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Abstract. Inferences in Earth system science rely to a large
degree on the numerical output of multiple Earth System
Models. It has been shown that for many variables of inter-
est, the multi-model ensemble average often compares better
with observations than the output from any one individual
model. However, a simple arithmetic average does not re-
ward or penalize models according to their ability to predict
available observations, and for this reason, a weighted aver-
aging approach would be preferred for those cases in which
there is information on model performance. We propose an
approach based on concepts from information theory with the
aim to approximate the Kullback-Leibler distance between
model output and unknown reality, and to assign weights to
different models according to their relative likelihood of be-
ing the best-performing model in a given grid cell. This arti-
cle presents the theory and describes the steps necessary for
obtaining model weights in a general form, and presents an
example for obtaining multi-model averages of carbon fluxes
from models participating in the sixth phase of the Coupled
Model Intercomparison Project CMIP6. Using this approach,
we propose a multi-model ensemble of land-atmosphere car-
bon exchange that could be used for inferring long-term car-
bon balances with much reduced uncertainties in comparison
to the multi-model arithmetic average.

1 Introduction

Inferences in Earth system science (ESS) depend to a large
extent on the output from Earth system models (ESMs) that
combine different components of the carbon, water, and en-
ergy balance of Earth and make spatial and temporal pre-

dictions of a large number of variables of scientific inter-
est. These models are relatively large and transcend specific
knowledge of single disciplines. Multiple modeling groups
run large simulations and participate in coordinated Model
Intercomparison Projects (MIP), where the forcings to the
model are similar and the outputs across models are com-
parable (Eyring et al., 2016). For making inferences about a
particular aspect of the dynamics of the Earth system, one is
confronted with the problem of what model to analyze, how
to assign a degree of belief to the results of a certain model,
and how to perform averaging across models to obtain an
unbiased estimator of some variable of interest (Giorgi and
Mearns, 2002, 2003; Hagedorn et al., 2005; Knutti, 2010;
Knutti et al., 2010; Hausfather et al., 2022; Tebaldi and
Knutti, 2007; Sain and Kleiber, 2025).

These problems are not new to science, and a lot of pre-
vious work has been done in the fields of information the-
ory and statistics to address some of these issues. In par-
ticular, the problem of model selection and multi-model in-
ference in statistics, where the idea is to fit multiple mod-
els to observed data, is relatively well developed (Anderson,
2007; Burnham and Anderson, 2002; Millington and Perry,
2011; Claeskens and Hjort, 2008). However, classical multi-
model inference methods have been developed mostly for
simple statistical models, usually expressed as polynomial
functions, and not for dynamical models that recursively up-
date a large set of state variables based on a dynamical rule
as in ESMs. Therefore, there is a need to expand the exist-
ing theory of multi-model inference to the large-dimensional
models used in Earth system science.

Three main challenges emerge when trying to expand sta-
tistical methods of multi-model inference to ESMs. First,
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ESMs are not parameterized using statistical techniques such
as maximum likelihood estimation (MLE) for the entire set
of parameters of the model, which may vary spatially de-
pending on the process being represented. Hirotugu Akaike
showed in his seminal work that a measure of distance among
models can be obtained with the log-likelihood estimate
of the model with respect to an observational set (Akaike,
1974, 1981). Thus, the challenge is to find a way to obtain a
distance metric that does not rely on MLE methods. This is
particularly important for ESMs because model uncertainty
not only includes parameter uncertainty but also uncertainty
due to initial states and boundary conditions (Tebaldi and
Knutti, 2007). A second challenge is that the total number
of parameters in a given ESM is usually unknown to the user
of ESM numerical output. The classical statistical theory as-
signs penalties to models according to their number of pa-
rameters, but this is practically impossible for published out-
put from ESMs because there is no consistent reporting of
the type and number of parameters, and whether they were
obtained by an optimization method or agnostically inputted.
Thus, the classical theory needs to be modified by an ap-
proach that disregards model complexity and does not add a
penalty for it. A third challenge is the high-dimensionality of
the problem of multi-model inference with ESMs. While the
classical theory usually considers one predicted variable and
a small set of explanatory variables linked by a polynomial
function, the problem of inference in Earth system science
is to obtain expected values of a large set of state variables
reported in a multi-dimensional lattice (geographical coordi-
nates, time, and height or depth).

In this article, we propose an adaptation of the classi-
cal statistical theory of multi-model inference addressing the
challenges of lack of MLE, unknown parameter space, and
high dimensionality. We explicitly deal with the problem
of model averaging following the conceptual approach de-
scribed by Burnham and Anderson (2002), which builds on
the work developed by Hirotugu Akaike in the 1970s and 80s
(Parzen et al., 1998).

It has been shown in previous publications that the multi-
model average of a variable of interest such as surface air
temperature tends to agree better with observations than the
predictions of any one single model (Doblas-Reyes et al.,
2003; Hagedorn et al., 2005; Elvidge et al., 2023). The
arithmetic mean from a set of models gives no consider-
ation about the ability of some models to perform better
than others. This is equivalent to assuming that each model
is weighted equally in their prediction ability. However, it
has been shown that this “model democracy” is inappro-
priate for multi-model inference in climate science (Knutti,
2010; Knutti et al., 2017). Although we are aware that other
approaches for multi-model averaging of ESM output have
been proposed before (e.g., Knutti et al., 2017; Ribes et al.,
2021; Sanderson et al., 2015; Giorgi and Mearns, 2002;
Tebaldi and Knutti, 2007; Tebaldi et al., 2005; Merrifield
et al., 2020; Elvidge et al., 2023), we are not aware of

a previous methodology grounded on information-theoretic
principles. In addition, some previous approaches calculate
weights as fixed values for all output of a model, but it is de-
sirable to obtain weights based on the ability of some mod-
els to provide better estimates for some spatial regions than
others. Our proposed approach operates at the grid-cell level
and, therefore, produces weights based on the ability of a
model to predict the spatial distribution of a variable of inter-
est.

This article is organized as follows, first, we provide a con-
ceptual derivation of a distance metric appropriate for ESMs
using classical concepts from multi-model inference, and a
derivation of model weights to obtain ensemble averages
and uncertainties. The conceptual framework presented here
follows the derivation presented by Burnham and Anderson
(2002), but adapted to the specific case of ESMs. Then, we
present a step-by-step description of the method applied to
multidimensional ESM numerical output. We later apply the
method to the computation of the average net carbon ex-
change between the land and the atmosphere using models
from the CMIP6 archive and discuss the results.

2 Conceptual approach

We assume that a model g is an approximation of the un-
known full reality f , and the divergence between g and f is
given by the Kullback-Liebler information

I (f,g)=

∫
f (x) log

(
f (x)

g(x|θ)

)
dx, (1)

where x is the variable being modeled, and θ is the set of
parameters in the model g. In this framework, both f and g
are understood as probability density functions. In the case of
ESM model output, we can think of them as the proportional
distribution of some quantity x over a spatial and temporal
domain. For ESMs, the vector θ not only includes the set of
parameters in the model, but also the set of initial conditions
for the state variables that may lead to different ESM outputs.

The information or divergence I (f,g) is often interpreted
as a distance between two distributions even though it does
not meet the mathematical definition of a distance metric; i.e.
it is not symmetric (the value from f to g can be different
than from g to f ) and it does not satisfy the triangle inequal-
ity (Cover and Thomas, 2006). Nevertheless, for the purpose
of this article, it is useful to think of I (f,g) as a distance
between probability distributions, and we will use the term
distance as synonym of divergence throughout this article.
I (f,g) can also be interpreted from the point of view of

information theory as the amount of information available
to discriminate g from f (Kullback and Leibler, 1951), or
as the loss of information from full reality by the model ap-
proximation. In principle, we are interested in selecting or
ranking models according to I (f,g), but in practice, we can-
not compute f (x). This limitation is partly alleviated, as we
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will see later, by the expansion of Eq. (1) as

I (f,g)=

∫
f (x) logf (x)dx−

∫
f (x) log(g(x|θ))dx. (2)

Notice that each of these terms on the rhs of Eq. (2) can
be considered as an expectation of a probability distribution.
Furthermore, because full reality f is a fixed quantity that
does not depend on parameters or initial conditions, the first
term on the rhs of Eq. (2) can be considered as a constant. In
terms of expectations, Eq. (2) can be written as

I (f,g)= Ef [log(f (x))] −Ef [log(g(x|θ))]. (3)

This equation suggests that for a given model g, there would
be a set θm that minimizes the distance from reality f .

In the process of model development, investigators often
make decisions about initial and boundary conditions, and
the proper parameterization of the model based on previous
knowledge and certain data y that they have at hand. A model
would have a set of estimated parameters depending on the
available data, which can be expressed as θ̂ (y). It is reason-
able to expect that the set θ̂ does not correspond to θm, and
in fact, in most cases, the configuration of a model would be
further apart from the configuration that would minimize its
distance to full reality.

In terms of expectations, we are then interested in obtain-
ing an estimator of the distance I (f,g) with respect to the
variable of interest x and the available data y, expressed as

Ey Ex[log(g(x|θ̂ (y)))]. (4)

The seminal work of Hirotugu Akaike showed that this ex-
pectation can be approximated by the log-likelihood function
of the fitted parameters given the data

log(L(θ̂ |y))−K ≈ Ey Ex[log(g(x|θ̂ (y)))], (5)

where K is a bias-correction term. Hirotugu Akaike found
that under certain conditions, the number of parameters in
the model is a good approximation to the bias in using the
log-likelihood to approximate the expected relative distance
between the model and full reality. Therefore,K is generally
assumed as the number of parameters in a model. However,
the number of parameters in ESMs is generally very large
and unknown for users of model output data, and its inclusion
in the estimation of the I (f,g) distance would dominate over
the value of the log-likelihood. Therefore, we ignore the bias
correction term K and arrive to the expression

log(L(θ̂ |y))≈ Ê
θ̂
[I (f, ĝ)], (6)

where the ≈ symbol is used here instead of an equality be-
cause the exclusion of K . The key result is that the log-
likelihood of a model, configured with parameters and initial
conditions consistent with some observed data, is an approx-
imation of its expected distance to full reality.

The non-trivial problem now is to determine a reason-
able value of a log-likelihood for a parameterized ESM given
some observed data. In contrast to common statistical meth-
ods of MLE for simple statistical models, there is no con-
sistent use of MLE methods dealing with the hundreds of pa-
rameters in a fully coupled ESM. Also, there is not really any
observed data on the gridded format required for comparison
with ESM output because measurements are not performed
systematically for all points on the surface of the Earth. What
we usually have available is data products that are derived
from sparse observations and scaled to the terrestrial surface
following some data manipulation technique.

Under strong assumptions of linearity, equal variance,
and probability distributions from the exponential family
(normal, exponential), least-square estimates are identical to
maximum likelihood estimates. This is surely not the case for
the distribution of output variables from ESMs, but given the
absence of any other method for obtaining a log-likelihood
function of a parameterized ESM with respect to data, we
make here the strong assumption that

n log(σ̂ 2)≈ log(L(θ̂ |y)), (7)

where σ̂ 2 is the mean squared deviation between model pre-
dictions and some available data product. They are obtained
as

σ̂ 2
=

n∑
ε̂2
t

n
, (8)

and ε̂ are residuals. The lhs in Eq. (7) is the first compo-
nent of Akaike’s Information Criterion (AIC) for the least-
squares case without the correction term K . Although not
perfect, this approximation to the AIC and the log-likelihood
function can be estimated from existing model output from
ESMs and some observational data product, provided that
both are available for the same spatial and temporal coordi-
nates. Thus, mimicking the definition of AIC, we define for
our purposes the distance metric A as

A := n log(σ̂ 2). (9)

One characteristic of A is that it preserves some of the
properties of AIC; it can be viewed as a negative entropy
(Akaike, 1985), and can be used to compare its value across
different models on an absolute scale. In other words, one
can compute Ai for a set of models i ∈ [1, . . .,k] and rank
them according to their relative difference. One of the models
in the set would have the minimum value Am and can be
considered as the model with the minimum distance to the
observations. Furthermore, for any other model in the set,
we can calculate their difference with respect to this “best”
model as

1i :=Ai −Am. (10)

More importantly, the values of 1i are estimates of

E
θ̂
[Î (f,gi)] −minE

θ̂
[Î (f,gi)], (11)
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i.e., they are estimates of the relative difference between the
expected distance between the model and full reality with
respect to the same distance for the model that is closer to
full reality (Fig. 1). Recall from Eq. (3) that the expected
value for full reality is a constant, therefore its actual value
plays no role regarding these values of 1i .

Another important contribution of Hirotugu Akaike is a
method to obtain the likelihood of a model given the data
L(gi |data) based on the value of 1i for each model. It can
be interpreted as the relative strength of evidence for a par-
ticular model in the set of models being considered given the
available data, and it is expressed as

L(gi |data)∝ exp
(
−
1i

n

)
. (12)

For each model gi in the set of models, it is also possible
to obtain model probabilities, which are weights of the evi-
dence in favor of a model being the model with the lowest
I (f,g) distance. These model probabilities or weights can
be obtained as

wi =
exp(−1i

n
)

k∑
r=1

exp(−1r
n
)

. (13)

Note that
∑
wi = 1.

Combining Eq. (13) with Eqs. (10) and (9) and after sim-
plification, we arrive at an expression of the weights in terms
of the mean squared deviations

wi =
1/σ̂ 2

i

k∑
r=1

1/σ̂ 2
r

. (14)

Thus, the weights can be understood as being based on the
inverse of the deviations between model output and data
product. This expression for the weights (Eq. 14) is identi-
cal to the formula for inverse-variance weighting, which is
a maximum likelihood estimator for the mean of a statisti-
cal population with independent and Gaussian distribution
(Bonamente, 2022). The equivalence between these two ex-
pressions for the weights (Eqs. 13 and 14) emerges only be-
cause our choice of distance metric A to approximate the log-
likelihood function, but for other representations of A these
formulas would differ.

With these weights, we can now proceed to compute aver-
ages of model predictions according to our strength of belief
in the predictions of each model. For a variable of interest x,
the multi-model average is simply

x =

k∑
i=1

wi · xi . (15)

To obtain the variance of the weighted average, we take
advantage of the fact that the variance of an inverse-variance

weighted average is equal to the inverse of the deviations
(Bonamente, 2022; Kanters, 2022; Rotondi et al., 2022)

Var(x)=
1

k∑
i=1

1/σ̂ 2
i

. (16)

This expression for the variance is consistent with the ex-
pression of the weights as in Eq. (14) where each individual
estimate of the inverse-variance for each model is normalized
by their sum across all models. Furthermore, the values 1/σ̂ 2

i

have a special interpretation from an information theoretic
perspective, they are estimates of Fisher’s information for
distributions of the exponential family (Rotondi et al., 2022).
They can be interpreted as the amount of information con-
tributed by model i to the weighted average, so the larger the
dispersion of model output from the observations, the lower
the contribution of the model to the weighted average.

3 Implementation with ESM output and gridded data
products

Most numerical output from an ESM is indexed along three
coordinate axes, one for time, and two for spatial coordinates.
Because the spatial coordinates can be simplified to just one
coordinate if we know the mapping from a one-dimensional
index to a two-dimensional coordinate space, we define s as
the spatial coordinate, and t as the time coordinate. We also
define i as the indexing for the models in the set of all con-
sidered ESMs. Given these definitions, we consider a model
variable x available from one single model for one single grid
cell at one point in time as xi,s,t . Similarly, we assume that
we have a comparable variable derived from observations y
from a specific data product j for one grid cell s and one time
point t and denote it by yj,s,t . The residual for each grid cell
and each time point between model i and data product j is
given by

ε2
i−j,s,t = (xi,s,t − yj,s,t )

2. (17)

This equation can be used to produce geographical maps
of residuals between one single model i and data-product j
for each point in time. An estimate of the mean squared de-
viation, from the first time point t0 until a final time point tf
would be

σ 2
i−j,s =

tf∑
t=t0

ε2
i−j,s,t

n
, (18)

with n= h(tf− t0), i.e., the total number of time points, from
t0 to tf multiplied by the time-step h. This equation is used
to produce one single map (no time points) of mean squared
deviations for the grid cells of the model versus the available
data product. Now we can compute the distance metric A as

Ai−j,s = n log(σ 2
i−j,s). (19)
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Figure 1. Conceptual representation of the approximation of the Kullback-Liebler distance between models and full reality I (f,gi) by
the proposed metric Ai , and relative ranking of models according to the metric 1i . Models gi predict the value of variable x based on a
configuration of parameters and initial conditions encoded in the vector θ̂ , which is based on some a priori data y. In this example, the model
with the closest distance to the reference data is g1, so A1 =Am. The relative ranking among models is defined as 1i =Ai −Am. Notice
that the distance from full reality and data is always constant as well as the distance from full reality to model g1. Therefore, the relative
ranking of the models is similar to ranking models based on their Kullback-Liebler distance to full reality.

This equation leads to one single map for each model-data
product combination. If we repeat this calculation for all
models being considered, i ∈ [1, . . .,k], we will obtain the
set of k number of maps Ai−j,s := [A1−j,s, . . .,Ak−j,s]. Our
purpose now is to identify the grid-cells from this set of maps
in which the values of A are the lowest, and produce one sin-
gle map as

Amin
j,s =min

i−j
[A1−j,s, . . .,Ak−j,s]. (20)

Notice that this map is a combination of all the grid cells that
better agree with the data from any of the models. It does
not select uniformly all the grid cells of a particular model
that perform better, but rather the grid cells from any of the
models with minimum A distance. By doing this, we make
sure that we select spatial regions in which particular models
perform better than others.

Now we proceed to calculate a set of k maps of differences
with respect to this minimum as

1i−j,s =Ai−j,s −Amin
j,s . (21)

We are now ready to compute a set of k maps of weights as

wi−j,s =
exp(−1i−j,s

n
)

k∑
r=1

exp(−1r−j,s
n

)

, or

wi−j,s =
1/σ 2

i−j,s

k∑
r=1

1/σ 2
r−j,s

. (22)

This will result in a set of k maps of weights that will be used
to produce a set of n maps (along the time dimension) of the
weighted average for the variable of interest as

xj,s,t =

k∑
i=1

wi−j,s · xi,s,t , or

xj,s,t =

k∑
i=1
xi,s,t/σ

2
i−j,s

k∑
i=1

1/σ 2
i−j,s

. (23)

The variance of the weighted average is obtained as the sum
of the inverse-deviation across models

Var(xj,s)=
1

k∑
i=1

1/σ 2
i−j,s

. (24)
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Notice that the weights and the variance of the weighted
average are fixed over time (not time-dependent), but they
can be used to obtain averages and prediction uncertainties
that include the time dimension, even for model output that
spans beyond the time interval of the available observations.
Thus, the weighted average with interval estimation at one
standard deviation can be obtained as (cf. Rotondi et al.,
2022)

xj,s,t ±

√√√√Var(xj,s)+
k∑
i=1

wi−j,s(xi,s,t − xj,s,t )2, (25)

with t ∈ [t−0 ,f
+

f ]; i.e., with initial times starting before
model output and data product overlap (t−0 ≤ t0) and/or final
time after model output and data product overlap (t+f ≥ tf). In
other words, we can take a smaller period of time when the
observational product and the model output overlap to obtain
the weights, and then use the weights to average across the
entire time span of the available model output.

As a reference, it is useful to obtain the average and the
prediction intervals for the equal-weights scheme, where the
average is given by

xs,t =

k∑
i=1
xi,s,t

k
, (26)

and the prediction interval can be expressed as

xs,t ±

√
(xi,s,t − xs,t )

2

k
. (27)

Notice that the prediction intervals for this equal-weighting
case do not include a variance term with respect to an ob-
servational product. This is simply because it is irrelevant to
include this source of variation when the averaging does not
take into consideration the existence of any reference obser-
vation. However, for comparing the prediction intervals be-
tween the equal-weights and the weighted average, the vari-
ance Var(xj,s) term in Eq. (25) adds an undesired source
of variability. To make comparisons on equal footing, we
thus use a modified version of the prediction intervals for the
weighted average as

xj,s,t ±

√√√√ k∑
i=1

wi−j,s(xi,s,t − xj,s,t )2, (28)

which is identical to the expression used in other model
weighting approaches previously proposed with climate
model ensambles (Sain and Kleiber, 2025, p. 212).

4 Ensemble average of land-atmosphere carbon
exchange from CMIP6 models

To demonstrate the use of the procedure described above, we
computed model weights and a multi-model ensemble aver-

age of the net flux of carbon between the land and the at-
mosphere using two different observational products as ref-
erence, X-BASE (Nelson et al., 2024) and the Jena Carbo-
Scope (Rödenbeck, 2005). For the model ensemble, we used
9 models from the CMIP6 archive that report gross primary
production and respiration fluxes as well as net biome pro-
duction (Table 1).

The X-BASE product is based on the upscaling of eddy-
covariance measurements that quantify the net ecosystem ex-
change (NEE) of carbon dioxide due to the assimilation and
respiration of carbon by vegetation and soils. Therefore, this
product can be compared with the difference between gross
primary production (GPP) and ecosystem respiration (Re)
(NEP=GPP−Re) from ESMs. The Jena CarboScope prod-
uct is based on an atmospheric inversion system that uses
mole fraction data of carbon dioxide and predicts net carbon
exchange fluxes using an atmospheric transport model. This
product is comparable with the variable net biome produc-
tion (NBP) reported by the ESMs and includes, in addition
to GPP and Re, fluxes due to disturbances such as fires and
land-use changes.

The minimum distance maps Am obtained using the X-
BASE and the Jena CarboScope products, showed large dif-
ferences among each other (Fig. 2). However, these maps
should not be compared directly because the distance met-
ric A is an absolute distance metric, and since values of NEP
tend to be higher than values of NBP, it is expected that the
Am distance of the models to the X-BASE product would be
higher than the distance of the models to the CarbonScope
product (Fig. 2). Similarly, when comparing regional differ-
ences within any of the two Am maps, it is also clear that
regions with low carbon fluxes such as the arid and semi-
arid regions in Africa, the Arabian Peninsula and Central
Australia show the lowest distances to the models. However,
these short distances do not necessarily mean that the models
perform well in these regions. It just shows that when fluxes
are low, the models predict a low distance to the observa-
tional product, but this cannot be confused with good perfor-
mance. For ranking model performance a relative measure
such as 1 (Figs. A3 and A4 in the Appendix) and the model
weights w are preferred.

The weights obtained for each model provide a relative
ranking of the models with respect to their distance to the ob-
servational product, and serve as a suitable metric to assess
model performance. The values obtained differed consider-
ably between the NEP and the NBP reference (Figs. 3 and 4),
which shows that model weights may change substantially
depending on the observational product being used as a refer-
ence. Furthermore, for each model, it is clear that there are re-
gions that perform better or worse than others in comparison
to the observational product. For example, the MPI-ESM1-
2-LR model performs consistently poorly in the Amazon re-
gion, in tropical Africa and North America, but performs rel-
atively well in Europe and northern Eurasia. Other models
also show consistent spatial patterns of good or poor perfor-
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Table 1. Earth system models from the CMIP6 archive used in this study and their relevant features.

Earth system model Modeling NEP NBP N cycle Fires Dynamic Land carbon model
centre vegetation

ACCESS-ESM1-5 CSIRO Yes Yes Yes (P-cycle) No No CABLE2.4 with CASA-CNP
BCC-CSM2-MR BCC Yes No No No No BCC-AVIM2
CanESM5 CCCma Yes Yes No No Only wetlands CLASS-CTEM
CESM2 CESM No Yes Yes Yes Yes CLM5
CNRM-ESM2-1 CNRM Yes Yes Implicit Yes (Natural) No ISBA-CTRIP
NOAA-GFDL-ESM4 NOAA, GFDL Yes Yes No Yes Yes LM4p1
MPI-ESM1-2-LR MPI Yes Yes Yes Yes Yes JSBACH3.2
NorESM2-LM NCC Yes Yes Yes Yes No CLM5
UKESM1-0-LL UK Yes Yes Yes No Yes JULES-ES1.0

Figure 2. Minimum distances (Am) between (a) NEP from CMIP6 ESMs and X-BASE, and (b) NBP from CMIP6 ESMs and the Jena
CarboScope product. More negative values in darker colors indicate smaller distances (values in logarithmic scale), representing larger
similarity between the ESMs and the observational products. Note that the numerical scales between (a) and (b) are different.

mance, indicating that the weights do not capture randomly
spaced grid-cells, but aggregated regions where the models
tend to perform consistently in either direction with respect
to the observations. These maps of weights also show that
there is no one single model that performs best everywhere,
or contrastingly, one single model that performs worse ev-
erywhere.

The values of weights for each grid cell were combined
with the predictions of the variable of interest for each model
to produce weighted averages at the grid cell level for each
time step, and then summed across grid cells to obtain time
series (Fig. 5). The obtained results show that the weighted
average of NEP is consistently lower than the arithmetic av-
erage (38.2 %), mostly because the influence of models that
make predictions with values much higher than the observa-
tional product have much less weight in the weighted average
(Fig. 5a). In fact, the models that predict the highest values
of NEP, namely NOAA-GFDL-ESM4 and ACESS-ESM1-
5, make predictions well outside the uncertainty range ob-
tained for the weighted average, indicating the small contri-
bution that these models make to the obtained average. The
prediction uncertainty was also considerably smaller for the
weighted average, approximately 38.2 % lower than the un-
certainty for the arithmetic average.

For the variable NBP, the arithmetic and the weighted av-
erage are relatively close to each other for the entire simula-
tion period (Fig. 5b). In this case, most models make predic-
tions close to each other and, therefore, they contribute more
evenly to the weighted average. Nevertheless, the obtained
uncertainty range is lower for the weighted average (39.1 %),
indicating that those models closer to the observational prod-
uct have more weight in terms of both the average and its
variance, and therefore help to reduce overall uncertainty in
the predictions.

For both variables, NEP and NBP, the estimate of uncer-
tainty with our proposed approach is also significantly lower
than the uncertainty based on equal weights (Fig. 5). We ob-
tained a much lower level of uncertainty for the weighted av-
erage because the method applies probabilities or strengths
of belief to the different models and grid cells, and therefore
this averaging procedure increases confidence in the inferred
multi-model average.

However, the prediction intervals in Fig. 5 do not include
the inter-model variance term Var(xj,s) from Eq. (25); i.e.,
only the deviation of the models with respect to the aver-
ages excluding the deviation of the models from the observa-
tional product. When combining both sources of uncertainty,
the overall variance is much larger for the weighted average
(Fig. A2). For the arithmetic average, this source of varia-
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Figure 3. Weights w of CMIP6 models for the variable NEP with respect to the X-BASE observational product. The diverging color palette
is centered at a value of 1/8, indicating whether a model contributes more or less than the equal weight of 1/8 from the k = 8 models. For
each grid cell, the sum of the weights of the 8 models adds up to 1.

tion is generally not included because it is irrelevant in this
context to compare the models with observations, but in case
this source of uncertainty would be included, the prediction
intervals of the arithmetic average would be much larger than
for the weighted average.

It is also important to note that even though the observa-
tional products are only available for a short period of time,
we used the obtained weights for the entire period of the sim-
ulations of the ESMs under the assumption that a model that
performs well during the period in which observations are
available, should be able to perform well for other periods.
This assumption is obviously questionable, and probably in-
adequate for periods of time much beyond the time range of
available data. However, we still believe that this assumption

is better than to assume that all models are equally reliable
for all periods of time as it is implicitly assumed with an
equal weight approach.

5 Discussion

Although other authors have proposed methods to obtain
weights and multi-model averages from the predictions of
ESMs (Tebaldi and Knutti, 2007; Merrifield et al., 2020, and
references therein), we presented here an approach based
on information-theoretic concepts that is easy to implement
and can help to improve inferences from ESMs minimiz-
ing biases and reducing uncertainties. Most previously pro-
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Figure 4. Weights w of CMIP6 models for the variable NBP with respect to the Jena CarboScope observational product. The diverging color
palette is centered at a value of 1/8, indicating whether a model contributes more or less than the equal weight of 1/8 from the k = 8 models.
For each grid cell, the sum of the weights of the 8 models adds up to 1.

posed methods have focused on the problem of probabilis-
tic climate change projection taking into account the vari-
ability around the ensamble average (Giorgi and Mearns,
2002, 2003; Tebaldi et al., 2005; Knutti et al., 2017). There-
fore, many of these methods lack a level of generality ad-
equate for other problems of interest. In addition, many of
the previously proposed methods include a step in which a
generalized linear model is fit to the model output to obtain
weights for specific regions or periods of time (e.g. Greene
et al., 2006). For approaches that use a Bayesian approach
(e.g. Tebaldi et al., 2005), it is necessary to specify a family
of prior distributions for the mean and variance, which adds a
layer of complexity and uncertainty for obtaining the model
weights.

As opposed to these previous methods, our approach
makes no assumptions of a generalized model and/or prior
distributions. Additional advantages of this method over
others include: (1) a theoretical foundation based on con-
cepts from probability and information theory (Akaike,
1974, 1981; Anderson, 2007; Burnham and Anderson, 2002).
(2) The weights have a relevant interpretation, they are evi-
dence in favor of a model prediction having the smallest dis-
tance to full reality, even though comparisons are only per-
formed with respect to an uncertain observational product.
For the particular choice of A as the logarithm of the mean
squared deviations, the weights have a straight forward inter-
pretation: the models with less deviation from the observa-
tions contribute more to the weighted average. (3) The cal-
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Figure 5. Annual time series of (a) NEP and (b) NBP from individual CMIP6 ESMs obtained as arithmetic averages (purple lines) and the
weighted averages using the method proposed here (black lines). Uncertainty ranges are calculated according to Eq. (28). For the arithmetic
average, the weights for the computation of uncertainty are wi = 1/8.

culation of weights is based on spatial performance of model
output with respect to observations, and not a uniform weight
for all grid-cells of a model.

For the particular choice of the distance metric A as the
logarithm of the mean squared deviation between model out-
put and observational product, we obtained weights that are
similar to an inverse-variance weighting scheme. This result
is expected because the inverse-variance weighted average
is an efficient maximum likelihood estimator of the mean of
a statistical population, which corresponds to our choice of
the mean squared deviation as a log-likelihood function. But
we know that this choice of log-likelihood function is not
ideal, and should be replaced if other approaches for MLE
are available, which would result in an expression for the
weights different than the inverse-variance weights. Never-
theless, the use of inverse-variance weighting is an intuitive
and easy approach to apply to ESM ensambles, and it is also
common in other fields such as in meta-analyses (Hartung
et al., 2008; Kanters, 2022) and in biomedical studies (Man-
sournia and Altman, 2016).

However, as with other approaches, some weaknesses
should be acknowledged and should be improved in future
research. These are: first, lack of a log-likelihood function

for the assessment of model-observation distances. Although
such a function is difficult to obtain given the process of de-
velopment and parameterization of ESMs, it is still desirable
to obtain an unbiased estimator of the log-likelihood of a pa-
rameterized model with respect to available data. We are not
aware of another method that could be used to replace the
simple log of square residuals used here, but it is also im-
portant to point out that other measures of distance used in
other methods apply mostly the squared residuals as a dis-
tance metric. Therefore, our method offers a small theoretical
improvement over previous approaches based on the theoreti-
cal knowledge that, under certain assumptions, the logarithm
of square residuals is a first-order approximation to a maxi-
mum likelihood estimator.

Second, other authors have raised concerns over the issue
of model independence (Knutti, 2010; Knutti et al., 2010), a
problem that we do not address explicitly here. They argue
that many models share the same base code or are based on
the same underlying principles, and cannot be treated as com-
pletely independent estimates for obtaining an unbiased aver-
age. In particular, the method of Knutti et al. (2017) produces
weights that penalize a model according to its prediction dis-
tance to that of other models. We think this is a valid concern,
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Figure 6. Pearson correlation coefficients ρ of variable NBP be-
tween CESM2 (m1) and NorESM-LM (m2). These two models
share the same land model (CLM5), but due to differences in other
components of the model, the predictions of NBP are not similar
and often correlate with values of ρ < 0.9.

particularly when weights are obtained for the aggregated
(sums or averages) across all grid cells of a model. However,
the implementation of similar processes in two models but
with differences in other components such as its climate sen-
sitivity may lead to very different predictions. For instance,
CESM2 and NorESM2-LM share the same land vegetation
model, CLM5 (Table 1). Although the spatial distribution of
the weights for NBP with these models tends to correlate
well, the correlation is not uniform across all grid cells and is
mostly below 90 % (Fig. 6). This implies that a shared com-
ponent of a model can interact with other non-shared compo-
nents, resulting in different predictions that should be treated
differently for the calculation of weights.

It is also important to note that, in the ideal case in which
we would have a perfect understanding of Earth system pro-
cesses, all mathematical models representing these processes
would converge to the same predictions. Therefore, it is still
debatable whether models that agree with each other because
they have a common representation of underlying processes
should be penalized. For this reason, we refrain from intro-
ducing a penalization term to our computation of weights,
but we acknowledge that this is an issue that deserves more
theoretical work. In particular, from an information-theoretic
point of view, the problem should be adressed in terms of
the mutual information shared among models (Majhi et al.,
2023).

A third issue that deserves more attention is the lack of
penalization for model complexity in the approach we pro-
pose. The original work proposed by Hirotugu Akaike is very
well known for the introduction of a penalization term due
to the number of parameters in the model, a penalization
well supported by mathematical theory and philosophy of
science (Akaike, 1974, 1981). However, the scientific trend
in ESM development is the addition of increased levels of

detail supported by increased computational power (Held,
2005, 2014). We do not have information on the total num-
ber of parameters used in each ESM, but we believe it should
be on the order of 102–103. Therefore, adding a penaliza-
tion term as in the traditional form in the computation of
AIC would lead to differences among models that are dom-
inated by differences in their number of parameters, obscur-
ing differences in model distances with respect to observa-
tions. But ignoring the penalization due to model complex-
ity, as we do in our approach, implies that we continue ignor-
ing the tension between model complexity and understand-
ing, and focus exclusively on model performance. We believe
this a topic that deserves much more theoretical attention and
should be addressed in future improvements on the approach
we propose.

6 Conclusions

We proposed here an approach to obtain probabilities of
model performance with respect to available observational
products, and to derive weights of evidence in favor of a
model being the best from a set of available models. These
weights are not constants for a particular model, but are ob-
tained at the grid-cell level for each model. They provide esti-
mates of the relative likelihood that a model performs well at
a particular grid cell and therefore can be used as the weight
of evidence for a model performing well in a particular lo-
cation. We believe this probabilistic interpretation, grounded
on solid concepts from information theory, provides advan-
tages over other methods and can be of real practical use for
making inferences of average behavior in Earth system sci-
ence.

Using this approach for obtaining ensemble averages of
the variables NEP and NBP from models participating in
CMIP6, we found that our proposed weights can significantly
reduce bias when a small number of models make predictions
further away from a reference observational product and all
other models in the ensemble. The prediction uncertainty for
the weighted average is also smaller than the uncertainty of
the arithmetic average. Overall, the approach helps to in-
crease confidence in inferring spatial and temporal behaviors
from multiple models.
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Appendix A: Additional figures

Figure A1. Variance of the weighted average from the CMIP6 ESMs outputs of (a) NEP using X-BASE and (b) NBP using Jena CarboScope.
The variance is calculated from Eq. (24).

Figure A2. Annual time series of (a) NEP from CMIP6 ESMs and X-BASE, and (b) NBP from CMIP6 ESMs and the Jena CarboScope
product obtained as the weighted averages using the method proposed here (black lines). Uncertainty ranges are expressed as the average
value± the full value of prediction uncertainty from Eq. (25).
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Figure A3. Maps of differences 1 with respect to minimum distances (Am) of CMIP6 models for the variable NEP and the X-BASE
observational product. Small numbers in darker colors indicate smaller distances, representing a larger similarity between ESMs and X-
BASE.
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Figure A4. Maps of differences 1 with respect to minimum distances (Am) of CMIP6 models for the variable NBP and the Jena Carbo-
Scope observational product. Small numbers in darker colors indicate smaller distances, representing a larger similarity between ESMs and
CarboScope.
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