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Abstract. Land subsidence, whether gradual or sudden,
poses a significant global threat to infrastructure and the
environment. This study introduces a hybrid approach that
combines deep convolutional neural networks (CNNs) with
persistent scatterer interferometric synthetic aperture radar
(PSInSAR) to estimate land subsidence in areas where PSIn-
SAR data are unreliable or sparse. The proposed method
trains a deep CNN using subsidence driving forces and PSIn-
SAR data to learn spatial patterns and predict subsidence val-
ues. Our evaluation demonstrates that the CNN effectively
mitigates discontinuities in PSInSAR results, producing a
continuous and reliable subsidence surface. The model’s per-
formance was assessed using training, validation, and testing
datasets, achieving root mean square errors (RMSEs) of 3.99,
8.47, and 9 mm, respectively. In contrast, traditional inter-
polation methods such as kriging, inverse distance weight-
ing (IDW), and radial basis function (RBF) interpolation
yielded RMSE values of 61.60, 66.21, and 61.76 mm, re-
spectively, on the test dataset. Additionally, the coefficients
of determination (R2) for CNN, kriging, IDW, and RBF were
0.98,−0.06,−0.22, and−0.06, respectively. The deep CNN
model demonstrated an 85 % improvement in subsidence
prediction accuracy compared to conventional interpolation
methods, highlighting its potential for accurate and continu-
ous land subsidence estimation.

1 Introduction

The gradual decrease in the height of Earth’s surface, which
is accompanied by slight horizontal displacements, is called
subsidence. Due to the gradual nature of land subsidence,

this phenomenon is also called “silent earthquake”. Its harm-
ful effects appear over a long period of time and carry sig-
nificant risks. However, land subsidence is a global threat to
urban areas around the world (Sun et al., 2023). This issue is
an important global concern and is not limited to one region.
Iran is facing an increasing challenge, especially in this field.
Human activities, such as mining and excessive underground
water extraction, contribute to this problem. To address it,
effective groundwater management to prevent unauthorized
water extraction would help. However, land subsidence is not
only caused by human actions; natural factors also play an
important role. These include water table fluctuations, soil
characteristics, bedrock depth, terrain features such as eleva-
tion and aspect, vegetation cover, and the prevailing climate.
All of these factors together create a complex landscape of
land subsidence occurrences.

Precise levelling and GNSS observations offer high preci-
sion in measuring subsidence, but their use in investigating
subsidence over a wide area is limited due to their reliance
on measuring sparse stations. These methods require multi-
ple measurements at different locations, making it difficult
to monitor subsidence over large areas (Fialko et al., 2005;
Hu et al., 2012). However, interferometric synthetic aperture
radar (InSAR) has a high spatial resolution and has emerged
as a cost-effective technique for monitoring subsidence on a
large scale (Amighpey and Arabi, 2016; Biswas et al., 2018;
Chang et al., 2010; Gonnuru and Kumar, 2018; Khorrami et
al., 2019; Rucci et al., 2012; Tamburini et al., 2010; Tomás
et al., 2011). InSAR uses radar waves to carefully monitor
changes in Earth’s crust surface over time. Methods that anal-
yse radar images over time, known as time series analysis,
make them very effective for monitoring subsidence, which
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usually occurs gradually over time. Persistent scatterer inter-
ferometric synthetic aperture radar (PSInSAR) is particularly
valuable for monitoring urban land subsidence. This is be-
cause there are many high-density persistent scatterer (PS)
points, mainly associated with buildings and anthropogenic
structures. This abundance significantly improves the quality
of the data within interferograms (Gao et al., 2019). Although
these advantages are significant, dealing with the sparse and
uneven distribution of PS points in both the spatial and tem-
poral dimensions is a significant computational challenge.
The PSInSAR approach generates discontinuous results, as it
calculates subsidence exclusively at PS points. Consequently,
it becomes imperative to employ intelligent interpolation in-
stead of mathematical or stochastic methods between these
data points to fill out these gaps (Naghibi et al., 2022).

Subsidence is a complex physical phenomenon influenced
by a multitude of factors, such as changes in groundwater
levels, soil type, bedrock depth, slope, elevation, and aspect.
To obtain the subsidence in the whole area, interpolation
methods between PS points and artificial intelligence (AI)
methods (where AI is trained using features affecting sub-
sidence) can be used to obtain subsidence information for
the entire area. Classical interpolation methods (e.g. krig-
ing, inverse distance weighting (IDW), radial basis function
(RBF), Mehrabi and Voosoghi, 2018; recursive moving least
squares (RMLS), Mehrabi and Voosoghi, 2015) do not con-
sider the physics of the issue, making their results less re-
liable. So it is very important to apply methods that take
into account the real characteristics of the phenomenon, es-
pecially when monitoring the subsidence. Recently, machine
learning methods, specifically deep convolutional neural net-
works (CNNs), have shown encouraging results in various
applications. In the larger context of land subsidence pre-
diction models, we find two main categories: (1) physical
process models simulate subsidence by incorporating factors
such as geotechnical mechanics, soil properties, and water
dynamics. They are frequently used in large-scale projects
but require a substantial amount of prior knowledge and data
(Nie et al., 2015); and (2) mathematical or statistical models
that predict subsidence based on historical elevation data and
past trends (Zhu et al., 2010).

Several studies have investigated various forecasting mod-
els, methodologies, and influencing factors to improve the
understanding of this field. Neural networks have emerged
as powerful prediction tools and have been used in the field
of subsidence prediction using its driving forces (Azarakhsh
et al., 2022; Ku and Liu, 2023; Zhu et al., 2010). Lee et
al. (2023) employed data from an urban area in South Ko-
rea to develop a machine-learning-based model for predict-
ing land subsidence risk. Their methodology incorporated
historical land subsidence data along with attribute infor-
mation pertaining to underground utility lines in the spec-
ified region. The research team utilized machine learning
algorithms such as random forest (RF), extreme gradient
boosting (XGBoost), and light gradient boosting machine

(LightGBM) for the analysis and prediction of land subsi-
dence risks (Lee et al., 2023). Sadeghi et al. (2023) com-
bined full consistency decision making (FUCOM) and GIS
methodologies to assess Iran’s vulnerability to land subsi-
dence. Their approach resulted in the development of a hi-
erarchical FUCOM-GIS framework, which highlighted crit-
ical factors such as water stress, groundwater depletion,
soil type, geological timescale, and rainfall amount as the
main drivers of land subsidence. Researchers commonly val-
idate their results by comparing them with InSAR analy-
ses, identifying areas exhibiting notable subsidence. Further-
more, the research assessed the risks to power transmis-
sion lines and substations, revealing structural issues such
as pier sinking, electric insulator deviation, and cracking
(Sadeghi et al., 2023). In another study focused on Dechen
County, China, Wang et al. (2023) employed backpropaga-
tion neural network (BPNN) and RF algorithms in conjunc-
tion with various monitoring data sources, GIS, and small
baseline subset (SBA) technology to predict trends in land
subsidence. Their findings underscored Sugianto as the most
severely affected area, with an annual average subsidence
rate of −40.71 mmyr−1. The study highlighted that changes
in both deep and shallow groundwater levels were the pri-
mary drivers of land subsidence in this region. Notably, the
BPNN model demonstrated higher prediction accuracy com-
pared to the RF model, especially when considering changes
in groundwater levels (Wang et al., 2023). Furthermore, Zhou
et al. (2020) demonstrated that the integration of the GM
(1,3) model with neural networks and ground-related vari-
ables shows great potential for achieving highly accurate
subsidence predictions. The proposed approach is capable of
replacing traditional precise levelling methods in long-term
subsidence forecasting, offering valuable insights for urban
disaster prevention (Zhou et al., 2020).

Deng et al. (2017) conducted research on the integration
of PSInSAR with grey system theory for monitoring and pre-
dicting land subsidence, as demonstrated in the Beijing plain
(Deng et al., 2017). Precision mapping of complete subsi-
dence basins faces challenges, especially when dealing with
image pairs with limited temporal separation. Rapid defor-
mations and vegetative changes in such scenarios introduce
complexity. Strategies, such as combining differential inter-
ferometric synthetic aperture radar (DInSAR) with the prob-
ability integral model (PIM), have been introduced to effec-
tively delineate subsidence basins resulting from mining ac-
tivities (Fan et al., 2015).

The remarkable effectiveness of the RF model in mapping
the susceptibility of land subsidence deserves attention. This
approach demonstrates exceptional capabilities in identify-
ing key factors that contribute to subsidence occurrences,
such as the proximity to faults, elevation, slope angle, land
use patterns, and water table levels. These factors play a cru-
cial role in influencing the likelihood of subsidence events
(Mohammady et al., 2019). In addition, the integration of
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fuzzy logic techniques and neural networks has been used
to predict subsidence (Ghorbanzadeh et al., 2020).

Land subsidence is a significant geological risk, and pre-
dicting and investigating this phenomenon is vital. Tra-
ditional monitoring and forecasting methods have limita-
tions and require more advanced approaches. Kumar et al.
(2022) utilized recurrent neural networks (RNNs), specifi-
cally vanilla and stacked long short-term memory (LSTM)
models, to forecast land subsidence in the Jharia Coalfield,
Dhanbad, India. Using data from 14 locations collected
through the modified PSInSAR technique, the study shows
that these models can effectively predict deformation rates,
identifying critical subsidence levels at Nai-dunia basti, Dig-
wadih, and Godhar. This research underscores the potential
of integrating advanced monitoring techniques with sophisti-
cated predictive models to better anticipate and mitigate land
subsidence impacts (Kumar et al., 2022).

The integration of InSAR processing with deep-learning
methods in modelling and predicting land subsidence has
shown significant promise. This approach demonstrates sub-
stantial capabilities in identifying and predicting subsidence
in regions around Lake Urmia by leveraging Sentinel-1 data
and SBA InSAR methods. Key factors such as rainfall,
groundwater levels, and lake area variations, measured us-
ing TRMM, GRACE, and MODIS satellite data, were crit-
ical in understanding subsidence dynamics. Moreover, the
application of machine learning models, including multi-
layer perceptron, CNN, and LSTM networks, has been in-
strumental in improving prediction accuracy. The ensemble
model combining these networks outperformed individual
models, achieving enhanced prediction reliability (Radman
et al., 2021).

Predicting deformation is essential for early detection of
abnormal conditions and timely intervention. A recent study
introduced a deep convolutional neural network (DCNN) ap-
proach to forecasting time series deformation using InSAR
data. The research, conducted at Hong Kong International
Airport, demonstrated that the DCNN could effectively pre-
dict both linear land settlement and nonlinear thermal expan-
sion of structures with high accuracy. The study’s findings
highlight the DCNN’s potential to enhance early warning
systems by providing precise short-term deformation predic-
tions, thus enabling better risk management and mitigation
strategies (Ma et al., 2020).

In this study we used a CNN model trained over the area
where subsidence is available through PSInSAR. Then this
model is used over other areas where subsidence cannot be
obtained from PSInSAR processing. The proposed method
follows three main steps: calculation of subsidence in PS
points by PSInSAR method, calculation of subsidence driv-
ing forces, and training CNN.

2 Methodology

2.1 PSInSAR

PSInSAR is a remote sensing technique that utilizes SAR
images to monitor surface deformation over time. It relies on
identifying PS points, which are stable points on Earth’s sur-
face reflecting radar signals consistently. PSInSAR combines
multiple interferograms created by comparing synthetic aper-
ture radar (SAR) images of the same area taken at different
times. By analysing phase differences between radar signals
in these interferograms, it detects changes in Earth’s surface
over time. PSInSAR has significant advantages over DIn-
SAR, as it effectively eliminates topographic errors and at-
mospheric noise, and it addresses temporal and spatial cor-
relation issues between radar images (Ferretti et al., 2001;
Gonnuru and Kumar, 2018; Wasowski and Bovenga, 2014).
PSInSAR, a form of differential interferometry, involves
analysing a collection of at least 15 SAR images captured
at different times, all covering the same area (Crosetto et al.,
2016). PSInSAR finds diverse applications, including mon-
itoring subsidence in urban areas (Ferretti et al., 2000; Luo
et al., 2013) and tracking natural hazards such as landslides,
earthquakes, and volcanic activity (Peltier et al., 2010). How-
ever, one drawback of PSInSAR is the lack of continuity be-
tween PS points, as they depend on the land use of the area.
These PS points are more abundant in areas with buildings,
dams, oil wells, pipelines, electric fences, roads, rocks, and
bridges (Din et al., 2015), but they are relatively scarce in
vegetated areas. Consequently, PSInSAR performs best in ur-
ban areas and regions with rocky terrain (Oštir and Komac,
2007).

In this article, the amplitude dispersion index is used to
select the PS points, Eq. (1). The usual threshold of the am-
plitude dispersion index is limited between 0.2 and 0.4 (Con-
way, 2016).

DA = σA/µA, (1)

where µA and σA are the standard deviation and mean val-
ues of the radiometrically corrected amplitude of pixels. In
PSInSAR the amplitude data from SAR images is carefully
examined to identify specific PS points while excluding those
affected by space–time decoherence and atmospheric delay
(Li et al., 2004).

2.2 Deep CNNs

CNNs are deep-learning algorithms widely employed for
various image-related tasks such as image recognition, clas-
sification, and regression. They learn and extract essential
features from raw images by processing them through mul-
tiple layers of filters, known as “convolutions”. This multi-
layer processing progressively extracts more abstract fea-
tures. These filters are trained using backpropagation, a tech-
nique that adjusts filter weights based on the difference be-
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tween the predicted and actual outputs. In addition to con-
volutional layers, CNN typically includes pooling layers to
downsample the convolutional output and fully connected
layers to use the extracted features for image classification.
CNN has gained popularity, particularly after the success of
AlexNet in the ImageNet challenge in 2012, and has since
become the dominant approach for image recognition tasks.

CNN is used in various fields, including medical imagery
(Lee et al., 2017), classification (LeCun and Bengio, 1998),
segmentation (Nair and Hinton, 2010; Van Do et al., 2024),
image reconstruction (Christ et al., 2016; Elboushaki et al.,
2020; Lakhani and Sundaram, 2017), and natural language
processing (Kim et al., 2018). While CNN are often associ-
ated with categorical tasks, they are also highly effective in
regression tasks, where the goal is to predict continuous out-
put variables instead of discrete labels. In CNN regression,
the network typically has a single output neuron in the final
layer that generates a continuous value instead of a probabil-
ity distribution for classification. It is important to note that
CNN requires a lot of input data, especially for image pro-
cessing. As the network’s depth increases, so does its com-
plexity, resulting in a larger number of weight parameters,
which can sometimes create challenges during training (Liu
et al., 2018). CNN introduced the concept of local connec-
tions between layers with typical components including con-
volution, activation, and pooling layers (Chen et al., 2018).
The convolutional layer learns image features from small
sections of input data through mathematical operations in-
volving the input image matrix and a filter or kernel. The ac-
tivation layer introduces nonlinearity into the network, com-
monly using the rectified linear unit (ReLU) function.

CNN regression is a valuable approach for predicting con-
tinuous output variables and has found applications in vari-
ous fields including geology and civil engineering. CNN re-
gression can also be used to predict subsidence. By training
a CNN model with input–output pairs, where inputs are sub-
sidence driving forces and outputs represent subsidence val-
ues, researchers can predict subsidence at single-pixel levels
and provide valuable insights.

To predict land subsidence, we trained a CNN regression
model with the architecture shown in Fig. 1. The CNN has 31
layers, including three 1×1 convolutional layers, three 3×3
convolutional layers followed by three 2×2 max-pooling lay-
ers, batch normalization layers, drop out layers with a rate of
0.1, and two fully connected layers with 1024 rectified lin-
ear unit (ReLU) activation neurons, two fully connected lay-
ers with 512 ReLU activation neurons, and a fully connected
layer with 256 ReLU activation neurons. The input dimen-
sions are 30× 30× 9, where 30× 30 patches separated from
the neighbourhood of each scattered point and 9 features are
used as network input.

2.3 Hyperparameter tuning process

After creating the model architecture, model inputs were
normalized to a range of [0,1] to ensure consistent input
scaling, which is crucial for the stable performance of the
neural network. Then we tuned the hyperparameters of the
CNN regression model, including the loss function, opti-
mizer, batch size, learning rate, activation function, and num-
ber of epochs. The best model was saved based on its per-
formance metrics. The optimal parameters for the model are
given in Table 1, and the rationale for each hyperparameter
is explained in detail below.

– Activation function. We used the ReLU function in the
hidden layers due to its effectiveness in mitigating the
vanishing gradient problem and promoting sparse acti-
vations. For the output layer, a linear activation function
was employed to ensure the model could predict a con-
tinuous range of values.

– Loss function. We considered both the mean squared er-
ror (MSE) and the mean absolute error (MAE) as po-
tential loss functions. The MSE penalizes larger errors
more heavily than the MAE, making it suitable for sce-
narios where outliers significantly impact the model’s
performance. Given the MSE’s properties and its ability
to improve the model’s performance by reducing fluctu-
ations and speeding up convergence, we selected MSE
as our loss function. The MSE is calculated as follows:

MSE=
1
N

∑N

i
(Yi − Ŷi)

2, (2)

where Yi represents the actual values, Ŷi represents the
predicted values, and N is the number of observations.

– Batch size. We experimented with batch sizes of 64 and
128. A larger batch size of 128 was chosen as it pro-
vided a good balance between training speed and model
performance, allowing more stable gradient estimates.

– Learning rate. The initial learning rate was set to 0.001,
but we found that a smaller learning rate of 0.0001 led
to more gradual and stable convergence, reducing the
risk of overshooting the optimal solution.

– Optimizer. The Adam optimizer was selected for its
adaptive learning rate capabilities and efficiency in han-
dling sparse gradients. It combines the advantages of
both the AdaGrad (Adaptive Gradient Algorithm) and
RMSProp (root mean square propagation) algorithms,
making it suitable for our regression task.

– Number of epochs. We initially set the number of epochs
to 100 but extended this to 150 epochs to ensure the
model had sufficient time to learn the underlying pat-
terns in the data without overfitting.

Geosci. Model Dev., 18, 6903–6919, 2025 https://doi.org/10.5194/gmd-18-6903-2025



Z. Azarm et al.: Enhanced land subsidence interpolation using hybrid deep time series 6907

Figure 1. Illustration of CNN architecture.

Table 1. Key parameters of the CNN.

Parameter Value

Activation function of the hidden
layer and input layer

ReLu

Activation function of the output
layer

Linear

Input shape 30× 30× 9
Loss function MSE
Batch size 128
Learning rate 0.0001
Epoch 150
Train–validation–test data split 80 %–10 %–10 % of

the total data

– Dividing the data. We initially allocated 15 % of the to-
tal data to the test data, 15 % to the validation data, and
70 % to the training data. However, we observed high-
cost function fluctuations in the training and validation
data. To mitigate this issue, we adjusted the data split to
80 % for training and 10 % each for testing and valida-
tion, which helped reduce the fluctuations

2.4 Driving forces of subsidence

The selected driving factors for predicting subsidence – nor-
malized difference vegetation index (NDVI), distance from
wells, land use, water table map, altitude, slope, stream
power index (SPI), topographic wetness index (TWI), and
aspect – are well supported by extensive research and have
been identified as significant predictors in previous studies
(Abdollahi et al., 2019; Andaryani et al., 2019; Conway,
2016; Fan et al., 2015; Ghorbanzadeh et al., 2020; Moham-
mady et al., 2019; Shi et al., 2020; Wang et al., 2023; Yang
et al., 2014; Zang et al., 2019; Zhao et al., 2021; Zhou et
al., 2020). By incorporating these factors into the subsidence
prediction model, this study ensures a comprehensive ap-
proach that reflects the complexity of subsidence phenom-
ena.

1. NDVI is a crucial indicator of vegetation health and land
cover changes. Changes in NDVI can reflect alterations
in land use practices, such as urbanization or agricul-
tural expansion, which are closely linked to subsidence.
Healthy vegetation typically reduces the need for exces-
sive groundwater extraction, while barren or urbanized
areas might correlate with higher subsidence due to in-
creased groundwater use.

2. The distance from groundwater extraction wells is a
critical factor in subsidence studies. Areas closer to
high-density exploitation wells often experience more
severe subsidence due to the localized impact of exten-
sive groundwater withdrawal.

3. Land use changes, including urbanization, agricul-
tural expansion, and deforestation, influence subsidence
rates. Urban areas often experience higher subsidence
due to increased groundwater extraction for residential,
industrial, and agricultural purposes.

4. Groundwater level changes, as depicted in water table
maps, are directly linked to subsidence. Over-extraction
of groundwater leads to a drop in the water table, caus-
ing the ground to compact and subsidence. Groundwa-
ter depletion is a primary contributor to subside, empha-
sizing the importance of preventing unauthorized with-
drawals and effectively managing water resources.

5. Altitude influences subsidence through its effect on hy-
drological processes. Altitude affects the distribution
and movement of groundwater. Higher altitudes typ-
ically receive more precipitation, which can infiltrate
the ground and recharge aquifers. At lower altitudes,
reduced precipitation and higher evaporation rates can
lead to a lowering of the water table. When groundwater
is extracted faster than it is replenished, it can result in
subsidence. The amount of water in the soil, influenced
by altitude through precipitation and drainage patterns,
affects soil compaction. High altitude areas with abun-
dant rainfall can lead to saturated soils which are less
prone to subsidence. Conversely, in lower altitude areas
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Figure 2. Geographic overview of the study area (© Google Earth).

Figure 3. Subsidence driving forces – (a) elevation, (b) slope, (c) SPI, and (d) TWI.

with less precipitation, soils may dry out and compact
more easily, contributing to subsidence.

6. Slope affects water runoff and infiltration rates. Steeper
slopes may reduce infiltration, leading to less ground-
water recharge and potentially higher subsidence rates
in adjacent flat areas.

7. The SPI measures the power of water flow in depositing
and causing soil erosion. As a result, this index can be an
important input for subsidence prediction models. The
equation used to calculate SPI is as follows (Pradhan et

al., 2014):

SPI= α · tanβ. (3)

Here, α represents flow accumulation, and β represents
the slope.

8. The TWI is a mathematical formula that quantifies the
effect of local topography on the flow of surface water.
It is a physically based index that can be used to de-
termine flow direction and accumulation and has many
practical applications in fields such as hydrology, agri-
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Figure 4. Subsidence driving force – aspect.

culture, and geology. The TWI indicates areas of poten-
tial soil moisture accumulation. Areas with high TWI
values are likely to have more groundwater recharge,
which can mitigate subsidence.

In rainfall runoff modelling, TWI can be used to pre-
dict the amount and timing of runoff in a specific area,
while in soil moisture modelling it can be used to pre-
dict the spatial distribution of soil moisture. Overall, the
TWI is a useful tool for understanding and predicting
the movement of water across the landscape (Qin et al.,
2011). Additionally, the TWI identifies areas that can
be affected by flooding from rainfall events (Ballerine,
2017). The TWI equation is as follows (Moore et al.,
1991):

TWI= ln(α/ tanβ), (4)

where α is the upslope contributing area and β is the
slope. The TWI is calculated using a digital elevation
model (DEM) of the study areas.

9. Aspect affects solar radiation and, consequently, evap-
oration and soil moisture levels. Different aspects can
lead to variations in vegetation cover and groundwa-
ter recharge, influencing subsidence. Additionally, the
slope and aspect of an area can influence drainage pat-
terns, erosion, and sediment production, all contributing
to subsidence.

It is essential to recognize that examining one factor alone
is not enough to predict subsidence. A linear relationship be-
tween groundwater level changes and subsidence may exist
in certain regions, but this linear relationship does not exist
in all regions. Each region has unique characteristics such
as soil type, fault lines, and slope. Subsidence is a complex
phenomenon that requires a comprehensive investigation that

takes into account all relevant factors. Therefore, thorough
analysis is necessary to obtain a comprehensive understand-
ing of subsidence in a particular area (Azarm et al., 2023).

3 Study area and datasets

3.1 Study area

The studied area is in Isfahan Province and includes the cities
of Isfahan, Mahyar, Khomeini Shahr, and Falavarjan. This re-
gion has a rich history of human habitation, a diverse cultural
heritage, and a wide range of economic activities. Covering
approximately 7000 square kilometres, this area displays var-
ious uses, including urban, agricultural, and industrial areas.
Its climate is semi-arid, characterized by hot summers and
cold winters. The primary sources of water in this area are the
Zayandeh-Rud River and several underground aquifers that
provide water for various uses such as agriculture, drinking
water, and industrial needs (Neysiani et al., 2022) (Fig. 2).
To effectively monitor and predict land subsidence in this
study area, we used advanced techniques such as radar in-
terferometry and CNN. Our goal was to provide an accurate
and reliable estimate of land subsidence in the study area by
integrating these techniques and considering complex subsi-
dence driving forces.

3.2 Datasets

3.2.1 Sentinel-1A radar images

This study utilizes 73 radar images from the Sentinel-1A
satellite to analyse subsidence trends in the study area over
a 7 year period, from 2014 to 2020. The data were col-
lected from the ascending track 28. The Sentinel-1A satel-
lite, launched by the European Space Agency, operates in C-
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Figure 5. Driving forces of subsidence – (a) NDVI, (b) distance of wells, (c) land use, (d) water table map in 2014 to 2020.

band and provides SAR imagery with a spatial resolution of
5 m by 20 m. The images were acquired at 6 d intervals, en-
suring high temporal resolution for detecting ground move-
ments. The interferometric wide swath mode was used, of-
fering comprehensive coverage of the study area.

The PSInSAR technique was applied to the Sentinel-1A
data using Sarproz software. This method is particularly ef-
fective in urban and semi-urban areas where permanent scat-
terers are abundant. The precise processing steps involved
coregistration, interferogram generation, phase unwrapping,
and geocoding to produce detailed subsidence maps (Ferretti
et al., 2001).

3.2.2 DEM

The 30 m Shuttle Radar Topography Mission Digital Eleva-
tion Model (SRTM DEM) was employed to calculate various
topographical and hydrological indices, including SPI, TWI,
slope, and aspect. These indices were computed using Ar-
cMap software, providing essential insights into the terrain
characteristics influencing subsidence (Figs. 3 and 4).

3.2.3 Optical satellite images

Optical images from the Landsat 8 satellite, launched by
NASA, were used to extract NDVI and land use informa-
tion for the year 2020. The Landsat 8 images, with a spa-
tial resolution of 30 m, were processed using Envi software
to calculate average annual changes in NDVI between 2014

and 2020. This analysis helps in understanding the impact of
vegetation and land use changes on subsidence (Fig. 5).

3.2.4 Groundwater monitoring data

Groundwater level changes were investigated using data
from piezometric wells within the study area. The groundwa-
ter monitoring data, covering the period from 2014 to 2020,
were sourced from the Isfahan Regional Water Authority.
These data were collected monthly and provided detailed in-
formation on the groundwater table fluctuations. The data
were processed to generate water table maps, which were
then analysed in relation to subsidence patterns. In areas with
high densities of exploitation wells, the probability of sub-
sidence increases due to significant groundwater extraction.
The distance from these wells was calculated and included as
one of the driving forces for subsidence (Fig. 5).

4 Results

4.1 Results of the CNN

The CNN was trained using the calculated driving forces
and subsidence at the PS points, and the performance of the
network assessed by analysing the graphs of the cost func-
tion (MSE) for the training and validation data, as shown
in Fig. 6; the root mean square error (RMSE) values of this
model for the training, validation, and test data are 3.99, 8.47,
and 9 mm, respectively.
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Figure 6. Cost function of the training and validation data.

4.2 Comparison between CNN and traditional
interpolation methods

In our study, we employed four distinct methods to create a
continuous subsidence surface: a CNN and three traditional
interpolation methods – kriging, IDW, and RBF. The tradi-
tional interpolation methods were utilized to interpolate be-
tween PS points and calculate the subsidence across all pixels
within the study area based solely on the spatial distribution
of the PS points. However, these methods do not account for
the subsidence driving forces, and their accuracy can be com-
promised by an irregular distributions of PS points.

In contrast, the CNN model was trained using subsidence
driving forces to predict subsidence and generate a contin-
uous subsidence surface. This method is particularly effec-
tive in handling irregularly distributed data points, making
it suitable for scenarios where PS points are unevenly dis-
tributed across the study area. By incorporating subsidence
driving forces, the CNN can provide a more reliable predic-
tion of subsidence compared to the traditional interpolation
methods. To evaluate the accuracy of these methods in pre-
dicting subsidence, we used several performance metrics, in-
cluding the RMSE, MAE, and R-squared (R2), The values
of these metrics for each method on the train and test data
are given in Table 2. To further validate the superiority of the

CNN model, we conducted statistical significance tests. A t

test was performed to compare the performance metrics, with
the results indicating a statistically significant improvement
in the CNN model’s performance over the traditional inter-
polation methods (p value< 0.05). These results indicate a
statistically significant improvement in the accuracy of the
CNN compared to the traditional interpolation methods.

Error distribution maps are visual tools that illustrate the
spatial distribution of prediction errors across the study area.
These maps play a crucial role in evaluating the performance
of subsidence prediction models, such as the CNN and tradi-
tional interpolation methods (kriging, IDW, and RBF).

By plotting the differences between the predicted and
PSInSAR subsidence values at various locations, error distri-
bution maps help identify patterns or areas where the models
perform well or poorly. Clusters of high errors indicate that
traditional interpolation methods do not perform well in areas
where the range of subsidence values is greater than the av-
erage values of the entire study area and in areas with sparse
PS distribution. These methods tend to have the highest er-
rors at these points, which are often critical for accurate sub-
sidence assessment. In contrast, the CNN demonstrates more
consistent performance due to its training on subsidence driv-
ing forces, resulting in lower errors in these high-variance
regions.

In our study, the error distribution maps confirmed the
findings from the quantitative performance metrics (RMSE,
MAE, and R2 score). The CNN showed a more uniform er-
ror distribution, indicating its effectiveness in handling ir-
regular data distributions and incorporating subsidence driv-
ing forces. This visual evidence supports the conclusion
that the CNN provides a more reliable and accurate subsi-
dence prediction compared to traditional interpolation meth-
ods (Fig. 7).

4.3 Subsidence of study area

In our analysis of land subsidence in the Isfahan region, we
processed a total of 73 Sentinel-A images using the PSIn-
SAR method. Through this process, we identified PS points
by applying a range amplitude dispersion index threshold of
0.2 and a temporal correlation threshold of 0.8. The maxi-
mum velocity for these PS points was observed in the north-
east of the study area, specifically near Shahid Beheshti Air-
port in Isfahan, measuring −67 mmyr−1. This significant
rate resulted in a cumulative displacement of approximately
−33 cm in the period from 2014 to 2020 (Fig. 8).

A velocity map was created using kriging interpolation be-
tween PS points. The results showed that the highest velocity,
approximately 67 mmyr−1, was observed in the northeast of
the study area (Fig. 9).

In this research, in order to obtain a continuous subsidence
surface of a specific area, two methods, kriging and CNN,
have been used. The kriging method is based on mathemat-
ics and interpolation between cumulative displacement of PS
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Table 2. Comparison of interpolation methods used to predict subsidence.

Train data Test data

Method RMSE (mm) MAE (mm) R2 score RMSE (mm) MAE (mm) R2 score

CNN 3.99 2.18 0.99 9.06 3.69 0.98
Kriging 62.78 39.19 −0.09 61.60 37.90 −0.06
IDW 67.32 40.52 −0.25 66.21 39.30 −0.22
RBF 62.67 38.95 −0.08 61.76 37.92 −0.06

Figure 7. Error distribution map of (a) CNN, (b) RBF, (c) kriging, and (d) IDW (© Google Earth).

Figure 8. Cumulative displacement of PS points during the period
2014 to 2020 (© Google Earth).

Figure 9. Velocity map using kriging.
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Figure 10. Cumulative displacement using kriging during the pe-
riod 2014 to 2020.

Figure 11. Cumulative displacement using CNN during the period
2014 to 2020.

points. The maximum amount of cumulative displacement
obtained by the kriging method in the studied area is approx-
imately 36 cm (Fig. 10).

The CNN model was trained with the cumulative displace-
ment of PS points and the subsidence driving forces in these
points, and finally the subsidence of the entire area was pre-
dicted with this model. The maximum amount of cumula-
tive displacement obtained by the CNN method in the studied
area is approximately 33 cm (Fig. 11).

Shahid Beheshti Airport in Isfahan is experiencing a crit-
ical rate of land subsidence, with an estimated velocity ex-
ceeding 45 mmyr−1. This alarming rate of deformation has
resulted in a significant cumulative displacement of approxi-
mately 41 cm between 2014 and 2020. Moreover, the CNN-
generated subsidence map reveals a slightly higher maximum
cumulative displacement of 42 cm in the region, suggest-
ing that deep-learning models provide a more comprehensive
and accurate representation of land deformation. These find-
ings highlight the urgency of addressing subsidence-related
risks, particularly in critical infrastructure areas such as air-
ports, where even slight ground movements can lead to sub-
stantial damage. The CNN model’s ability to detect and

quantify subsidence in regions with sparse data further un-
derscores its potential as a valuable tool for monitoring and
mitigating land deformation across various urban and indus-
trial settings (Fig. 12).

Our study revealed significant subsidence patterns in the
Mahyar and Nasr Abad Jarqouye regions, highlighting the
severity of land deformation over the observation period. The
analysis indicates an average subsidence velocity of approx-
imately 5 cmyr−1, leading to a substantial cumulative dis-
placement of around 33 cm between 2014 and 2020. When
applying the kriging interpolation method, the estimated
maximum cumulative displacement reached approximately
35 cm. In contrast, our deep-learning-based CNN model pre-
dicted a slightly lower maximum cumulative displacement
of around 32 cm. These findings underscore the variations in
prediction accuracy between traditional geostatistical meth-
ods and data-driven deep-learning approaches. The discrep-
ancy between the kriging and CNN estimates suggests that
while kriging may slightly overestimate extreme displace-
ment values due to its spatial smoothing effect, the CNN
model, trained directly on observed deformation patterns, of-
fers a more data-driven approach to subsidence prediction
(Fig. 13).

In the Naghsheh Jahan area, the maximum cumulative dis-
placements estimated using the kriging and CNN methods
between 2014 and 2020 were approximately 6 and 12 cm,
respectively. Similarly, in the Si-o-Se Pol area, the kriging
method estimated a maximum cumulative displacement of
around 6 cm, while the CNN predicted a significantly higher
value of approximately 19 cm. These discrepancies highlight
fundamental differences between geostatistical interpolation
and deep-learning-based predictive modelling. While kriging
interpolation effectively fits observed PS points, it struggles
with accurate extrapolation in regions where measurement
points are sparse or absent. Conversely, the CNN approach
identifies significant deformation trends that kriging fails to
detect, emphasizing the potential of deep-learning techniques
for more reliable and spatially comprehensive subsidence
prediction (Fig. 14).

The city of Khomeini Shahr is facing a concerning situ-
ation where the subsidence velocity has been estimated to
be more than 45 mmyr−1. Unfortunately, this has resulted in
displacement in residential areas, with the maximum cumu-
lative displacement of PS points reaching 30 cm from 2014
to 2020. According to the map generated using CNN, the
maximum cumulative displacement is currently at 31 cm. A
comparative analysis of kriging interpolation and the CNN
model against PSInSAR observations reveals key method-
ological differences. The kriging interpolation method, while
effective in fitting observed data points, primarily relies on
mathematical interpolation and spatial smoothing. This of-
ten leads to inaccuracies in regions with a lower density of
PS points, as it lacks the ability to infer displacement pat-
terns beyond the available observations. In contrast, the CNN
model estimates settlement values based on learned struc-
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Figure 12. Cumulative displacement of Shahid Beheshti Airport during the period 2014 to 2020. (a) Continuous surface of cumulative
displacement using kriging interpolation between PS points. (b) Cumulative displacement of PS points (© Google Earth). (c) Continuous
surface of cumulative displacement resulting from CNN.

Figure 13. Cumulative displacement of Mahyar and Nasr Abad Jarqouye during the period 2014 to 2020. (a) Continuous surface of cumula-
tive displacement using kriging interpolation between PS points. (b) Cumulative displacement of PS points (© Google Earth). (c) Continuous
surface of cumulative displacement resulting from CNN.

tural relationships, capturing complex spatial dependencies
and underlying deformation mechanisms more effectively.
This advantage allows the deep-learning model to provide
a more continuous and spatially coherent subsidence map,
improving predictive accuracy in areas with sparse measure-
ment data (Fig. 15).

In Falavarjan city, the estimated subsidence velocity ex-
ceeds 23 mmyr−1, highlighting a concerning rate of land
deformation. Over the period from 2014 to 2020, this has
resulted in a maximum cumulative displacement of ap-
proximately 16 cm based on conventional geostatistical es-
timates. However, the CNN-generated subsidence map indi-
cates a significantly higher maximum cumulative displace-
ment of around 23 cm. The discrepancy between PSInSAR
estimates and CNN predictions highlights fundamental dif-
ferences in their modelling approaches. While conventional
methods rely on spatial interpolation and statistical assump-
tions, CNNs leverage spatial dependencies and structural pat-
terns learned from observed data, allowing for more accu-
rate and continuous subsidence mapping. This suggests that
deep-learning-based approaches may provide a more reliable
representation of ground deformation, particularly in regions
with a sparse distribution or absence of PS points (Fig. 16).

5 Conclusion

This study presents an innovative deep-learning framework
utilizing a convolutional neural network (CNN) to generate a
continuous subsidence surface across the study area. Unlike
traditional methods that rely on discrete geodetic measure-
ments, the proposed approach integrates multiple key driv-
ing factors – including NDVI, distance from wells, land use,
water table depth, altitude, slope, SPI, TWI, and aspect – pro-
viding a more comprehensive and data-driven understand-
ing of subsidence dynamics. The CNN model effectively ad-
dresses the limitations of PSInSAR, which, despite its reli-
ability in detecting gradual land deformation, is restricted to
PS points and performs poorly in vegetated or low-coherence
areas. By leveraging deep learning, the proposed model en-
ables subsidence estimation even in regions where PSInSAR
measurements are unavailable, addressing a critical gap in
geospatial monitoring.

The superiority of the CNN-based approach was demon-
strated through a comparative analysis against conventional
interpolation techniques, including kriging, IDW, and RBF.
The CNN model achieved significantly lower RMSE values
(3.99, 8.47, and 9 mm for the training, validation, and test
datasets, respectively) and an R2 score of 0.98, whereas tra-
ditional methods exhibited considerably higher RMSE val-
ues (kriging: 61.60 mm, IDW: 66.21 mm, RBF: 61.76 mm)
and negative R2 scores, highlighting their limitations in sub-
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Figure 14. Cumulative displacement of (a, c, e) the Si-o-Se Pol area and (b, d, f) Naghsheh Jahan during the period 2014 to 2020. (a, b) Con-
tinuous surface of cumulative displacement using kriging interpolation between PS points. (c, d) Cumulative displacement of PS points
(© Google Earth). (e, f) Continuous surface of cumulative displacement resulting from CNN.

Figure 15. Cumulative displacement of Khomeini Shahr during the period 2014 to 2020. (a) Continuous surface of cumulative displacement
using kriging interpolation between PS points. (b) Cumulative displacement of PS points (© Google Earth). (c) Continuous surface of
cumulative displacement resulting from CNN.

sidence prediction. The study also identified severe land
subsidence in key areas, with rates exceeding 45 mmyr−1

at Shahid Beheshti Airport and 54 mmyr−1 in the Mahyar
Plain. The CNN model demonstrated an 85 % improvement
in prediction accuracy over traditional methods, underscor-
ing its robustness and effectiveness, particularly in areas with
sparse and irregularly distributed data.

Despite these advancements, some challenges remain. The
model’s performance is influenced by the availability and
quality of input data, and its computational demands necessi-
tate the use of high-performance GPUs for efficient training.
Additionally, regional variations in subsidence mechanisms
may require model adaptations to ensure accuracy across di-

verse landscapes. Future research should focus on enhanc-
ing the model’s generalizability across different geographi-
cal regions, developing real-time monitoring capabilities for
early warning systems, and integrating additional datasets
– such as climate variables and bedrock depth – to fur-
ther refine predictive accuracy. Furthermore, exploring hy-
brid deep-learning architectures, such as CNN-LSTM mod-
els, may enhance computational efficiency and improve tem-
poral prediction capabilities. Addressing these aspects will
further establish deep-learning-based subsidence modelling
as a scalable and effective tool for geospatial analysis, envi-
ronmental monitoring, and urban planning.
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Figure 16. Cumulative displacement of Falavarjan, 2014 to 2020: (a) Continuous surface of cumulative displacement using kriging interpo-
lation between PS points. (b) Cumulative displacement of PS points (© Google Earth). (c) Continuous surface of cumulative displacement
resulting from CNN.

Code availability. The Excel file in the Zenodo repository con-
tains 62 000 data points corresponding to permanent scatterers
obtained from the PSInSAR method. The nine satellite images
used as inputs for the model, which include NDVI and land use,
were calculated using Landsat 8 and DEM images from the area.
These images are also available in the Zenodo repository. Addi-
tionally, the Python code for the CNN model used in this pa-
per is accessible through the Zenodo archive at the following
link: https://doi.org/10.5281/zenodo.12721120 (Azarm, 2024, last
access: 22 February 2023).

Data availability. The data used in this study consist of subsidence
measurements obtained from Sentinel-1A and Landsat 8 images
over the period 2014 to 2020. The subsidence was calculated us-
ing Sarproz (https://www.sarproz.com/, last access: 25 February
2023) and the driving forces of subsidence were calculated using
the ENVI (https://www.envi.com/, last access: 1 September 2023)
software tools. Sentinel-1A data (https://dataspace.copernicus.eu/):
the Sentinel-1A images were used in the calculation of subsidence
through PSInSAR in Sarproz (Version [pcodes_2019-10-02], last
access: 22 February 2023). Landsat 8 data (https://earthexplorer.
usgs.gov/): the Landsat 8 images were used to calculate land use and
NDVI using ENVI (Version [5.3], last access: 13 February 2023).
Digital elevation model (https://earthexplorer.usgs.gov/, last access:
11 January 2023): the DEM was used to calculate TWI, SPI, aspect,
slope, and altitude using ArcGIS (https://www.arcgis.com/, last ac-
cess: 19 November 2023) (Version [10.7.1]).
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