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Abstract. NARCliM2.0 (New South Wales and Australian
Regional Climate Modelling) comprises two Weather Re-
search and Forecasting (WRF) regional climate models
(RCMs) which downscale five Coupled Model Intercompar-
ison Project Phase 6 (CMIP6) global climate models con-
tributing to the Coordinated Regional Downscaling Exper-
iment (CORDEX) over Australasia at 20 km resolution and
southeast Australia at 4 km convection-permitting resolution.
We first describe NARCliM2.0’s design, including selecting
two definitive RCMs via testing 78 RCMs using different
parameterisations for the planetary boundary layer, micro-
physics, cumulus, radiation, and land surface model (LSM).
We then assess NARCliM2.0’s skill in simulating the histori-
cal climate versus CMIP3-forced NARCliM1.0 and CMIP5-
forced NARCliM1.5 RCMs and compare differences in fu-
ture climate projections. RCMs using the new Noah multi-
parameterisation (Noah-MP) LSM in WRF with default set-
tings confer substantial improvements in simulating temper-
ature variables versus RCMs using Noah Unified. Noah-
MP confers smaller improvements in simulating precipita-
tion, except for large improvements over Australia’s south-
east coast. Activating Noah-MP’s dynamic vegetation cover
and/or runoff options primarily improves the simulation of
minimum temperature. NARCliM2.0 confers large reduc-
tions in maximum temperature bias versus NARCliM1.0 and
1.5 (1.x), with small absolute biases of ∼ 0.5 K over many

regions versus over ∼ 2 K for NARCliM1.x. NARCliM2.0
reduces wet biases versus NARCliM1.x by as much as 50 %
but retains dry biases over Australia’s north. NARCliM2.0
is biased warmer for minimum temperature versus NAR-
CliM1.5, which is partly inherited from stronger warm bi-
ases in CMIP6 versus CMIP5 GCMs. Under Shared Socioe-
conomic Pathway (SSP) 3-7.0, NARCliM2.0 projects ∼ 3 K
warming by 2060–2079 over inland regions versus ∼ 2.5 K
over coastal regions. NARCliM2.0-SSP3-7.0 projects dry fu-
tures over most of Australia, except for wet futures over
Australia’s north and parts of western Australia, which are
the largest in summer. NARCliM2.0-SSP1-2.6 projects dry
changes over Australia with only few exceptions. NAR-
CliM2.0 is a valuable resource for assessing climate change
impacts on societies and natural systems and informing re-
silience planning by reducing model biases versus earlier
NARCliM generations and providing more up-to-date future
climate projections utilising CMIP6.

1 Introduction

Climate projections are foundational to informing climate
change mitigation and adaptation planning at various spa-
tial scales (IPCC, 2021). Regional climate models (RCMs)
dynamically downscale global climate models (GCMs) at
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∼ 100–200 km resolution to simulate higher-resolution cli-
mate projections that better resolve local-scale influences on
regional climate, such as mountain ranges, land-use varia-
tion, land–sea contrasts, and convective processes (Torma et
al., 2015; Giorgi, 2019). As such, whilst GCMs are the best
tools for investigating climate at global scales, RCMs pro-
vide improved guidance for climate policy at the regional
scale, which is the scale at which climate change impacts
are experienced (Hsiang et al., 2017).

The NARCliM (New South Wales and Australian Re-
gional Climate Modelling) programme is now in its third
generation. Like its predecessors, NARCliM version 2.0
(NARCliM2.0) aims to produce robust, detailed regional cli-
mate projections at spatial scales relevant for use in local-
scale climate change analysis. A key feature of all NAR-
CliM generations is to simulate the climate over the Coordi-
nated Regional Downscaling Experiment (CORDEX) Aus-
tralasia domain and a higher-resolution inner domain over
southeast Australia via one-way nesting (Fig. 1). With one-
way nesting, the inner domain obtains its initial and lateral
boundary conditions from the simulation over CORDEX-
Australasia. NARCliM1.0 simulated the climate of Australa-
sia for three periods (1990–2009, 2020–2039, and 2060–
2079) at 50 km resolution and southeast Australia at 10 km
using three configurations of the weather research and fore-
casting (WRF) RCM (Skamarock et al., 2008) to downscale
GCMs from the Coupled Model Intercomparison Project
Phase 3 (CMIP3) under the greenhouse gas (GHG) Spe-
cial Report on Emissions Scenario (SRES) A2 (Evans et al.,
2014). NARCliM1.5 used CMIP5 GCMs under Represen-
tative Concentration Pathways (RCP) 4.5 and 8.5 to simu-
late continuously for 1950–2100 on the same grids as NAR-
CliM1.0 using two of its RCMs (Nishant et al., 2021).

NARCliM2.0 aims to improve performance in simulating
the Australian climate relative to previous NARCliM gen-
erations with the goal of better informing community re-
silience to climate change (NSW Government, 2022, 2023).
All NARCliM projects include a bottom-up design ethos
involving multi-sectoral end-user engagement in specifying
model requirements to ensure model performance and out-
puts meet end-user needs. Key requirements from the NAR-
CliM2.0 user consultation include providing increased detail
in climate simulations via higher resolution and improving
the simulation of precipitation and temperature as these are
fundamental inputs to climate impact studies. Whilst NAR-
CliM1.0 and 1.5 (1.x) confer the expected level of perfor-
mance in simulating the Australian climate (Di Virgilio et
al., 2019; J. P. Evans et al., 2020), recent technological and
scientific advancements mean that aspects of their perfor-
mance might now be improved. NARCliM1.x RCMs show
widespread cold biases in maximum temperature exceed-
ing −5 K for some RCMs. Conversely, minimum tempera-
ture is simulated more accurately with biases in the range of
±1.5 K. NARCliM1.x RCMs overestimate precipitation, par-

ticularly over Australia’s socioeconomically important east-
ern seaboard (Di Virgilio et al., 2019).

As they are expensive to run from both computational and
data storage perspectives, dynamical downscaling projects
like NARCliM2.0 use a subset of available GCMs as driving
data, necessitating careful model selection. Similarly, a large
combination of different physical parameterisations available
for the WRF RCM enables many structurally different RCMs
to be potentially used to downscale GCMs. A key compo-
nent of NARCliM2.0’s design is testing the viability of alter-
native RCM parameterisations via a three-phase approach,
with each phase building on the preceding phase to identify
the RCM parameterisations that perform well during testing
to meet NARCliM2.0’s aim of improving the simulation of
Australia’s climate. GCM and RCM statistical independence
is also sought to avoid creating a biased sample of climate
change. Hence, the aims of this paper are to

1. describe how and why NARCliM2.0 differs from its
predecessors in terms of its design and production pro-
cesses, explaining the model test and evaluation ap-
proaches underlying its design decisions, where a key
focus is on the design and testing of 78 structurally dif-
ferent WRF RCMs and their evaluation to identify a
subset of RCMs for use in NARCliM2.0;

2. characterise the performance improvements of CMIP6-
NARCliM2.0 RCMs in simulating the Australian cli-
mate relative to previous NARCliM generations by eval-
uating their skill in simulating mean maximum and
minimum temperature and precipitation versus observa-
tions;

3. summarise the climate projections produced by CMIP6-
NARCliM2.0 and how these differ from previous
CMIP3-5-NARCliM generations.

The following section summarises the basic design fea-
tures of each NARCliM generation. Section 3 describes eval-
uation methods and metrics, Sect. 4 describes NARCliM2.0’s
design process with a focus on its RCM physics testing as
well as a brief overview of its production process, Sect. 5
summarises the RCM physics test results, Sect. 6 evaluates
the performance of all NARCliM models in simulating the
recent Australian climate, Sect. 7 provides an overview of
their future projections, Sect. 8 discusses key results, and
Sect. 9 summarises this paper.

2 Three generations of NARCliM: model overviews

The design of NARCliM1.0 is described in Evans et
al. (2014); NARCliM1.5 used the same design approach but
used CMIP5 rather than CMIP3 GCMs. All generations of
NARCliM use different versions of the WRF model to per-
form dynamical downscaling of GCMs since the WRF model
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Figure 1. Model domains for NARCliM regional climate simulations. The southeast inner domain for NARCliM2.0 is delineated with a
solid black rectangle; the corresponding inner domain for NARCliM1.0 and 1.5 is delineated with a dashed black line. The elevated terrain
of the Australian Alps, which form part of the Great Dividing Range, is in eastern Australia. The inset shows the CORDEX-Australasia outer
domain.

goes through regular updates. The southeast Australian in-
ner domain captures five of Australia’s eight capital cities
(Fig. 1) and over 75 % of the Australian population (Aus-
tralian Bureau Statistics, 2024). Additionally, the inner do-
main captures coastal regions that are characterised by to-
pographic complexity and land-use class variation. Regions
east of the Great Dividing Range mountains in southeast
Australia (Fig. 1) show different responses to oceanic cli-
mate modes compared to inland semi-arid regions (Mur-
phy and Timbal, 2008) and are impacted by events such as
rapidly developing storms, including east-coast lows (Pepler
and Dowdy, 2021). Such atmospheric processes are not ade-
quately resolved by GCMs due to coarse resolutions (Di Vir-
gilio et al., 2022; Grose et al., 2020).

NARCliM2.0 encompasses several design advancements
over its predecessors (Table 1). NARCliM2.0 RCMs have
a 20 km resolution CORDEX-Australasia domain (versus
50 km) and a 4 km (versus 10 km) domain over southeast
Australia and use 45 (versus 30) vertical levels. The aim
of increasing the resolution of this inner domain from 10
to 4 km is to render these simulations convection-permitting
(Kendon et al., 2021; Lucas-Picher et al., 2021). Hence,
whilst the 20 km resolution outer domain uses cumulus pa-
rameterisation, simulations over the 4 km domain do not
use cumulus parameterisation. NARCliM2.0 also includes
a new collaboration with the Western Australian govern-
ment, with separate 4 km simulations being performed over
southwest and northwest Western Australia (not shown in
Fig. 1) as part of the Western Australian climate science ini-
tiative (DWER, 2023). Boundary conditions derived from the
20 km NARCliM2.0 CORDEX-Australasia domain are used

to drive these simulations. Additional major differences in
model setup for NARCliM2.0 include

– NARCliM1.0 RCMs use different parameterisations
for planetary boundary-layer (PBL) physics, surface
physics, cumulus physics, land surface model (LSM),
and radiation (Evans et al., 2014). These RCM param-
eterisations were also used for NARCliM1.5. Owing to
the project aims stated above, RCM parameterisations
for NARCliM2.0 differ from those of NARCliM1.x (see
Sect. 4).

– NARCliM2.0 increases the number of driving GCMs
to five and simulates for a wider range of plausible fu-
ture climates via three Shared Socioeconomic Pathways
(SSPs). SSP1-2.6 is selected as a low-GHG scenario en-
visaging a future climate with CO2 emissions cut to net
zero by around 2075 and warming held to below 2 °C
by 2100, SSP2-4.5 estimates projected warming under
a middle-of-the-road scenario where temperatures in-
crease to ∼ 2.7 °C by 2100, and SSP3-7.0 is a high-
GHG scenario which assumes a warming of ∼ 4 °C by
2100 (IPCC, 2021).

– Urban physics is activated in NARCliM2.0 (WRF set-
ting: sf_urban_physics= 1) to represent surface energy
balance in urban areas via a single-layer urban canopy
model (Kusaka and Kimura, 2004).

– Input of different aerosol species is activated for the
RCM radiation scheme using the Tegen et al. (1997) cli-
matology available in WRF (aer_opt= 1). This aerosol
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forcing is the same for all GCMs and is not model-
specific.

– The eastern boundary of the NARCliM2.0 inner domain
is located further westward relative to that of NAR-
CliM1.x (Fig. 1).

3 Evaluation methods

This section largely focuses on the methods and metrics used
for the NARCliM2.0 RCM physics testing and comparisons
of model biases and future climate projections with previous
generations of NARCliM. Details on methods and results for
the CMIP6 GCM evaluation used to select driving GCMs and
the ERA5-NARCliM2.0 RCM evaluation used to select two
definitive RCMs for the GCM-driven simulations are avail-
able in Di Virgilio et al. (2022) and Di Virgilio et al. (2025),
respectively, with overviews of these components of NAR-
CliM2.0 design provided in Sect. 4.2 and 4.4 below.

3.1 Observations

Australian Gridded Climate Data (AGCD version 1.0;
A. Evans et al., 2020) are the observational data used to
evaluate the NARCliM2.0 RCM physics test RCMs. These
daily gridded data for maximum and minimum temperature
and precipitation are obtained from an interpolation of sta-
tion observations across Australia. AGCD data are on a reg-
ular WGS84 grid with a grid-averaged resolution of 0.05°.
For the NARCliM2.0 RCM physics tests, the AGCD data
were re-gridded to correspond to the RCM data from the in-
ner domain on their native grids using a conservative area-
weighted re-gridding scheme. All data (RCM and AGCD)
were restricted to a common extent contained within the in-
ner domain over southeast Australia, and a land mask was
applied so that statistics were computed using only land pix-
els. Treatment of AGCD for the CMIP6 GCM evaluation and
the ERA5-NARCliM2.0 RCM evaluation is described in Di
Virgilio et al. (2022) and Di Virgilio et al. (2025), respec-
tively.

3.2 Methods and metrics: phase I–III NARCliM2.0
physics tests

Test RCM performances in reproducing observations for
daily maximum and minimum temperature and daily pre-
cipitation were assessed by calculating the model bias, i.e.
model outputs without AGCD, and the root mean squared
error (RMSE) of modelled versus observed fields. Model
biases and RMSEs were calculated at annual and seasonal
timescales. The model representations of the hottest and the
wettest day on an annual timescale over the study region
were also compared with AGCD. Probability density func-
tions (PDFs) were calculated for each variable using daily

data. Perkins’ skill score (PSS) (Perkins et al., 2007) was cal-
culated to assess the overall degree of overlap between mod-
elled and observed distributions, with PSS= 1 indicating that
distributions overlap perfectly.

There are several methods to evaluate the overall perfor-
mance of RCMs. In this study, we ranked the RCMs indi-
vidually based on their bias, RMSE, and PSS for maximum
temperature, minimum temperature, and precipitation. Each
variable was ranked separately for each metric. The ranks
were then summed to determine the overall ranking for each
RCM.

3.3 Independence assessments

We used the method of Bishop and Abramowitz (2013) as
one of two methods of assessing the independence of physics
test RCMs and the target CMIP6 GCMs under evaluation for
use in NARCliM2.0. This approach uses the covariance in
model errors as the basis to define model dependence; specif-
ically, independence coefficients are derived from the error
covariance matrix of the RCMs or GCMs. Model indepen-
dence is quantified using the correlation of model errors. For
the physics test RCMs, errors are computed by comparing
the climatology of maximum and minimum temperature and
precipitation over the southeast Australia inner domain for
2016 with corresponding AGCD observations. The same cal-
culation is performed for the CMIP6 GCMs, except for the
Australian continent. Daily time series of precipitation and
maximum and minimum temperatures are calculated individ-
ually for each RCM and for AGCD. The simulated and ob-
served daily time series of each variable are then normalised
by the standard deviation of the corresponding observed vari-
able. These normalised variables are concatenated for each
RCM (GCM) and AGCD. An anomaly time series for each
grid cell is then produced. These time series are used to cre-
ate a model error covariance matrix containing the errors for
all RCMs (GCMs). The coefficients of a linear combination
of the RCMs (GCMs) that optimally minimises the mean
square error (MSE) depend on both model performance and
model dependence (Bishop and Abramowitz, 2013). The re-
sult of this minimisation problem is written in terms of the
covariance matrix. The magnitude of coefficients assigned
to each RCM (GCM) reflects a combination of their perfor-
mance and independence. Highly independent models have
different errors when simulating the recent climate. Models
with the largest coefficients have the most independent errors
compared to observations.

The Herger method of subset selection (Herger et al.,
2018), as implemented here, uses quadratic integer program-
ming to find the subset of models whose equally weighted
subset mean (EWSM) minimises a quadratic cost function.
This cost function is chosen to measure the performance of
the EWSM in comparison to a given observational product.
The two cost functions used here are the mean squared er-
ror (MSE) between the EWSM and the observational prod-
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Table 1. High-level design features of three generations of NARCliM regional climate models.

Model generation

NARCliM1.0 NARCliM1.5 NARCliM2.0

Release date 2014 2020 2023–2024

Years simulated 1990–2009, 2020–2039,
2060–2079

1950–2100 1950–2100

Grid resolutions
(CORDEX-Australasia;
NARCliM inner domains)

50; 10 km 50; 10 km 20; 4 km

Vertical levels 30 30 45

Global climate models Four CMIP3 GCMs Three CMIP5 GCMs Five CMIP6 GCMs

Regional climate models Three RCM configurations
(WRF3.3)

Two RCM configurations
(WRF3.6.0.5)

Two RCM configurations
(WRF4.1.2)

Future emission scenarios SRES A2 RCP4.5, RCP8.5 SSP1-2.6, SSP2-4.5,
SSP3-7.0

Reanalysis-driven
(CORDEX evaluation)

NCEP: 1950–2009 ERA-Interim:
1979–2013

ERA5: 1979–2020

Computational resources
(million core hours)

30 30 1060

uct (Eq. 1 in Herger et al., 2018) and another which mea-
sures a combination of the MSE of the EWSM, the average
MSE of each subset member, and the average pairwise mean
squared distance between subset members (Eq. 2 in Herger
et al., 2018).

3.4 NARCliM2 CMIP6 RCMs: historical evaluation
and climate change projections

Performances of NARCliM2.0 versus NARCliM1.x RCMs
in reproducing the recent Australian climate are evaluated by
calculating the model biases (model outputs without AGCD
observations) for mean maximum and minimum tempera-
ture and precipitation for 1990–2009. To enable comparison
of future projections between NARCliM1.0, NARCliM1.5,
and NARCliM2.0 (where NARCliM1.0 projected for 1990–
2009, 2020–2039, and 2060–2079), all NARCliM ensemble
projected changes are shown as the far future (2060–2079)
with the present day (1990–2009) subtracted.

3.5 Statistical significance

When quantifying RCMs’ future climate change projections
(compared to the historical period) and biases in maximum
and minimum temperature, the statistical significance is cal-
culated for each grid cell using t tests assuming equal vari-
ance. The Mann–Whitney U test is used for precipitation
given its non-normality. Significance thresholds were ad-
justed to account for multiple testing using Walker’s test

(Eq. 2 in Wilks, 2016). For individual RCMs, grid cells
showing statistically significant changes are stippled; other-
wise, they are shown in colour where change is statistically
insignificant. Results of the statistical significance of each
ensemble mean are separated into three categories follow-
ing Tebaldi et al. (2011): (1) statistically insignificant areas
are shown in colour, denoting that less than 50 % of RCMs
are significantly biased/different; (2) in areas of significant
agreement (stippled), at least 50 % of RCMs are significantly
biased/different, and at least 70 % of significant models in the
CMIP6-NARCliM2.0 RCM ensemble agree on the sign of
the bias/difference. In such areas, many ensemble members
have the same bias sign which is an undesirable outcome;
and (3) areas of significant disagreement, where at least 50 %
of RCMs are significantly biased/different and fewer than
70 % of significant models agree on the bias sign, are shown
with diagonal hatching for the CMIP6-NARCliM2.0 histori-
cal evaluation and climate change signals.

4 NARCliM2.0 design and production process
overview

The NARCliM2.0 design and production processes are sum-
marised below in reference to Fig. 2. The design process
is an adaptation of that introduced in Evans et al. (2014).
Two companion manuscripts describe elements shown in
Fig. 2, which are therefore only summarised briefly in this
manuscript. Di Virgilio et al. (2022) describe the CMIP6
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GCM selection process summarised in Box 2, and Di Virgilio
et al. (2025) describe the ERA5 RCM evaluation undertaken
in Boxes 5 and 6.

I. The design phase comprises the following steps:

i. Box 1. Model design requirements are identified
via consultation between NARCliM2.0 modelling
groups and multi-sectoral end users as well as ad-
herence to CORDEX-CMIP6 design requirements
(WCRP, 2020).

ii. Box 2. NARCliM1.x driving CMIP3-5 GCMs (re-
spectively) via literature review of existing GCM
evaluations is selected. During NARCliM2.0 de-
sign, there were no pre-existing comprehensive
evaluations of individual CMIP6 GCMs for the
Australian region, including assessments of cli-
mate change signals and GCM statistical inde-
pendence. Hence, an evaluation and selection of
CMIP6 GCMs was conducted (see Di Virgilio et
al., 2022). This evaluation selected five GCMs to
force two NARCliM2.0 RCMs (see Sect. 4.2 and
4.4). The relative contribution to uncertainty/varia-
tion in climate projections can be larger for GCMs
than for RCMs (e.g. Lee et al., 2023).

iii. Boxes 3–4. A new WRF RCM multi-physics
test ensemble is created for NARCliM2.0: RCM
physics testing is conducted via a three-phase ap-
proach, with each phase building on the findings
of the preceding phase to identify the RCM param-
eterisations that perform well during testing with
the aim of improving the simulation of the Aus-
tralian climate. In this way, RCMs are parame-
terised with different physics settings via each test
phase, systematically removing poor-performing
options while facilitating the fine-tuning and im-
provement of the parameterisations that perform
well during testing to build a total ensemble size
of 78 structurally different test RCMs. The perfor-
mance of the different test RCM configurations is
evaluated, ultimately leading to the selection of a
subset of seven RCMs for a subsequent downscal-
ing of ERA5 reanalysis as part of the CORDEX
evaluation experiment.

iv. Boxes 5–6. These seven RCMs are used to down-
scale ERA5 reanalysis over the 20 and 4 km do-
mains for 1979–2020. Evaluating these ERA5-
forced simulations informs the selection of two
definitive production RCMs for CMIP6-forced
downscaling (see Sect. 4.4 and Di Virgilio et al.,
2025).

II. The production phase is structured as follows:

i. Boxes 7–8. CMIP6 GCM data are pre-processed
to create initial and boundary conditions to drive

simulations for the historical (1950–2014) and
SSP experiments (2015–2100). A code reposi-
tory used for this GCM pre-processing is avail-
able on Zenodo at https://doi.org/10.5281/zenodo.
11184830 (Di Virgilio et al., 2024) within the
WRF/repo_snapshots subdirectory. Quality assur-
ance/quality control (QA/QC) is performed on
these data before initiating the simulations (e.g.
variables are checked to confirm data do not con-
tain significant outliers across ensemble members).

ii. Boxes 9–11. The 151-year CMIP6-forced NAR-
CliM2.0 RCM simulations are run using the Na-
tional Computational Infrastructure at Canberra,
Australia (NCI, https://nci.org.au/, last access:
12 December 2024). File integrity verification and
QA/QC are performed on each year of raw WRF
output throughout the simulation life cycle and
prior to post-processing to CORDEX-compliant-
format climate variables. QA/QC tests include cal-
culating the minimum, maximum, mean, and stan-
dard deviation for key variables over consecutive
periods of 6 simulation days. Variables are cate-
gorised as either normally distributed or otherwise.
Normally distributed variables (e.g. surface tem-
perature) are deemed potentially erroneous if their
minima/maxima are more than 5 standard devia-
tions away from the global mean of the relevant
statistic of the rolling 6 d period. Non-normally dis-
tributed variables (e.g. snow depth and precipita-
tion) are checked only for global minima and max-
ima.

iii. Boxes 12–13. After each year of simulation raw
output is generated for, their post-processing is ini-
tiated to produce CORDEX CORE Tier 1 and Tier 2
variables (WCRP, 2022). A statistical QA/QC pro-
cess is automatically applied to each year of post-
processed CORDEX CORE variables as they are
generated throughout the simulations. QA/QC tests
include

– checking for presence of missing values,
– checking that all values are within realistic

ranges for minima and maxima,
– checking minima and maxima are not equal at

any time step with exceptions (e.g. snow depth,
which can be zero everywhere in the outer do-
main),

– checking that changes over time are within real-
istic ranges (i.e. assessing temporal gradients),

– checking that changes between neighbouring
data points are within realistic ranges (i.e. as-
sessing spatial gradients),

– checking the number of grid cells with NaN
(non-numerical) values does not exceed the
threshold set for the variable.
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Reasonable ranges for variables are determined us-
ing a series of threshold values that are based
on historical records and/or empirical analysis.
QA/QC computer scripts generate exceedance files
which output every data point that surpasses the
threshold values, and these exceedance files are
then manually reviewed to determine whether an is-
sue is a true or false positive and so on.

iv. Box 14. Once each year of WRF raw files is post-
processed, raw files are transferred to a tape facility
for long-term storage.

These model design and production stages are now de-
scribed in more detail.

4.1 Model evaluation and selection

Practical constraints such as available computing and data
storage resources enforce an upper limit on GCM–RCM en-
semble size. Thus, NARCliM2.0 uses a subset of available
CMIP6 GCMs and WRF RCM configurations, necessitating
careful GCM and RCM selection to create a subset of GCM–
RCMs that provide robust climate simulations whilst also ad-
equately sampling model uncertainty. In selecting a subset of
GCMs and RCMs for dynamical downscaling, it is desirable
to reject models that perform consistently poorly relative to
their peers in simulating the current climate as this provides
lower confidence in the projected change (J. P. Evans et al.,
2020; Di Virgilio et al., 2022; Grose et al., 2023). Further-
more, the modelled climate space sampled is reduced when
selecting a subset of GCMs, which can create a biased view
of the climate as well as the plausible change in climate. Care
must therefore be taken to ensure that the subset of models
used for downscaling is representative of the full range of
possible climates and that model errors are uncorrelated, i.e.
that models are statistically independent. The steps taken to
evaluate and select GCMs and RCMs for NARCliM2.0 are
described next.

4.2 CMIP6 GCM evaluation

A three-phase process was used to evaluate individual
CMIP6 GCMs (for further details, see Di Virgilio et al.,
2022).

4.2.1 CMIP6 GCM performance

We evaluated the performances of individual CMIP6 GCMs
in simulating the following aspects of the observed historical
climate of Australia:

– annual and seasonal climatologies and daily distribu-
tions of maximum and minimum temperatures and pre-
cipitation;

– climate extremes, such as the 99th percentiles of daily
maximum temperature and precipitation and the 1st per-
centile of minimum temperature;

– teleconnections of oceanic climate modes and Aus-
tralian regional rainfall.

Temperature and precipitation variables are chosen for eval-
uation because, being well-represented in high-quality grid-
ded observational datasets for the Australian continent, they
provide the most direct comparison to observations (King et
al., 2013). They are also often prioritised for impact studies.
Given that variables such as winds (U , V ), air temperature
(T ), water mixing ratio (Q), geopotential height (Z), sea sur-
face temperature (SST), and sea level pressure (PSL) serve as
boundary conditions for driving RCMs, these could be incor-
porated into future GCM evaluation studies. However, evalu-
ating such variables would require the use of reanalysis data
as surrogate observations.

A set of GCMs that performed consistently poorly across
the variables and statistics considered was identified. These
models, as well as those with insufficient data to enable dy-
namical downscaling using the WRF RCM, were excluded
from further evaluation, leaving 27 GCMs for subsequent as-
sessment.

4.2.2 CMIP6 GCM independence

The retained 27 GCMs were subjected to the Bishop and
Abramowitz (2013) and Herger et al. (2018) independence
analyses (see Sect. 3.5). The GCMs were then ranked ac-
cording to their relative level of statistical independence.

4.2.3 Sampling CMIP6 GCM climate change spread

For climate change risk assessments, climate projections
should reflect as much of the range of plausible future climate
changes as possible (Whetton and Hennessy, 2010). The sub-
set of CMIP6 GCMs selected for NARCliM2.0 spanned a
wide range of future changes in annual mean temperature
and precipitation. Climate change signals were calculated for
2080–2099, omitting 1995–2014, for the Australian conti-
nent and southeast Australia under SSP3-7.0 (for the latter,
see Fig. 3). The GCM independence rankings were placed
within this climate change space, with higher independence
rankings viewed as favourable, along with the consideration
of the following criteria:

I. A balanced range of GCM equilibrium climate sensi-
tivities (ECSs) were sampled. ECS is the long-term in-
crease in global mean surface air temperature in re-
sponse to the radiative forcing caused by a doubling
of pre-industrial CO2 concentrations. ECS is related to
global temperature change and not just changes over
Australia; however, it correlates strongly with regional
warming. Around one-third of CMIP6 GCMs show
ECS values higher than the upper end of the likely range

https://doi.org/10.5194/gmd-18-671-2025 Geosci. Model Dev., 18, 671–702, 2025



678 G. Di Virgilio et al.: Design, evaluation, and future projections of the NARCliM2.0 ensemble

Figure 2. Simplified overview of NARCliM2.0 (N2.0) design and production processes. ERA5: ECMWF Reanalysis v5 data, BDY: bound-
ary conditions, IC: initial conditions, QA/QC: quality assurance/quality control, and NCI: National Computational Infrastructure (high-
performance computer used to run N2.0 simulations).

of 2.5 to 4 °C (IPCC, 2021). An upper range of more
than ∼ 5 °C cannot be ruled out (Meehl et al., 2020;
Bjordal et al., 2020; Sherwood et al., 2020).

II. Some CMIP6 GCMs that are favourable in terms of
model performance and independence could not be se-
lected as input to WRF for NARCliM2.0 owing to insuf-
ficient data availability for key variables, where, ideally,
WRF requires subdaily data for the variables shown in
Table S1 in the Supplement.

As a result of the above process, the five CMIP6 GCMs listed
in Table 2 are selected to force each of the two definitive
NARCliM2.0 RCMs selected via the RCM physics testing
and ERA5 evaluation processes.

4.3 NARCliM2.0 RCM physics testing

The NARCliM2.0 RCM physics testing aims to identify and
exclude RCMs that perform consistently poorly in simulat-
ing the southeast Australian climate and to select RCMs that
have high statistical independence. The selection of RCMs
in NARCliM2.0 involves the creation of a multi-physics en-
semble where each RCM uses different physical parameteri-
sations for PBL, microphysics, cumulus, radiation, and LSM.
This enables many structurally different RCMs to be con-
structed and tested. In NARCliM1.0, 36 WRF RCM config-
urations were designed, tested, and evaluated (Evans et al.,
2014). NARCliM2.0 physics testing assesses 78 RCM con-
figurations which are progressively tested via three phases,
where each test phase is informed by the outcomes of the
preceding phase to systematically remove poor-performing
RCM options while facilitating the selection of parameteri-
sations that perform well during testing. The N = 36 RCMs
tested for NARCliM1.0 were evaluated based on eight repre-
sentative storm event simulations, with each being 2 weeks
in duration (Evans et al., 2014). NARCliM2.0 physics sim-

ulations were run over an entire annual cycle (2016) with a
2-month spin-up period commencing on 1 November 2015.
Australia experienced a range of weather extremes during
2016 driven by a range of climatic influences, making 2016 a
suitable target year (Bureau of Meteorology, 2017). Whilst
assessing RCMs for an entire year improves on assessing
for discrete storm events as per physics testing for NAR-
CliM1.0, it was not feasible to run a large RCM physics en-
semble for a longer duration. Initial and boundary conditions
for all phases of the NARCliM2.0 RCM physics test simula-
tions were derived from the ERA-Interim reanalysis dataset
(Dee et al., 2011). ERA-Interim was used because ERA5 was
not available at the time. The three phases of NARCliM2.0
physics testing are as follows.

4.3.1 Phase I (N = 36)

In total, 36 RCMs were evaluated in phase I. One radiation
scheme (RRTMG) was tested for both long- and shortwave
radiation (it was held fixed for all RCMs), whereas physics
settings for PBL, microphysics, cumulus, and LSM were var-
ied. Of the 36 simulations, 18 used the Noah Unified LSM,
whilst the remainder used Community Land Model version
4.0 (CLM4). The physics options tested are listed in Table 3,
where these were selected based on literature review. Each
physics test simulation is denoted by a 12-digit identifier
which comprises six pairs of digits, with each pair corre-
sponding to the choice of a specific physics option as speci-
fied in the WRF namelist.input file. These pairs of digits fol-
low the order: planetary boundary layer (pbl) | cloud micro-
physics (mp) | cumulus convection (cu) | shortwave radiation
(sw) | longwave radiation (lw) | LSM (sf) and correspond to
the WRF namelist options shown in Table 3. For example,
simulation 050601040402 is interpreted as 05 | 06 | 01 | 04
| 04 | 02 and denotes that this simulation uses the following
physics settings:
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Table 2. Basic details of the CMIP6 GCMs used to force the two definitive RCMs comprising the NARCliM2.0 CORDEX-CMIP6 ensemble.

CMIP6 GCM Institution Variant/run Atmosphere lat/long
grid (°)

ACCESS-ESM1-5 CSIRO r6i1p1f1 1.2× 1.8
EC-Earth3-Veg EC-EARTH consortium r1i1p1f1 0.7× 0.7
MPI-ESM1-2-HR Max Planck Institute for Meteorology (MPI) r1i1p1f1 ∼ 0.9
NorESM2-MM Norwegian Climate Centre r1i1p1f1 0.9× 0.9
UKESM1-0-LL UK Met Office and NERC research centres r1i1p1f2 1.3× 1.9

Figure 3. CMIP6 GCM climate change signals (2080–2099 versus 1995–2014) over southeast Australia for the subset of GCMs retained
following the model performance evaluation in Di Virgilio et al. (2022) and that simulated at least monthly mean near-surface air temperature
and precipitation for the SSP-3.70 scenario. Boxed GCMs are selected to force NARCliM2.0 RCMs. Marker shapes indicate overall GCM
performance; markers are coloured according to their global equilibrium climate sensitivity (ECS) values; red numbers represent the smallest
Herger method 1 set for that GCM.

bl_pbl_physics = 05 (MYNN2),
mp_physics = 06 (WSM6),
cu_physics = 01 (Kain–Fritsch),
ra_sw_physics = 04 (RRTMG),
ra_lw_physics = 04 (RRTMG),
sf_surface_physics = 02 (Noah Unified).

The complete set of WRF RCM configurations tested in
phase I is shown in Table S2 in the Supplement.

4.3.2 Phase II (N = 60): additional LSM and radiation
scheme tests

Phase I RCMs using CLM4.0 were omitted from further test-
ing because they did not consistently improve performance
in simulating the Australian climate relative to RCMs us-
ing Noah Unified. In addition, RCMs using CLM4.0 had
increased simulation times (by approximately twice when
compared to Noah Unified). Hence, phase II focused exclu-
sively on further testing of the RCM configurations that used
the Noah Unified LSM.
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Table 3. Physics options used in phase I (N = 36) tests.

Physics option description WRF namelist Options tested Reference

Planetary boundary layer bl_pbl_physics 01 (YSU) Hong et al. (2006)
05 (MYNN2) Nakanishi and Niino (2009)
07 (ACM2) Pleim (2007)

Microphysics mp_physics 06 (WSM6) Hong and Lim (2006)
08 (Thompson) Thompson et al. (2008)

Cumulus parameterisation cu_physics 01 (Kain–Fritsch) Kain (2004)
02 (BMJ) Janjić (2000)
06 (Tiedtke) Tiedtke (1989)

Shortwave radiation ra_sw_physics 04 (RRTMG) Iacono et al. (2008)

Longwave radiation ra_lw_physics 04 (RRTMG)

Land surface model sf_surface_physics 02 (Noah Unified Tewari et al. (2004)
05 (Community Land Model V4) Oleson et al. (2010)

The physics settings tested in phase II are an alternative
LSM to Noah Unified (Noah multi-parameterisation, Noah-
MP; Niu et al., 2011) and New Goddard (NG) radiation
(Chou et al., 2001). Owing to time and resource constraints,
testing all 18 phase I RCMs using Noah Unified was not fea-
sible. To reduce the number of RCMs for further testing, the
worst-performing Noah Unified-based RCM configurations
identified in phase I were excluded. The N = 18 RCMs us-
ing Noah Unified are listed along with their overall perfor-
mance total scores in Table 4, where the lowest scores under
“Rank total” indicate the RCMs that overall perform rela-
tively well versus their peers (see Sect. 3, “Evaluation meth-
ods”). Note that the overall rank denotes the RCMs’ relative
ranking among all phase I RCMs. There is a sharp reduc-
tion in rank totals for RCMs no. 13–18 inclusive relative to
RCMs no. 1–12. Therefore, RCMs no. 13–18 are excluded
from further testing, and RCMs no. 1–12 are retained.

This gives two sets of physics combinations for additional
testing: (1) one replaces only RRTMG (04|04) for short- and
longwave radiation with New Goddard (05|05), making no
other changes, and (2) RRTMG radiation is retained, but
Noah-MP (04) replaces Noah Unified (02). This creates an
additional 24 RCM configurations for assessment, bringing
the total number of RCMs tested to 60. Although Noah-MP
has several parameter options, phase II uses its default set-
tings.

4.3.3 Phase III (N = 78): parameterising Noah-MP

Phase II shows that RCM performance using New God-
dard radiation is generally inferior to the same RCMs using
RRTMG (see Sect. 5, “RCM physics test results”). Conse-
quently, RRTMG radiation is re-adopted for phase III. Con-
versely, a general performance improvement is conferred us-
ing Noah-MP over Noah Unified (Sect. 5). Given this perfor-
mance improvement using Noah-MP with default settings,

phase III assesses RCM performances using specific param-
eter settings for Noah-MP.

Noah-MP provides a dynamic vegetation cover model op-
tion (referred to as dynamic vegetation in the WRF users’
guide) (Niu et al., 2011). When deactivated (the default), the
monthly leaf area index (LAI) is prescribed for various veg-
etation types, and the greenness vegetation fraction (GVF)
comes from monthly GVF climatological values. Conversely,
when dynamic vegetation cover is activated, LAI and GVF
are calculated using a dynamic leaf model. We clarify here
that dominant plant functional types do not change when us-
ing this option but only the LAI and GVF, i.e. only the inten-
sity of green cover changes.

Noah-MP also provides several options for modelling sur-
face runoff and groundwater processes, including a TOP-
MODEL (TOPography based hydrological MODEL)-based
surface runoff scheme and a simple groundwater model
(SIMGM; Niu et al., 2011). Some studies have shown that us-
ing this option improves the modelling of soil moisture (e.g.
Zhuo et al., 2019). Thus, three new sets of physics configu-
rations are tested using Noah-MP, where the default options
for specific settings are changed as follows:

1. Activate dynamic vegetation cover (dveg= 2 in the
WRF namelist); no other changes.

2. Activate TOPMODEL runoff with simple groundwater
(opt_run= 1); no other changes.

3. Activate both dynamic vegetation and TOPMODEL
runoff with simple groundwater; no other changes.

As above, the worst performing RCMs in phase II are ex-
cluded from phase III testing. Based on the RCM configu-
ration performance rankings (Table 5), there is a sharp re-
duction in performance starting from RCM no. 7 inclusive.
Therefore, RCMs no. 7–12 are excluded from further test-
ing. Phase III thus comprises 18 new test simulations (sets
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Table 4. RCM physics combination ranks of the phase I, N = 18, Noah Unified-based (NU-based) RCMs. Scores/ranks are based on model
bias and root mean square error for annual and seasonal precipitation, minimum temperature, maximum temperature, climate extremes
(wettest and hottest days), and Perkins’ skill scores (see Sect. 3). RCMs no. 1–12 are selected for further testing.

RCM no. RCM ID Physics combination Rank total Overall rank in
N = 36 phase I

PBL MP Cumulus SW/LW LSM

1 070801040402 ACM2 Thom KF RRTMG NU 484 1
2 070601040402 ACM3 WSM6 KF RRTMG NU 495 2
3 070802040402 ACM4 Thom BMJ RRTMG NU 527 3
4 070602040402 ACM5 WSM6 BMJ RRTMG NU 559 4
5 010802040402 YSU Thom BMJ RRTMG NU 574 7
6 050801040402 MYNN2 Thom KF RRTMG NU 583 8
7 010801040402 YSU Thompson KF RRTMG NU 617 11
8 050802040402 MYNN2 Thompson BMJ RRTMG NU 630 12
9 070606040402 ACM2 WSM6 Tiedtke RRTMG NU 639 13
10 050601040402 MYNN2 WSM6 KF RRTMG NU 662 16
11 070806040402 ACM2 Thompson Tiedtke RRTMG NU 662 16
12 010602040402 YSU WSM6 BMJ RRTMG NU 674 19
13 010601040402 YSU WSM6 KF RRTMG NU 702 23
14 010606040402 YSU WSM6 Tiedtke RRTMG NU 759 25
15 050606040402 MYNN2 WSM6 Tiedtke RRTMG NU 766 27
16 050602040402 MYNN2 WSM6 BMJ RRTMG NU 811 31
17 010806040402 YSU Thompson Tiedtke RRTMG NU 830 34
18 050806040402 MYNN2 Thompson Tiedtke RRTMG NU 857 35

Table 5. RCM physics combination ranks of the phase II Noah-MP
RCMs. Scores/ranks are based on model bias and root mean square
error for annual and seasonal precipitation, minimum temperature,
maximum temperature, climate extremes (wettest and hottest days),
and Perkins’ skill scores (see Sect. 3).

No. Physics combination Rank total

1 50801040404 721
2 70806040404 822
3 50802040404 848
4 70802040404 872
5 70601040404 880
6 50601040404 891
7 10802040404 988
8 70602040404 1005
9 70606040404 1028
10 10801040404 1042
11 70801040404 1056
12 10602040404 1264

1–3, each comprising six RCMs), bringing the total RCMs
tested to N = 78. Phase III physics tests are denoted using
the same RCM identification schemes distinguished by ap-
pending set_1, set_2, and set_3 to identifiers.

4.3.4 Shortlisting physics test RCMs for
ERA5-NARCliM2.0 evaluation simulations

Considering the complete NARCliM2.0 N = 78 physics test
ensemble, to identify physics test RCMs that perform poorly
overall, RCMs are eliminated if they are in the lowest one-
third for RCM performance ranks for any of maximum tem-
perature, minimum temperature, or precipitation or for the
overall model performance rank across these variables (see
Sect. 5, “RCM physics test results”). Using this scheme,
20 RCMs remain. The independence measures are then ap-
plied to the remaining 20 RCMs to choose a final subset of
seven RCMs for ERA5-forced evaluation simulations (see
Sect. 4.4). The ensemble size limit of N = 7 is determined by
available computing resources. These seven candidate RCMs
are assessed for potential use in the CMIP6 GCM-forced
downscaling phase of NARCliM2.0 (Sect. 4.4 and Di Vir-
gilio et al., 2025).

4.4 CORDEX ERA5-NARCliM2.0 evaluation
simulations

NARCliM1.x performed production climate simulations us-
ing a two-phase process. Its RCM physics testing selected
definitive production-grade RCMs which were then used to
downscale both reanalysis data and CMIP3/5 GCMs. In con-
trast, for NARCliM2.0 as described above the N = 78 RCM,
physics testing culminates in shortlisting seven production-
candidate RCMs, which are used to downscale the ERA5
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reanalysis for 42 years (1979–2020). This enables the as-
sessment of the performances of these seven shortlisted
RCMs over a climatological period rather than the single
year (2016) of the physics testing, which helps ascertain that
performance differences between shortlisted RCMs are ro-
bust across a multidecadal timescale, capturing climatologi-
cally diverse years. The aim is that two definitive production-
grade RCMs can be selected for CMIP6-forced downscaling
from these ERA5-forced CORDEX evaluation simulations.
Thus, the seven ERA5-NARCliM2.0 RCMs were driven by
ERA5.0 boundary conditions for January 1979 to Decem-
ber 2020 using the model and nested domain setups de-
scribed above for NARCliM2.0. The skill of these RCMs
in simulating the recent Australian climate was assessed as
follows (see Di Virgilio et al., 2025): annual and seasonal
means were calculated for maximum and minimum temper-
ature and precipitation using monthly means for temperature
variables and the monthly sum for precipitation. Extremes
of maximum temperature and precipitation (99th percentiles)
and extreme minimum temperature (1st percentile) were cal-
culated using daily data. RCM performances in reproducing
observations at these timescales were assessed by calculat-
ing model outputs without observations (i.e. model bias) and
the RMSE of modelled versus observed fields. The RCM
skill in simulating distributions of observed variables was as-
sessed by comparing the PDFs for daily mean observations
versus those of the RCMs. The ultimate outcome of these
ERA5-forced simulations and their evaluation is the selec-
tion of two definitive RCM configurations, R3 and R5, to
run the CMIP6-forced phase of NARCliM2.0; see Di Vir-
gilio et al. (2025) for further details on the evaluation meth-
ods and results. Figure S1 in the Supplement shows the WRF
namelist settings for the R3 and R5 RCMs (see also the
“Code availability” section).

4.5 CORDEX-CMIP6-forced NARCliM2.0 simulations

The ideal CMIP6 GCM variables and the frequencies re-
quired to run the WRF RCM are listed in Table S1. A mi-
nority of variables in Table S1 are not available at subdaily
frequencies for every target GCM. This necessitates assump-
tions/data proxies to be made. For instance, soil moisture and
soil temperature variables were unavailable for some selected
GCMs; hence, surrogate data, such as surface temperature,
were used for initialisation (noting that soil data are only
used by the RCM at initialisation). In these cases, we investi-
gated how long it took for uncertainty in the initial conditions
to disappear from the WRF output by analysing the region-
ally averaged soil moisture time series. The data were re-
gionalised according to the four Australian natural resource
management (NRM) regions/climate zones (Fig. S2 in the
Supplement) which are broadly aligned with climatological
boundaries (Fiddes et al., 2021) and with the IPCC reference
regions (Iturbide et al., 2020). Time series plots (Fig. S3)
show that soil moisture equilibrates to be within a normal

range following initialisation, indicating that the 12-month
spin-up year (1950) is sufficient to account for the assump-
tions made at model initialisation.

Boundary and initial conditions were prepared using se-
lected GCM data to run the 151-year GCM-driven simula-
tions using WRF version 4.1.2. The GCM-driven simulations
were run and completed using the pre-defined RCM settings
for the two definitive RCM configurations using the WRF
namelists in Fig. S1 in the Supplement (see also the “Code
availability” section). A cold restart was performed in the last
historical experiment year (2014), thus enabling the SSP1-
2.6 and SSP3-7.0 experiments to be run for 2015–2100 con-
currently with the historical experiment. Testing the time du-
ration required for soil moisture to equilibrate from the cold
start showed that 1 year is sufficient. The 2014 cold-start year
is eventually overwritten by historical runs initiated in 1950.

5 RCM physics test results

5.1 Phase I RCM performance summary

The spatial variation and magnitudes for phase I RCM biases
and RMSEs for annual mean maximum and minimum tem-
perature and precipitation are shown in Figs. 4 and 5, respec-
tively. Overall, RCMs are biased cold for maximum temper-
ature (mean absolute bias for the ensemble mean= 1.18 K)
and warm-biased for minimum temperature (mean absolute
bias= 1.31 K; Fig. 4a, b). Maximum temperature RMSE
magnitudes are large over the elevated terrain of the south-
east coast and over western regions (Fig. 5a). The simulation
of precipitation shows biases of varying sign, with wet bi-
ases that are strongest over eastern coastal regions (Fig. 4c).
Precipitation RMSEs are particularly large along the eastern
coastline (>15 mm) and generally show an east–west gra-
dient, i.e. progressively decreasing further inland from the
coast (Fig. 5c).

5.2 Comparing phase II physics test RCM
performance with that of phase I

5.2.1 Climate means

Overall, the RCM ensemble using New Goddard (NG) radi-
ation has inferior performance to the corresponding RCMs
using RRTMG in terms of annual/seasonal mean maximum
temperature biases, RMSEs, and PSS (Table 6). In contrast,
NG confers superior performance for annual/seasonal mean
minimum temperature for these statistics. RCMs using NG
show reduced biases for annual mean and spring-time pre-
cipitation but larger errors for DJF and JJA (Table 6). RMSEs
for annual and seasonal precipitation are similarly variable.

Phase II RCMs using Noah-MP with RRTMG retained
show improved performance in simulating mean maximum
and minimum temperatures at annual timescales and most
seasons relative to corresponding phase I RCMs using Noah
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Unified (Table 6; Figs. 4 and 5). For instance, the mean ab-
solute bias for annual mean maximum temperature is 0.58 K
for the Noah-MP ensemble mean versus 1.18 K for the Noah
Unified ensemble. In particular, cold-bias magnitudes for
maximum temperature are considerably lower over eastern
and southern regions for the RCMs using Noah-MP (Fig. 4d).
RMSE magnitudes for maximum temperature are substan-
tially reduced over the topographically complex regions of
the southeast and the southwest and central regions (Fig. 5d).

Overall, the magnitude of warm biases for minimum tem-
perature is broadly similar for phase I and phase II RCMs
(Fig. 4b, c). Conversely, while RCMs in both phases show
large RMSEs for minimum temperature over several eastern
regions, RMSEs are smaller for the Noah-MP ensemble over
some southern areas (Fig. 5b, c).

In contrast to the above results for the simulation of max-
imum temperature, overall, phase II RCMs using Noah-MP
show smaller performance improvements for the simulation
of precipitation relative to the phase I RCMs (Table 6). How-
ever, precipitation bias magnitudes are smaller for the Noah-
MP ensemble over specific regions, e.g. northeastern coastal
regions and the elevated terrain of the southeast (Fig. 4c, f).

5.2.2 Climate extremes

Climate extreme analysis assesses RCM representations of
the hottest and the wettest day versus AGCD. For both ex-
tremes and for RCM biases and RMSEs, phase II RCMs
using NG radiation showed inferior performance relative to
phase I RCMs using RRTMG (Table 7). Conversely, phase II
RCMs using Noah-MP show substantial reductions in bias
for both the hottest and the wettest days (Table 7). Phase
II Noah-MP RCMs show a small increase in RMSE for the
hottest day (phase I bias= 3.59 K; phase II bias= 3.74 K);
however, RMSEs are smaller for the wettest day (i.e. phase I
RMSE= 19.20 mm; phase II RMSE= 18.47 mm) (Table 7).

5.3 Phase III RCM performance summary and
shortlisting N = 7 RCMs for ERA5-NARCliM2.0
evaluation simulations

Overall, RCM biases for mean maximum temperature do
not show marked improvements once the dynamic vegetation
cover and surface runoff options are activated for Noah-MP
(Fig. 4g, j, m) relative to RCMs using Noah-MP with default
settings (Fig. 4d). However, specifically for the RCM ensem-
ble with dynamic vegetation cover activated for Noah-MP,
RMSE magnitudes for maximum temperature are lower over
some eastern coastal regions (Fig. 5g).

The simulation of mean minimum temperature shows
clear performance improvements for phase III RCMs us-
ing options activated for Noah-MP, relative to RCMs using
Noah-MP defaults. Overall, both biases and RMSEs for min-
imum temperature are reduced in magnitude for RCMs using
either of dynamic vegetation cover and runoff/groundwater
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Figure 4. Phase I (N = 36), phase II (N = 60), and phase III (N = 78) ensemble mean biases for annual mean maximum temperature,
minimum temperature, and precipitation with respect to Australian Gridded Climate Data (AGCD) observations for NARCliM2.0 phase I
physics test RCMs using Noah Unified as the land surface model (LSM) (a–c). Phase II physics test RCMs using Noah-MP as the LSM
and its default settings (d–f). Phase III set 1 physics test RCMs using Noah-MP with dynamic vegetation cover activated (g–i). Phase III set
2 physics test RCMs using Noah-MP with TOPMODEL surface runoff and simple groundwater activated (j–l). Phase III set 3 physics test
RCMs using Noah-MP with both dynamic vegetation cover and TOPMODEL runoff activated (m–o).
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Figure 5. As in Fig. 4 but showing RMSEs.
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Table 7. Climate extremes performance – comparing phase I RCMs (N = 12) with phase II RCMs (i.e. 12 RCMs changing radiation (rad.)
from RRTMG to New Goddard, NG, and 12 RCMs changing land surface model (LSM) from Noah Unified to Noah-MP, NMP).

Bias RMSE

Variable Phase I Phase II Phase II Phase I Phase II Phase II
(N = 12) (NG rad.) (NMP LSM) (N = 12) (NG rad.) (NMP LSM)

ensemble mean ensemble mean ensemble mean ensemble mean ensemble mean ensemble mean

Max temp. (hottest) [K] 1.11 1.93 0.81 3.59 3.97 3.74
Precip. (wettest) [mm] 3.08 3.21 2.60 19.20 20.52 18.47

options activated for Noah-MP or both relative to the default
parameters (Figs. 4 and 5). These performance improvements
are the largest over eastern and southern regions.

There are no substantial overall performance improve-
ments in the simulation of precipitation for phase III RCMs
relative to phase II RCMs (Figs. 4 and 5f, i, l, o). How-
ever, using Noah-MP with specific LSM options remains
favourable to using RCMs with Noah Unified although the
performance gains are generally small, except for some
coastal regions and especially the northeast.

All 78 RCMs in the complete RCM physics test ensemble
are ranked for performance as described in Sect. 3.2. Once
the poor-performing RCMs are excluded, there are 20 RCMs
remaining (Table 8; Figs. 6–8). In Table 8, we see that 16
Noah-MP-based RCMs from phase II and phase III comprise
this set of 20 RCMs, with 3 of the 20 RCMs using Noah Uni-
fied and 1 using CLM4.0. For maximum temperature, some
shortlisted RCMs show substantial RMSEs over northwest-
ern and inland areas (e.g. Fig. 6d–f) that are of a larger mag-
nitude over these areas than the ensemble means of phase
I-III RCMs (Fig. 5). Conversely, several shortlisted RCMs
show very low RMSEs for maximum temperature across
eastern and southern regions, especially along the eastern
coast (Fig. 6, e.g. RCMs in panels d, l, n, o, q). For mini-
mum temperature, a subset of the 20 shortlisted RCMs show
substantially reduced RMSEs over many regions relative to
the Phase I–III ensemble means (Fig. 7, e.g. RCMs in panels
b, h, i). Additionally, several shortlisted RCMs show reduced
RMSEs for precipitation over the eastern coast and northeast
(Fig. 8, e.g. RCMs in panels c, l, m, n, o) relative to the Phase
I–III RCM ensemble means in Fig. 5c, f, i, l, o.

These 20 RCMs are assessed for statistical independence
and seven RCMs from this RCM set are shortlisted for the
ERA5-forced RCM simulations considering both their per-
formance and independence scores (Table 8). These seven
shortlisted RCMs are listed in bold in Table 8 and are iden-
tified as R1–R7 in the ERA5-forced evaluation simulations
(Table 8, final column). RCMs are shortlisted from the set of
20 if they rank highly for both performance and indepen-
dence. For instance, RCM 050801040404_set_3 (Table 8,
top row) is top-ranked for performance. However, its inde-
pendence scores/ranks are low; hence, it is not shortlisted. It
is important to note that while a general performance gain is

observed in the physics testing when using Noah-MP, there
are some specific RCM configurations using Noah Unified
that perform well in simulating the Australian climate. For
instance, the RCM 010602050502 (R1; Table 8, row 7) uses
Noah Unified and performs well overall (its overall perfor-
mance rank= 7) and especially for the simulation of maxi-
mum temperature (Fig. 6a). It is also the only RCM in this set
of 20 RCMs to use YSU for PBL. Importantly, this RCM is
highly ranked for statistical independence; hence, this RCM
is shortlisted for the N = 7 set. We note here that R1–R7 is
simply a chronological naming convention and does not im-
ply any ranking for these seven RCM configurations.

6 CORDEX-CMIP6 NARCliM2.0 historical evaluation

6.1 Maximum temperature

Overall, NARCliM2.0 RCMs simulate maximum tempera-
ture more accurately than NARCliM1.x, with widespread
statistically significant reductions in cold biases in the en-
semble mean (Fig. 9) as well as for many individual RCMs
(Figs. S4–S6 in the Supplement). These reductions in the bias
apply to all timescales but are largest for the annual mean, i.e.
the area-averaged mean absolute bias for the NARCliM2.0
ensemble is 0.75 K (range from 0.61 to 2.03 K), 1.73 K
(range from 1.1 to 2.37 K) for NARCliM1.5, and 1.89 K
(range from 0.55 to 4.12 K) for NARCliM1.0 (Fig. 9d, g, j
and Fig. S4). Notably, the NARCliM2.0 ensemble mean an-
nual mean maximum temperature bias magnitudes are small,
i.e. around <0.5 K, over southwest WA, southern coastal re-
gions, and several eastern regions. This may be important
from a climate change adaptation and mitigation perspective
as these regions are heavily populated and economically sig-
nificant. NARCliM2.0 retains warm biases of a similar mag-
nitude to NARCliM1.5 along the northwest coast of Australia
(Fig. 9d, g). Moreover, these warm biases cover additional ar-
eas for NARCliM2.0, especially during DJF (Fig. 9e, h). A
wide range of bias signs is evident for the individual NAR-
CliM2.0 ensemble members (Figs. S4–S6), and a minority of
NARCliM2.0 RCMs retain strong cold biases, e.g. at an an-
nual timescale NARCliM2.0-NorESM2-MM R3 (mean ab-
solute bias= 2.03 K) and UKESM-1-0-LL R3 (1.77 K). Ad-
ditionally, the R5 RCM is generally warmer than R3 (e.g.
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Table 8. The 20 NARCliM2.0 physics test RCMs shortlisted from the ensemble of 78 RCMs based on their performance in simulating the
Australian climate and independence (ind.). N = 7 R1–R7 RCMs shortlisted for ERA5-forced evaluation simulations are shown in bold.
R1–R7 is a naming convention and does not imply a ranking for these seven RCMs. NU: Noah Unified, NMP: Noah-MP, DV: dynamic
vegetation cover, and TOP: TOPMODEL runoff.

No. RCM physics PBL MP Cumulus SW/LW LSM Test Overall Bishop– Herger ind. Herger ind. ERA5-
combination phase performance Abramowitz set 1 set 2 forced

rank ind. rank RCM
identifier

1 050801040404_set_3 MYNN2 Thom KF RRTMG NMP DV+TOP III 1 19 20 20
2 070806040404_set_1 ACM2 Thom Td RRTMG NMP DV III 2 8 5 6 R6
3 50801040404 MYNN2 Thom KF RRTMG NMP II 3 16 12 13
4 070802040404_set_1 ACM2 Thom BMJ RRTMG NMP DV III 4 4 3 3 R5
5 070802040404_set_2 ACM2 Thom BMJ RRTMG NMP TOP III 5 15 13 12
6 050601040404_set_1 MYNN2 WSM6 KF RRTMG NMP DV III 6 7 10 10 R2
7 10602050502 YSU WSM6 BMJ NG NU II 7 1 3 3 R1
8 070806040404_set_2 ACM2 Thom Td RRTMG NMP TOP III 8 9 9 5 R7
9 70806040404 ACM2 Thom Td RRTMG NMP II 9 11 14 14
No. 50802040404 MYNN2 Thom BMJ RRTMG NMP II 10 20 19 19
No. 050802040404_set_1 MYNN2 Thom BMJ RRTMG NMP DV III 11 5 2 2 R3
No. 070806040404_set_3 ACM2 Thom Td RRTMG NMP DV+TOP III 14 12 10 10
No. 70802040404 ACM2 Thom BMJ RRTMG NMP II 17 13 15 15
No. 070601040404_set_3 ACM2 WSM6 KF RRTMG NMP DV+TOP III 22 14 16 16
No. 050802040404_set_2 MYNN2 Thom BMJ RRTMG NMP TOP III 23 2 4 4 R4
No. 70802050502 ACM2 Thom BMJ NG NU II 24 18 18 18
No. 50801040405 MYNN2 Thom KF RRTMG CLM4 I 28 17 17 17
No. 070601040404_set_1 ACM2 WSM6 KF RRTMG NMP DV III 29 6 7 8
No. 70801040404 ACM2 Thom KF RRTMG NMP II 30 3 1 1
No. 50801040402 MYNN2 Thom KF RRTMG NU I 31 10 6 7

Fig. S4c, d). Considering the forcing GCM data, overall, en-
semble means for the CMIP6 and CMIP5 GCMs generally
show similar patterns and magnitudes of cold bias for maxi-
mum temperature (Fig. S7 in the Supplement).

6.2 Minimum temperature

The simulation of mean minimum temperature by NAR-
CliM2.0 is generally warm-biased at all timescales (Fig. 10).
Its bias magnitudes over many regions are larger versus
NARCliM1.5; e.g. annual mean area-averaged absolute bi-
ases are 0.98 and 0.79 K for NARCliM2.0 and NARCliM1.5,
respectively (Fig. 10d, g). However, there are exceptions to
this result over specific regions; for example, parts of south-
west western Australia show annual mean bias magnitudes
of <1 K for NARCliM2.0, but these areas show biases be-
low −2 K for NARCliM1.x (Fig. 10d, g, j). Most individual
RCMs comprising the NARCliM2.0 ensemble show stronger
warm biases than their NARCliM1.5 peers at both annual and
seasonal timescales (Figs. S8–S10). The ACCESS-ESM-1-
5-forced NARCliM2.0 RCMs are considerably more warm-
biased than the other NARCliM2.0 RCMs, with average ab-
solute biases of 1.74 and 1.9 K (Fig. S8c–d).

Many of the CMIP6 GCMs used to force the NAR-
CliM2.0 RCMs are warmer than the CMIP5 GCMs used
to force NARCliM1.5 such that the ensemble mean bias of
the former is 1.9 K versus 1.11 K (Fig. S11). In particu-
lar, ACCESS-ESM-1-5 and MPI-ESM1-2-HR are substan-
tially more warm-biased relative to all other selected GCMs,
with mean absolute biases of 2.2 and 3.47 K, respectively
(Fig. S11). This suggests that NARCliM2.0’s warm biases

for mean minimum temperature are at least partially inherited
from the driving data. However, whilst the ACCESS-ESM-
1-5-forced NARCliM2.0 RCMs are much warmer than their
counterparts (i.e. 1.74 and 1.9 K), this does not apply to the
MPI-ESM1-2-HR-forced RCMs, which have biases of only
1.01 and 1.09 K. Hence, factors additional to the driving data,
such as changes in RCM parameterisations between NAR-
CliM generations and other model design changes likely con-
tribute to the warmer biases observed for NARCliM2.0.

6.3 Precipitation

The NARCliM2.0 ensemble shows small dry biases for
mean precipitation over most regions, except for some ar-
eas mainly in the east of the country, which show slight
wet biases (Fig. 11d–f). This contrasts with stronger wet
biases of NARCliM1.5 that are statistically significant over
many regions (Fig. 11g–i) and the even stronger wet biases
of NARCliM1.0 (Fig. 11j–l). Area-averaged bias magnitudes
are considerably smaller for NARCliM2.0 relative to NAR-
CliM1.x, especially for the annual mean, i.e. 8.03 mm versus
16.69 and 33.25 mm, respectively. Annual mean precipita-
tion biases are particularly small over eastern regions, often
being <5 mm. NARCliM2.0 retains the strong summertime
dry biases for precipitation over northern Australia that are
also evident for NARCliM1.5 (Fig. 11e, h), noting that this
region also shows strong warm biases for maximum temper-
ature (Fig. 9).

The individual RCMs comprising NARCliM2.0 show a
range of results for annual and seasonal mean precipita-
tion biases (Figs. S12–S14). Notably, three of the 10 NAR-
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Figure 6. RMSEs for modelled mean maximum temperature (tmax) versus observations for the 20 NARCliM2.0 physics test RCMs short-
listed from the full ensemble of 78 RCMs based on their performance in simulating the recent southeast Australian climate. Overall (final)
performance ranks and Bishop and Abramowitz (2013) method independence (ind.) scores are shown.

CliM2.0 RCMs have substantially larger bias magnitudes
than their peers at annual and summer timescales, i.e. both
MPI-ESM1-2-HR-R3 and R5 (absolute biases are 15.53
and 22.45 mm for annual mean precipitation; Fig. S12g–h)
and EC-Earth3-Veg-R5 (Fig. S12f; 18.59 mm). Despite EC-
Earth3-Veg-R5 being strongly dry-biased, EC-Earth3-Veg-
R3 simulates precipitation more accurately; i.e. its mean ab-
solute bias= 9.53 mm (Fig. S12e). Analogously to NAR-
CliM2.0’s performance for temperature, R5 is drier than R3.
Comparing the ensemble means of the driving GCMs, the
CMIP6 GCMs are marginally more accurate in simulating
annual mean precipitation than the CMIP5 GCMs (Fig. S15).
Whilst the CMIP6 ensemble produces small biases over in-
land areas, its biases are larger along the east coast.

7 CORDEX-CMIP6 NARCliM2.0 climate change
projections

Dependent on location, the largest maximum temperature
projected increases for NARCliM2.0 under SSP3-7.0 are

over ∼ 3 K and over ∼ 1.5 K under SSP1-2.6 (Fig. 12a, d).
SSP3-7.0-NARCliM2.0 shows faster warming over inland
than coastal regions, with greater warming across a hor-
izontal band of the continent during annual and summer
timescales (Fig. 12a–b). This contrasts with NARCliM1.5,
which shows a north–south warming gradient at annual and
seasonal timescales, with its fastest warming rate over north-
ern regions, and NARCliM1.0, which projects the fastest
warming over the west (Fig. 12). For NARCliM2.0, the tropi-
cal north warms faster during the winter dry season than dur-
ing the summer wet season under SSP3-7.0, but this is not the
case for SSP1-2.6 (Fig. 12b–c; e–f). NARCliM2.0 simula-
tions under SSP3-7.0 show less warming than NARCliM1.5-
RCP8.5 but warmer futures than for NARCliM1.0-SRES A2,
with differences in the underlying driving GCMs and GHG
scenarios likely contributing to these variations in warming.
As per NARCliM1.x, all NARCliM2.0 maximum tempera-
ture projections significantly agree with all RCMs projecting
statistically significant temperature increases.

Projected increases in annual mean minimum temperature
for NARCliM2.0 exceed 3 K over some regions for SSP3-
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Figure 7. As in Fig. 6 but for mean minimum temperature (tmin).

7.0 and 1.6 K for SSP1-2.6 (Fig. 13). Under both GHG sce-
narios, at annual and winter timescales, warming is fastest
over northeast Australia. Conversely, NARCliM1.x mini-
mum temperature future increases are generally the largest
over northwest or northern Australia, though the summertime
projection for NARCliM1.0 is an exception (Fig. 13k). As for
maximum temperature projections, all RCMs for all NAR-
CliM generations project statistically significant increases.

NARCliM2.0 SSP3-7.0 projects a dry future over most of
Australia, except for wetter futures over northern and western
regions, which are largest in magnitude in summer (Fig. 14a–
b). In contrast, overall, NARCliM2.0 SSP1-2.6 projects dry
changes across most of Australia, with the strongest drying
over northern Australia during summer (Fig. 14e). Similari-
ties between NARCliM2.0 projections for the low- and high-
GHG SSPs include faster drying over the eastern coastline
at all timescales, especially during summer. The wetter fu-
tures projected by RCMs downscaling SSP3-7.0 GCMs rel-
ative to SSP1-2.6 may be partially inherited from the driving
CMIP6 GCMs because, overall, SSP3-7.0 GCMs show wet-
ter futures than corresponding SSP1-2.6 GCMs (Fig. S16).

Considering mean precipitation projections for individ-
ual NARCliM2.0 RCMs, in some cases, R3 and R5 RCMs
produce similar results when downscaling the same GCM.
For instance, ACCESS-ESM-1-5 forced R3 and R5 both
show strong projected decreases in annual mean precipitation
across Australia (Fig. 15b–c). In contrast, while UK-ESM1-
0-LL R3-R5 both show projected decreases in annual mean
precipitation over eastern Australia, R3 shows precipitation
increases that are substantially more widespread over west-
ern and northern regions relative to R5 (Fig. 15j–k). Over-
all, the NARCliM2.0 ensemble members show a variety of
climate change signals for precipitation (Fig. 15) and tem-
perature (not shown), reflecting the range within the larger
CMIP6 ensemble (Di Virgilio et al., 2022).

There are some key differences between the mean pre-
cipitation projections of NARCliM2.0 relative to those of
previous NARCliM generations. For instance, NARCliM1.5
shows stronger reductions in future precipitation over north-
ern and eastern regions at annual and winter timescales
(Fig. 14), and these changes are statistically significant over a
few regions, whereas projected changes for NARCliM2.0 are
largely non-significant. Additionally, NARCliM2.0 projects
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Figure 8. As in Fig. 6 but for mean precipitation (precip).

marked precipitation decreases along the southeast coast dur-
ing summer, while NARCliM1.5 shows the opposite result
(Fig. 14). NARCliM1.0 generally projects wet futures across
larger portions of Australia, especially at annual and summer
timescales.

8 Discussion

NARCliM regional climate models produce robust climate
projections at spatial scales suitable for local-scale climate
change analysis and impact decision-making. The third and
latest generation of these regional climate models, NAR-
CliM2.0, encompasses several model design advancements
over its predecessors. A key aim of this paper is to describe
how NARCliM2.0 differs from its predecessors and explain
the rationale behind these design decisions. We also charac-
terise the improvements in model skill in simulating the Aus-
tralian climate relative to previous NARCliM generations as
well as compare climate projections across NARCliM gener-
ations. The next section discusses aspects of NARCliM2.0
RCM design and parameterisation in relation to previous
studies before reviewing differences in the model biases and

the climate projections of the NARCliM2.0 versus NARCliM
1.x RCMs.

8.1 NARCliM2.0 RCM physics testing

In addition to RCM design choices including increased reso-
lution and incorporation of convection-permitting modelling
and urban physics, a major change for NARCliM2.0 relative
to its predecessors is to use new WRF RCM configurations,
which are selected via a large suite of physics tests. RCM
performance evaluations for the NARCliM2.0 RCM physics
testing focused on the 4 km resolution convection-permitting
domain, which does not use a cumulus physics parameteri-
sation. Notably, the seven candidates shortlisted RCMs from
the N = 78 physics test ensemble used three different cu-
mulus parameterisations for their outer domains, with four
RCMs using BMJ, two RCMs using Tiedtke, and one using
Kain–Fritsch. This indicates that differences in the outer do-
main boundary conditions have key influences on the RCM
performances in the convection-permitting domain.

Using the Noah-MP LSM in the NARCliM2.0 RCM
physics tests conferred overall RCM skill improvements rel-
ative to RCMs using the Noah Unified LSM, especially
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Figure 9. Annual, DJF, and JJA mean near-surface atmospheric maximum temperature biases for NARCliM2.0, 1.5, and 1.0 historical
ensemble means with respect to Australian Gridded Climate Data (AGCD) observations for 1990–2009. Stippled areas indicate locations
where an RCM shows statistically significant bias. Significance stippling for the ensemble mean bias follows Tebaldi et al. (2011) and is
applied separately to each RCM ensemble. Statistically insignificant areas are shown in colour, denoting that less than half of the models are
significantly biased. In significant agreeing areas (stippled), at least half of RCMs are significantly biased, and at least 70 % of significant
RCMs in each ensemble agree on the direction of the bias. Significant disagreeing areas are shown in hatching, which are where at least half
of the models are significantly biased and less than 70 % of significant models in each ensemble agree on the bias direction; see main text for
additional details on the stippling regime.

in terms of the simulation of temperature. Although using
Noah-MP also improved the simulation of precipitation in
some respects, these improvements were smaller relative to
the gains for temperature, and improvements were mainly lo-
cated over coastal regions. The developers of Noah-MP sug-
gest that some limitations in the Noah Unified LSM have
been modified to better represent several parameters. These
include surface layer radiation balances, snow depth, soil
moisture and heat fluxes, leaf area–rainfall interaction, veg-
etation and canopy temperature distinction, drainage of soil,
and runoff.

In the NARCliM2.0 physics testing, improvements in
RCM skill were evident for Noah-MP with default set-
tings. Activating specific parameterisations for this LSM
(i.e. dynamic vegetation cover and surface runoff–simple
groundwater) delivered comparatively smaller gains in RCM
performances. Some previous studies have found no over-
all benefit of using Noah-MP with default settings. For
instance, Imran et al. (2018) conducted an evaluation of
WRF coupled with a variety of LSMs including Noah-
MP using its default settings. They simulated short-duration
(∼ 3 d) heatwaves in Melbourne, Australia, and observed
larger temperature biases using Noah-MP relative to RCMs
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Figure 10. As in Fig. 9 but for mean minimum temperature.

using Noah Unified and CLM4.0. However, their focus
on specific short-duration heatwave events over one ur-
ban area was not intended as a comprehensive evaluation
of Noah-MP’s performance. Additionally, several physics
schemes used by these authors differed from those used
in the NARCliM2.0 physics testing; i.e. they used the
following: PBL=MYJ; microphysics=Thompson; cumu-
lus=Grell3D; radiation=RRTMG/RRTMG. Only Thomp-
son microphysics and RRTMG radiation are used in the
NARCliM2.0 physics testing. WRF and Noah-MP versions
also differed; i.e. Imran et al. used WRF3.6.1 and a Noah-MP
version prior to 3.7, whereas NARCliM2.0 uses WRF4.1.2
and Noah-MP version 4.1. Additionally, there are also sev-
eral studies that have reported benefits of using Noah-MP
with default parameters relative to other LSMs for other re-
gions globally, such as Chen et al. (2014a, b) and Salamanca
et al. (2018).

The NARCliM2.0 physics testing found that the optimal
LSM configuration for the simulation of minimum tempera-

ture used Noah-MP with dynamic vegetation cover activated,
even though the performance gain relative to Noah-MP with
default settings was small. Constantinidou et al. (2020) ran
WRF coupled with four LSMs (Noah Unified, Noah-MP,
CLM, and Rapid Update Cycle) over the Middle East North
Africa CORDEX domain. They compared the performance
of Noah-MP with dynamic vegetation cover turned on and off
and found that air and land temperatures were best simulated
using Noah-MP with dynamic vegetation cover activated.

In terms of other NARCliM2.0 RCM parameterisations,
focusing on PBL, by the completion of phase I physics test-
ing, only 3 out of 12 RCMs shortlisted for further testing
use the YSU scheme. By the completion of phase II test-
ing, all remaining RCMs using YSU are discarded, with
only RCMs using PBL schemes other than YSU remaining
(i.e. ACM2 and MYNN2). YSU PBL is a first-order closure
scheme that expresses turbulent mixing via mean variables
rather than prognostic variables (Hong et al., 2006). It is
classed as a non-local scheme because it estimates turbulent
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Figure 11. As in Fig. 9 but for mean precipitation (precip).

mixing by small-scale eddies as well as representing trans-
port caused by convective large eddies. Two previous stud-
ies evaluating convection-permitting WRF simulations using
different parameterisations that included YSU for the PBL
scheme found that, relative to other PBL schemes, YSU pro-
duced the highest bias for simulated precipitation (Huang
et al., 2023; Nuryanto et al., 2019). However, these studies
focused on different regions globally and used various ex-
perimental setups that are not directly comparable to those
used here. Hence, a separate study investigating sensitivities
of the NARCliM2.0 RCMs to the different PBL schemes is
currently underway.

8.2 CORDEX-CMIP6 NARCliM2.0 historical
evaluation

We characterised the improvements conferred by NAR-
CliM2.0 over its predecessors in simulating the present-day
Australian climate. NARCliM2.0 simulates mean maximum

temperature and precipitation more accurately than NAR-
CliM1.x. Specifically, NARCliM1.x has strong maximum
temperature cold biases which are in keeping with other
downscaling projects of the CMIP3-CMIP5 eras (e.g. Andrys
et al., 2016 and J. P. Evans et al., 2020), but these are sub-
stantially reduced in NARCliM2.0. A contributing cause of
CMIP5-forced RCM cold biases of maximum temperature
is their overestimation of precipitation (J. P. Evans et al.,
2020). This relationship was also noted in ERA-Interim-
forced RCMs of this same modelling era (Di Virgilio et al.,
2019). In NARCliM2.0, the widespread wet biases that char-
acterise the NARCliM1.x RCMs are reduced in magnitude.
NARCliM2.0 produces smaller wet biases over eastern Aus-
tralia and smaller dry biases elsewhere, except for in Aus-
tralia’s tropical north. This marked reduction in wet bias
magnitudes is one plausible contributing factor for the reduc-
tion in maximum temperature cold bias for the NARCliM2.0
RCMs. The CMIP6 and CMIP5 GCMs used to drive NAR-
CliM2.0 and 1.5 RCMs generally show similar magnitudes
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Figure 12. Ensemble mean climate change projections (far future without the present day) for annual, DJF, and JJA mean maximum temper-
atures, with significance stippling as in Fig. 9.

of maximum temperature cold bias. This suggests that the
underlying nature of the CMIP6 driving data is not a princi-
pal factor underlying the observed improvements for NAR-
CliM2.0’s simulation of maximum temperature. In fact, the
RCMs appear to have a substantial influence on the reduced
maximum temperature biases.

The fact that NARCliM2.0 underestimates precipitation
over tropical northern Australia during the wet season (sum-
mer) to a similar degree of magnitude to the NARCliM1.5
RCMs indicates that the newer models still struggle to accu-
rately capture the strength of the Australian monsoon. The
fact that NARCliM1.x strongly overestimates precipitation
over southeastern Australia, whereas wet biases over this re-
gion are reduced for NARCliM2.0, indicates that the newer
models may confer an improved simulation of broad-scale
processes associated with synoptic-scale systems interacting
with the extratropical storm track over Australia (Grose et
al., 2019).

The extent to which NARCliM2.0’s improved simulation
of precipitation might be attributable to its driving data war-
rants consideration. Overall, the CMIP6 GCMs used to drive
NARCliM2.0 show marginally reduced wet biases versus the
CMIP5 GCMs used for NARCliM1.5 (e.g. area-averaged en-
semble mean absolute biases are 7.13 and 8.89 mm, respec-
tively; Fig. S15 in the Supplement). This suggests that the
underlying nature of the CMIP6 driving data might not be
the principal factor underlying the observed improvements
for NARCliM2.0’s simulation of mean precipitation. Con-
versely, in terms of RCM design features, the use of the
Noah-MP LSM in the NARCliM2.0 RCM physics tests con-
ferred overall RCM skill improvements relative to RCMs us-
ing the Noah Unified LSM for both mean precipitation and
mean maximum temperature. As noted above, the develop-
ers of Noah-MP suggest that some features of the Noah Uni-
fied LSM have been modified to better represent several pa-
rameters. The production NARCliM2.0 RCMs used Noah-
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Figure 13. Ensemble mean climate change projections (far future without the present day) for annual, DJF, and JJA mean minimum temper-
atures, with significance stippling as in Fig. 9.

MP, whereas NARCliM1.x RCMs used Noah Unified. Given
these performance improvements observed for RCMs using
Noah-MP versus using Noah Unified, it is plausible that the
newer LSM contributes to the improved NARCliM2.0 skill
in simulating precipitation and maximum temperature, for
instance, via changing the land surface feedback (via soil
moisture) to the simulation of precipitation. This possibility
requires more extensive investigation via future studies.

More generally, the scope of the present study was to fo-
cus on an initial first-order evaluation of mean precipitation
rather than extremes of precipitation. However, clearly valu-
able research into evaluating the skill of NARCliM2.0 in sim-
ulating extreme precipitation, subdaily precipitation, etc. can
now be undertaken using NARCliM2.0 20 and 4 km data,
and we note that these data are now publicly available. A
good avenue for further research is to assess the potential
added value in simulating extreme and subdaily precipita-
tion at a convection-permitting scale versus the convection-

parameterised 20 km data. Several previous studies have con-
firmed that convection-permitting resolution models can im-
prove the simulation of daily and subdaily rainfall extremes
(Xie et al., 2024; Cannon and Innocenti, 2019; Kendon et al.,
2017).

NARCliM2.0 RCMs overestimate minimum temperatures
across Australia, and these biases are larger relative to NAR-
CliM1.5 but comparable to those of NARCliM1.0. The
CMIP6 GCMs used to force NARCliM2.0 show substan-
tially stronger warm biases for minimum temperature than
the CMIP5 GCMs used for NARCliM1.5. This suggests that
the increased warm bias for minimum temperature in NAR-
CliM2.0 RCMs could be partially inherited from the driving
GCMs. However, Noah-MP’s simulation of factors such as
LAI and other aspects of vegetation as well as surface albedo
in semi-arid and arid areas has been shown to have deficien-
cies (Glotfelty et al., 2021). These issues may contribute to
some of the biases shown by the NARCliM2.0 RCMs. More-
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Figure 14. Ensemble mean climate change projections (far future without the present day) for annual, DJF, and JJA mean precipitation, with
significance stippling as in Fig. 9.

over, the NARCliM2.0 ensemble mean reduces the overall
minimum temperature bias of the CMIP6 GCM ensemble
by almost half, attesting to the added value conferred by the
NARCliM2.0 RCMs with respect to near-surface tempera-
ture variables.

Consideration of observational uncertainty is warranted.
We have evaluated NARCliM RCM skill via comparison
with AGCD observations. Whilst AGCD is a high-quality
gridded observational dataset, like any set of observations,
it contains errors and uncertainties. Consequently, the out-
comes of our evaluations depend on both models being eval-
uated and the AGCD observational dataset. This is clearly a
broader issue that applies to any model evaluation versus ob-
servations. Uncertainties in AGCD for temperature and pre-
cipitation arise from sparse station coverage in some loca-
tions, especially in remote areas, and interpolation errors in
generating gridded data. More specifically, temperature un-
certainties include urban heat island effects, inhomogeneities

in observation records, and elevation differences. Precipita-
tion uncertainties involve underestimation of extremes, rain
gauge measurement errors, and challenges in representing
complex terrain. For our purposes, the question of how much
of the model bias of∼ 0.5 K is due to the model errors versus
the observational uncertainty cannot be currently quantified
because the models are evaluated against this single obser-
vational dataset. This leaves the observational uncertainty as
implicitly included in our results. In the future observational
uncertainty could be explicitly considered using a method
like the observation range adjusted (ORA) statistics (Evans
and Imran, 2024).

8.3 CORDEX-CMIP6 NARCliM2.0 climate change
projections

In terms of NARCliM2.0 future climate projections, major
changes between NARCliM generations such as differences
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Figure 15. Climate change projections (1990–2009 versus 2060–2079) for annual mean precipitation for NARCliM ensemble mean climate
change signals (a, l, s) and for individual ensemble members for each generation of NARCliM simulations (NARCliM2.0 under SSP3-7.0,
NARCliM1.5 under RCP8.5, and NARCliM1.0 under SRES A2). Significance stippling as in Fig. 9.

in GHG scenarios mean that NARCliM2.0 projected temper-
ature changes differ in some respects to those of its prede-
cessors. Overall, as is expected, projected warming is less in-
tense in NARCliM2.0 under SSP3-7.0 than for NARCliM1.5
under RCP8.5. Other differences in the projections between
NARCliM generations require further investigation in order
to be explained, such as NARCliM1.5’s latitudinal warming
gradient for maximum temperature that contrasts with NAR-
CliM2.0’s band of faster warming over central Australia rel-
ative to northern and southern regions. Irrespective of these
differences, all three NARCliM ensembles show widespread
statistically significantly agreeing results for warming pro-
jections.

Precipitation projections for the different NARCliM gen-
erations show some key similarities, such as reductions in
mean annual precipitation over eastern Australia for NAR-
CliM2.0 and NARCliM1.5, though a difference is that these

are statistically significant over some areas only for NAR-
CliM1.5. NARCliM2.0-SSP3-7.0 and SSP1-2.6 ensembles
differ in that the former generally projects wet changes over
northern and western Australia, whereas the latter is gener-
ally dry, the results that appear being partially traceable to the
underlying driving CMIP6-SSP data (Fig. S16 in the Supple-
ment).

Some NARCliM2.0 RCMs produce very similar precipi-
tation projections for certain GCM–RCM combinations. No-
tably, ACCESS-ESM-1-5-R3 and R5 under SSP3-7.0 both
produce widespread dry projections that are substantially
drier than other NARCliM2.0 models. This GCM projects
very dry futures across Australia (Di Virgilio et al., 2022), so
this result in the R3 and R5 RCMs could be largely inherited
from the driving data. There are 40 realisations for ACCESS-
ESM1-5, but only realisation no. 6 provides subdaily out-
puts that can be used in dynamical downscaling using WRF.
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This realisation simulates a particularly dry projection over
Australia, especially for eastern Australia, making it a useful
“stress test” case. In terms of GCM skill versus observations,
globally, this GCM is dry biased over a few regions owing
to a location bias with the Inter-Tropical Convergence Zone
(Rashid et al., 2022; Ziehn et al., 2020).

In other instances, there are marked divergences between
the NARCliM2.0 R3 versus R5 precipitation projections
when forced with the same GCM. An example is UK-ESM-
1-0-LL under SSP3-7.0, where R3 projects stronger precipi-
tation increases that are more geographically widespread rel-
ative to R5. This raises the question of varying sources of un-
certainty in the climate projections, i.e. to what extent these
are attributable to GCMs versus RCMs as well as other fac-
tors.

9 Summary

In summary, the CORDEX-CMIP6 NARCliM2.0 regional
climate projections are a 10-member ensemble comprising
two configurations of the WRF RCM dynamically downscal-
ing five GCMs under three SSPs at 20 km resolution over
CORDEX-Australasia and at 4 km convection-permitting
resolution over southeast Australia. In addition to several
high-level model design changes, e.g. increased spatial res-
olution, a large (N = 78) RCM physics test suite is evalu-
ated to select two new WRF RCM configurations for CMIP6-
forced NARCliM2.0 climate projections. The NARCliM2.0
physics tests identified RCM configurations that generally
performed well in simulating the recent Australian climate
over southeast Australia. A key finding was that WRF RCMs
using the Noah-MP LSM generally out-performed RCMs us-
ing other LSMs in representing regional climate. Despite the
overall performance gains evident for RCMs using Noah-MP,
these improvements were superior over temperate/coastal re-
gions of southeast Australia relative to the semi-arid interior.
These performance characteristics might be linked to Noah-
MP’s development being focused on Northern Hemisphere
mid-latitudes, including assumptions such as accounting for
differences in seasonality in the Northern versus Southern
hemispheres by shifting the Northern Hemisphere LAI pro-
files by 6 months. For the southeast Australian context, not-
ing its distinctive coastal dry sclerophyll and expansive in-
land grassland biomes, such assumptions might lead to dis-
continuities in quantities such as LAI. Given the geographic
focus of Noah-MP’s development as well as its performance
characteristics, it may be more suited for application over the
temperate regions of Australia rather than the semi-arid inte-
rior. It is also possible that modifying/tuning Noah-MP to
specific aspects of the Australian context would yield perfor-
mance benefits for follow-up dynamical downscaling.

Overall, the CMIP6-NARCliM2.0 ensemble produces a
good representation of recent mean climate that in several
key respects improves on the model skill of earlier NARCliM

generations. This study provides a foundation for more de-
tailed investigations of the model biases and future climate
changes described here, including process-focused stud-
ies exploring their mechanisms. CORDEX-CMIP6 NAR-
CliM2.0 RCM data provide valuable resources to investigate
projected climate changes and their impacts on societies and
natural systems and potential climate change mitigation and
adaptation actions for the CORDEX-Australasia region.

Code availability. A frozen version of the source code for the
Weather Research and Forecasting (WRF) version 4.1.2 used in
this study, as well as the configuration files for the simulations,
is available on Zenodo at https://doi.org/10.5281/zenodo.11184830
(Di Virgilio et al., 2024).

Data availability. Data for the NARCliM2.0 CMIP6-forced R3 and
R5 RCMs are being made available via the National Computing
Infrastructure (NCI; https://doi.org/10.25914/ysxb-rt43, NCI Aus-
tralia, 2024). WRF namelist settings for the NARCliM2.0 CMIP6-
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11184830 (Di Virgilio et al., 2024). Data for NARCliM1.5 RCMs
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nsw.gov.au/datasets/?cdp_type=NARCliM1.5, NSW Government,
2025a) and the Earth System Grid Federation (ESGF) CORDEX-
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