Geosci. Model Dev., 18, 6597-6621, 2025
https://doi.org/10.5194/gmd-18-6597-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Impact of topography and meteorological forcing on snow
simulation in the Canadian Land Surface Scheme Including

Biogeochemical Cycles (CLASSIC)

Libo Wang!, Lawrence Mudryk!, Joe R. Melton?, Colleen Mortimer!, Jason Cole>, Gesa Meyer?, Paul Bartlett', and

Mickaél Lalande*®

IClimate Processes Section, Climate Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
2Climate Processes Section, Climate Research Division, Environment and Climate Change Canada, Victoria, BC, Canada
3Canadian Centre for Climate Modelling and Analysis, Climate Research Division,

Environment and Climate Change Canada, Victoria, BC, Canada

4Centre for Research on Watershed-Aquatic Ecosystem Interactions, Environmental Sciences Department,
Université du Québec a Trois-Rivieres, Trois-Rivieres, QC, Canada
SCentre for Northern Studies, Université Laval, Québec, QC, Canada

Correspondence: Libo Wang (libo.wang@ec.gc.ca)

Received: 17 March 2025 — Discussion started: 28 March 2025

Revised: 14 July 2025 — Accepted: 11 August 2025 — Published: 29 September 2025

Abstract. Our study evaluates the impacts of an alternate
snow cover fraction (SCF) parameterization on snow simula-
tion in the Canadian Land Surface Scheme Including Biogeo-
chemical Cycles (CLASSIC). Three reanalysis-based mete-
orological datasets are used to drive the model to account
for uncertainties in the forcing data. While the default pa-
rameterization assumes a simple linear relationship between
SCF and snow depth with no dependence on topography,
the alternate parameterization accounts for the topographic
effects of sub-grid terrain on SCF. We show that the alter-
nate parameterization improves SCF simulated in CLASSIC
during winter and spring in mountainous areas for all three
choices of meteorological datasets. Annual mean bias, un-
biased root mean squared area, and correlation improve by
75 %, 32 %, and 7 % when evaluated with MODIS SCF ob-
servations over the Northern Hemisphere. We also demon-
strate that the improvements to simulated SCF lead to further
improvements in variables related to surface radiation, en-
ergy fluxes, and the water cycle. Finally, we link relative bi-
ases in the meteorological forcing data to differences in sim-
ulated snow water equivalent and SCF. Assessment of simu-
lations with different combinations of SCF parameterizations
and meteorological datasets reveals the large impact of mete-
orological forcing on snow simulation in CLASSIC. Two out

of the three meteorological datasets were bias-adjusted us-
ing observation-based datasets. However, simulations forced
by the dataset without bias correction outperform relative to
simulations forced by datasets with bias correction, suggest-
ing that there are large uncertainties in the observation-based
datasets and/or methods used for bias correction. This study
underscores the importance of accounting for topographic ef-
fects of sub-grid terrain and accurate meteorological forcing
on snow simulation in land surface models.

1 Introduction

Snow cover exists from six to nine months of the year at
the high latitudes and high elevations of mountainous re-
gions. The seasonal transition from snow covered to snow
free conditions can have a large impact on the stability of per-
mafrost, the length of the active growing season, and surface
water and energy balances due to the much higher albedo
of snow cover than other land surfaces (e.g., Myneni et al.,
1997; Betts et al., 1998; Osterkamp and Romanovsky, 1999;
Frolking et al., 2006). Snow cover plays an important role in
the regional and global climate system because of the snow-
albedo feedback mechanism (Fletcher et al., 2009; Qu and
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Hall, 2013). Any uncertainty in the magnitude of this climate
feedback decreases our ability to reduce uncertainty in cli-
mate sensitivity (Roe and Baker, 2007). Therefore, accurate
simulation of snow cover is crucial for future climate predic-
tions in climate and Earth system models (ESMs).

In principle, snow depth (SND) should vary considerably
at sub-grid scales of global climate models as a result of
multiple heterogeneities in land cover, terrain, and meteoro-
logical conditions (Liston, 2004). Most land surface mod-
els (LSMs) explicitly treat only some of this heterogene-
ity, for example by accounting for different land cover types
within a grid cell (Verseghy et al., 2017). Snow cover frac-
tion (SCF) parameterizations are commonly used to account
for unresolved (sub-grid scale) snow depth variability. How-
ever, most models from the Coupled Model Intercompari-
son Project (CMIP) phase 5 (Taylor et al., 2012) and phase 6
(Eyring et al., 2016) have been found to overestimate SCF in
mountainous regions, often with a corresponding cold bias
in surface air temperature (Su et al., 2013; Lalande et al.,
2021). These biases are also present in the most recent Cana-
dian Earth System Models (CanESMS5, Swart et al., 2019;
Sigmond et al., 2023) and the latest version of its land sur-
face component, the Canadian Land Surface Scheme Includ-
ing biogeochemical Cycles (CLASSIC, Melton et al., 2020;
Seiler et al., 2021). The SCF overestimation has been at-
tributed to many potential causes, such as too much precipita-
tion and/or overly simplistic SCF parameterizations in ESMs
(Lalande et al., 2021; Miao et al., 2022).

Some early SCF parameterizations assumed a linear in-
crease in snow cover with snow depth or snow water equiv-
alent (SWE), reaching 100 % SCF once a specified thresh-
old was met (e.g., Verseghy, 1991; Bonan, 1996). Other
approaches incorporated surface roughness length into the
SCF-SND (or SWE) relationships (e.g., Dickinson et al.,
1993; Marshall and Oglesby, 1994), and distinguished SCF
estimates between bare ground and vegetated areas (Douville
et al., 1995; Yang et al., 1997). Large uncertainties in mod-
eled SCF from these early schemes motivated efforts to re-
fine parameterizations by accounting for terrain heterogene-
ity or incorporating sub-grid snow distribution (Roesch et
al., 2001; Liston, 2004). More recent SCF parameterizations
have included snow density (e.g., Niu and Yang, 2007; La-
lande et al., 2023) and land cover type (e.g., He et al., 2023),
with some schemes adopting separate formulations for snow
accumulation and melt periods (Swenson and Lawrence,
2012). Some of these parameterizations account for topo-
graphic effects of sub-grid terrain on SCF (e.g., Douville et
al., 1995; Roesch et al., 2001; Swenson and Lawrence, 2012;
Lalande et al., 2023), which have been shown to be crucial
for accurate SCF simulation in mountainous regions (Miao
et al., 2022).

In CLASSIC, the default parameterization historically
used is a linear relationship between SCF and SND with
no dependence on topography. A grid cell is considered
fully snow-covered when the diagnosed SND reaches 0.1 m
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(Verseghy, 1991). Melton et al. (2019) investigated the im-
pact of two alternative SCF parameterizations on SCF and
permafrost area simulated by CLASSIC. The first was to
change the SCF-SND linear relationship to a hyperbolic tan-
gent function (Yang et al., 1997), and the second was to
change the SCF-SND linear form to an exponential form
(Brown et al., 2003). Both alternative SCF parameterizations
worsened performance in terms of the global permafrost area
and active layer thickness, so that neither was implemented.
Here we consider another option previously developed
by Swenson and Lawrence (2012). Their parameterization
(hereafter referred as SL12) qualitatively reproduces the hys-
teresis present in the observational data (SCF-SND relation-
ship) between snow accumulation and ablation seasons while
also accounting for the topographic effects of sub-grid ter-
rain. The SL12 parameterization was implemented in the
Community Land Model version 5 (CLMS5, Lawrence et al.,
2019), the land surface component in the Community Earth
System Model version 2 (CESM2, Danabasoglu et al., 2020).
Notably, CESM2 was one of the models that showed the low-
est surface air temperature and SCF biases over the High
Mountain Asia (HMA) region among the CMIP6 models
(Lalande et al., 2021). Based on these results, the SL12 pa-
rameterization was implemented in the CLASSIC model and
here we evaluate the impact of this change on SCF, SWE,
and other snow-related land surface variables. Our evaluation
is based on offline CLASSIC simulations forced by histori-
cal temperature and precipitation from reanalyses. Because
there is uncertainty in these historical values, especially in
mountainous regions, we use three different reanalysis-based
meteorological datasets to drive CLASSIC. For each meteo-
rological forcing datasets we perform two CLASSIC simu-
lations, one with the default SCF parameterization and one
with the SL12 parameterization. The two parameterization
schemes are compared with observed SCF and SWE, and the
other snow-related land surface variables are evaluated using
the Automated Model Benchmarking R package (AMBER,
Seiler et al., 2021). The remainder of this paper is organized
as follows. In Sect. 2, we describe the CLASSIC model,
the two SCF parameterizations, the forcing data, and model
setup. In Sect. 3, we describe the observation data and our
evaluation methods. Results are detailed in Sect. 4 and dis-
cussion points in Sect. 5. We present conclusions in Sect. 6.

2 CLASSIC model, SCF parameterization methods,
and model setup

2.1 CLASSIC description and snow model
characteristics

CLASSIC is an open-source community land model that is
designed to address research questions that explore the role
of the land surface in the climate system. It is the successor
to the coupled modelling framework based on the Canadian
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Land Surface Scheme (CLASS; Verseghy, 1991; Verseghy
et al., 1993) and the Canadian Terrestrial Ecosystem Model
(CTEM; Arora and Boer, 2005; Melton and Arora, 2016).
The physics and biogeochemistry modules of CLASSIC are
based on CLASS and CTEM models, respectively. Older ver-
sions of CLASSIC are under the name CLASS-CTEM. The
CLASSIC model simulations can be performed at point, re-
gional, and global scales both in coupled and offline modes.
CLASSIC has been applied in an offline context, i.e. forced
with observed meteorology (e.g. Bailey et al., 2000; Bartlett
et al., 2006; Melton et al., 2019), as the physical land surface
component of regional climate models, e.g. CRCM (Wang
et al., 2014; Ganji et al., 2015) and CanRCM (Scinocca et
al., 2016), and integrated into each version of the Canadian
Atmospheric Model (CanAM; von Salzen et al., 2013), and
Earth System Model (CanESM; Arora et al., 2011; Swart et
al., 2019) since the early 1990s.

The physics component of CLASSIC models energy and
water balances separately for the vegetation canopy, snow,
and soil (Verseghy, 1991; Melton et al., 2019). As a first-
order treatment of subgrid-scale heterogeneity, each grid cell
is divided into four sub-areas: vegetated, bare soil, vegetated
with snow cover, and snow cover over bare soil. Snow is
represented as a single layer, and canopy snow processes
such as interception, unloading, sublimation and melt are
included (Bartlett et al., 2006; Verseghy et al., 2017). The
grid cell albedo is computed as a weighted mean based on
the fractional coverages for each surface type. In previous
versions of CLASSIC, the snow albedo decreases exponen-
tially with time from fresh snow values according to empiri-
cally derived functions (Verseghy, 1991). In more recent ver-
sions, a new physics-based snow albedo parameterization is
available, which accounts for contributions of black carbon
snow mixing ratio and the effective snow grain size on snow
albedo (Namazi et al., 2015). The new snow albedo scheme
is the default scheme in CanESM models and is used in this
study. Further details on the CLASSIC model can be found
in Melton et al. (2020).

2.2 SCF parameterization methods
2.2.1 The current default SCF parameterization

In CLASSIC, the thicknesses of all layers (snow and soil) are
recommended to be greater than 0.1 m to avoid numerical in-
stability problems. Therefore, the local SND over the snow-
covered portion of a grid cell is not allowed to decrease be-
low this threshold (0.1 m), instead, the fractional snow cover
decreases to conserve snow mass. Snow cover is considered
complete when SND reaches 0.1 m; when SND < 0.1 m,
SCF is computed as SCF=SND/0.1, and SND is reset to
0.1 m. Hereafter we refer to the current default SCF param-
eterization as the Control (CTL) parameterization. Previous
analysis has shown that increasing or decreasing this thresh-
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old value by 50 % has little effect on the simulated SWE or
SCF (Verseghy et al., 2017).

2.2.2 The SL12 SCF parameterization

Based on snow cover datasets at relatively high spatial and
temporal resolution, Swenson and Lawrence (2012) demon-
strated that the relationship between SCF and SND depends
not only on the amount of snow, but also whether snow mass
is increasing (accumulation) or decreasing (ablation). This
dependence is hypothesized to stem from differences in how
accumulation versus ablation processes alter the correlation
of the two variables. Based on this they proposed separate
formulations for snow accumulation and melt periods as fol-
lows.
During snow accumulation:

fio=1—((1—tanh (kaec AW)) (1_ Sr;};l) 0

Where fI and fI;! are SCF from the current and the
previous time step, kacc is a scale parameter (mm~!) and
AW (mm) is the amount of new snow that falls within the
current time step. Eq. (1) assumes that precipitation is ran-
domly distributed across the region, which may be question-
able in mountainous areas where snowfall tends to prefer-
entially accumulate at higher elevations. Nevertheless, SCF
simulated using the SL12 parameterization from coarse-
resolution climate models shows reasonable agreement with
observations (e.g. Lalande et al., 2023). Note Eq. (1) is the
formulation used in CLMS5 code (and implemented in CLAS-
SIC), which is different from that in Swenson and Lawrence
(2012). In most LSMs including CLASSIC, SND is diag-
nostically computed through snow water equivalent (W in
Egs. 1-4) and snow density (ps): SND= W/ps. Swenson
and Lawrence (2012, their Fig. 7) illustrated that the rate
of SCF increase with SND depends on the k.. parameter,
such that a larger kyc. parameter would result in faster SCF
increase with SND. The default value from Swenson and
Lawrence 2012)is 0.1 mm~!, which is also used in our study.
The impact of this choice will be discussed in Sect. 5.2.
During snowmelt:

1 W Nielt
o =1—|— 2 -1 2
Ssno |:7TaCOS< Wi )] ()
200
Nmelt = —————~ (3)
max(lO, ampo)
w
Winax = (4)

0.5 (cos <n(1 — fsno)anlell) + 1)

where the W and Wy« are the current and the maximum
accumulated snow water equivalent (mm), and Npej; (unit-
less) is a parameter determined from the standard deviation
of topography, otopo (). Equation (4) is used to reconcile the
relationship during periods of mixed accumulation and melt.
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Equations (2) and (3) suggest that the rate of SCF decrease
with SND depends on the Npe¢ parameter, such that SCF de-
creases faster with (normalized) SND in mountainous areas
(small Npelr) than flat areas (large Npelr, Fig. 9 in Swenson
and Lawrence, 2012).

In our implementation we do not distinguish the use of
these two formulations by time of year but based on whether
SWE is increasing or decreasing with respect to the previous
time step (Wang et al., 2025). To avoid the numerical insta-
bility issues mentioned above (Sect. 2.2.1), the SL12 param-
eterization is only used when the local SND over the snow-
covered portion of a grid cell is greater than 0.1 m. When
SND < 0.1 m, SCF is computed in the same way as in the
default parameterization. Therefore, the largest difference in
SCF between the default and SL12 parameterization as im-
plemented in CLASSIC is expected in mountainous areas
during the melt period. In these regions and times the topo-
graphic effects of sub-grid terrain are accounted for in SL.12
but not in CTL.

2.3 Forcing data and simulation setup

The modeling domain chosen for this study is a global land-
only latitude-longitude grid at 1° resolution (Fig. 1a). Three
gridded meteorological datasets are used to drive CLAS-
SIC in this study: CRUJRA, ERAS, and GSWP3-W5ES5, de-
scribed below. CRUJRA is regularly used to drive LSMs par-
ticipating the annual Global Carbon Project which provides
analysis of the land carbon sink (Friedlingstein et al., 2025).
It was constructed by regridding data from the Japanese re-
analysis (JRA, Kobayashi et al., 2015) and adjusting where
possible to align with the Climatic Research Unit (CRU)
TS4 data (Harris et al., 2020; Harris, 2023). The blended
product spanning January 1901 to December 2020 has the
6-hourly temporal resolution of the JRA reanalysis product
but monthly means adjusted to match the CRU data at 0.5°
spatial resolution.

ERAS is the fifth generation European Centre for Medium-
Range Weather Forecasts atmospheric reanalysis of the
global climate covering the period from January 1940 to
present (Hersbach et al., 2020). ERAS data are available at
hourly temporal and 0.25° spatial resolution. Currently it has
the highest spatial and temporal resolutions available among
all global reanalysis products.

GSWP3-W5ES (here after referred as GSWP3W5) is a
combination of two datasets: GSWP3 v1.09 (Dirmeyer et al.,
2006; Kim, 2017) from 1901-1978 and W5ES v2.0 (Cuc-
chi et al., 2020; Lange et al., 2021) from 1979-2019. It is
one of the forcings used in the Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP). The GSWP3 dataset is a
dynamically downscaled version of the Twentieth Century
Reanalysis version 2 (20CRv2; Compo et al., 2011), bias-
corrected using three separate observational data sets (see
Kim, 2017 for details). The W5ES dataset is an interpolated
version of ERAS reanalysis, bias-corrected using CRU TS4.
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WS5ES also provides a second set of precipitation forcing
data, bias-corrected with observations from the Global Pre-
cipitation Climatology Project (GPCP; Adler et al., 2003).
The GPCP dataset includes around 3—4 times as many pre-
cipitation stations as CRU, thus we use this version of the
precipitation forcing in our experiments. The GSWP3W5
data are available at daily temporal and 0.5° spatial resolu-
tion.

The three meteorological forcing datasets are regridded
using the first order conservative remapping method to the
1° model grid via Climate Data Operators. They are disag-
gregated on the fly within CLASSIC into half-hourly data
following the methodology of Melton and Arora (2016) for
the following seven meteorological variables that are used
to force the model: 2 m air temperature, total precipitation,
specific humidity, downward solar radiation flux, downward
longwave radiation flux, surface pressure, and wind speed.
In CLASSIC, the phase of precipitation is determined by a
threshold surface air temperature according to three possi-
ble options described in (Bartlett et al., 2006). Jennings et
al. (2018) showed that the snowfall-rainfall transition tem-
perature varied from —0.4 to 2.4 °C across the NH. Based on
this, we used the option where the partitioning between rain-
fall and snowfall varies linearly between all rainfall at tem-
peratures above 2 °C, and all snowfall at temperatures below
0°C.

The plant functional types used in CLASSIC are derived
from the Climate Change Initiative land cover product pro-
duced by the European Space Agency (Wang et al., 2023).
The atmospheric CO; concentration values are provided by
the Global Carbon Project (Le Quéré et al., 2018). The soil
texture information consists of the percentage of sand, clay,
and organic matter and is derived from the SoilGrids250m
dataset (Hengl et al., 2017), and the permeable soil depth is
based on Shangguan et al. (2017).

CLASSIC simulations use either the CTL or the
SL12 parameterization forced by the CRUJRA, ERAS,
and GSWP3W5 respectively, yielding six simulations
over the historical period. We refer to these simulations
hereafter as: CRUJRA-CTL, CRUJRA-SL12, ERA5-CTL,
ERAS-SL12, GSWP3W5-CTL, and GSWP3WS5-SL12. Pre-
industrial spin-up simulations were performed to allow the
model to equilibrate carbon fluxes to conditions correspond-
ing to the first year of the forcing data. During spin-up,
we loop climate data from the earliest 25 years avail-
able for CRUJRA/ERAS and 100 years of spin-up data for
GSWP3WS5 (Lange et al., 2022), and hold atmospheric CO2
concentrations at the pre-industrial level (286.46 ppm). The
transient runs use time-varying CO, concentrations and cli-
mate. The period from 2005 to 2014 is selected for analyzing
the simulated results, when there is overlap with the three
observational SCF datasets (see Sect. 3.1).
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Figure 1. (a) The standard deviation of elevation over the whole model domain; (b) the standard deviation of elevation in the HMA region
(red rectangle box in a); (c) HMA mean snow depth during the main snow season (September—May) over the 2005-2014 period. Labels in
(b) and (c) represent: Tibetan Plateau (TP), interior TP (ITP), southeastern TP (SETP), Tian Shan (TS), Hindu Kush—Karakoram (HK), and

western Himalayas (HM).

3 Observation data and evaluation methods
3.1 Study area and evaluation methods

Our analysis will include evaluation of SCF, SWE, meteo-
rological forcings, and other land surface variables. Assess-
ment of SCF, SWE, and meteorological forcings will focus
on the mountain (otopo > 200m) and flat (o1opo < =200m)
regions over the Northern Hemisphere (NH), and sub-regions
of North America (NA), Eurasia (EA), and HMA. Classifica-
tion of mountain and flat regions is based on standard devia-
tion of the sub-grid terrain from the ETOPO1 elevation data
at 1 arcmin resolution (Amante and Eakins, 2009, Fig. 1a).
In the SL.12 parameterization, the topographic effects of sub-
grid terrain are considered via the Nmelt parameter (Eq. 2),
which is inversely related to oyopo (Eq. 3). Figure la shows
that at 1° resolution, the magnitudes of oyop, are around 200
600 m for most of the mountainous regions except for the
HMA and the Andes where the magnitude of oyopo can reach
1200 m or more.

The HMA region is one of the most complex topographic
areas on Earth, with very high sub-grid scale variability
(Fig. 1b). It surrounds the Tibetan Plateau (TP), with an av-
erage elevation of 4000 m (Du and Qingsong, 2000). Con-
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sidering the large SCF biases found in CanESMS5 and other
CMIP models in this region (e.g. Lalande et al., 2021), we
will present results for HMA separately. Different regions
of HMA exhibit different spatiotemporal patterns in snow-
fall and SWE due to its unique topography (Yao et al., 2012;
Bolch et al., 2019). According to the High Mountainous Asia
Snow Reanalysis (HMASR) dataset (see Sect. 3.2), during
September to May over 2005 to 2014 period, SND is only
a few centimeters over most of the interior TP, with rela-
tively deeper snow in southeastern TP (Fig. 1¢). Deeper snow
(SND > 0.2m) is concentrated at the high elevations of the
mountains where oiopo is usually greater than 500 m, such as
Tian Shan, Hindu Kush—Karakoram, and western Himalayas
(Fig. 1c).

Gridded data are regridded using the first order conser-
vative remapping method to the 1° latitude-longitude grid.
In addition to the SCF and SWE data detailed below, the
monthly air temperature and precipitation from CRU TS4
(Harris et al., 2020) are used as references to compare with
the three meteorological forcing datasets. Evaluation metrics
for SCF, SWE and meteorological forcing include the mean
bias, unbiased root mean squared error (URMSE) and Pear-
son correlation. The uRMSE is defined as the square root of
the mean square error minus the squared bias: uURMSE = sqrt

Geosci. Model Dev., 18, 6597-6621, 2025
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(RMSE? - Bias?). Evaluation of other land surface variables
is according to AMBER and detailed in Sect. 3.4.

3.2 SCF observations

The monthly SCF was obtained from the Moderate Res-
olution Imaging Spectroradiometer (MODIS)/Terra snow
cover monthly L3 0.05° Climate Modeling Grid product
(MOD10CM, version 61). This dataset provides monthly
mean SCF based on the clearest views of the surface from
28-31d of MODI10CI1 daily observations and are available
from the National Snow and Ice Data Center (Hall and Riggs,
2021). The MODIS snow detection algorithm, which is based
on the Normalized Difference Snow Index (NDSI), applies
processing steps to alleviate snow detection commission er-
rors and to flag uncertain snow detection (Hall et al., 2002).
Due to spectral similarities between cloud and snow, cloud/s-
now confusion situations remain in MODIS version 6.1 snow
products despite continued efforts in improving cloud mask-
ing and snow mapping algorithms (Riggs et al., 2019). Re-
gardless of these inherent challenges, the NDSI-based snow
detection technique has proven to be a robust indicator of
snow presence under diverse situations, as demonstrated by
numerous studies reporting accuracy statistics in the range of
88 %-93 % (Riggs et al., 2019).

To mitigate the uncertainties in the MODIS product due
to frequent cloud cover and/or complex terrains, SCF from
the Interactive Multisensor Snow and Ice Mapping System
(IMS) produced by the U.S. National Ice Center (2008) was
also used as a reference in our analysis. The IMS snow cover
analysis system consists of an interactive workstation for
snow cover mapping by a snow analyst (Ramsay, 1998; Hel-
frich et al., 2007). It relies mainly on visible satellite imagery
(including MODIS data) but is augmented by station obser-
vations and passive microwave data. The IMS dataset con-
sists of binary snow/no snow information on a 4 km resolu-
tion polar stereographic projection grid. Though the binary
format of this dataset is not ideal for SCF estimation, espe-
cially in areas around the snow line, SCF estimates from IMS
are included because the resolution of our model is coarse
(1°) and IMS data has been used to evaluate modelled SCF
in previous studies (e.g. Wang et al., 2014; Orsolini et al.,
2019). Daily IMS data were converted to monthly snow cover
duration fraction (SCF =total number of days with snow
cover in a month divided by the number of days in the month)
following the method in Brown et al. (2010).

Previous studies suggested that there were large uncertain-
ties in the SCF data from MODIS and IMS datasets in the
HMA region (Hao et al., 2019; Orsolini et al., 2019). Thus,
the daily SCF from the HMASR dataset (Liu et al., 2021a)
is used as an additional reference for the HMA region in
this study. HMASR is based on a Bayesian snow reanalysis
framework with model-based snow estimates refined through
the assimilation of high resolution SCF data from MODIS
(500 m) and Landsat (30 m) sensors (Liu et al., 2021b). The
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framework also accounts for a priori uncertainties in meteo-
rological forcings and utilizes an ensemble approach (Mar-
gulis et al., 2019). The dataset provides daily data of pos-
terior snow estimates at ~ 500 m spatial resolution over the
HMA region. Ensemble mean values of SCF and SND are
used in this study. The method used for HMASR is best
suited for seasonal snow characterization (Liu et al. (2021a),
thus grid cells with semi-permanent snow and ice greater
than 30 % are masked out in our analysis. The monthly SCF
data from MODIS, IMS, and HMASR over the 2005-2014
period are used to evaluate modelled SCF.

3.3 SWE measurements

As shown in Egs. (1) and (2) simulated SCF is calculated
from SWE directly in the SL12 parameterization, and from
SND in the CTL parameterization (Sect. 2.2.1). Therefore,
to better understand the sources of bias in simulated SCF,
we also evaluate simulated SWE using snow course and air-
borne gamma SWE observations from Mortimer and Vion-
net (2024) covering 1980-2014 (Fig. 2). Both types of in situ
SWE information have previously been used to evaluate grid-
ded products (e.g. Cho et al., 2019; Mortimer et al., 2020;
Mudryk et al., 2025) and details of these data are described
elsewhere (Mortimer et al., 2024; Mortimer and Vionnet,
2025). Briefly, snow courses generally consist of multiple
snow depth and density measurements collected along a pre-
defined transect several hundred meters to several kilome-
ters in length averaged together to obtain a single SWE value
for each transect on a given date (WMO, 2018). Airborne
gamma SWE estimates are calculated by differencing snow-
free and snow-covered measurements of gamma radiation
collected along a 15-20 km long flight line with a 300 m wide
footprint after accounting for background soil moisture (Car-
roll, 2001). Spatial distribution and measurement frequency
of the observations varies by measurement method and juris-
diction (e.g. Fig. 2 in Mortimer and Vionnet, 2025). These
measurements are better able to capture the larger-scale av-
erage compared to single point observations and have been
shown capable of discerning subtle differences in SWE prod-
ucts (Mortimer et al., 2022) and of ranking such products
based on their relative performance (Mudryk et al., 2025).
The reference SWE observations do not account for snow-
free periods because they are only conducted when there
is snow. During the accumulation and ablation seasons, the
monthly mean of available reference SWE will therefore of-
ten overestimate the true monthly mean value. For this rea-
son, we restrict the comparisons of product SWE with ref-
erence SWE to January—March. Additionally, the infrequent
sampling of the reference data (Fig. 2c; see also Table 4 in
Mortimer and Vionnet, 2025) means that, even when there
is continuous snow cover, the monthly value calculated from
the available dates with observations may not be representa-
tive of the true monthly mean. Investigation of the timing of
the in-situ measurements within a month showed that, for the
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Figure 2. Distribution of in situ reference data. (a) Number of monthly 1° x 1° grid cells with reference data during 1980-2014 (each
monthly 1° grid with reference data is a data point), (b) Number of months during November—May 1980-2014 with reference observations
by 1° grid. (¢) Temporal distribution of raw in situ SWE observations. (d) Mean February—March reference SWE for grid cells with at least
5 months of data. Vertical lines in (a) and (c¢) indicate November—May period used in the analysis.

full domain, the timing of the observations is fairly well dis-
tributed across a month. However, this varies regionally and
by network with some networks (e.g. Canada) biased towards
the first half of the month and others (e.g. Russia) slightly bi-
ased towards the latter two thirds of the month (Fig. Al). We
are unable to account for these biases in our analysis. The
statistics calculated from comparisons with in-situ data are
not intended to be used as absolute performance measures.
Rather, we are interested in assessing how the relative per-
formance of CLASSIC SWE varies under the three choices
of forcings; as Mortimer et al. (2024) demonstrates, the ref-
erence data is well able to discern relative performance of
SWE products.

To evaluate monthly model output with reference obser-
vations from a specific date, we first match reference SWE
observations to the model grid cell estimate from the corre-
sponding month. Next, from these matched data, we calcu-
late the mean reference SWE for each month. If there were
multiple reference SWE observations within the same prod-
uct grid cell on the same date, they were averaged prior
to calculating the monthly mean. Metrics were calculated
separately for mountainous and flat regions (as defined in
Sect. 3.1) for each month (all years pooled together), for each
year (all months pooled together), for the full time period
(all years and months pooled together), and for each product
grid cell (all years pooled together). The analysis is limited to
non-zero values with SWE <3000 mm in both the observa-
tion and model outputs, and to the months January to March.
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3.4 Reference datasets used to evaluate land surface
variables in AMBER

Spatial and temporal variations of snow cover account
for most of the variations in surface albedo due to its
much higher reflectivity relative to underlying land surfaces.
Changes in SCF thereby lead to changes in surface albedo,
which in turn lead to changes in surface radiation and energy
fluxes. To illustrate the impact of the SL12 parameterization
on the simulated radiation, energy fluxes, and the water cycle
in CLASSIC, we computed skill scores using the AMBER
package (Seiler et al., 2021) for the global 1° simulations.
AMBER assesses model performance against a collection of
observation-based reference datasets based on five scores:
bias (Spias), root-mean-square-error (Symse), phase (Sphase)s
interannual variability (Siav), and spatial distribution (Sgis).
An overall score (Soveranl) 18 calculated by averaging the five
scores. The scores are dimensionless and on a scale from
0 to 1 where a higher value implies better model perfor-
mance. Lower values are, however, not necessarily a product
of poor model performance as the scores are also affected
by uncertainties in the forcing and the reference data. Fur-
ther details regarding the AMBER package as well as the
skill score equations are presented in Seiler et al. (2021) and
Seiler (2020). Table 1 shows the 21 reference datasets used
in AMBER in this study, which contain information about
seven variables relevant to the radiation, energy, and wa-
ter cycle including net surface radiation (RNS), net surface
shortwave radiation (RSS), net surface longwave radiation
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(RLS), surface albedo (ALBS), latent heat flux (HFLS), sen-
sible heat flux (HFSS), and runoff (MRRO). These datasets
include monthly mean values, and more details can be found
in Seiler et al. (2021).

4 Results

4.1 Comparison of air temperature and precipitation
in meteorological datasets

To better understand biases in the simulated snow cover, we
first compare air temperature and precipitation from the three
meteorological datasets with respect to CRU over the NH
and HMA during the 1980-2014 period (Figs. 3 and A2).
Because the CRUJRA data is already bias-corrected to CRU
temperature and precipitation, it exhibits very small biases
in both variables in all regions relative to this product. By
comparison, both ERAS and GSWP3WS5 are colder during
most of the months in the NH (Fig. 3a). The magnitude of
the cold bias is larger in the mountainous than in the flat re-
gions and larger in GSWP3WS5 than in ERAS. Likewise, both
ERAS5 and GSWP3WS5 have more precipitation than CRU-
JRA over the whole snow season. This difference is espe-
cially pronounced in ERAS in the mountainous regions dur-
ing the fall and spring months (Figs. 3b and A2b). In HMA,
the bias patterns in temperature and precipitation are similar
to those for mountainous regions across the full NH. How-
ever, the magnitude of the cold bias (with respect to CRU)
is larger in ERAS than in GSWP3WS5 (Fig. 3c). Because dif-
ferent reference datasets were used to bias-adjust precipita-
tion in CRUJRA (CRU) and GSWP3W5 (GPCP), we also
compare the monthly precipitation from CRU and GPCP in
the above regions and over the same period. This analysis
(not shown) indicates that the differences between CRU and
GPCP are within 2 % and 3 % for NH flat and mountainous
regions respectively, but up to 21 % in HMA.

4.2 Evaluation of SWE

Large differences in SWE from the model runs using the
CTL and SL12 parameterizations are limited to small areas
near grid cells with land ice because the runs are forced by
the same three sets of meteorological datasets, and there is
limited feedback in offline runs. Thus, we only present re-
sults for SWE from the model runs using the SL.12 parame-
terization. The SWE reference measurements (Sect. 3.2) in-
dicate that for all choices of meteorological forcing, CLAS-
SIC underestimates SWE in mountainous regions (Fig. 4a)
and overestimates SWE in flat regions (Fig. 4b) over the
1980-2014 period. For both types of regions, the magnitudes
of the biases increase as the snow season progresses. In the
mountainous regions, the biases are similar for GSWP3W5-
SL12 (—129.4) and CRUJRA-SL12 (—136.6) and the low-
est for ERAS-SL12 (—90.8). In flat regions, GSWP3W5-
SL12 (50.3) has more than twice the SWE bias seen in ei-
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ther CRUJRA-SL12 (15.0) or ERAS-SL12 (17.5), which is
mainly due to SWE overestimation in eastern NA and north-
ern Europe (Fig. A3). Overall, ERAS5-SLI12 outperforms the
other two model runs with lower bias in mountainous regions
and it shows similar performance as CRUJRA-SL12 in flat
regions.

4.3 Evaluation of SCF
4.3.1 NH regions

Figure 5 shows the monthly mean SCF (area weighted) from
all six simulations along with the MODIS and IMS obser-
vations over different regions. SCF from MODIS and IMS
generally agree well with each other in all regions except
for HMA, where IMS shows ~3 %—-6 % more SCF than
MODIS in the winter months (Fig. 5g). In the NH, NA, and
EA mountainous regions (Fig. Sa—c and Table 2), both the
CTL and the SL12 parameterizations underestimate SCF in
the fall (SON), with the SL.12 parameterization performing
slightly worse than the CTL parameterization. However, dur-
ing winter (DJF) and spring (MAM), the SL12 parameteri-
zation greatly outperforms the CTL parameterization for all
three meteorological datasets. For example, in the NH moun-
tains during the spring, the mean biases are 0.1, 0.09, and
0.05 with the CTL parameterization for model runs forced
by CRUJRA, ERAS, and GSWP3WS5 respectively; they are
0.01, 0.01, and —0.03 with the SL12 parameterization (Ta-
ble 2a). The uRMSEs are 0.12, 0.11, and 0.11 with the CTL
parameterization, and 0.08, 0.06, and 0.07 with the SL12
parameterization; and the correlation coefficients are 0.45,
0.48, and 0.48 with the CTL parameterization, and 0.55,
0.60, 0.56 with the SL12 parameterization (Table 2a). On av-
erage for all three meteorological forcing choices, the annual
mean bias, uRMSE, and correlation improve by 75 %, 32 %,
and 7 % when evaluated with MODIS SCF observations over
the NH mountainous regions.

In flat regions (all domains), as expected, the performance
is similar regardless of the parameterization with a 2 %—4 %
SCF underestimation in the fall, but a 1 %-2 % and 6 %—
10 % SCF overestimation during the winter and spring sea-
sons, respectively (Fig. 5d—f and Table 2b). Among the six
simulations, ERAS5-SL12 has the lowest annual bias (0.0)
and uRMSE (0.08), and the highest correlation (0.66) in
the NH mountainous regions, as well as in the flat regions
(bias =0.01, uRMSE =0.1, and r =0.61) (Table 2).

On the global scale, the spatial patterns of SCF bias are
similar for all three meteorological forcing choices. Figure 6
shows an example of the spatial pattern in SCF bias from the
model runs forced by ERAS during the winter and spring sea-
sons. Compared to observed SCF from MODIS, model runs
tend to overestimate SCF in areas where SCF is less than
100 % in both the winter and spring seasons. In the winter,
both parameterizations have areas with SCF underestimation,
such as in the western NA mountainous areas, northern Eu-
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Table 1. Overview of the reference datasets used in AMBER, including the following variables: net surface radiation (RNS), net surface
shortwave radiation (RSS), net surface longwave radiation (RLS), surface albedo (ALBS), latent heat flux (HFLS), sensible heat flux (HFSS),

and runoff (MRRO).
Dataset Variables Method Period References
CERES ALBS, RSS, RLS, Radiative transfer 2000-2013 Kato et al. (2013)
RNS model
CLASSr RNS, HFLS, Blended product 2003-2009 Hobeichi et al. (2020)
HFSS, MRRO
FLUXCOM RNS, HFLS, HFSS  Machine learning 1980-2013 Jung et al. (2019)
ensemble
FLUXNET RNS, HFLS, HFSS  eddy covariance (204) 19972014 Pastorello et al. (2017)
GEWEXSRB ALBS, RSS, RLS, radiative transfer model = 1984-2007 Stackhouse et
RNS al. (2011)
GRDC MRRO gauge records (50) 1980-2010 Dai and Trenberth
(2002)
GRUN MRRO Reconstruction via 1902-2014 Ghiggi et al. (2019)
machine learning
MODIS ALBS Bidirectional 2000-2014 Schaaf and Wang
Reflectance (2015)
Distribution function
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Figure 3. Bias in monthly mean air temperature (a, ¢) and precipitation (b, d) in the NH mountainous (solid line) and flat (dashed line)
regions (a, b) and the HMA mountainous region (¢, d) over the 1980-2014 period. Values shown at the top of each plot are the mean
temperature or precipitation during September—May period for each dataset.
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Figure 4. Annual and interannual evolution of bias, uRMSE, and correlation for modelled SWE in model runs using the SL.12 parameteriza-
tion forced by CRUJRA, ERAS, and GSWP3-W5ES5 in (a) NH mountainous regions and (b) NH flat regions during January—March over the

1980-2014 period.

Table 2. The seasonal mean SCF bias, uRMSE, and Pearson correlation coefficient (r) for the Control and SL.12 simulations over the (a) NH
mountainous (otopo > 200 m), (b) NH flat (otopo < =200m). The observed SCF from MODIS is used as the reference.

(a) NH Mountain SON \ DJF \ MAM \ Annual

Met — Scheme Bias uRMSE r | Bias uRMSE r | Bias uRMSE r | Bias uRMSE r
CRUJRA-CTL  —0.01 008 055]| 006 008 024 | 0.10 012 045 | 004 0.13 059
CRUJRA -SLI2  —0.04 007 056 | 0.01 0.07 031 | 001 008 055 | —0.01 0.09 0.62
ERAS - CTL 0.01 006 059 | 007 007 028 | 0.09 0.11 048 | 005 012 0.62
ERAS5 - SL12 —0.02 006 0.60 | 0.02 0.06 038 | 001 0.06 0.60 | 0.00 0.08 0.66
GSWP3W -CTL ~ —0.02 007 057 | 003 0.08 029 | 005 0.11 048 | 003 0.13 059
GSWP3W —SL12  —0.04 007 058 | —0.02 0.07 035 | —0.03 007 056 | —0.02 0.09 0.64
(b) NH Flat SON \ DIF \ MAM \ Annual

Met — Scheme Bias uRMSE r | Bias uRMSE r | Bias uRMSE r | Bias uRMSE r
CRUJRA-CTL  —0.02 007 057 | 002 005 020 ] 0.09 0.12 044 | 003 0.11 059
CRUJRA-SLI2  —0.04 008 057 | 001 006 024 | 008 011 047 | 0.02 0.11 059
ERAS - CTL -0.02 007 058 | 001 005 024 | 007 009 050 | 002 0.10 0.61
ERAS - SL12 —0.04 008 058 | 000 005 027 | 006 009 052 | 001 0.10 0.61
GSWP3W -CTL  0.00 008 057 | 002 006 0.19 | 0.10 0.13 041 | 004 0.13 058
GSWP3W -SL12  —0.02 008 057 | 001 006 023 | 0.09 0.13 045 | 003 0.12 058

rope, and some areas of Asia (Fig. 6¢c and e). In the spring,
the CTL parameterization overestimates SCF in most NH re-
gions except for some limited areas in western NA (Fig. 6d).
The SCF overestimation is reduced in the run using the SL.12
parameterization, and replaced with some SCF underestima-
tion, such as in the western NA mountains (Fig. 6f). Over-
all, the SL12 parameterization produces less SCF and thus
reduces the SCF overestimation found in the model runs us-
ing the CTL parameterization over all major mountain ranges
across the globe (Fig. 6g and h).

Geosci. Model Dev., 18, 6597-6621, 2025

4.3.2 HMA region

In HMA, large uncertainties have been found in SCF from
the MODIS and IMS datasets (Hao et al., 2019; Orsolini et
al., 2019), thus SCF from the HMASR dataset is also in-
cluded as a reference along with MODIS and IMS. Results
are only shown for the mountainous region (Fig. 5g) because
there are limited flat areas with snow cover (Fig. 1b and
c). HMASR has a single peak in February, while MODIS,
IMS, and all the model runs have peaks in both January
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Figure 5. The monthly mean SCF from model runs using the Control (dashed line) and SL12 (solid line) parameterizations for NH, NA, and
EA mountainous (otopo > 200 m, a—¢) and flat (6topo < 200 m, d—e) regions, and (g) shows the monthly mean SCF for the HMA mountainous
region. The black lines represent observed SCF from MODIS (solid) and IMS (dotted), and the purple line in (g) represents SCF from

HMASR.

and February. Over this region, simulations using either pa-
rameterization exhibit large SCF overestimations during the
winter and spring compared to all three reference datasets
especially when forced by CRUJRA or ERAS (Fig. 5g).
Compared to SCF from HMASR, the mean biases are 0.30
and 0.35 in CRUJRA-CTL and ERAS5-CTL respectively dur-
ing the winter (Table 3). In contrast, the model runs driven
by GSWP3W5 have much lower SCF and smaller biases
(Fig. 5g and Table 3). Overall, the SL12 parameterization
exhibits improved performance compared to the CTL param-
eterization. On average from all three meteorological forcing
choices, the annual mean bias, uRMSE, and correlation im-
prove by 48 %, 30 %, and 5 % when evaluated with HMASR
SCF data over the HMA mountainous areas.

In HMA, areas with high SCF (> 40 %) are mainly found
along the western mountain ranges (e.g. Tian Shan, Hindu
Kush—Karakoram, and western Himalayas) and southeast
portion of the TP (Fig. 7a—c). SCF is less than 20 % in most
of the interior TP, even during the winter (Fig. 7a). On aver-
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age, maximum SCF occurs in winter in western HMA (i.e.
Tian Shan and Hindu Kush—Karakoram), but it occurs in
spring in interior TP and southeast TP. Among the model
runs using the CTL parameterization, there are significant
SCF overestimations in most of HMA when forced by CRU-
JRA or ERAS5 (Fig. 7d, e). The run forced by GSWP3WS5
still overestimates SCF in the mountainous areas of western
HMA but underestimates SCF in the interior TP and south-
east of TP (Fig. 7f). Given that all three simulations use the
same CTL parameterization (Fig. 7d—f), the substantial dif-
ferences in simulated SCF, particularly in the GSWP3W5-
forced run, suggest that the primary source of the discrep-
ancy lies in the forcing data. This will be discussed further
in Sect. 5. In the model runs using the SL12 parameteriza-
tion (Fig. 7g—i), the SCF overestimations are much reduced
in the western mountainous areas while across the rest of the
plateau the SCF underestimations are very similar for both
parameterizations.

Geosci. Model Dev., 18, 6597-6621, 2025
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Figure 6. Snow cover fraction from MODIS (a, b), SCF bias in model runs using the Control (¢, d) and SL12 (e, f) parameterizations, and
difference in SCF between SL12 and Control (g, h) during the winter (left) and spring (right) season.

Table 3. Same as Table 2 but for the HMA region. SCF from the HMASR dataset is used as the reference.

HMA Mountain SON \ DIF \ MAM \ Annual

Met-Scheme Bias uRMSE r | Bias uRMSE r | Bias uRMSE r | Bias uRMSE r
CRUJRA - CTL 0.02 012 035|030 015 031 | 020 017 039 | 0.3 021 042
CRUJRA -SL12  —0.03 009 037 | 0.16 0.11 035 | 006 0.10 045 | 004 0.15 044
ERAS - CTL 0.05 0.12 043 | 035 0.14 036 | 023 0.15 040 | 0.16 022 045
ERAS - SL12 —0.01 009 045 | 0.22 011 042 | 008 009 051 | 006 0.15 048
GSWP3W -CTL  —0.06 0.08 040 | 0.08 0.14 039 | 001 0.12 044 | 0.00 0.14 045
GSWP3W -SL12  —0.08 0.07 041 | 0.00 0.11 039 | —0.08 0.08 048 | —0.05 0.10 0.46

4.3.3 Evaluation of other land surface variables

Evaluation of other land surface variables (besides SCF and
SWE) via AMBER scores (Sect. 3.3) is shown in Fig. 8 for
each of the six CLASSIC simulations. Model runs using the
SL12 parameterization have the best score for 101 of 119 di-
agnostic tests while they have the worst score for only 16 of
119 diagnostic tests (Fig. 8c and d). CRUJRA-SL12 (ID =2)
and ERAS-SL12 (ID =4) have the highest overall scores for
five radiation reference datasets (one RNS, two RSS, two
RLS), and three surface albedo (ALBS) reference datasets
with improvements ranging from 0.01 to 0.06 when com-
pared to the runs with the lowest scores (Fig. 8b and c). The
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relatively large score differences in the interannual variability
score (Sjay) for net surface radiation (RNS) suggest improved
interannual variability of net surface radiation when using
the SL12 parameterization (Fig. 8b). For surface albedo, rela-
tively large differences are observed in the spatial distribution
score (Sgist), suggesting better characterization of the spatial
patterns when using the SL12 parameterization (Fig. 9). Fig-
ure 9 shows that surface albedo is generally overestimated by
the control scheme (Fig. 9a), with this overestimation notably
reduced in the mountainous regions when the SL.12 scheme
is applied (Fig. 9b), consistent with the improvements seen
in SCF. Previous studies have indicated that the MODIS sur-
face albedo product may exhibit biases due to the absence of
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L. Wang et al.: Impact of topography and meteorological forcing on snow simulation 6609

(@)  SCF, HMASR, DJF (b)

SCF, HMASR, MAM ()

SCF, HMASR, Annual

n 0.3

o |, L Ry | o

(d) SCF bias, CRUJRA, CTL (e)

SCF bias, ERAS, CTL

(f) SCF bias, GSWP3W5, CTL

i
" |

i

> ¥

(g) SCF bias, CRUJRA, SL12

(h) SCF bias, ERA5, SL12

(i) SCF bias, GSWP3W5, SL12 o

0.2

" T ‘ Ny 0.0
- »
" I ' -0.2
()  Diff in SCF, CRUJRA (k) Diff in SCF, ERAS () Diff in SCF, GSWP3W5 o
o u ! n 5 = = = | - - !
1 | |
> . f

Figure 7. The top panel shows SCF from HMASR for (a) winter, (b) spring, and (c¢) annual mean. The second and third panel show SCF
biases from model runs using the CTL (d—f) and SL.12 (g—i) parameterizations forced by the three meteorological datasets respectively during
spring. The bottom panel (j—k) shows the difference in SCF between the model runs using the SL12 and CTL parameterizations.

shading corrections in mountainous areas and underestima-
tion of snow cover in dense forest regions (Hall et al., 2002;
Bair et al., 2022). These limitations may have contributed, at
least in part, to the albedo overestimation shown in Fig. 9a.
Though GSWP3WS5-SL12 (ID=6) has the lowest fre-
quency of the model runs with the best scores (Fig. 8c), it has
the highest overall performance for some of the heat fluxes
datasets - one out of the three HFLS and two out of the three
HEFSS reference datasets. For surface runoff, model runs with
the best scores are all forced by CRUJRA, while model runs
with the worst scores are all forced by ERAS (Fig. 8c and d).
To isolate the impact of meteorological forcing data and
SCF parameterization on these snow-related variables, we
also calculate AMBER scores for the three model runs sepa-
rately for the SL12 (Fig. 10) and the CTL (Fig. A4) param-
eterizations. The results show that regardless of the parame-
terization, overall model runs forced by ERAS (ID = 2) per-
form best for most radiation fluxes, while model runs forced
by CRUJRA (ID = 1) perform best for the rest of the vari-
ables except for some heat fluxes where model runs forced
by GSWP3WS5 (ID = 3) perform best (Fig. 10c). These are
generally consistent with results shown in Fig. 8 with both
parameterizations included, suggesting that the score differ-
ences among ensemble members are largely due to differ-
ences in the meteorological forcing. However, the overall
scores with the SL12 parameterization (Fig. 10a) are slightly
larger for most variables than those with the CTL param-
eterization (Fig. A4a). Among the three model runs using
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the SL12 parameterization, ERA5-SL12 has the most (43/99)
frequency in the model runs with the best scores (Fig. 10c),
followed by CRUJRA-SL12 (38), with GSWP3W5-SL12
having the least frequency (18).

5 Discussion

This study evaluates the SL12 SCF parameterization against
the current default (CTL) parameterization on snow simula-
tion in CLASSIC. To account for uncertainties in the mete-
orological forcing data, three reanalysis-based datasets are
used to drive the model. Biases in modeled SCF vary be-
tween flat and mountainous regions for both SCF parame-
terizations (Table 2, Figs. 5, and 6). Previous studies have
highlighted the importance of accounting for sub-grid topog-
raphy on SCF simulations in mountainous regions (Swenson
and Lawrence, 2012; Miao et al., 2022). Are the modelled
SCF biases related to topographic complexity in this study?
To explore this, we generated scatter plots and examined
the correlations between SCF biases and the standard devi-
ation of sub-grid topography during the winter and spring
seasons for each simulation. As expected, significant corre-
lations were found in all simulations, indicating that SCF bi-
ases tend to increase with increasing topographic complexity.
However, this relationship is notably reduced under the SL.12
scheme, particularly in spring. An example of these scatter
plots, based on model runs forced by CRUJRA, is presented

Geosci. Model Dev., 18, 6597-6621, 2025



6610 L. Wang et al.: Impact of topography and meteorological forcing on snow simulation

ORI (©)

RNS-CERES
RNS-CLASSr
RNS-FLUXCOM
RNS-FLUXNET
RNS-GEWEXSRB
RSS-CERES
RSS-GEWEXSRB
RLS-CERES
RLS-GEWEXSRB
ALBS-CERES
ALBS-GEWEXSRB
ALBS-MODIS
HFLS-CLASSr
HFLS-FLUXCOM
HFLS-FLUXNET
HFSS-CLASSr

EN NS SIS

0,06 0.04
063 004 003 002 003
069 098 0.7 003 001 001 004
. 004 002 001 005
093 062 083 07 001 001 002

HNMMMMMN

.
N NV . . . Y . (N .
Saist 4=~ 1o PRI o S

2
4
089 0.77 095 0.02 B 6
HFSS-FLUXCOM 091 0.83  0.67 003 001 001 6 6
HFSS-FLUXNET 09 066 088 0.03 003 001 4 4 3
MRRO-CLASSr 0.89 0.04 0.03 2 2 2
MRRO-GRDC 0.91 0.04 2 2 2
MRRO-GRUN 0.87 0.05 2 2 1 2
T T T T

£ 8 § 2 Z % & 8 § 8 Z % g & 2 K g€ 8 § 3 Z %

" 5 5 P 0 2 o 45 5 P 0 2 I : " 45 & P 0 g

n n ] n ] %) 9] (%)

Max. minus Min. Score (-)

Ensemble member ID with best score Ensemble member ID with worst score

0 0.2 04 0.6 0.8 10 004 008 012 0.16 1 2 3 4 5 6 ns 1 2 3 4 5 6 ns

Figure 8. AMBER results for surface radiation, albedo, heat fluxes, and runoff from the six model runs, (a) mean ensemble score, (b) max-
imum score difference among ensemble members, (¢) ensemble member with the highest score, and (d) ensemble member with the low-
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0.01. Ensemble member IDs represent the following model runs: 1: CRUJIRA-CTL, 2: CRUJRA-SL12, 3: ERAS-CTL, 4: ERAS5-SL12, 5:
GSWP3W5-CTL, 6: GSWP3W5-SL12.

(a) Bias in ALB, CTL, MAM (b) Diff in ALB, SL12—CTL, MAM

Figure 9. (a) Surface albedo (ALB) bias (relative to observed from MODIS) in a model run forced by ERAS using the CTL parameterization
in the spring, (b) the difference in ALB between the model runs using the SL12 and CTL parameterizations, with red colours indicating

lower albedo simulated by the SL12 parameterization.

in Fig. AS. Below we discuss the possible factors contribut-
ing to biases in the simulated SWE and SCF including po-
tential biases in the meteorological forcing datasets.

5.1 Impacts of meteorological forcing datasets on
modelled SWE

Evaluation based on measurements from snow course and
airborne gamma data indicates that the magnitude of SWE
bias and uRMSE seen in CLASSIC are comparable to those
from other gridded SWE products and LSMs (Brown et al.,
2018; Mortimer et al., 2024; Cho et al., 2022) intended to
represent historical snow conditions. However, for all three
choices of meteorological forcing SWE is underestimated in
mountainous regions (Fig. 4a) and overestimated in flat re-
gions (Fig. 4b) throughout the snow season (with subsequent
impacts on SCF). Since SCF is directly linked to SWE in the

Geosci. Model Dev., 18, 6597-6621, 2025

SL12 scheme (see Egs. 1 and 2), these SWE biases can ex-
ert a large impact on simulated SCF in the fall and spring
seasons in the model (limited impact during the peak SWE
period because SCF is usually saturated). The consistent SCF
biases shown in Fig. 5 are linked to these consistent SWE bi-
ases for all three forcing choices in the model.

Naively, the bias-adjustments applied to temperature and
precipitation in both the CRUJRA and GSWP3W5 forcing
data might be expected to result in more accurate simula-
tions. Yet among the three choices of forcing we used, the
unadjusted ERAS data yielded the lowest bias when evaluat-
ing the simulated SWE in mountainous regions (Figs. 4, A3).
In mountain regions, this discrepancy may result because the
CRU and GPCP data used to adjust the precipitation values
are biased towards locations with less precipitation (e.g. out-
side of regions with orographic features; e.g. Nijssen et al.,
2001; Adler et al, 2003; Shi et al., 2017). Mountain precip-

https://doi.org/10.5194/gmd-18-6597-2025
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itation underestimation was also linked to negative SWE bi-
ases based on precipitation observations from the Snowpack
Telemetry stations over western US (Cho et al. 2022).

In NH flat regions, precipitation values from CRU and
GPCP are expected to be more accurate than in mountainous
regions (Adler et al., 2003), so it is less clear why GSWP3W5
has a much larger SWE bias despite having a precipitation
bias similar to ERAS. The fact that GSWP3WS5 is colder in
flat regions compared to the other two forcings could play a
role (Fig. 3a). This may reduce its ability to simulate mid-
season ablation events (e.g., Brown et al., 2006; Slater et al.,
2001) and/or alter the timing and location of snowfall. The
reason that GSWP3WS5 is colder than CRUJRA is also not
immediately clear since both products use CRU TS4 for bias-
adjusting their temperature (see Sect. 2.3.2). Differences be-
tween the interpolation and bias-adjustment methods may be
responsible for the differences since they are more complex
for GSWP3WS5 (see Cucchi et al., 2020 and Weedon et al.,
2010) than CRUJRA (Harris, 2023). For example, a constant
lapse rate of 6.5 Kkm~! was applied to temperature correc-
tion in GSWP3WS5 but not in CRUJRA.

These results highlight that there is uncertainty in the ac-
curacy of both temperature and precipitation forcing even
when bias-adjusted to observations. These uncertainties can
propagate to uncertainty in simulated SWE directly through
precipitation amounts or in the case of temperature through
phase partitioning of rainfall versus snowfall or direct melt.
Even with perfectly constrained bias-adjustments for temper-
ature and precipitation individually, there may still be spread
in simulated SWE stemming from uncertainties in the joint
distribution of temperature and precipitation that determines
when snowfall occurs. Although measurements from snow
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course and airborne gamma data used in this study can better
sample the subgrid-scale variability than a single-point mea-
surement, we acknowledge that there are still uncertainties in
our evaluation results, e.g. in situ sites may be biased towards
locations with more snow cover.

5.2 Factors contributing to residual bias in modelled
SCF

Although SCF overestimation in the mountainous regions is
much reduced by the SL12 parameterization compared to
the CTL parameterization (Fig. 5a—c and g), there are still
areas with notable SCF biases. For example, much of the
western NA mountainous areas have negative biases during
the spring with the SL12 parameterization (Fig. 6d and f).
Furthermore, in flat areas, all model runs overestimate SCF
(Fig. 5d—f). These remaining SCF biases may be at least
partly attributable to SWE underestimation in mountainous
regions and SWE overestimation in flat regions (Fig. 4). The
fact that in flat regions, there are larger SWE biases (Fig. 4b)
and correspondingly larger SCF overestimation (Fig. 5d—f)
in the model runs forced by GSWP3WS5 supports this argu-
ment (see Sect. 5.1). Below we present some evidence on the
link between differences in meteorological forcing datasets
and choices of parameter values in the SL12 parameteriza-
tion and the bias in modelled SCF.

Overall NH performance for model runs driven by ERAS
is comparable or slightly better than the runs driven by CRU-
JRA in terms of simulated SWE and SCF (Figs. 3, 5, and
Table 2), while model runs driven by GSWP3WS5 are worse
everywhere except for HMA. In HMA, there is significant
SCF overestimation in model runs forced by CRUJRA and

Geosci. Model Dev., 18, 6597-6621, 2025
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ERAS, while model runs forced by GSWP3WS5 have compa-
rable SCF to observations (Fig. 5Sg and Table 3). For model
runs forced by ERAS, this is consistent with the cold tem-
perature bias and large precipitation overestimation in ERAS
(Fig. 3c and d). However, CRUJRA and GSWP3WS5 exhibit
similar biases in temperature and precipitation (Fig. 3¢ and
d), yet model runs forced by them have contrasting SCF
biases (Fig. 5g). Therefore, biases in temperature and pre-
cipitation cannot explain the SCF biases here. Instead, we
found that the number of wet days (days with precipitation
> = 0.1 mm) differs in each of the three datasets, especially
in the HMA region (Fig. 11). Figure 11 shows that on aver-
age ERAS has near-daily precipitation events in the moun-
tainous areas (e.g. Tian Shan, Hindu Kush—Karakoram, and
Himalayas) and southeast of TP, while GSWP3W35 has the
fewest wet days over the whole HMA region, especially over
the interior TP. The number of wet days in CRUJRA falls
between the other two. This is consistent with differences in
the SCF annual cycles (Fig. 5g) and the SCF bias patterns
(Fig. 7) found among the three sets of model runs, suggest-
ing that the different number of wet days in the forcings con-
tributes most to the difference in modelled SCF in this region.
This conclusion is also consistent with findings in previous
studies (Liu et al., 2022; Orsolini et al., 2019), which sug-
gested that excessive snowfall in ERAS contributes to over-
estimation of SND, SWE, and SCF across HMA. In CLAS-
SIC, the large number of wet days in ERAS would lead to
prolonged periods with fresh snow and therefore high snow
albedo. In coupled simulations this could lead to or reinforce
an existing cold bias. GSWP3WS5 also has a smaller num-
ber of wet days in some other regions of the globe, such as
the middle to high latitudes of NA and eastern Siberia (not
shown).

Besides biases in the meteorological datasets, the choice
of parameter values in the SL12 parameterization can also
contribute to uncertainties in modelled SCF. As illustrated
in Swenson and Lawrence (2012, their Fig. 7), choosing a
larger kocc parameter in Eq. (1) would result in faster SCF
increase with SND during accumulation events. All the pre-
viously discussed simulations have used the default value of
0.1 for this parameter. We also performed sensitivity exper-
iments where the k,.. parameter was changed to 0.18 and
0.26. In these simulations, SCF increases faster with SND
especially in the fall, thereby resulting in higher SCF over
NH mountainous regions during that time of year. Notably,
increasing k¢ to 0.26 produces less biased SCF values dur-
ing the fall (similar to those seen in the CTL simulations)
while still maintaining the improvements already presented
during winter and spring (Fig. A6).

Likewise, the ablation portion of the SL12 parameteriza-
tion (Eq. 2) can be altered via the Nyl parameter, which
controls the rate at which SCF decreases as a function of
SND. SCF decreases faster with (normalized) SND in moun-
tainous areas (small Npyy) than flat areas (large Npeyt, Fig. 9
in Swenson and Lawrence, 2012). We adjusted the Npe); pa-

Geosci. Model Dev., 18, 6597-6621, 2025

L. Wang et al.: Impact of topography and meteorological forcing on snow simulation

rameter by increasing the numerator in Eq. (3) from 200 to
300, thereby increasing the Npe|; value in mountain regions
for the same value of sub-grid topographic variability and re-
sulting in slower SCF decrease. Results of the test run show
reduced SCF bias in the NA mountains in the spring com-
pared to simulations with the default Ny, value (Fig. A7).
The adjustments to kacc and Nyl parameters described
above provide ways to fine-tune the agreement in simulated
SCF with observations. However, because none of the three
meteorological forcing datasets used in this study are exempt
from biases, there is a limit to how well optimal parameter
values can be chosen for use in CLASSIC. In addition, it may
not be ideal to over-tune the model to a specific observational
estimate which may still have uncertainties (Sect. 5.3).

5.3 Other uncertainties

SCF derived from satellite optical sensors such as MODIS
represents the viewable snow cover from space during cloud-
free overpasses (i.e., from above the canopy). Dense forests
and steep terrain may obscure the MODIS sensor’s view
of snow-covered ground, leading to underestimation of SCF
(Hall et al., 2002; Marchane et al., 2015). For example, Still-
inger et al. (2023) found a consistent negative bias of approx-
imately 10 % under intermediate canopy cover when com-
paring MODIS SCF with high-resolution airborne lidar data
in parts of the western US. The SCF overestimation in flat
regions (Fig. 5d—f) may be partially attributable to this un-
derestimation by MODIS. However, as noted by Riggs et
al. (2019), snow commission errors, often related to residual
cloud contamination, are among the most common sources of
error in MODIS snow products. As a result, the SCF derived
from MODIS in this study may be subject to both underesti-
mation and overestimation.

While the IMS snow system primarily relies on visible
satellite imagery, it also incorporates surface station obser-
vations and passive microwave data. Therefore, SCF derived
from IMS is generally less affected by cloud cover and for-
est canopy than that from MODIS. Previous studies have
shown that IMS tends to report higher SCF than MODIS
(e.g., Brown et al., 2010), which is consistent with our results
(Fig. 5). Nevertheless, SCF estimates from MODIS and IMS
are largely consistent across all regions except the HMA,
suggesting that our evaluation results are reasonably robust
despite known uncertainties.

In LSMs, snow depth is typically diagnosed from SWE
and snow density. As a result, uncertainties in modeled snow
density can propagate to uncertainties in SCF, particularly
when the SCF parameterization depends on snow density
and/or snow depth, as demonstrated by Abolafia-Rosenzweig
et al. (2024). In CLASSIC, these uncertainties influence SCF
simulated by the control parameterization but do not directly
affect SCF in the SL12 parameterization (Sect. 2.2). Since
our focus is on the SL12 parameterization in this study, we
do not explore this issue further.
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Figure 11. The monthly mean number of wet days (days with total Pr > = 0.1 mm) in (a) CRUJRA, (b) ERAS, and (¢) GSWP3WS5 during
the main snow season (September—May) in the HMA region over the 2005-2014 period.

Additional uncertainties may arise from the elevation
data used to compute the standard deviation of sub-grid
topography (oiopo), particularly related to its spatial res-
olution. We compared oy, derived from two elevation
datasets: ETOPOL1 (1 arcmin resolution, used in this study)
and ETOPO2022 (15 arcsec resolution). The results indicate
that the differences are limited in spatial extent and are pri-
marily concentrated along edges of mountain ranges. To as-
sess the impact on model results, we conducted a test simula-
tion using oopo derived from ETOPO2022 and compared the
simulated SCF with that from a run based on oyopo derived
from ETOPOI1. The maximum difference in SCF between
the two runs was less than 5 % (not shown). These findings
suggest that the resolution of the elevation data has a limited
effect on the calculation of sub-grid topographic variability
and simulated SCF, consistent with sensitivity tests reported
by Lalande et al. (2023).

6 Conclusions

Our results demonstrate that implementing the SL12 param-
eterization in CLASSIC improves simulated SCF in moun-
tainous regions. This confirms that the lack of topographic
dependency in the current default parameterization is at least
partly responsible for the SCF overestimation and cold bias
in the coupled model configuration, CanESM5 (Lalande et
al., 2021; Swart et al., 2019; Sigmond et al., 2023). The im-
proved simulation of SCF also improves the simulation of
surface albedo, which in turn leads to improved simulation
of the surface radiation, energy fluxes, and water cycle in
CLASSIC.

The results also demonstrate that the choice of meteoro-
logical forcing data can have a large impact on snow simula-
tion in offline LSM runs. Based on our analysis, we suggest
that at least part of the SWE underestimation in mountainous
areas and SWE overestimation in flat areas can be linked to
relative biases in temperature and precipitation from the me-
teorological forcing datasets. The SWE biases then propagate
to biases in modelled SCF. In addition, we highlighted that
bias-adjustment methods that improve temperature or pre-
cipitation separately may not result in more accurately simu-
lated SWE, with consequences for downstream components
of the water and energy cycles related to snow. These mete-
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orological forcing datasets are regularly used to drive LSMs
in various projects, such as the Global Carbon Project and
ISIMIP, but for snow simulations it is important to better un-
derstand how inaccuracies in temperature and precipitation
can propagate to errors in modelled SWE and SCF.

Based on the evaluation results presented in this study
along with preliminary test results in fully coupled CanESM
runs, the SL12 parameterization has been adopted in CLAS-
SIC and will be used in CanESM simulations for CMIP7
submission. Future work will focus on the evaluation of the
SL12 parameterization in fully coupled CanESM simulations
where a full analysis of feedbacks will be possible.

Appendix A

x10% Temporal distribution of reference observations (Jan-Mar)

- Russia

= Finland

=== US Northeast

=== Canada
Western US

= Alaska

Iy
o

I
ES
T

=
N
T

=
o
T

o
©
T

o
o

\ké J_'L \L// X

1
S

number of observations, except Russia

o
[N}

©
o

0 30
day of month
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Figure A3. March SWE bias relative to in-situ measurements over the 1980-2014 period from model runs forced by each of the three
meteorological forcings.
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Figure AS. Scatter plots between SCF bias and the standard deviation of sub-grid topography during the winter (left) and spring (right)
seasons for model runs using the CTL (top) and SL12 (Bottom) schemes forced by CRUJRA. The correlation coefficient () and p-value
(using a two-tailed 7-test) are provided in the upper-left corner of each plot.
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Figure A6. The difference in SCF between the SL12 and CTL parameterizations during the fall (SON) in model runs using (a) kacc =0.1,

and (b) kacc =0.26 for the SL12 parameterization.
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Figure A7. (a) Spring (MAM) SCF bias relative to MODIS using an adjusted Nynej¢ parameter (numerator =300 in Eq. 3), and (b) the
difference in spring SCF in model runs using the adjusted (numerator = 300) and default (numerator =200) Np,e|¢ parameter.
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