KG2+
|αhae|

n

|hae|
−

KG3
G(hae)

, (A1f)

KG5=G(hae). (A1g)

In Eqs. (A1a) and (A1c), derived parameter β is calculated
according to Eq. (1b) but using the parameter values of the
UHCC instead of those of the SWRC. During parameter fit-
ting, KG1 through KG5 only need to be calculated once if
the SWRC parameters are fixed.

For the junction model of Eq. (2b) of the main text, the
rearranged equations are as follows. The hydraulic conduc-
tivity for liquid water is denoted as Kl,jun.

Kl,jun(h)=

0, h≤ hd

JU4
(
h
hj

)−1.5
, hd < h≤ hj

Ks,c

(
G(h)
G(hae)

)τ( 1−|αh|n−1G(h)
JU3

)γ
, hj < h≤ hae

Ks,c, h > hae

(A2a)

JU1=Ks,c

(
G(hj)

G(hae)

)τ
(A2b)

JU2= 1−
∣∣αhj

∣∣n−1
G(hj) (A2c)

JU3= 1− |αhae|
n−1G(hae) (A2d)

JU4= JU1
(

JU2
JU3

)γ
(A2e)

JU2 and JU3 need only be calculated once if the SWRC
parameters are fixed and JU1 and JU4 for every iteration of
the fitting process. If at least one of the SWRC parameters is
fitted, all four terms have to be recalculated once per itera-
tion.
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Appendix B

This appendix shows the graphs of all fitted SWRCs and
UHCCs. The SWRC has a single fit for each of the test soils
(Fig. B1). The UHCCs of six conductivity models were fitted
for five sets of fitting parameters, resulting in 30 fits for each
soil (Fig. B2–B14). In the figure panels, the fitting param-
eter sets are labelled “all free”, “alpha only”, “Assouline”,
“Mualem”, and “SWRC fixed” according to Table 2. For
Pachappa, the unsaturated hydraulic conductivity was ob-
served as a function of the volumetric water content and for
all other soils as a function of the matric potential.

Figure B1. The observed and fitted soil water retention curves for 13 soils listed by Weber et al. (2019). The fits all had (1+ c)hd fixed at
−106.8 cmH2O. The data points for pF> 3 were given less weight to reflect the low reliability of pressure plate retention data (Bittelli and
Flury, 2009).
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Figure B2. Fitted unsaturated hydraulic conductivity curves (UHCCs) for six models and five sets of fitting parameters (both explained in
the main text) for the Pachappa soil of Weber et al. (2019).
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Figure B3. As Fig. B2 but for Pachepsky’s soil.
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Figure B4. As Fig. B2 but for Rehovot sand.
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Figure B5. As Fig. B2 but for SM−6−62.
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Figure B6. As Fig. B2 but for SM−22−88.
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Figure B7. As Fig. B2 but for SM−35−119.
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Figure B8. As Fig. B2 but for SM−41−127.
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Figure B9. As Fig. B2 but for SM−1005.
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Figure B10. As Fig. B2 but for UNSODA 2571.
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Figure B11. As Fig. B2 but for UNSODA 4010.
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Figure B12. As Fig. B2 but for UNSODA 4031.
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Figure B13. As Fig. B2 but for UNSODA 4142.
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Figure B14. As Fig. B2 but for UNSODA 4650.
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Code and data availability. The codes for RIAfitter and KRIAfit-
ter and their user manuals and example input and output files
can be downloaded from https://doi.org/10.5281/zenodo.6491978
(de Rooij, 2024c) and https://doi.org/10.5281/zenodo.14047941
(de Rooij, 2024b), respectively. All input and output data
and Excel files with processed data can be downloaded from
https://doi.org/10.5281/zenodo.14051087 (de Rooij, 2024d).
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