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Abstract. We introduce and evaluate the regional ocean
model MOM6-COBALT-IND12 version 1 coupling the
MOM6 ocean dynamics model to the Carbon, Ocean Bio-
geochemistry and Lower Trophics (COBALT) biogeochem-
ical model at a horizontal resolution of 1/12°. The model
covers the northern Indian Ocean (from 8.6° S to the north-
ern continental boundaries), central to the livelihoods and
economies of countries that comprise about one-third of the
world’s population. We demonstrate that the model effec-
tively captures the key physical and biogeochemical basin-
scale features related to seasonal monsoon reversal, inter-
annual Indian Ocean Dipole and multi-decadal variability,
as well as intraseasonal and fine-scale variability (e.g., ed-
dies and planetary waves), which are all essential for ac-
curately simulating patterns of coastal upwelling, primary
productivity, temperature, salinity, and oxygen levels. Well
represented features include the timing and amplitude of the
monsoonal blooms triggered by summer coastal upwelling
and winter mixing, the strong contrast between the high
evaporation/high salinity Arabian Sea and high precipita-
tion/high runoff/low salinity Bay of Bengal, the seasonality
of the Great Whirl gyre and coastal Kelvin upwelling/down-
welling waves, as well as the physical and biogeochemical
patterns associated with intraseasonal and interannual vari-
ability. Quantitatively, the model exhibits relatively small bi-

ases, as reflected by root mean square error (RMSE) values in
key variables: sea surface temperature (0.25–0.3 °C), mixed
layer depth (7–8.09 m), sea level anomaly (0.02 m), sea
surface salinity (0.53–0.71 psu), vertical chlorophyll (0.03–
0.3 mg m−3), subsurface temperature (0.33 °C), and subsur-
face salinity (0.07 psu). A major model bias (16 µmol kg−1

of oxygen) is the larger oxygen minimum zone simulated in
the Bay of Bengal, a common challenge of ocean and Earth
system models in this region. This bias was partly mitigated
by improving the representation of the export and burial of
organic detritus to the deep ocean (e.g., sinking speed, river-
ine lithogenic material inputs that protect organic material
and burial fraction), and water-column denitrification (e.g.,
nitrate-based respiration at higher oxygen levels) using ob-
servational constraints. These results indicate that the re-
gional MOM6-COBALT-IND12 v1.0 model is well suited
for physical and biogeochemical studies on timescales rang-
ing from weeks to decades, in addition to supporting marine
resource applications and management in the northern Indian
Ocean.
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1 Introduction

The northern Indian Ocean (from 8.6° S to the northern con-
tinental boundaries and 32 to 114° E) is central to the liveli-
hood and economy of about one third of the Earth’s popula-
tion which lives in its littoral countries (e.g., India, Indonesia,
Pakistan, Bangladesh, Tanzania, Myanmar, Malaysia, Kenya,
and Yemen) and provides valuable resources via the “blue
economy”, such as fishery, aquaculture, and marine tourism
(Roy, 2019). A major challenge to understand and antici-
pate the response of Indian Ocean ecosystems is to account
for the full range of spatio-temporal variability and human-
driven changes that control the climatic and environmental
conditions defining the habitat, success and survival of these
ecosystems (Phillips et al., 2021; Pinsky et al., 2013; Deutsch
et al., 2015). On seasonal and interannual time-scales, the In-
dian monsoon and the Indian Ocean Dipole (IOD) control the
ocean circulation and regulate temperature (Schott and Mc-
Creary, 2001; Saji et al., 1999; Beal et al., 2013), oxygen
levels (Resplandy et al., 2012; Vallivattathillam et al., 2017;
Pearson et al., 2022; Al Azhar et al., 2017) and primary pro-
ductivity (Barber et al., 2001; Gauns et al., 2005; Prakash and
Ramesh, 2007; Lévy et al., 2007; Kumar et al., 2010; Wiggert
et al., 2009; Resplandy et al., 2011; Currie et al., 2013; Sarma
and Dalabehera, 2019), with implications for the spatial and
temporal distribution of species that are commercially valu-
able such as tuna, and key to local food security such as small
pelagic fish (e.g., Jebri et al., 2020; Wang et al., 2023).

On decadal and multi-decadal timescales, the Indian
Ocean has undergone rapid warming, with an increase in
sea surface temperature (SST) by about 1 °C since the 1950s
(Roxy et al., 2020), a decline in primary productivity
(Sunanda et al., 2023; Sridevi et al., 2023; Gregg and
Rousseaux, 2019; Dalpadado et al., 2021), and a signifi-
cant loss in oxygen in the Arabian Sea and Bay of Bengal
(Banse et al., 2014; Piontkovski and Al-Oufi, 2015; Queste
et al., 2018; Rixen et al., 2019a; Naqvi, 2019; Löscher, 2021;
Lachkar et al., 2023) as well as in the water masses sup-
plying oxygen to the Indian Ocean (Helm et al., 2011; Ito
et al., 2017; Naqvi, 2021; Ditkovsky et al., 2023). Warm-
ing, decline in primary productivity, and oxygen loss are
projected to continue in the Indian Ocean unless green-
house gas emissions are rapidly curtailed (Bopp et al., 2013;
Kwiatkowski et al., 2017, 2020; Roxy et al., 2020; Lachkar
et al., 2018, 2019; Lévy et al., 2022; Ditkovsky et al., 2023;
Sharma et al., 2023). Warming is also expected to weaken
the monsoon despite a potential increase in extreme rainfall
events (e.g., Sooraj et al., 2015; Singh et al., 2019; Roxy
et al., 2020). This could modify the supply of freshwater
and nutrients to coastal waters, and increase the frequency of
extreme positive IOD events (Roxy et al., 2020; Cai et al.,
2021), which are known to induce weather extremes (Cai
et al., 2021), promote primary productivity in the eastern
tropical Indian Ocean (e.g., Wiggert et al., 2009; Currie et al.,
2013) and lead to low coastal oxygen levels (coastal hypoxia)

in the eastern Bay of Bengal (Pearson et al., 2022). Projec-
tions from Coupled Model Intercomparison Project (CMIP)
models suggest substantial shifts in net primary production
and sharp declines in pH in the coming decades, highlight-
ing the northern Indian Ocean’s particular vulnerability to
climate change (Sunanda et al., 2021, 2023). Observations
indicate that these changes have already impacted ecosys-
tems in the Indian Ocean. For instance, do Rosário Gomes
et al. (2008) found that the dominant phytoplankton group
during the winter bloom in the Arabian Sea shifted from di-
atom to dinoflagellate in recent decades in response to warm-
ing and oxygen loss, with potentially large implications for
the functioning of this ecosystem. In coastal areas, the effect
of natural variability associated with the seasonal monsoon
and interannual IOD combines with global warming and an-
thropogenic activities (waste waters, urbanization, fertilizers
etc.) leading to coastal hypoxic events and in extreme cases
to massive mortality events with implications for coastal fish-
eries and aquaculture (low oxygen levels, Naqvi et al., 2009;
Naqvi, 2021, 2022; Pearson et al., 2022).

Models are powerful tools for exploring the Indian
Ocean’s response to climate variability and anthropogenic
changes, identifying the processes at play, and assessing the
impacts on biogeochemistry and ecosystems (e.g., Sengupta
et al., 2001; Rahaman et al., 2014; Lachkar et al., 2018, 2019;
Resplandy et al., 2011, 2012; Schmidt et al., 2021; Ditkovsky
et al., 2023; Sunanda et al., 2024). Yet, global ocean and
Earth system models are plagued by strong biases in the cir-
culation and biogeochemical dynamics in the Indian Ocean
(Séférian et al., 2020; Rixen et al., 2020; Li et al., 2016). In
particular, global models tend to misrepresent the circulation
that regulates the exchanges between the Indian Ocean and
the Pacific Ocean (i.e., the Indonesian throughflow), the over-
flows from marginal seas (Red Sea and Persian Gulf; Lachkar
et al., 2019; Schmidt et al., 2021; Ditkovsky et al., 2023),
as well as the mesoscale features (eddies and filaments) key
to the ocean circulation, biological production, and the sup-
ply of nutrients and oxygen in the Indian Ocean (e.g., Wirth
et al., 2002; Resplandy et al., 2011, 2012; Nuncio and Ku-
mar, 2012; Vic et al., 2014; Lachkar et al., 2016; Greaser
et al., 2020; Vinayachandran et al., 2021). These shortcom-
ings of global models strongly limit our ability to evalu-
ate the biogeochemical and ecosystem response to climate
variability and change. It is with these applications in mind
that we configured, customised and validated the regional In-
dian Ocean simulation based on the Modular Ocean Model 6
(MOM6, Adcroft et al., 2019) coupled with the Carbon,
Ocean, Biogeochemistry, and Lower Trophics module ver-
sion 2.0 (COBALTv2, Stock et al., 2014, 2020). The model
configuration, called MOM6-COBALT-IND12 version 1 (or
MOM6-COBALT-IND12 v1.0), covers the northern Indian
Ocean at a horizontal resolution of 1/12° and is designed
for physical-biogeochemical studies as well as applications
to ecosystems, marine resources and management (Fig. 1).
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Figure 1. Domain and bathymetry of the regional Indian Ocean MOM6-COBALT-IND12. Pink shading indicates the extent of sponge layers
(see Sect. 2.2.2). Major rivers are indicated in red. Socotra Island and the Bab-el-Mandeb Strait are labeled on the map.

In the following sections, we first present the model phys-
ical and biogeochemical configuration (Sect. 2) and the data
and metrics used to assess the model (Sect. 3). We then eval-
uate key monsoon-driven seasonal patterns (Sect. 4), ocean
interior ventilation and oxygen minimum zones (OMZs) dis-
tribution (Sect. 5), as well as intraseasonal and interannual
variability (Sects. 6 and 7) simulated in the model. Finally,
we discuss the main strengths and limitations of the model
configuration (Sect. 8).

2 Regional Indian Ocean configuration

In this section, we describe the regional model configuration
MOM6-COBALT-IND12 v1.0 (called MOM6-COBALT-
IND12 in the following), which couples an physical ocean
model with a biogeochemical module.

2.1 Physical ocean model configuration

The Indian Ocean regional model is based on the Geophys-
ical Fluid Dynamics Laboratory (GFDL) ocean-ice model
MOM6 (Adcroft et al., 2019). In the horizontal, the model
uses an Arakawa C-grid (Arakawa and Lamb, 1977). The
regional configuration MOM6-COBALT-IND12 covers the
Arabian Sea and Bay of Bengal and extends to the equatorial
Indian Ocean ending south of Java with one open boundary
(32 to 114° E and 8.6° S to 30.3° N; Fig. 1). The horizon-
tal resolution is 1/12° (486× 984 tracer points on the hori-
zontal), with the horizontal grid spacing varying from 9.2 km
at the equator to 7.3 km at 30° N. This resolution resolves
the first baroclinic radius of deformation with at least 2 grid
points and is smaller than the third baroclinic radius of de-

formation (R3 ≥ 13 km) everywhere in the domain except in
the Persian Gulf and on the coastal shelf along the eastern
Arabian Sea (Chelton et al., 1998; Hallberg, 2013). MOM6-
COBALT-IND12 is therefore considered an “eddy resolving”
model for the region with a rectilinear and orthogonal grid
(32 to 114° E and 8.6° S to 30.3° N).

In the vertical, the model includes a 75-layer hybrid z∗-
isopycnal coordinate system with a z∗ layers near the sur-
face (about 2 m thick in the upper 20 m in the tropical Indian
Ocean) and modified potential density layers below (identi-
cal to the hybrid z∗-isopycnal coordinate developed in Ad-
croft et al., 2019, see Fig. 2). The model bathymetry was
generated using the General Bathymetric Chart of the Oceans
version 2020 (GEBCO; Weatherall et al., 2015) by averaging
the GEBCO bathymetry (provided at a resolution of 15 arc-
sec) over each grid cell. The depths of the channel connect-
ing the Red Sea bottom waters and the Arabian Sea (region
in 12.5–14.2° N, 42.375–43.375° E) are set to 220 m to allow
the outflow. The shallowest bathymetry in the model is 4 m.
The model is integrated in time using a split explicit method
(Runge–Kutta second-order scheme; Hallberg and Adcroft,
2009). The baroclinic time-step is 600 s and the thermody-
namic and biogeochemical time-step are 1800 s (Table 1).
Using an 18-node setup with 40 cores per node, which dis-
tributes the 486×984 model grid across available processing
units, the model can run one year of simulation in about 16 h
of wall clock time (this includes the output of extensive di-
agnostics).

The configuration of subgrid-scale parameterizations used
in MOM6-COBALT-IND12 are based on that of the GFDL
Ocean Model version 4 (OM4; Adcroft et al., 2019). We use
a background kinematic viscosity and a background diapy-
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Figure 2. West-east cross-section of the Arabian Sea at 15° N showing the structure of the isopycnal vertical coordinate (contours) overlain
with potential temperature (colors) in September 2005 (a) over the full column and (b) over the top 500 m. The z∗ layers in the upper ocean
are not shown. The coordinate follows the pattern of the wind-driven upwelling along the coast of Yemen in the west, and the coastal Kelvin
wave-driven upwelling along the Indian coast in the east.

cnal diffusivity of 1.5× 10−5 m2 s−1 (Table 1). As in OM4,
viscosity beyond background levels is evaluated as the maxi-
mum of a Smagorinsky and resolution-dependent biharmonic
viscosity (Griffies and Hallberg, 2000). Additional mixing is
represented by planetary boundary layer mixing (Reichl and
Hallberg, 2018; Reichl and Li, 2019), shear mixing (Jack-
son et al., 2008), and mixed-layer restratification due to
submesoscale processes (Fox-Kemper et al., 2011). MOM6-
COBALT-IND12 also includes bottom boundary layer mix-
ing as in OM4, but the mixing efficiency parameter of this
scheme is lowered from 0.2 in OM4 to 0.01 following Ross
et al. (2023). The model explicitly resolves barotropic tidal
forcing (see next section) and low-mode internal tides are
well resolved at 1/12° resolution; however, we parameterize
the local dissipation of high-mode internal tides according to
topographic roughness data (St. Laurent et al., 2002; Polzin,
2009). See Table 1 for a list of configuration parameters.

2.2 Physical ocean model forcing

2.2.1 Initial state, spin-up and atmospheric forcing

The ocean model was initialized using temperature and salin-
ity from annual mean fields from the World Ocean Atlas ver-
sion 2013 (WOA13; Locarnini et al., 2014; Zweng et al.,
2014). Our simulations were run using the atmospheric forc-
ing from the 1/4◦ horizontal resolution European Center
for Medium-range Weather Forecasts reanalysis 5th gener-
ation (ERA5) at 1 h frequency (Hersbach et al., 2020). In

the ocean model, air–sea heat fluxes were computed using
the bulk algorithm of Large and Yeager (2004), which re-
quires atmospheric input variables referenced at 10 m. As the
ERA5 forcing provides near-surface temperature and humid-
ity at 2 m, these variables were vertically adjusted to 10 m
following the procedure recommended by Large and Yeager
(2004), ensuring consistency with the algorithm’s assump-
tions. The sea surface salinity (SSS) was restored to the polar
science center hydrographic climatology (PHC2.1), which
is based on the World Ocean Atlas 98 with data replenish-
ment in the Arctic Ocean (Steele et al., 2001), with a piston
velocity of 0.1667 m d−1. We conducted a 32-year spin-up,
consisting of four consecutive 8-year loops of the 1980 to
1987 forcing field, and reached a well-equilibrated state with
minimal linear trends of physical and biogeochemical vari-
ables (e.g., drift in SST, SSS, oxygen, nitrate, primary pro-
duction and ocean surface partial pressure of carbon diox-
ide pCO2<∼ 0.1 % for spin-up years 17–32). Using outputs
from the end of the spinup simulation as initial conditions,
the hindcast simulation was started on 1 January 1980 and
was run from 1980 to 2020 for our analysis in this study.

2.2.2 Open boundary conditions and tidal forcing

Open boundary conditions (OBC) are set using the Flather
formulation for the tidal and sub-tidal sea level and
barotropic velocity and the Orlanski formulation for the baro-
clinic velocity (Flather, 1976; Orlanski, 1976). In addition,
we nudge the boundary values towards external forcing with
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Table 1. Major parameters and associated values used in the physical ocean (MOM6) component of the model.

Parameter Value Reference

Vertical coordinate 75 layer hybrid z∗-isopycnal Adcroft et al. (2019)

Baroclinic time step 600 s

Thermodynamic and BGC time step 1800 s

Planetary boundary layer parameterization ePBL Reichl and Hallberg (2018)

Submesoscale eddy front length 500 m Fox-Kemper et al. (2011)

Biharmonic viscosity Maximum of Smagorinsky and
resolution-dependent
viscosities

Griffies and Hallberg (2000)

Smagorinsky coefficient 0.06
Resolution-dependent 0.0113

x m4 s−1 Adcroft et al. (2019)

Bottom boundary layer mixing efficiency 0.01 Legg et al. (2006)

Background kinematic viscosity 1.5× 10−5 m2 s−1

Background diapycnal diffusivity 1.5× 10−5 m2 s−1

Boundary Conditions
Sea level and barotropic velocities Flather scheme Flather (1976)
Baroclinic velocities Radiation scheme and nudging Orlanski (1976) and

(3 d inflow and 360 d outflow) Marchesiello et al. (2001)
Temperature and salinity Reservoirs with 9 km length

scale
Ross et al. (2023)

Biogeochemical tracers Reservoirs with 9 km outflow
length scale
and 300 km inflow length scale

Tidal SAL coefficient 0.094 Irazoqui Apecechea et al. (2017)
Stepanov and Hughes (2004), Barton et al. (2022)

Opacity Scheme 3-band with chlorophyll Manizza (2005)
Piston velocity for SSS relaxation 0.1667 m d−1 Adcroft et al. (2019)

a strong 3 d time-scale for baroclinic normal and tangential
velocities entering the model and a weak 360 d time-scale for
outgoing velocities (Marchesiello et al., 2001). The bound-
ary value for temperature and salinity are set using a reser-
voir in which the properties are evolving based on contribu-
tions from an inflow (properties outside of the domain set
by an boundary forcing file) and outflow (properties sim-
ulated inside the model domain) fluxes. Similarly to Ross
et al. (2023), the inflow and outflow length scales are set to
9 km (about 1–10 d time-scale for velocities of 10−1 cm s−1)
for temperature and salinity (i.e., inflow and outflow have
an equal contribution to the boundary reservoir). The model
includes a sponge layer over 15 grid points at the southern
open boundary, nudging the model to time-varying Ocean
Reanalysis System 5 (ORAS5) temperature and salinity with
a time-scale increasing from 12 d at the boundary to 174 d
at the 15th grid point. The model also includes two sponge
layers at the closed boundaries of the Malacca and Sunda
Straits with a nudging to the climatological WOA18 data. For

the Malacca Strait, temperature and salinity are nudged over
15 grid points with a time-scale increasing from 12 d at the
strait outlet to 174 d toward the Indian Ocean. In the Sunda
Strait, the nudging is over 21 grid points and the time-scale
increases from 12 d at the outlet to 336 d toward the Indian
Ocean.

Ten tidal components (i.e., M2, S2, N2, K2, K1, O1,
P1, Q1, Mm, and Mf) interpolated from the inversion of
TOPEX/POSEIDON crossover data TPX09 (Egbert and Ero-
feeva, 2002) are used to generate surface elevation and veloc-
ity forcing at the open boundary. Tidal potential forcing from
the same ten components is included in the barotropic mo-
mentum equations throughout the domain, and the effects of
self-attraction and loading are represented using the scalar
approximation (Accad and Pekeris, 1978) with a coefficient
of 0.094. Sub-tidal velocities, temperature and salinity at the
southern open boundary are from the monthly ORAS5 (Zuo
et al., 2019).
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2.2.3 River freshwater discharge

Freshwater discharge from rivers was prescribed using the
gridded daily Global Flood Awareness System (GloFAS) re-
analysis version 4.0, as described by Grimaldi et al. (2022)
and Harrigan et al. (2023). To map the river discharge data
onto the MOM6-COBALT-IND12 grid, we used the GloFAS
local drainage direction map to identify outlet points adjacent
to the coast, as well as any chains of outlet points connected
to these coastal outlets, see details in Burek et al. (2013). The
streamflow at these outlet points was introduced at the sur-
face of the nearest model coastal ocean grid cell. To ensure
the riverine freshwater flux is mixed into the water column,
an extra input of turbulent kinetic energy extending down to
a depth of 10 m was included at the discharge points (Tseng
et al., 2016). By comparing GloFAS to published discharge
observations (Jian et al., 2009; Siswanto et al., 2023), we
found that GloFAS overestimated discharge in the Ganges-
Brahmaputra river system, and therefore scaled down the
freshwater discharge by 25 % to match observations in these
two rivers (see Fig. A1; Jian et al., 2009; Siswanto et al.,
2023). Additionally, we found that GloFAS underestimated
runoff in the Irrawaddy-Sittang river system. To correct for
this bias, we applied a linear regression-based correction (see
Fig. A1) between the original GloFAS discharge and dis-
charge data from the Global Runoff Data Centre (GRDC;
Recknagel et al., 2023) for the Irrawaddy-Sittang regions. Fi-
nally, we manually removed discharge in the model sponge
layers of the Sunda Strait and Malacca Strait.

2.3 Biogeochemical model configuration and changes
specific to Indian Ocean

The physical ocean model is coupled to the COBALT v2
(Stock et al., 2014, 2020). COBALTv2 represents 33 trac-
ers including nutrients (nitrate, phosphate, silicate, and iron),
three phytoplankton groups (small, large, diazotrophs), three
zooplankton groups (small, medium, large), three dissolved
organic carbon pools (labile, semi-refractory and refractory),
one particulate detritus pool, oxygen, and carbonate system.

Several parameters of the standard COBALTv2 model
from Stock et al. (2020) were modified to match observa-
tional constraints and characteristics of the Indian Ocean and
improve model biases, including a bias in the extent and vol-
ume of the OMZ in the Bay of Bengal.

– Detritus sinking velocity was increased from 100 to
120 m d−1, based on in-situ sediment trap observations
indicating sinking speeds up to 160–280 m d−1 in the
Indian Ocean (Rixen et al., 2019b).

– The burial fraction was increased (the equivalent half-
saturation in the denominator of Eq. 3 from Dunne
et al., 2007, was reduced from 7 to 1 mmol C m−2 d−1)
. This increased the burial of particulate organic car-
bon from 0.013 to 0.026 Pg C yr−1 in the tropical In-

dian Ocean, in better agreement with the burial of
0.028 Pg C yr−1 found in the observation-based recon-
struction of LaRowe et al. (2020).

– The oxygen half-saturation for nitrification (knit,O2

in Stock et al., 2020) was reduced from 3.9 to
2.0 µmol O2 kg−1, based on recent observations indicat-
ing a lower oxygen threshold for ammonium oxidation
in the OMZs (Bristow et al., 2016; Peng et al., 2016;
Frey et al., 2023).

– The oxygen constraint on water column denitrification
was modified from O2,min/(kO2 +O2,min) when O2 <

0.8 µmol kg−1 (see Appendix A3 in Stock et al., 2020)
to O2/(kO2+O2)when O2 < 4.0 µmol kg−1, in line with
findings that the oxygen threshold below which denitri-
fication starts is typically between 4 and 5 µmol kg−1

(Paulmier and Ruiz-Pino, 2009).

2.4 Biogeochemical model forcing

2.4.1 Initial state, open boundary conditions and model
drift

For the model spin-up, nutrients (nitrate, phosphate, and sil-
icate) and oxygen were initialized using annual means from
the World Ocean Atlas 2018 (WOA18; Garcia et al., 2019).
Dissolved inorganic carbon (DIC) and alkalinity were ini-
tialized using annual means from the Global Ocean Data
Analysis Project version 2 (GLODAPv2), which are repre-
sentative of year 2002 (Olsen et al., 2016). Other biogeo-
chemical tracers were initialized with very low seed values
of 10−10 mol kg−1. This initial value has a negligible im-
pact on the solution as most of these remaining tracers have
turnover time-scales much shorter than the 32-year spin-
up duration (e.g., typically of a few days for phytoplank-
ton), except semi-refractory dissolved organic matter (de-
cay time-scale of 10 years). Atmospheric CO2 forcing was
taken from the global carbon budget project (Friedlingstein
et al., 2022). Biogeochemical boundary values are prescribed
from WOA18 monthly climatologies for nitrate, phosphate,
silicate, and oxygen. For DIC and alkalinity boundary val-
ues, annual mean fields were estimated using the Empirical
Seawater Property Estimation Routines (ESPER) MATLAB
code (Carter et al., 2021), based on annual mean tempera-
ture and salinity from ORAS5. The OBC for biogeochemi-
cal tracers is set using the reservoir scheme (see Sect. 2.2),
with an outflow length scale of 9 km but an increased inflow
length scale of 300 km, giving more weight to the solution
within the model domain. This decoupling between contri-
butions from the inflow and outflow limits the influence of
the boundary external forcing on the model domain, specifi-
cally when the fields at the boundaries are poorly constrained
such as for biogeochemical tracers. Model drift after the 32-
year spin-up and over the 41 years of a hindcast simulation
with constant forcing is small, with linear trends< 0.05 %

Geosci. Model Dev., 18, 6553–6596, 2025 https://doi.org/10.5194/gmd-18-6553-2025
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for oxygen, nitrate, DIC, alkalinity, semi-refractory dissolved
organic nitrogen pools and integrated primary productivity
(Fig. A2). The slight drift indicates that the hindcast simula-
tion starts from a well-equilibrated initial state provided by
the spin-up simulation.

2.4.2 Atmospheric deposition

The model is forced with monthly atmospheric depo-
sition of nitrogen (wet and dry deposition of nitrate
and ammonium), iron, phosphorus, and lithogenic
dust derived from the archived GFDL Earth system
model version 4.1 (ESM4.1) historical simulation
(https://www.wdc-climate.de/ui/cmip6?input=CMIP6.
CMIP.NOAA-GFDL.GFDL-ESM4.historical, last ac-
cess: 15 July 2023) (1980–2014) and Shared So
(https://www.wdc-climate.de/ui/cmip6?input=CMIP6.
ScenarioMIP.NOAA-GFDL.GFDL-ESM4.ssp585, last
access: 15 July 2023) (2014–2020; Stock et al., 2020;
Horowitz et al., 2020; Paulot et al., 2020). ESM4.1 includes
interactive modules for anthropogenic and natural (e.g.,
biomass burning, lightning) reactive nitrogen emissions,
photochemical reactions, removal of nitrogen by wet and
dry deposition, as well as a land-atmosphere-ocean cycling
of dust and ocean ammonia outgassing (Paulot et al., 2020;
Horowitz et al., 2020). Interannual variability in ESM4.1 is
not in phase with observed variability (as for any coupled
Earth system model). For dry and wet deposition of oxidized
and reduced nitrogen, we therefore used a 15-year moving
by month average (e.g., January 2000 is an average of all
Januaries between years 1993 and 2007) that retain the
seasonality and the decadal anthropogenic increase in depo-
sition but removed the interannual variability (see Fig. A3).
For iron, phosphorus and lithogenic material deposition,
we used monthly mean climatologies over the 1950–2022
period (ESM4.1 does not include the effects of fossil fuel
burning etc. that would yield a significant long term trend in
these fields, although it would include the smaller impact of
long-term wetting/drying, wind and/or precipitation trends
that we ignore here). Iron and dry lithogenic dust depositions
are from ESM4.1 outputs. Phosphorus deposition was
evaluated using the ESM4.1 climatology in dry lithogenic
dust deposition, assuming a phosphorus content of 563 ppm
in dust, of which 22 % is bioavailable (see Herbert et al.,
2018; Ross et al., 2023). See details about the influence
of atmospheric deposition in this model in Malsang et al.
(2024).

2.4.3 River biogeochemical inputs

The riverine fluxes of dissolved and particulate nutrients (ni-
trogen and phosphorus) are derived from the annual mean
loads of inorganic and organic nitrogen and phosphorus
from the Global Nutrient Export from WaterSheds2 (Glob-
alNEWS2), referenced to the year 2000 (Mayorga et al.,

2010). We include riverine inputs of dissolved inorganic ni-
trogen (DIN), dissolved inorganic phosphorus (DIP), dis-
solved organic nitrogen (DON), dissolved organic phos-
phorus (DOP), and bio-available particulate organic nitro-
gen (PON). We do not include bio-available particulate or-
ganic phosphorus (POP) as the river input of DIP is already
likely too high in GlobalNEWS2 (Jiao et al., 2023). DON and
DOP are distributed among different dissolved organic pools,
with 30 % allocated to the labile pool, 35 % to the semi-labile
pool, and 35 % to the semi-refractory pool (Wiegner et al.,
2006). The riverine PON is assumed 100 % bio-available.

The riverine input of iron is set at a value of 70 nmol kg−1

based on Raiswell and Canfield (2012). In the Bay of Ben-
gal (78–103° E) region, the riverine DIN concentration is re-
duced by 80 % based on coastal nitrate data collected by Kr-
ishna et al. (2016). This adjustment is supported by Zhou
et al. (2022) and Jiao et al. (2023), which compared sev-
eral global nutrient transport models highlighting that Glob-
alNEWS2 tended to overestimate total nitrogen riverine in-
puts. The riverine flux of DIN in the Arabian Sea and the
flux of other nutrients in both the Arabian Sea and Bay of
Bengal are kept equal to the original values from Global-
NEWS2. The riverine inputs of DIC (0.32 mol m−3) and al-
kalinity (0.42 mol equivalents of alkalinity m−3) are assigned
constant concentrations, consistent with those used in the
GFDL-ESM4.1 Earth system model (Stock et al., 2020).

To reflect spatial differences in sediment supply, we spec-
ify riverine lithogenic concentrations based on observational
data from Milliman and Farnsworth (2011). The lithogenic
input from rivers was adjusted to 200 g m−3 for major rivers
(i.e., rivers with sediment loads exceeding 10 Mt yr−1, e.g.,
Godavari, Krishna, Ganges, Brahmaputra, Irrawaddy, Sit-
tang, Salween, Indus, Tapti and Narmada rivers; see Fig. 1
for rivers location) and 20 g m−3 for all other rivers, rather
than applying a global constant of 13 g m−3 used for all rivers
as in Stock et al. (2020). These adjustments account for the
significantly higher total suspended sediment loads in these
rivers (Milliman and Farnsworth, 2011; Rixen et al., 2019b),
and are supported by river observations from Milliman and
Farnsworth (2011) showing a broad range from 10 g m−3

(Muvattupuzha River) to 1061 g m−3 (Ganges River). In the
model, this higher lithogenic flux protects more particulate
organic matter from remineralization, thereby increasing or-
ganic carbon export to the deep ocean and reducing oxygen
consumption in the subsurface. This is in line with obser-
vations that underscore the significant role of lithogenic mat-
ter in reducing organic matter remineralization and accelerat-
ing carbon export in the northern Indian Ocean (Rixen et al.,
2019b).

These concentrations of nutrients, DIC, alkalinity,
lithogenic and organic material (constant in time) are incor-
porated using the GloFAS freshwater inputs and by assign-
ing them to the nearest neighboring river mouths, with larger
rivers given priority over smaller ones. Nutrient loads vary in
accordance with changes in river discharges, and the baseline
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configuration presented in this study does not account for the
fluctuations and trends in observed nutrient concentrations
during the 1980-2020 model simulation period.

3 Methods for assessing model spatial and temporal
variability

3.1 Physical and biogeochemical datasets

We used satellite and in-situ observations to assess modeled
physical and biogeochemical basin-scale patterns as well as
seasonal, interannual and intraseasonal variability. See Ta-
ble 2 for a list of all datasets and their references.

For the basin-scale evaluation of physical fields, we used
Argo gridded temperature (Roemmich and Gilson, 2009),
temperature and salinity from the WOA18 (Garcia et al.,
2019), satellite-based SST from the Optimum Interpolation
SST (OISST) version 2.1 (Banzon et al., 2016), sea surface
height (SSH) and sea level anomaly from AVISO and dis-
tributed by the Copernicus Marine and Environment Moni-
toring Service (CMEMS; http://www.marine.copernicus.eu,
last access: 10 August 2023), the mixed layer depth (MLD)
climatology from De Boyer Montéut et al. (2004) (updated
in November 2008; https://mld.ifremer.fr/Surface_Mixed_
Layer_Depth.php, last access: 10 June 2023) and ocean sur-
face currents from the OSCAR drifter database (ESR, 2009).
In addition, we used data from the Research Moored Array
for African-Asian-Australian Monsoon Analysis and Predic-
tion (RAMA), specifically from two moorings capturing the
east-west contrast in the basin at 57° E, 4° S and 95° E, 5° S
(data downloaded from the Pacific Marine Environmental
Laboratory NOAA website; McPhaden et al., 2009), and ob-
servations from water mass properties at the Red Sea outflow
from Sofianos et al. (2002).

For the basin-scale biogeochemical model evaluation, we
used oxygen concentrations from WOA18 (Garcia et al.,
2019) and from Bianchi et al. (2012), surface chloro-
phyll data from the European Space Agency ocean color
climate change initiative (OC-CCI version 5.0; Sathyen-
dranath et al., 2019), vertical chlorophyll data from bio-
Argo (Wong et al., 2020), and integrated primary pro-
ductivity from the satellite-based Carbon-based Produc-
tion Model (CbPM) algorithm, the Carbon, Absorption,
and Fluorescence Euphotic-resolving (CAFE) algorithm,
the Vertically Generalized Production Model (Standard-
VGPM) algorithm and its alternative formulation (Eppley-
VGPM), all accessed via the Ocean Productivity web-
site (http://sites.science.oregonstate.edu/ocean.productivity/
index.php, last access: 10 December 2023). In addition, we
used in-situ observations compiled from a literature review
including 24 studies and 351 stations (see Table 2 for refer-
ences). River inputs and particulate organic and lithogenic
matter in the model were evaluated using river discharge

from the Global Runoff Data Center (GRDC; Recknagel
et al., 2023).

3.2 Analysis and evaluation metrics

We evaluated the amplitude of intraseasonal variability (ISV)
using SSH temporal variability as a proxy for mesoscale ed-
dies and planetary waves (Rossby and Kelvin waves; e.g.,
Cheng et al., 2013). Observed and simulated SSH were de-
trended using a linear regression and filtered using a 14–
120 d band pass filter to remove the seasonal cycle, interan-
nual variability and long-term trend, and only retain the in-
traseasonal timescales. The Dipole Mode Index (DMI) used
to evaluate IOD phases was calculated as the SST anoma-
lous gradient between the western equatorial Indian Ocean
(50–70° E and 10° S–10° N) and the southeastern equato-
rial Indian Ocean (90–110° E and 10° S–0° N, Saji et al.,
1999). Finally, we used three metrics throughout the study
to compare model results and observations: the Pearson cor-
relation coefficient (r) which measures the correlation be-
tween observations and model in time (for time-series) or
in space (for maps), the root mean square error (RMSE,
i.e., quadratic mean of model minus observations) which
measures the model accuracy compared to observations,
and the bias (i.e., model minus observations) which indi-
cates if the model underestimates or overestimates the ob-
served fields. For the validation of climatological annual and
seasonal means, model outputs are averaged over the pe-
riod 1980–2020. Observation-based data products are treated
based on their availability: if the dataset provides climato-
logical means (annual or seasonal), we use the provided val-
ues directly. If not, we compute climatological means over
the available time span of the observational dataset (see time
span in Table 2).

4 Monsoon-driven seasonality

4.1 Sea surface temperature as an indicator of seasonal
dynamics

Patterns of SST in the northern Indian Ocean follow the
well described basin-scale features associated with the mon-
soon reversal (e.g., Schott and McCreary, 2001). MOM6-
COBALT-IND12 captures seasonal SST patterns well, no-
tably the contrast between the vast warm pool (SST> 28 °C)
that extends over most of the basin and the regions with
colder SSTs that develop in response to seasonal variations
in atmospheric and oceanic circulation (Fig. 3). During the
winter monsoon, the model simulates the relatively cold wa-
ter (SST< 26 °C) associated with evaporative cooling in the
northern Bay of Bengal, and a combination of evaporative
cooling and convective mixing (MLD of 40–60 m) in the
northern Arabian Sea (Figs. 3a–c and 4a–c). During the sum-
mer monsoon, the model simulates the colder summer SSTs
observed in wind-driven upwelling regions along the western
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Table 2. Observational products used to evaluate MOM6-COBALT-IND12.

Parameter Sampling frequency Reference dataset

Sea surface temperature monthly optimum OISSTv2.1 includes satellites, ships, buoys, Argo floats
interpolation (1982–2020) (Banzon et al., 2016)

Mixed-layer depth monthly climatology De Boyer Montéut et al. (2004) – updated November 2008

Surface currents 5 d averaged monthly OSCAR drifter database (ESR, 2009)

Sea level anomaly daily satellite-based Copernicus (Lopez, 2018)

Ocean temperature and salinity monthly climatologies World Ocean Atlas 2018 (WOA18, Garcia et al., 2019)
in-situ profiles World Ocean Database 2018 (WOD18, Boyer et al., 2018)
in-situ profiles RAMA moorings (McPhaden et al., 2009)

Wind speed monthly satellite CCMP (Mears et al., 2022)
in-situ RAMA moorings (McPhaden et al., 2009)

Red Sea Outflow properties in-situ sampling (1995–1996) Sofianos et al. (2002)

Oxygen concentration monthly climatologies WOA18 (Garcia et al., 2019; Bianchi et al., 2012)

Surface chlorophyll monthly climatology OC-CCI v5.0 (Sathyendranath et al., 2019)

River Discharge daily/annual mean Global Runoff Data Center (GRDC, Recknagel et al., 2023
Jian et al., 2009; Krishna et al., 2016)

Riverine lithogenic flux in-situ sampling Milliman and Farnsworth (2011)

Marine lithogenic/organic flux in-situ sampling Rixen et al. (2019b)

Net primary productivity monthly satellite-based CbPM (Westberry et al., 2008), CAFE (Silsbe et al., 2016),
standard-VGPM, Eppley-VGPM
(Behrenfeld and Falkowski, 1997)

in-situ sampling Saxena et al. (2023), Marra et al. (2021), Sarma et al. (2020)
(351 stations) Löscher et al. (2020), Sarma and Dalabehera (2019)

(Ahmed et al., 2017), Gandhi et al. (2010, 2011)
Kumar et al. (2010), Naqvi et al. (2010), Prakash et al. (2008)
Prasanna Kumar et al. (2007a, b), Naqvi et al. (2006)
Gauns et al. (2005), Kumar et al. (2004)
Barber et al. (2001), Watts and Owens (1999), Watts et al. (1999)
Savidge and Gilpin (1999), McCarthy et al. (1999)
Veldhuis et al. (1997), Devassy et al. (1983)
Bhattathiri et al. (1980), Radhakrishna (1978)

boundary coasts (e.g., Oman, Yemen, Somalia, Kenya and
Tanzania where SST< 26 °C), and in the weaker upwelling
controlled by Kelvin wave propagation along the southwest-
ern Indian coast (SST∼ 27 °C; Fig. 3d–f; see details on
wave propagation in Sect. 4.3). At the basin scale, modeled
SST patterns shows strong agreement with observed patterns,
characterized by a high correlation coefficient (r>0.97), low
RMSE (0.25–0.3 °C), and small biases (regional mean SST
bias of −0.06 °C in winter and −0.01 °C in summer for the
1980–2020 period). We note that the good agreement be-
tween observed and modeled SST is in part attributable to
the strong influence of the prescribed observation-driven at-
mospheric surface boundary forcing that controls air-sea heat
fluxes in the model (e.g., temperature, wind; see Sect. 2). In
addition, a comparison between ERA5 and Cross-Calibrated

Multi-Platform (CCMP) wind products demonstrates that
ERA5 wind forcing effectively captures the seasonal cycle
and spatial distribution of the summer and winter monsoons
(Fig. A4).

The model captures the seasonal contrast in MLD between
the Arabian Sea and the Bay of Bengal, with deeper mixed
layers in the Arabian Sea and shallower layers in the Bay of
Bengal during both winter and summer (Fig. 4). The MLD
is generally deeper in summer than in winter. The spatial
patterns, including the locations of local MLD maxima, are
broadly consistent with observational data. Quantitatively,
the basin-wide correlation values are similar between the two
seasons, although the RMSE is larger in summer (8.09 m)
than in winter (7.00 m). One possible contributor to the larger
summer bias is the enhanced wind forcing during the mon-
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Figure 3. Sea surface temperature (SST) during (a–c) winter (December–February) and (d–f) summer (June–August) monsoons. Panels
(a, d) show OISST observations, (b, e) show MOM6-COBALT-IND12 model and (c, f) show differences between model and observations.
Correlation coefficients r , RMSE and bias between the observed and model seasonal means are indicated. See details on observations in
Table 2. Model results are averaged over the 1980–2020 period.

soon season (see Fig. A4), which intensifies turbulent mixing
and deepens the mixed layer. At the same time, the MOM6
model includes the mixed layer eddy (MLE) parameteriza-
tion of Fox-Kemper et al. (2011), which represents restrati-
fication driven by baroclinic eddies within the mixed layer.
This restratification process may also be more active in sum-
mer, potentially leading to an overcorrection that offsets ver-
tical mixing too strongly. The interaction between intensified
wind-driven mixing and enhanced restratification may thus
contribute to the larger MLD bias observed in summer com-
pared to winter.

4.2 Seasonal reversal of upper ocean circulation

MOM6-COBALT-IND12 reproduces the observed seasonal
reversal of the main current systems, as confirmed by com-
parison with the updated OSCAR drifters database (arrows
on Fig. 4). In the Equatorial band, these seasonal changes in-
clude the shift from an eastward transport by the Northeast
Monsoon Current (Equator to 10° N) and westward trans-
port by the South Equatorial Countercurrent (5° S to Equa-
tor) in winter, to a mostly westward transport by the the
Southwest Monsoon Current in summer (Equator to 10° N,
Fig. 4). MOM6-COBALT-IND12 also simulates the summer

strengthening and reversal of the western boundary Somali
Current system and its extension northward along the Ara-
bian Peninsula (Fig. 4). In the following, we compare the
simulated and observed seasonal evolution of this western
boundary system, with a focus on the characteristics that are
most relevant to the biogeochemical response, and refer the
reader to prior work for a more in-depth description of its dy-
namics (e.g., Schott and McCreary, 2001; Wirth et al., 2002;
Brandt et al., 2003; Sengupta et al., 2001; Beal and Donohue,
2013; Beal et al., 2013; Vic et al., 2014; Wang et al., 2018).

Figure 5 compares the simulated and observed sea-
sonal evolution of the western boundary system. MOM6-
COBALT-IND12 simulates relatively well the observed cli-
matological evolution of the Somali Current. Before the sum-
mer monsoon (April), the Somali Current is relatively weak
and flows northward along the western boundary, crossing
the Equator in both observations and model. At the onset
of the summer monsoon (June), the Somali Current inten-
sifies, and separates at around 4° N into a northward along-
shore current and an eastward flow that loops back across the
equator and feeds the South Equatorial Countercurrent, a fea-
ture also known as the Southern Gyre (Beal et al., 2013). Si-
multaneously, a quasi-stationary anticyclonic mesoscale gyre
called the Great Whirl develops at about 10° N (Fig. 5). As
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Figure 4. Seasonal mean mixed layer depth (MLD) and surface currents during (a–c) winter (December–February) and (d–f) summer
(June–August) monsoons. Panels (a, d) show observations, (b, e) show MOM6-COBALT-IND12 model and (c, f) show differences between
model and observations. Correlation coefficients r , RMSE and bias between the observed and model seasonal MLD means are indicated.
Observations are an update of De Boyer Montéut et al. (2004) for MLD and the OSCAR drifters database for surface currents (see Table 2).
Model results are averaged over the 1980–2020 period.

the southwest monsoon progresses (August), the Great Whirl
intensifies, becoming one of the largest and most energetic
coherent vortices in the world ocean. A smaller anticyclonic
mesoscale eddy, the Socotra Eddy, also develops east of So-
cotra Island at this time (Fig. 5). The structure of the Great
Whirl at its peak is relatively similar in the model and ship-
board and mooring observations, with an horizontal footprint
of ∼ 500 km, a vertical extent of ∼ 1000 m, meridional cur-
rents of about 1 m s−1 at the surface and 0.1 m s−1 at 1000 m
depth (Figs. 5 and 6 and observations reported in Schott and
McCreary, 2001; Beal and Donohue, 2013). Finally, during
the fall intermonsoon (October), the gyre system decays, and
by the winter monsoon (December), the surface signature of
the Great Whirl and Socotra Eddy are not visible (Fig. 5).

4.3 Coastal upwelling and downwelling

Patterns in sea level anomaly can be used as a proxy for
coastal seasonal upwelling (negative anomalies) and down-
welling (positive anomalies) motions (Fig. 7a–d). In summer,
the model reproduces the amplitude and patterns of wind-
driven upwelling along the western Arabian Sea (e.g., Oman,
Yemen and Somalia), and western Bay of Bengal (eastern In-

dia) coasts (Fig. 7b and d; correlation coefficient r = 0.91;
RMSE= 0.02 m). We note that the latter upwelling has little
influence on SST in both observations and models (Fig. 3)
due to the strong near-surface stratification imposed by high
freshwater inputs in the Bay of Bengal, and hence the strong
atmospheric control on SST in this region (e.g., Shetye et al.,
1991; Shenoi et al., 2002). In winter, SLA patterns largely
mirror summertime patterns due to the reversal of the winds
and ocean circulation, with downwelling motions (positive
SLA) that develop along the western Arabian Sea coasts and
the western Bay of Bengal (Fig. 7a–d). This pattern is also
well captured by the model (Fig. 7a and c; correlation coeffi-
cient r = 0.93; RMSE= 0.02 m).

Wind-driven upwelling and downwelling are strongly
modulated by the seasonal propagation of coastal Kelvin
waves around the rim of the northern Indian Ocean (e.g., Mc-
Creary et al., 1993; Yang et al., 1998; Nienhaus et al., 2012;
Vinayachandran et al., 2021). We examine the evolution of
these coastal waves following changes in SLA along the
Equatorial and coastal wave guides using the review and de-
scription provided in Pearson et al. (2022). Modeled coastal
SLA patterns remarkably capture the timing and amplitude
of the observed patterns, starting with the equatorial up-
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Figure 5. Climatological evolution of the western boundary Somali
Current system showing SST (colors) and surface currents (vec-
tors) in observation-based products (a–e) and MOM6-COBALT-
IND12 (f–j). Observation-based products are from OISSTv2.1
satellite for SST and the OSCAR drifters database for surface cur-
rents (see Table 2). Correlation coefficients r , RMSE and bias be-
tween the observed and modeled SST means are indicated.

welling Kelvin waves triggered by wind changes in the sum-
mer and winter monsoons (arrows for waves I and II), and the
equatorial downwelling Kelvin waves triggered during the
spring and fall intermonsoons (arrows for waves III and IV
on Fig. 7e and f). These successive wave trains travel east
and then counter-clockwise around the Bay of Bengal and
the Arabian Sea. The model also captures the summer up-
welling and winter downwelling waves excited in the north-
western Bay of Bengal (arrow for waves V and VI) and at
the tip of India (arrows for waves VII and VIII), reinforcing
the wind-driven summer upwelling and winter downwelling
(dashed circles) that develop in the western Bay of Bengal
and eastern Arabian Sea (Fig. 7e and f). See further details in
Pearson et al. (2022) and references herein.

4.4 Sea surface salinity and river plumes

The model reproduces the main observed patterns of SSS
(Fig. 8a–f), including the high SSS (SSS> 34 psu) in the
Arabian Sea where evaporation exceeds precipitation and
riverine runoff, and the much fresher (SSS< 34 psu) Bay of
Bengal where precipitation and runoff exceed evaporation.
Performance metrics indicate that the simulation achieves a
strong spatial correlation (0.95–0.96) and a small regional
RMSE (0.53–0.71). It also reproduces the seasonality of SSS
associated with the monsoon, in particular the extent of the
surface freshwater plumes (SSS< 31 psu) associated with
the river discharge in the Bay of Bengal. Riverine runoff
in the Bay of Bengal is lowest during the dry winter mon-
soon and spring intermonsoon, and peaks during the sum-
mer monsoon and early fall intermonsoon, with discharges
up to 1.5×105 m3 s−1 in the Ganges-Brahmaputra river sys-
tem and 0.4× 105 m3 s−1 in the Irrawaddy-Sittang river sys-
tems for which we have observed time-series (Fig. 8g and h).
The runoff product used to force the model reproduces the
seasonality of the Ganges-Brahmaputra and the Irrawaddy-
Sittang river systems (GloFAS was modified based on runoff
observations in this system; see Sect. 2.2.3). As a result, the
observed and simulated freshwater plumes are confined to
the river mouths in late spring when runoff is lowest (April),
and extend 200 to 500 km offshore in summer when runoff
peaks (August), before being stretched out alongshore in the
northern and western Bay of Bengal by horizontal transport
in fall and winter (December; Fig. 8c). The seasonality of
SSS and the impact of river discharge are more limited in the
Arabian Sea. The GloFAS runoff product captures the dis-
charge of one of the main river systems for which we have
direct observations, i.e., the Narmada-Tapti rivers, with sim-
ulated values of 86.95 km3 yr−1 compared to 75.31 km3 yr−1

reported by Krishna et al. (2016), and MOM6-COBALT-
IND12 reproduces the range of salinity observed on the shelf
at the river mouth (Fig. 8a–f).
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Figure 6. West-east depth section of meridional velocities across the Great Whirl in (a) June and (b) September 1995 in the MOM6-
COBALT-IND12. These sections are comparable to observations from Beal and Donohue (2013) (see their Fig. 2). Positive velocities are
northward.

4.5 Seasonal plankton bloom dynamics

The northern Indian Ocean is characterized by two bloom-
ing seasons associated with the summer and winter mon-
soons that can be identified from surface chlorophyll
(Chl> 0.5 mg m−3; Fig. 9a–e; e.g., Lévy et al., 2007). In the
Arabian Sea, MOM6-COBALT-IND12 simulates the winter
bloom (Fig. 9a–c), which develops in response to nutrient
supply by convective mixing (MLD of 40–80 m; Fig. 4) and
eddy vertical turbulent transport (Resplandy et al., 2011); it
also simulates the summer bloom (Fig. 9d–f) associated with
the western and eastern Arabian Sea coastal upwelling sys-
tems (Oman, Yemen, Somalia, southwest India; see Sect. 4.3)
and a combination of horizontal and vertical eddy turbulent
transport that supply nutrients to the central Arabian Sea (Re-
splandy et al., 2011). In the Bay of Bengal, the persistently
low surface chlorophyll and its weak seasonality primarily
result from strong salinity-driven stratification, which sup-
presses vertical nutrient supply to the mixed layer year-round
(Sarma and Aswanikumar, 1991). Additionally, the presence
of a subsurface chlorophyll maximum confines most primary
production below the mixed layer, further reducing surface
chlorophyll levels and attenuating their seasonal variability
(Sarma and Aswanikumar, 1991). The model also simulates
the subsurface chlorophyll maximum captured by Argo floats
in both the Arabian Sea and Bay of Bengal, with RMSE
values over the vertical ranging from 0.03 to 0.3 mg m−3

(Fig. A5). This suggests that the model effectively repre-
sents the vertical distribution of plankton and associated
subsurface biological dynamics. Overall, comparison of our
model’s mean bias and RMSE with values reported in previ-
ous studies suggests that our chlorophyll simulation perfor-

mance falls within the median range relative to other regional
biogeochemical models (Chakraborty et al., 2023; Gutknecht
et al., 2016; Sunanda et al., 2024).

The model overestimates surface chlorophyll concentra-
tions by +0.25 to +0.75 mg m−3 offshore of the western
boundary currents (along Somalia, Kenya, Tanzania, and
Oman) and in the southern Bay of Bengal (Fig. 9c–f). Such
discrepancies might be partly attributable to uncertainties
in model chlorophyll estimates arising from photoacclima-
tion, which modulates cellular pigment content under vary-
ing light conditions (Stock et al., 2025) and/or biases in
satellite-derived chlorophyll, which can differ from in-situ
measurements by up to a factor of two and exhibit regional
biases, especially in coastal areas (Dierssen, 2010; Sathyen-
dranath et al., 2019; Schofield et al., 2004). Importantly, we
find here that this model-satellite discrepancy has limited im-
pact on biogeochemical fluxes. Specifically, the model cap-
tures relatively well the observed integrated primary produc-
tivity and seasonality obtained from both available in-situ
sampling (351 stations) and satellite-based products in all
regions, in particular those of the CbPM satellite primary
productivity product, which is in better agreement with in-
situ observations than the other satellite products (see Fig. 10
and Kalita and Lotliker, 2023, for an evaluation of the dif-
ferent products). The model captures the magnitude of the
double bloom productivity in the central and western Ara-
bian Sea (about 1000–1500 mg C m−2 d−1 in Fig. 10a, b
and e), as well as the lower productivity observed in the
Bay of Bengal (< 1000 mg C m−2 d−1; Fig. 10f). The model
also captures the timing of the summer bloom peak in pro-
ductivity in the eastern Arabian Sea (EAS) and Somali up-
welling (SOM), although the magnitude of modeled pri-
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Figure 7. Coastal upwelling/downwelling inferred from sea level anomalies (SLA, in m) from satellite observations and MOM6-COBALT-
IND12: (a–d) January and July climatological maps (1993–2020 data and model average), (e, f) Hovmüller of seasonal SLA (1993–2020 data
and model average), and Hovmüller interannual SLA (seasonal cycle removed) for positive IOD (g, i) and negative IOD (h, j) composites.
In panels (e)–(j), the x-axis follows the equatorial and coastal wave guides (red line in inset) starting at the equator (EQ), counterclockwise
around the eastern and western Bay of Bengal (EBoB/WBoB) and around the eastern and western Arabian Sea (EAS/WAS). Upwelling
(negative SLA) and downwelling (positive SLA) are indicated by circles when wind-driven and by arrows when wave-driven (approximate
wave speed of 2.4 m s−1 consistent with theoretical first baroclinic mode Kelvin waves; roman numerals used in text). Unhatched/hatched
regions indicate where the IOD anomaly reinforces/opposes the seasonal signal. Satellite SLA is from Copernicus (see Table 2).

Geosci. Model Dev., 18, 6553–6596, 2025 https://doi.org/10.5194/gmd-18-6553-2025



E. Liao et al.: High-resolution Indian Ocean model 6567

Figure 8. Seasonality in sea surface salinity (SSS) and river discharge: (a–f) climatological SSS in April, August and December in the
satellite SMAPv4 product and MOM6-COBALT-IND12 (2015–2019 period for both). White contour delimits waters with SSS< 31 psu.
(g–i) Water discharge from observations and the modified GloFAS runoff product used to force MOM6-COBALT-IND12: (g) time-series of
the Ganges-Brahmaputra river system, (h) time-series of the Irrawaddy-Sittang river system and (i) seasonal climatology for both systems
over the period. See Table 2 for data source. A comparison of modified GloFAS to the raw GloFAS product is presented in Fig. A1.

mary productivity might be underestimated in these regions
(Fig. 10a, c and d). The fact that the model simulates the mag-
nitude of observed primary productivity (in carbon units) but
overestimates the surface chlorophyll content suggests that
it might overestimate the contribution of large phytoplank-
ton, which is characterized by a higher chlorophyll-to-carbon
ratio, compared to small phytoplankton, characterized by a
lower chlorophyll-to-carbon ratio. This overestimation of the
contribution of large phytoplankton to the assemblage would
explain the good match in primary productivity and bias in
chlorophyll.

In MOM6-COBALT-IND12, the phytoplankton limitation
factors vary spatially and seasonally for the three phyto-
plankton groups included in the model (small, large and di-
azotroph; Fig. 11). In the western Indian Ocean, the model
simulates a strong seasonality: nitrogen and phosphorus are
the most limiting nutrients in spring and early summer
(March to May), but iron limitation becomes more preva-
lent towards the end of the summer bloom (September) and
even persists in certain regions of the northern Arabian Sea

until early winter (December) before it gets replenished by
winter mixing (Fig. 11). This shift to iron limitation at the
end of the summer monsoon is consistent with in-situ ob-
servations revealing a high-nutrient, low chlorophyll regime
where phytoplankton growth is limited by iron in the Ara-
bian Sea (Measures and Vink, 1999; Naqvi et al., 2010; Mof-
fett et al., 2015; Moffett and Landry, 2020). We note, how-
ever, that during these periods of iron limitation, growth is
weakly limited by nutrients (see total nutrient limitation val-
ues> 0.5 in western and nothern Arabian Sea in September
and December in Fig. A6). In the eastern Indian Ocean, the
seasonality is weaker and phytoplankton are generally lim-
ited by macronutrients (nitrogen and/or phosphorus), except
in the northern Bay of Bengal where iron limitation becomes
more important near river mouths that supply macronutrients
in excess compared to iron (Fig. 11). We note that the strong
iron limitation near river mouths might be partly attributed to
the way iron limitation is formulated in COBALTv2. Indeed,
iron limitation depends on a cell quota (rather than the am-
bient nutrient concentration used for macro-nutrient limita-
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Figure 9. Sea surface chlorophyll during (a–c) winter (December–February) and (d–f) summer (June–August) monsoons. Panels (a, d) show
satellite observations, (b, e) show MOM6-COBALT-IND12 model and (c, f) show differences between model results and observations.
Correlation coefficients r , RMSE and bias between the observed and model annual means are indicated. Chlorophyll observations are from
OC-CCI satellite (see details in Table 2). Model results are averaged over the 1980–2020 period.

Figure 10. Seasonality in integrated primary productivity (PP). (a) Maps of regions used to compare observation-based and modeled PP,
showing in-situ observation sites with PP values in green (in mg C m−2 d−1), (b–f) monthly climatology of PP in MOM6-COBALT-IND12
model (regional mean ±1σ in dark orange), from available in-situ observations in each region (boxplots showing median, interquartile,
range and outliers defined as outside of 1.5 times the interquartile range), in the CbPM satellite product (regional mean ±1σ in cyan) which
performs best in this region (Kalita and Lotliker, 2023), and three additional satellite products (±1σ range of Standard-VGPM, Eppley-
VGPM and CAFE in light blue). Regions are the western Arabian Sea (WAS), eastern Arabian Sea (EAS), Somalia coast (SOM), central
Arabian Sea (CAS) and Bay of Bengal (BoB). Satellite and in-situ sampling observations are detailed in Table 2. Model and satellite-based
climatologies are for the available observation period of 2003–2020.

Geosci. Model Dev., 18, 6553–6596, 2025 https://doi.org/10.5194/gmd-18-6553-2025



E. Liao et al.: High-resolution Indian Ocean model 6569

tions), which requires time to establish near the river mouths.
Yet, we note that the overall pattern of limitation simulated in
the Bay of Bengal is consistent with incubation experiments
showing a strong limitation by macronutrients in the south-
eastern Indian Ocean and co-limitations between macronu-
trients and iron in the Bay of Bengal (Twining et al., 2019).

5 Ocean interior, ventilation pathways and oxygen
minimum zones

5.1 Ocean vertical structure and thermocline
ventilation pathways

Observed subsurface temperature and salinity (300 to 700 m
average) reveal the signature of the main water masses that
ventilate the thermocline in the Indian Ocean (Fig. 12a
and d). The Red Sea and Persian Gulf overflows contribute
warm and salty waters (> 13 °C and > 35.6 psu) to the Gulf
of Aden and Gulf of Oman in the Arabian Sea, respec-
tively (You and Tomczak, 1993). In contrast, the Indonesian
Throughflow (ITF) and the water masses formed in the south-
ern subtropical and subpolar regions (e.g., mode waters and
central waters) contribute relatively cold and fresh subsur-
face waters (< 8 °C and< 35 psu) in the south of the domain,
before being mixed and transported westward by the South-
ern Equatorial Current system and flowing northward and
crossing the Equator along the African continent (You, 1997;
Schott et al., 2004; Sprintall et al., 2009; McCreary et al.,
2013; Nagura and McPhaden, 2018). Finally, intermediate
temperature and salinity in the Bay of Bengal (about 10◦C
and 35 psu) arise from the relatively weak thermocline venti-
lation, mostly maintained by the eastward transport from the
Arabian Sea and Equatorial region.

MOM6-COBALT-IND12 reproduces the observed pat-
terns in subsurface temperature and salinity in most of the
basin (correlation coefficient r > 0.99 and RMSE of 0.33 °C
and 0.07 psu). Specifically, the model simulates the contrast
between the warm and salty waters in the northeastern Ara-
bian Sea, the cold and freshwaters along the model southern
boundary, and the waters with intermediate temperature and
salinity in the Bay of Bengal (Fig. 12). The largest departures
are found in the northern Arabian Sea where the model is bi-
ased cold and fresh (local bias between −0.8 and −0.3 °C
and −0.4 to −0.1 psu; Fig. 12), suggesting that the Persian
Gulf overflow is not as well simulated as other pathways.

We further examine ventilation pathways using vertical
sections in the eastern Indian Ocean, the Gulf of Oman and
the Arabian Sea (Figs. 13 and 14). In the eastern Indian
Ocean (at 90° E), the model reproduces the observed ver-
tical structure, including the intermediate salinity found in
the subsurface Bay of Bengal and the influence of fresher
ITF waters in the southern part of the domain (at ∼ 1000 m
depth and latitudes< 5° S; Fig. 13). We note that the model
only extends to 8° S, and therefore does not fully resolve

the ITF centered at 5–10°S nor the Southern Equatorial Cur-
rent at 10–20° S, but receives contributions from ITF waters
and southern waters through the open boundary. The model
presents, a slight bias in the vertical structure of the Bay
of Bengal, with slightly colder and fresher near-surface wa-
ters and slightly warmer and saltier subsurface waters with
a small influence on the stratification in the region (Fig. 13c
and f).

In the Gulf of Oman, observations show the plume of salty
and warm Red Sea overflow waters (RSOW) that flow into
the Gulf of Aden at a depth of 400–1000 m (> 12 °C and
> 36 psu; Fig. 14a and d). The model simulates the depth
range of the plume but the lower part of the plume is biased
salty and warm (local bias of 1 to 2 °C and 0.2 to 0.8 psu;
Fig. 14). This bias in the RSOW plume could come from bi-
ases in the source waters that overflow at the Bab-El-Mandeb
Strait upstream, or from the misrepresentation of the plume
mixing along the pathway. At the Bab-El-Mandeb Strait, we
find that the model simulates remarkably well the volume
transport of the three water masses flowing in and out of the
Red Sea (Fig. 15a). Specifically, the model simulates the ob-
served outflow of RSOW that peaks in winter and drastically
slows down in summer, the reversal of surface waters flow-
ing into the Red Sea in winter and out of the Red Sea in
summer, as well as the inflow of Gulf of Aden intermediate
waters (GAIW) that only takes place in summer. The model,
however, shows a bias in the density of these water masses,
particularly in summer when simulated RSOW are lighter
and surface waters (and to some extent GAIW, although ob-
servations are sparse) are denser than observed (Fig. 15b).
This suggests there is insufficient mixing between the RSOW
plume waters and the lighter (colder/fresher) waters above.
This hypothesis is also supported by the structure of the tem-
perature and salinity biases along the depth section show-
ing a dipole of too salty/too warm waters in the lower part
of the plume (800–1000 m depth) and slightly too fresh/too
cold waters in the upper part of the plume (400–800 m depth;
Fig. 14c and f). This bias is, however, confined to the plume
in the Gulf of Aden, and seems to have a relatively small
influence on the vertical structure further downstream, ex-
plaining the good agreement in subsurface temperature and
salinity in the southwestern Arabian Sea (Fig. 12).

In the northern Arabian Sea, observations show that Per-
sian Gulf waters (PGW) flow into the Arabian Sea at about
200–400 m depth (Fig. 14). In MOM6-COBALT-IND12,
however, PGW are too warm, too light and therefore enter the
northern Arabian Sea at a too shallow depths of 100–200 m,
leading to a cold/fresh bias at 200–400 m depth where PGW
are located in observations and a warm-salty bias above
(Fig. 14). This trapping of the PGW close to the surface sig-
nificantly changes the vertical structure of the northern Ara-
bian Sea by reducing the stratification in the upper 200 m in
the northern Arabian Sea.
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Figure 11. Climatological surface nutrient limitation (nitrogen N, phosphorus P and iron Fe) in MOM6-COBALT-IND12 for small phy-
toplankton, large phytoplankton and diazotrophs in December, March, May and September. Weak P (weak Fe) limitations indicate where
P (Fe) is limiting but by a small amount relative to N or Fe (P) are near co-limiting (i.e., near co-limitation with difference between limitation
factors< 0.25). Model climatology is based on the 1980–2020 period.

5.2 Subsurface oxygen and oxygen minimum zones

Observed subsurface oxygen concentrations show the ex-
tent of the two OMZs located in the Arabian Sea and Bay
of Bengal (Fig. 16). In the Arabian Sea, averaged sub-
surface oxygen concentrations (300–700 m) are lower than
10 µmol kg−1 in most of the region and reach suboxic val-
ues (< 5 µmol kg−1) around 15–20° N. In the Bay of Ben-
gal, the OMZ is less intense with averaged subsurface con-
centrations of 10–20 µmol kg−1 and no suboxia. The equa-
torial subsurface is better oxygenated, but still characterized
by relatively low averaged oxygen subsurface concentrations
of 50–100 µmol kg−1 (Fig. 16). Highest concentrations are
found in the southwestern part, where the western boundary
current supplies oxygen originating from the Southern Gyre
and ITF (transported via the South Equatorial Current).

The MOM6-COBALT-IND12 model reproduces the ob-
served large scale patterns of subsurface oxygen (basin-scale
correlation coefficient r = 0.94 and RMSE= 16 µmol kg−1;
Fig. 16a–c). The largest biases are found in the eastern (down
to−30 µmol kg−1) and western (up to+40 µmol kg−1) north
equatorial band where the gradients in oxygen are strong. In
this region, the model shows a high oxygen bias near the base
of the thermocline (500–1000 m), coinciding with a low ni-
trate bias (not shown). This pattern points to either a mis-

representation of biological remineralization at depth or an
inaccurate representation of the relative contribution of the
water masses forming the Central Waters supplying oxygen
to this region. These waters originate from a blend of the ITF
waters and southern-sourced Mode Waters. Previous stud-
ies have demonstrated that oxygen distribution in this region
is highly sensitive to the relative contribution between these
two sources (Ditkovsky et al., 2023). However, the scarcity
of direct observations in this region limits our ability to con-
clusively attribute the model bias to either mechanism.

Yet, the most biogeochemically relevant bias is proba-
bly the overestimation of the extent and intensity of sub-
oxic conditions in the northern Bay of Bengal, where the
local difference in modeled versus observed oxygen con-
centration ranges from −20 to −10 µmol kg−1, reflecting a
much larger extent of suboxia in the model than in obser-
vations (Fig. 16a–c). We evaluate the model ability to re-
produce the volume of the OMZ as a function of the oxy-
gen threshold chosen to define its boundary (i.e., volume
bounded by oxygen concentrations from 5 to 150 µmol kg−1,
Fig. 16d–f). At the basin scale, MOM6-COBALT-IND12
reproduces relatively well the observed OMZ volumes de-
fined by thresholds above 30 µmol kg−1, in particular the vol-
ume of hypoxic waters delimited by 60 µmol kg−1 (approxi-
mately 1× 1016 m3) and the volume of low oxygenated wa-
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Figure 12. Annual mean subsurface (300–700 m depth) temperature and salinity in (a, d) observations, (b, e) MOM6-COBALT-IND12
model and (c, f) differences between model results and observations. Correlation coefficients r , RMSE and bias between the observed and
model annual means are indicated. Temperature and salinity observations are from WOA18. Model results are averaged over the 1980–2020
period. Black lines indicate depth sections shown in Figs. 13 and 14.

ters delimited by 100 µmol kg−1 (approximately 2×1016 m3;
Fig. 16d). In contrast, the model overestimates the volume
of suboxic waters delimited by 5 µmol kg−1 (0.17× 1016 m3

vs. 0.06× 1016 m3 in Bianchi et al. (2012) observations),
mostly because of the large suboxic volume simulated in the
Bay of Bengal (0.10× 1016 m3 vs. 0.00× 1016 m3 in obser-
vations; Fig. 16f). Meanwhile, the volume of suboxic wa-
ters in the Arabian Sea is well represented (0.07× 1016 m3

vs. 0.06× 1016 m3). Finally, we note that the good match
between observed and modeled hypoxic volumes is favored
by the partial compensation of small biases in the Arabian
Sea (model volume about 0.14× 1016 m3 lower than in ob-
servations) and the Bay of Bengal (model volume about
0.06× 1016 m3 higher than in observations; Fig. 16e–f).

6 Intraseasonal variability

We quantify the intraseasonal variability (ISV) in the sur-
face ocean circulation using the intraseasonal standard devi-
ation of the sea level anomaly (see Sect. 3.2). This diagnostic
captures variability linked to all dynamical processes vary-
ing on intraseasonal time-scales, which includes mesoscale
eddies and filaments, as well as meandering jets and plane-
tary waves (Rossby and Kelvin waves). These intraseason-

ally varying features are key to the transport and mixing of
physical and biogeochemical tracers, such as nutrients and
oxygen, and to the onset and spatial extent of the seasonal
phytoplankton blooms in the Indian Ocean (e.g., Resplandy
et al., 2011, 2012; Lachkar et al., 2016; Rixen et al., 2020;
Pearson et al., 2022; Vinayachandran et al., 2021)

Satellite observations show two hotspots where the in-
traseasonal variability in SLA exceeds 5 cm and can reach
values higher than 10 cm (Fig. 17a). The first hotspot is in
the western Arabian Sea offshore Somalia and the Arabian
Peninsula, where the high energy dynamics of the western
boundary current and the presence of upwelling systems and
complex coastal topography (capes/headland) promote the
formation of large mesoscale eddies such as the Great Whirl
and Socotra Eddy (see Sect. 4.2), and filaments extending
from the Arabian Peninsula into the central Arabian Sea (e.g.,
Beal and Donohue, 2013; Resplandy et al., 2011; Brandt
et al., 2003; Wang et al., 2018). The second hotspot covers
the central and western Bay of Bengal and extends south of
Sri Lanka, and has been attributed to mesoscale eddies and
Rossby waves generated in the coastal eastern Bay of Ben-
gal that propagate westward into the central and western Bay
of Bengal (Sengupta et al., 2001, 2007; Cheng et al., 2013).
MOM6-COBALT-IND12 simulates the locations of the two
hotspots of highest ISV in the western Arabian Sea and west-
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Figure 13. Depth section of annual mean temperature and salinity at 90° E in (a, d) observations, (b, e) MOM6-COBALT-IND12 model and
(c, f) differences between model results and observations. Correlation coefficients r , RMSE and bias between the observed and model annual
means are indicated. See location of section on Fig. 12. Temperature and salinity observations are from the WOA18 (Table 2). Model results
are averaged over the 1980–2020 period. Indonesian Througflow waters (ITF) are indicated.

ern Bay of Bengal, but the amplitude tends to be weaker than
observed, with typical values of 3–8 cm in the model versus
4–12 cm in the observations (Fig. 17).

Other regions of relatively high observed ISV (> 3 cm)
include the mouths of major rivers, such as the Ganges-
Brahmaputra, Irrawaddy-Sittang and Narmada-Tapti river
systems (see Figure 1 for rivers location), coastal ocean wa-
ters along the eastern Bay of Bengal and eastern Arabian
Sea, and the 5–10° N band in both the Arabian Sea and Bay
of Bengal (Fig. 17). ISV at the river mouths and the coastal
ocean can largely be attributed to the ISV in river freshwa-
ter discharge (up to 50 % of seasonal variability amplitude
for the Ganges, for instance; Jian et al., 2009), tidal forcing
and the propagation of coastal Kelvin waves (e.g., Nienhaus
et al., 2012). MOM6-COBALT-IND12 reproduces relatively
well the observed ISV in the coastal ocean and part of the
ISV at river mouths.

Finally, the intraseasonal variability in the 5–10° N band,
which reaches 3 to 5 cm in the satellite-based estimate in re-
sponse to the westward propagation of Rossby waves (Bruce

et al., 1994; Shankar and Shetye, 1997; Vialard et al., 2009;
Cheng et al., 2017), is also underestimated in the model (1–
3 cm; Fig. 17). These underestimations might indicate the
current spatial resolution of the model (1/12°) may still be
insufficient for resolving these processes.

Figure 18 illustrates the influence of eddies and filaments
on surface chlorophyll and phytoplankton production and
their seasonality in the Arabian Sea, specifically in the first
hotspot of ISV described above (western Arabian Sea and
central Arabian Sea). The model reproduces the fine-scale
features structuring the winter and summer blooms. During
the winter monsoon, fine-scale eddies (∼ 20–50 km in diam-
eter) shape the bloom occurring in the northern and central
Arabian Sea (Fig. 18a, b, e and f). This is consistent with the
results of Resplandy et al. (2011), which showed that these
fine-scale eddies sustain the bloom by vertically transport-
ing nutrients to the euphotic zone during early winter and
by locally re-stratifying and alleviating light limitation dur-
ing late winter when convection occurs (see Sect. 4.2 and
Fig. 4 for mixed layer seasonality). During the summer mon-
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Figure 14. Depth section of annual mean temperature and salinity in the Gulf of Oman (southwest to northeast) and the Arabian Sea (south-
north at 61° E) in (a, d) observations, (b, e) MOM6-COBALT-IND12 model and (c, f) differences between model results and observations.
See location of section on Fig. 12. Correlation coefficients r , RMSE and bias between the observed and model annual means are indicated.
Temperature and salinity observations are from the WOA18 (Table 2). Model results are averaged over the 1980–2020 period. Persian Gulf
Waters (PGW) and Red Sea Overflow Waters (RSOW) are indicated.

soon, surface chlorophyll is highest in the coastal upwelling
regions of Oman and Somalia in the early phase of the bloom
(Fig. 18c and g) and then extends offshore in long filaments
wrapped around mesoscale eddies in the central Arabian Sea
and around the Great Whirl in the late phase of the bloom
(Fig. 18d and h). The structure of the bloom here is also con-
sistent with the findings of Resplandy et al. (2011), which
showed that eddy-induced vertical transport supplied most
of the nutrients in coastal waters during the early stage of the
summer upwelling, while horizontal transport by filaments
supplied nutrients to the central Arabian Sea. We note that the
shape of the winter and summer eddies and filaments is well
captured by the model, although their exact location might
not be the same. Indeed, we expect the model to reproduce
the statistics of mesoscale structures (e.g., eddies and fila-
ments) for a given season and region, but not necessarily their
exact position. We also note that simulated surface chloro-
phyll concentrations are biased high in the model, in partic-
ular during the late summer monsoon (Fig. 18d and h). This
is in line with the finding that chlorophyll is overestimated in

the model, although primary productivity appears to be well
simulated, likely due to the high contribution of large phyto-
plankton with high chlorophyll-to-carbon ratio (see Sect. 4.5
and Figs. 9 and 10).

7 Interannual Indian Ocean dipole

The model reproduces the amplitude and zonal pattern of
SST changes expected in response to the Interannual IOD
(r > 0.9; Fig. 19b–e; see Fig. 19a for timing of positive and
negative IOD phases). This includes the strong SST response
in the eastern equatorial Indian Ocean, offshore Java and
Sumatra, where the surface cools by −0.5 to −1 °C during
positive IODs and warms by +0.5 to +1 °C during nega-
tive IODs, as well as the weaker response in the eastern
and central equatorial Indian Ocean, where the ocean surface
warms by+0.2 to+0.5 °C during positive IODs and cools by
−0.2 to −0.5 °C during negative IODs. This SST signature
of IODs is associated with anomalous winds and changes in
thermocline depth along the equator (Saji et al., 1999; Web-
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Figure 15. Seasonal evolution of the (a) volume transport and (b) potential density at the Bab-El-Mandeb Strait (between the Red Sea
and the Gulf of Aden) in observations (dashed) and the model (solid). The three water masses are surface waters, Gulf of Aden Intermediate
Waters (GAIW) and Red Sea Outflow Waters (RSOW). Observations and water mass detection method using flow direction are from Sofianos
et al. (2002, see Table 2). Positive transport is into the Red Sea, negative transport into the Gulf of Aden. Model is averaged over 1980–2020.
See details on water masses in Sect. 3.1.

ster et al., 1999; Currie et al., 2013). During positive IODs,
easterly wind anomalies in the central Indian Ocean shallow
the thermocline in the east and generate anomalously cold
eastern SSTs. In the west these wind anomalies, in conjunc-
tion with Rossby waves, deepen the thermocline and produce
anomalously warm western SSTs. During negative IODs,
anomalous westerly winds lead to the opposite east/west pat-
tern in SST and thermocline depth. These SST signatures
develop in boreal summer, peak in fall, and decay through
winter.

Figure 20 focuses on this zonal contrast introduced by the
IOD, through a comparison of observed and modeled in-
terannual anomalies in SST and thermocline depth at two
equatorial Indian Ocean sites: one eastern mooring off-
shore Sumatra (95° E, 5° S) and one western mooring in the
Seychelles-Chagos thermocline ridge (57° E, 4° S). We use
observations from the in-situ RAMA that we complement
with OISST data and Argo float-based thermocline depth
(see Table 2). MOM6-COBALT-IND12 reproduces partic-
ularly well the timing and amplitude of interannual varia-
tions in SST (r of 0.78–0.90 with RAMA and 0.75–0.79
with OISST) and in thermocline depth (r of 0.75–0.82 with
RAMA and 0.73–0.84 with Argo) at both RAMA stations
(Fig. 20), including the asymmetry in the response between
IOD phases (Hong et al., 2008b, a; Cai et al., 2013; Nakazato
et al., 2021). At the eastern station, the thermocline deep-
ens by 20–30 m and SSTs increase by +0.5 to +1 °C during
negative IODs. In contrast, the thermocline only shallows by

10–20 m and SSTs generally decrease by less than −0.5 °C
during positive IODs, except during the strong positive IOD
of 2019 during which SSTs cooled by more than 1.5 °C in
both observations and models. The model also captures in-
terannual variations observed at the western station (Fig. 20).
While IOD-driven variability is present at the western moor-
ing, its influence is likely weaker compared to other sources
of variability. Nevertheless, the model reproduces the associ-
ated variabilities, including a deeper thermocline and cooler
SSTs during negative IODs, and shallower thermocline and
warmer SSTs during positive IODs (Fig. 20).

The wind anomalies associated with the IOD also produce
equatorially trapped Kelvin waves that travel east towards
Sumatra and Java, impinge on their coasts and continue trav-
eling counterclockwise around the rim of the northern Indian
Ocean, thereby modulating the seasonal upwelling/down-
welling motions described in Sect. 4.3 above (see details on
coastal Kelvin wave modulation by IOD in Aparna et al.,
2012; Suresh et al., 2018; Pearson et al., 2022). As shown
in Fig. 7, the model reproduces the coastal SLA interannual
anomalies associated with IOD phases. In particular, it sim-
ulates the upwelling anomaly observed between September
and January during positive IOD phases along the coasts of
the Bay of Bengal (arrows for waves IX and X; SLA inter-
nanual anomalies of −12 to −5 cm), and the downwelling
anomaly observed during negative IOD phases (arrows for
waves XI and XII, same months; SLA internanual anoma-
lies of +5 to +12 cm; Fig. 7). The model also simulates the
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Figure 16. (a–c) Annual mean subsurface (300–700 m depth) oxygen concentrations in observations (a, Bianchi et al., 2012), MOM6-
COBALT-IND12 (b) and differences between model results and observations (c). Correlation coefficients r , RMSE and bias between the
observed and model annual means are indicated. (d–f) Observed and simulated ocean volume within a certain oxygen concentration threshold
in the model domain (d), the Arabian Sea and the Bay of Bengal (e–f). Observations from Bianchi et al. (2012, in blue) and WOA18 (in red)
differ mostly on the volume at low oxygen values. Grey shading indicates the 1σ model interannual variability. Model results are for the
1980–2020 period.

Figure 17. Intraseasonal variability (includes mesoscale eddy activity and wave-driven variability) quantified by the intraseasonal standard
deviation of the sea level anomaly (SLA) in (a) AVISO satellite observations and (b) MOM6-COBALT-IND12. SLA over the 1994–2017
period was detrended using a linear regression and filtered using a 14–120 d band-pass filter.

weaker SLA anomalies of opposite sign (compared to the
Bay of Bengal) observed along the coasts of the Arabian Sea
(SLA interannual downwelling anomaly of+2 to+5 cm dur-
ing positive IODs, and upwelling anomaly of−2 to 0 cm dur-
ing negative IODs; Fig. 7).

IOD phases are associated with biogeochemical signatures
visible at the basin scale in satellite ocean color observations
(Murtugudde and Busalacchi, 1999; Wiggert et al., 2009;
Currie et al., 2013). Figure 21 compares composites of inte-

grated primary productivity anomalies from the CbPM satel-
lite and MOM6-COBALT-IND12 in boreal fall (September–
November). Negative IOD phases are characterized by nega-
tive primary productivity anomalies in the eastern equatorial
Indian Ocean (−150 to −300 mg C m−2 d−1 offshore Suma-
tra; Fig. 21a) due to the depressed thermocline and associated
nutricline and weaker upwelling-favorable wind (Fig. 20),
and positive primary productivity anomalies in the western
equatorial Indian Ocean (+50 to +150 mg C m−2 d−1 off-
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Figure 18. Fine-scale structures (eddies, filaments) revealed by
surface chlorophyll in the OC-CCI satellite product (a–d) and
the MOM6-COBALT-IND12 model (e–h). Snapshots are for
(a, e) early winter bloom (WBloom, 29 January 2014), (b, f) late
WBloom (10 March 2014), (c, g) early summer bloom (SBloom,
6 June 2011) and (d, h) late SBloom (4 October 2011). OC-CCI
images are 8 d composites and model images are 7 d averages.

shore Somalia) due to the shallower thermocline and nutri-
cline (Fig. 20). Negative IODs are also associated with strong
positive primary productivity anomalies around the tip of In-
dia (>+200 mg C m−2 d−1) associated with the wave-driven
shoaling of the thermocline and nutricline (Fig. 7) and pos-
itive anomalies in most of the Arabian Sea (Fig. 21a). The
response to positive IODs mirrors the response of negative
IODs in the equatorial Indian Ocean, with positive anoma-
lies observed in the eastern equatorial Indian Ocean and neg-
ative anomalies in the western equatorial Indian Ocean and
around the tip of India (Fig. 21b). We note, however, that the
primary productivity anomalies in the northern and central
Arabian Sea are positive during both negative and positive

IOD phases. The model captures remarkably well the pat-
tern and sign of the observed primary productivity anoma-
lies during both negative and positive IODs (correlation co-
efficient r > 0.7), although the amplitude of the anomaly
is slightly lower in the model than in the CbPM satellite
product (RMSE of 60 to 80 mg C m−2 d−1, bias of −1.5 to
−10.5 mg C m−2 d−1; Fig. 21c and d). On the one hand,
the model–observation discrepancy in primary productivity
anomaly amplitude may stem from weak nutrient variabil-
ity associated with the shallow MLD. On the other hand, the
amplitude of the primary productivity anomalies obtained
from satellite products remains uncertain. For instance, the
primary productivity anomaly composites obtained from an-
other satellite product (CAFE) show similar patterns but with
an amplitude that is about half of the CbPM satellite product
(Figs. 21a, c and A7a, c). The amplitude of the anomaly in
the model sits between the two satellite products (RMSE of
60–80 mg C m−2 d−1 in both cases and absolute bias between
−10.5 and +24 mg C m−2 d−1; see Figs. 21 and A7). Given
the discrepancies among observational datasets, the model
likely provides a reasonable estimate of primary productivity
variability. Nevertheless, additional in situ observations are
needed to more accurately constrain the true primary pro-
ductivity response to the IOD.

8 Discussion and conclusions

In this study, we configured, customized, and validated
a high-resolution (1/12°) regional ocean biogeochemical
model (MOM6-COBALT-IND12 v1.0) for the northern In-
dian Ocean. Specifically, we adjusted river discharge rates
and nutrient loadings in the Bay of Bengal according to ob-
servational constraints, significantly improving simulations
of river plume dynamics and surface salinity. Additionally,
we enhanced lithogenic particle fluxes from rivers, adjusted
detritus sinking rate, and refined the parameterization of the
nitrogen cycle, resulting in better representations of sub-
surface oxygen distributions and suboxic conditions. These
improvements collectively allow the model to capture most
key aspects of biogeochemical and physical processes in the
northern Indian Ocean

At the basin scale, the MOM6-COBALT-IND12 model
simulates the contrast between the Arabian Sea – charac-
terized by high evaporation, inflow from the saline marginal
seas (Red Sea and Persian Gulf) and high upper ocean salin-
ity – and the Bay of Bengal – characterized by high precip-
itation, high river runoffs and low upper ocean salinity. On
seasonal time-scales, the model captures the monsoonal re-
versal in ocean circulation, including the development of the
Great Whirl and wind-driven summer coastal upwelling sys-
tems along the western boundary, the winter convective mix-
ing in the northern Arabian Sea, as well as the propagation
of upwelling and downwelling coastal Kelvin waves along
the equatorial waveguide and the rim of the northern Indian
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Figure 19. Interannual variability associated with the Indian Ocean Dipole (IOD). (a) Dipole mode index (DMI) which quantifies the
intensity of the IOD phases; (b, c) SST composites during IOD negative phases (IODn) in observations and MOM6-COBALT-IND12
model; (d, e) SST composite during IOD positive phases (IODp) in observations and MOM6-COBALT-IND12 model. Composites are for
September-to-November months of positive (1982, 1994, 1997, 2002, 2006, 2015, 2018, 2019) and negative (1989, 1996, 1998, 2005, 2010,
2016) IODs. SST observations are from OISSTv2.1 (see Table 2). Black stars indicate the positions of two Research Moored Array for
African–Asian–Australian Monsoon Analysis and Prediction (RAMA) moorings used in Fig. 20.

Ocean. On intraseasonal time-scales, the model also repro-
duces the hotspots of variability associated with eddies, fil-
aments and planetary waves, and on interannual time-scales
the east-west variability in the thermocline introduced by the
IOD. This strong physical performance likely stems from the
effective parameterizations of surface heat and momentum
fluxes, combined with well-constrained surface forcing fields
derived from ERA5 reanalysis.

The good agreement between observed and modeled phys-
ical features provides a foundation for accurately simulating
the ocean biogeochemical and biological response. This in-
cludes the intensity and timing of the seasonal blooms trig-
gered by monsoonal circulation changes and modulated by
intraseasonal features such as eddies and filaments, and in-
terannual IOD phases. Specifically, the model reproduces the
summer bloom associated with coastal upwelling systems
and their extension offshore in mesoscale filaments, as well
as the winter bloom associated with convective mixing and
modulated by fine-scale eddies (Lévy et al., 2007; Resplandy
et al., 2011, 2012; Mahadevan, 2016; Lachkar et al., 2016;
Rixen et al., 2019a; Vinayachandran et al., 2021; Anjaneyan
et al., 2023). These biogeochemical improvements reflect

the targeted model development efforts outlined above. The
model also captures the patterns and amplitude of the phy-
toplankton changes expected in response to the IOD positive
and negative phases. This includes the modulation of the pro-
duction in the equatorial region, the Arabian Sea and around
the tip of India, although we note these patterns are diffi-
cult to generalize to all IOD events. As illustrated by Wig-
gert et al. (2009), the chlorophyll responses vary with IOD
intensity-for instance, concentrations in the Arabian Sea de-
creased during the 1997 event but increased during the 2006
event.

The comparison (Fig. A8) between MOM6-COBALT-
IND12 and the global model of Liao et al. (2020) demon-
strates that the regional model more realistically captures
high-frequency variability in SSH, mesoscale dynamics, me-
andering jets, and planetary waves (Rossby and Kelvin
waves). These features significantly influence nutrient and
oxygen transport and mixing, as well as the timing and spa-
tial patterns of seasonal phytoplankton blooms across the
Indian Ocean. Our regional configuration also notably im-
proves the representation of marginal sea outflows, particu-
larly from the Red Sea, where global models typically over-
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Figure 20. Interannual variability associated with the Indian Ocean Dipole (IOD) at two RAMA moorings in western (a, c, e: 57° E, 4° S) and
eastern (b, d, f: 90° E, 5° S) equatorial Indian Ocean. (a, b) Zonal wind (m s−1) from observations (RAMA mooring and CCMP satellite)
and the ERA5 reanalysis used to force MOM6-COBALT-IND12; (c, d) SST in observations (RAMA moorings and OISSTv2.1) and in
MOM6-COBALT-IND12; (e, f) thermocline depth (TCdepth) is calculated as the depth of the 20 °C isotherm. Positive and negative IODs are
indicated by orange and blue shading. Correlation coefficients r , RMSE and bias between the observed and reanalysis or model time-series
are indicated in each panel. Positions of the two RAMA moorings are shown by black stars in Fig. 19.

Figure 21. Integrated net primary productivity (PP) anomaly associated with the Indian Ocean Dipole (IOD). September-to-November
PP composites during (a, b) IOD negative phases (IODn) and (c, d) IOD positive phases (IODp) in observation-based product and MOM6-
COBALT-IND12. Composites are for September to November months available in CbPM satellite product for positive (2002, 2006, 2015,
2018, 2019) and negative (2005, 2010, 2016) IODs (see Table 2 for details on data).

estimate overflow strength. Furthermore, targeted parame-
ter adjustments – including river discharge, nutrient load,
detritus sinking rate, and nitrogen cycle parameterization –
improve dissolved oxygen simulations in both the Arabian
Sea and the Bay of Bengal. Collectively, these refinements,
substantially improve the accuracy and reliability of physi-

cal and biogeochemical processes simulated by our regional
model.

During the setup and customization of the MOM6-
COBALT-IND12 v1.0 model, we identified a series of phys-
ical and biogeochemical parameters and forcings that influ-
enced the model simulation and led to a significant improve-
ment of the results (see details in Sect. 2). One of the factors
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that influenced our results were river discharge and nutrient
loadings, especially in the Bay of Bengal which hosts major
river systems such as the Ganges, Brahmaputra, Irrawaddy
and Sittang rivers. A first version of the model used the
river inputs from the Japanese 55-year Reanalysis (JRA55-
do, Kobayashi et al., 2015) instead of the modified GloFAS
product presented in this study. However, we found system-
atic biases in the timing, amplitude and variability of the
riverine discharge in JRA55-do. These biases include a sys-
tematic delay of 1–2 months in the annual maximum dis-
charge and a lower intraseasonal variability (Fig. A1), which
led to biases in river plume dynamics and SSS in the north-
ern Bay of Bengal and the eastern Arabian Sea, in line with
observations showing that riverine discharge timing and vari-
ability are critical to salinity patterns and plume dynamics (Li
et al., 2021). In addition to river discharge, we modified nu-
trient loadings to match available observational constraints
which was important to reproduce productivity patterns in
the coastal Bay of Bengal. We note that the influence of river-
ine inputs could be further improved by accounting for the
anthropogenic increase in riverine nutrient supply (MOM6-
COBALT-IND12 v1.0 includes nutrient inputs equivalent to
year 2000 from Mayorga et al., 2010), which would likely in-
troduce a long-term trend in coastal primary productivity and
oxygen concentrations in the vicinity of large river systems.

While the MOM6-COBALT-IND12 v1.0 configuration is
remarkably successful at capturing many of the features and
observed variability of the northern Indian Ocean, there are
still some areas where there is potential for improvement.
The main model bias is the larger horizontal extent and vol-
ume of suboxia (oxygen concentrations< 5 µmol kg−1) sim-
ulated in the Bay of Bengal. This bias is a well known limi-
tation of ocean and Earth system models in this region (e.g.,
Bopp et al., 2013; Schmidt and Eggert, 2016; Ditkovsky
et al., 2023). The advective supply of oxygen to the ther-
mocline in the Bay of Bengal is weak, but we expect low
oxygen demand to prevent the formation of suboxic waters.
However, the subsurface oxygen biological demand is likely
too high in the model. Notably, this bias in oxygen in the
Bay of Bengal was larger in a prior version of the model,
and was mitigated by adjusting some of the model param-
eters. A first set of changes focused on riverine lithogenic
fluxes. The increased influx of riverine lithogenic material
by an order of magnitude for major rivers and about 50 %
for small rivers protects more particulate organic matter from
remineralization due to the ballasting effect, significantly re-
ducing oxygen consumption in the water column. A higher
total river input of lithogenic material in the Bay of Bengal
resulted in a greater reduction in oxygen consumption com-
pared to the Arabian Sea. A second set of changes focused
on detritus sinking velocities and burial. The detritus sinking
velocity was increased by 20 % to match sediment trap ob-
servations in the region (Rixen et al., 2019b) and the fraction
of material that reach the ocean floor and is buried was also
increased to match the observation-based reconstruction of

LaRowe et al. (2020). These modifications reduced reminer-
alization and oxygen consumption in the subsurface and at
depth, further reducing the bias in the size and volume of the
Bay of Bengal OMZ, while having a relatively small impact
on the Arabian Sea OMZ core where oxygen is entirely de-
pleted. The impact of these modifications are consistent with
findings from Luo et al. (2024) and Al Azhar et al. (2017),
who showed that fast-sinking detritus reduced oxygen con-
sumption and shrank OMZs, expanding oxygenated regions
at the OMZ boundaries. A third set of modifications focused
on the representation of nitrogen cycling in low oxygen en-
vironments. These changes allowed denitrification at oxygen
concentrations up to 4 µmol kg−1 (instead of 0.8 µmol kg−1;
Paulmier and Ruiz-Pino, 2009), which would promote the
use of nitrate for oxidation instead of oxygen and therefore
reduce oxygen consumption in suboxic environments.

The three sets of changes described above did not entirely
remove the model low oxygen bias in the Bay of Bengal. One
limitation of the COBALTv2 biogeochemical model is that
it only includes one sinking detritus, which limits our abil-
ity to reproduce spatial contrasts in detritus sinking speed.
Rixen et al. (2019b) showed that detritus sinking velocities
are indeed higher in the Bay of Bengal due to the ballast-
ing effect of riverine mineral particles. In addition, Al Azhar
et al. (2017) showed that simulating this contrast between
the Arabian Sea where detritus are sinking relatively slowly
and the Bay of Bengal where detritus are sinking faster im-
proved the representation of the OMZs in an ocean model.
Looking ahead, adding multiple detritus pools with differ-
ent sinking velocity might be a way to improve the OMZ
in the Bay of Bengal. Despite these model limitations, it
is important to note that uncertainties remain regarding the
strength of suboxia in the Bay of Bengal. Recent observa-
tions from Argo floats and ship-based in situ measurements
have reported lower oxygen concentrations in the Bay of
Bengal than those presented in the WOA dataset, includ-
ing nanomolar-level oxygen conditions (Bristow et al., 2017;
Udaya Bhaskar et al., 2021). These findings suggest that the
true extent and intensity of hypoxia in the Bay of Bengal re-
main uncertain, making it difficult to definitively assess the
magnitude of the model bias in this region.

In addition to the OMZs, another area that we are consid-
ering for future work is the high bias in surface chlorophyll
concentration simulated in the model compared to satellite
products, in particular near and offshore summer upwelling
systems. An extensive compilation of in-situ primary pro-
ductivity measurements shows that the model successfully
captures the seasonality in productivity. This strongly sug-
gests that the bias is limited to the phytoplankton chlorophyll
content without influencing its carbon content. This bias in
chlorophyll is likely due to an overestimation of the con-
tribution of large phytoplankton (higher chlorophyll to car-
bon ratio) compared to small phytoplankton (lower chloro-
phyll to carbon ratio), and is therefore expected to have a
relatively small impact on nutrient uptake by phytoplankton
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and oxygen consumption associated with the remineraliza-
tion of the organic matter in the water column. This bias in
chlorophyll content might be mitigated in the future when
using the COBALT version 3 biogeochemical module which
incorporates four phytoplankton groups instead of three, in-
cluding a medium size class that allows for a smoother tran-
sition from small to large, and accounts for photoacclimation
and photoadaptation which is critical in simulating chloro-
phyll (Stock et al., 2025). While this bias complicates com-
parisons between model and satellite chlorophyll data, it is
primarily confined to chlorophyll and has a limited impact
on the model’s ability to represent regional nutrient, carbon,
and oxygen dynamics key to marine ecosystems.

With these results, we are confident that MOM6-
COBALT-IND12 is an effective and versatile model to tackle
applications in physical and biogeochemical oceanography,
as well as applications to marine resources and management
on timescales of weeks to decades in northern Indian Ocean.
This configuration is particularly well-suited for evaluating
the impacts of natural variability and anthropogenic activi-
ties on key environmental variables that influence marine re-
sources. One key application is evaluating the risk of coastal
hypoxia – an increasingly pressing issue for local popula-
tions and the blue economy, including fisheries, in the re-
gion (Naqvi et al., 2009; Vallivattathillam et al., 2017; Pear-
son et al., 2022; Naqvi, 2021, 2022). Despite its importance,
coastal hypoxia is often only marginally addressed in global
studies, which focus primarily on hypoxia events in Europe
and North America (Breitburg et al., 2018; Deutsch et al.,
2024). MOM6-COBALT-IND12 is ideally suited to investi-
gate the physical and biological drivers of coastal hypoxia in
the northern Indian Ocean, as well as their spatio-temporal
variability. This capability is essential for predicting hy-
poxic events and informing effective management strategies
to safeguard marine ecosystems and coastal economies.

Geosci. Model Dev., 18, 6553–6596, 2025 https://doi.org/10.5194/gmd-18-6553-2025



E. Liao et al.: High-resolution Indian Ocean model 6581

Appendix A: Additional figures

Figure A1. Water discharge in the (a) Ganges-Brahmaputra and (b) Irrawaddy-Sittang river systems from observations (red), the raw
GloFAS-ERA5 runoff product (grey, Harrigan et al., 2023, 2020), the modified GloFAS-ERA5 runoff product used to force MOM6-
COBALT-IND12 (teal, 0.75×GloFAS-ERA5 m3 s−1 for Ganges-Brahmaputra and 1.7×GloFAS-ERA5+ 3564 m3 s−1 for Irrawaddy-
Sittang), and in the JRA55-do reanalysis (orange, Tsujino et al., 2018). Observations are from Jian et al. (2009) for Ganges-Brahmaputra and
Recknagel et al. (GRDC, 2023) for Irrawaddy-Sittang. We note that the raw GloFAS-ERA5 can overestimates or underestimate the discharge
compared to observations, while JRA55-do presents a systematic 1–2 months delay in the timing of the seasonal peak runoff.

https://doi.org/10.5194/gmd-18-6553-2025 Geosci. Model Dev., 18, 6553–6596, 2025



6582 E. Liao et al.: High-resolution Indian Ocean model

Figure A2. Model time series and drift evaluated as the linear trend after the 32-year spin-up in the control simulation with constant forcing:
(a) total oxygen (O2), (b) total nitrate (NO−3 ), (c) total dissolved inorganic carbon (DIC), (d) total alkalinity (Alk), (e) total vertically
integrated primary productivity (PP) and (f) total semi-refractory dissolved organic nitrogen (SRDON). Drifts are indicated above each panel
and are all < 0.05 %.
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Figure A3. Atmospheric deposition of nitrogen from the earth system model ESM4.1 used to force MOM6-COBALT-IND12: (a) spatial
distribution in year 2020, and (b) temporal evolution averaged over the model domain calculated using a 15-year monthly moving average
(see Sect. 2.4.2).
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Figure A4. Surface wind (10 m) during (a–c) winter (December–February) and (d–f) summer (June–August) monsoons. Panels (a, d) show
Cross-Calibrated Multi-Platform (CCMP) satellite observation-based product, (b, e) show ERA5 data product and (c, f) show differences
between ERA5 and CCMP. Correlation coefficients r , RMSE and bias between the data and model seasonal means are indicated. Wind
observational data is from CCMP satellite (see details in Table 2). CCMP and ERA5 results are averaged over the 1993–2020 period.

Figure A5. Comparison of observed and modeled vertical chlorophyll profiles in the Arabian Sea (a–c) and Bay of Bengal (d–f) using Argo
float observations and model output. Panels (a, d) show Argo-derived chlorophyll concentrations; (b, e) show model-simulated chlorophyll
concentrations; (c, f) show depth profiles of root mean square error (RMSE), bias, and correlation coefficient between model and Argo ob-
servations. In panels (a, b) and (d, e), the black contour line indicates the depth of the subsurface chlorophyll maximum (SCM). Chlorophyll
concentrations are shown in mg m−3.
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Figure A6. Climatological surface total nutrient limitation (nitrogen N, phosphorus P and iron Fe) following Liebig’s Law of the Minimum
in MOM6-COBALT-IND12 for small phytoplankton, large phytoplankton and diazotrophs in December, March, May and September. Model
climatology is for 1980–2020. A value of 1 indicates no growth limitation by nutrients, whereas a value of 0 indicates complete growth
limitation by nutrients.
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Figure A7. Integrated net primary productivity (PP) anomaly associated with the Indian Ocean Dipole (IOD). September-to-November
PP composites during (a, b) IOD negative phases and (c, d) IOD positive phases in observation-based product and MOM6-COBALT-IND12.
Composites are for September-to-November months available in the CAFE satellite product for positive (2002, 2006, 2015, 2018, 2019) and
negative (2005, 2010, 2016) IODs (see Table 2 for details on data). Panels (a) and (c) of this figure showing the CAFE satellite product can
be compared to Fig. 21a and c showing the same composites but for the CbPM satellite product.

Figure A8. Comparison of sea level anomaly intraseasonal variability, subsurface salinity, and subsurface dissolved oxygen between obser-
vational products, the regional MOM6-COBALT-IND12 model (labeled as Model-IND12), and the global MOM6-COBALT configuration
at 0.5° resolution (labeled as Model-global05). Panels (a–c) show the standard deviation of SLA representing intraseasonal variability (cm);
panels (d–f) show the mean salinity averaged over 300–700 m depth (psu); and panels (g–i) show the mean dissolved oxygen averaged over
300–700 m depth. Comparison statistics – correlation coefficient (r), root mean square error (RMSE), and bias – are shown in parentheses.
SLA intraseasonal variability is computed as the standard deviation of linearly detrended SLA, filtered using a 14–120 d band-pass filter.
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Code availability. The source code for the model components is
available at https://doi.org/10.5281/zenodo.14184011 (Liao et al.,
2024a). The model parameter files and preprocessed forcing data
used for the Indian Ocean configuration have been archived
at https://doi.org/10.5281/zenodo.14171404 (Liao et al., 2024b).
MOM6 is developed openly, with its Git repositories hosted at https:
//github.com/mom-ocean/MOM6 (last access: 1 February 2023)
and https://github.com/NOAA-GFDL/MOM6 (last access: 1 Febru-
ary 2023). These platforms enable users to obtain the latest and ex-
perimental versions of the source code, report issues, and contribute
new features.

Data availability. The model output analyzed in this study
is available at https://doi.org/10.5281/zenodo.14183131
(Yang et al., 2024). The datasets used for model val-
idation and comparison are listed as follows: OISSTv2.1
(https://www.ncei.noaa.gov/products/optimum-interpolation-sst,
Reynolds et al., 2007), mixed-layer depth (https://mld.ifremer.
fr/Surface_Mixed_Layer_Depth.php, De Boyer Montéut et al.,
2004), surface currents (https://podaac.jpl.nasa.gov/dataset/
OSCAR_L4_OC_INTERIM_V2.0, ESR, 2009), sea level anomaly
(https://doi.org/10.24381/CDS.4C328C78, Lopez, 2018), CCMP
wind speed (https://podaac.jpl.nasa.gov/MEaSUREs-CCMP,
Mears et al., 2022), OC-CCI v5.0 (https://climate.esa.int/en/
projects/ocean-colour/data/, Sathyendranath et al., 2019), RAMA
temperature and salinity (https://www.pmel.noaa.gov/gtmba/
pmel-theme/indian-ocean-rama, McPhaden et al., 2009), net pri-
mary productivity (https://orca.science.oregonstate.edu/index.php,
Westberry et al., 2008), and World Ocean Atlas 2018
(https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18,
Garcia et al., 2019).

The datasets used to create the model forcing are listed
as follows: ORAS5 reanalysis (https://cds.climate.copernicus.eu/
datasets, Zuo et al., 2019), TPXO9 (https://www.tpxo.net/home,
Egbert and Erofeeva, 2002), GloFAS (https://doi.org/10.24381/cds.
a4fdd6b9, Zsoter, 2019), and ERA5 (https://cds.climate.copernicus.
eu/datasets, Herbert et al., 2018).
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