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Abstract. Scale analysis based on coarse graining has been
proposed recently as an alternative to Fourier analysis. It is
now broadly used to analyze energy spectra and energy trans-
fers in eddy-resolving ocean simulations. However, for data
from unstructured-mesh models it requires interpolation to a
regular grid. We present a high-performance Python imple-
mentation of an alternative coarse-graining method which re-
lies on implicit filters using discrete Laplacians. This method
can work on arbitrary (structured or unstructured) meshes
and is applicable to the direct output of unstructured-mesh
ocean circulation atmosphere models. The computation is
split into two phases: preparation and solving. The first one is
specific only to the mesh. This allows for auxiliary arrays that
are then computed to be reused, significantly reducing the
computation time. The second part consists of sparse matrix
algebra and solving the linear system. Our implementation is
accelerated by GPUs to achieve excellent performance and
scalability. This results in processing data based on meshes
with more than 10 million surface vertices in a matter of sec-
onds. As an illustration, the method is applied to compute
spatial spectra of ocean currents from high-resolution FE-
SOM2 simulations.

1 Introduction

Atmospheric and oceanic motions span a wide range of spa-
tial scales, each contributing differently to kinetic and avail-
able potential energy, energy generation, dissipation, and en-
ergy transfer across scales. Key questions include under-
standing how energy moves between scales, such as gyres,
mesoscale and submesoscale motions in ocean dynamics.
These processes are often described using the concept of an
energy spectrum or cross-spectrum.

The most common technique to extract a spatial spectrum
is the Fourier transform. However, when working with the
output of ocean general circulation models (OGCMs), direct
application of the Fourier transform is rarely possible as it
requires data (samples) to be equally spaced as well as the
domain to be in a rectangular shape (in global atmospheric
configurations spherical harmonics are generally used). New
convolution (coarsening)-based approaches to this problem
have been proposed (Aluie et al., 2018; Sadek and Aluie,
2018; Aluie, 2019; Zhao and Aluie, 2025), and there al-
ready are multiple practical contributions showing the util-
ity and significance of the proposed approach (see, for ex-
ample, Schubert et al., 2020; Rai et al., 2021; Storer et al.,
2023; Buzzicotti et al., 2023). While they solve some of the
problems, like domain shape, they require data to be on a
regular longitude—latitude grid. For vector fields in spherical
geometry the procedure requires preliminary calculation of
the Helmholtz decomposition.

Several recent OGCMs such as MPAS-Ocean (Ringler
et al., 2013), FESOM2 (Danilov et al., 2017) and ICON-
o (Korn, 2017) are based on either unstructured triangular
meshes or their dual, quasi-hexagonal meshes. The use of
the aforementioned coarse-graining method for the output of
such models would require interpolation of the output data
from native unstructured mesh to a regular mesh. This means
additional computations. More importantly, the horizontal di-
vergence of the interpolated velocities may show marked dif-
ferences compared to the divergence on the original meshes.

These issues can be avoided if coarse graining is done on
the original meshes. Recently a method has been proposed
by Danilov et al. (2023) that solves this task. The method
uses implicit filters based on discrete Laplacians. The dis-
crete Laplacian operators can be constructed for arbitrary
meshes and data placement on these meshes. This method
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can therefore work on any mesh and can be applied directly
to the output of unstructured-mesh models.

In this paper a high-performance Python implementation
of the implicit filter method is presented, and practical ex-
amples of its usage are given. We use simulations performed
with FESOM2 to illustrate the performance of the method.
The discrete Laplacians depend on the mesh and data place-
ment. For convenience, in Sect. 2 we recapitulate some math-
ematical details of the method and discretizations. The re-
maining part of this section discusses implementation. The
results obtained with the implicit filters are compared with
those produced by convolution based methods using veloc-
ity fields from simulation performed with FESOM2 on a
global mesh with the resolution of 1km in the Arctic Ocean
in Sects. 3 and 4. The performance overview of the imple-
mentation is presented inSect. 5.

2 Implicit filter
2.1 Mathematical introduction

Let ¢(x) be a scalar field, with x lying in some domain D.
The goal is to find the distribution of the second moment
of this field over spatial scales. This can be achieved using
a coarse graining, akin to the methods presented by Aluie
et al. (2018) and Sadek and Aluie (2018). However, coarse
graining will rely on implicit filters, as proposed by Danilov
et al. (2023). The coarsened field ¢, (x) is found by solving

(1+7v(-£2)") 3 =9, M

where A is the Laplacian, the smoothing scale is parameter-
ized by £ and y is a parameter that tunes the relation of 1/¢
to wavenumbers. Spectra can be computed using low-pass
solutions as

_ d —
EK=E<|¢K|2>,

where the angular brackets denote spatial averaging and ky =
1/¢€. An alternative method has been proposed recently by
Zhao and Aluie (2025) which relies on high-pass filtering:

_ d _
Ee=—k—e<|¢—¢e|2).

Below we will take y = 1/2 for the low-pass method and
y =2 for the high-pass method. As explained in Danilov
et al. (2023), for the low-pass method k; = 1/ has the sense
of wavenumber for y = 1/2, and the wavelength is A = 2 ¢.
Such ¢ is related to the scale of box filter £px approximately
as fyox /€ = 3.5. The integer n defines the order of the im-
plicit filter, as discussed in Guedot et al. (2015). For the high-
pass method, analysis similar to that in Danilov et al. (2023)
shows that the same interpretation of k, and £ is preserved if
y = 2. Such ¢ is related to the scale of box filter used with
high-pass method approximately as £pox /¢ = 6.1.
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The implicit coarsening procedure can be applied to a vec-
tor field u as

(1+y(—z2A>")m —u. @)

In this case A is the vector Laplacian, which includes metric
terms in spherical geometry. In both cases of scalar and vec-
tor fields, Egs. (1) and (2) are complemented by the boundary
conditions of no normal flux (for » = 1) and additional con-
ditions of no higher-order normal fluxes for n > 1.

The discrete Laplacian operator, used in this coarsening
method, can be formulated for any computational mesh,
whether it is structured or unstructured, or mesh geome-
try, whether it is flat or spherical. For unstructured meshes,
Laplacians can be discretized through finite-volume or finite-
element methods. Although mathematical details and dis-
cretizations were presented in Danilov et al. (2023), we
briefly overview them here for convenience. Since dis-
cretizations of Laplacians on structured meshes are gener-
ally known, we focus below in this section on unstructured
meshes.

Figure 1 presents schematics of several unstructured-grid
discretizations in 2D view. In FESOM2, scalar degrees of
freedom are placed at vertices, and median dual control vol-
umes are used. They are obtained by connecting centroids of
triangles with mid-edge points, as shown in panel Fig. 1a.
The discrete horizontal velocities are placed on centroids of
triangles (Fig. 1¢). The placement of scalars in MPAS-Ocean
differs by using the control volumes obtained by connecting
circumcenters of triangles (Fig. 1b). These control volumes
are Voronoi quasi-hexagonal polygons of the dual mesh (and
vice versa, a triangular mesh can be considered the dual of
the hexagonal one). The vector degrees of freedom are in this
case the components of velocity normal to the edges of the
scalar cells. In ICON-o, scalar degrees of freedom are placed
at the circumcenters of triangles, and normal velocities are
at mid-edges (Fig. 1d). The discretization of Laplacians de-
pends on the placement of the degrees of freedom.

2.1.1 Scalar Laplacians

For median dual control volumes, we use the finite-element
method, assuming first n = 1. The weak formulation of
Eq. (1) is obtained by multiplying Eq. (1) by a sufficiently
smooth function w(x) and integrating over the domain D.
This leads to

/(w@ fylVu- v@) s = /w¢dS.
D D

The boundary term appearing after in the integration is zero

by virtue of the boundary conditions. The discrete fields are

expanded in series ¢, =Y ¢ Ny (X) and ¢ = Y ¢y Ny (X),
v/ v/

where N,(x) is a P; piecewise linear basis function. This
function equals 1 at the position of vertex v (see Fig. 1), de-
cays to 0 at vertices connected to v by edges (like v" and
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Figure 1. Schematics of several unstructured-grid discretizations: (a) median-dual control volumes around vertices are obtained by connect-
ing centroids with mid-edge points (gray lines) and (b) a dual quasi-hexagonal mesh is obtained by connecting the circumcenters of triangles
(on orthogonal meshes). The gray lines are perpendicular to edges, (c¢) centroids of triangles are used and (d) circumcenters of triangles are

used.

v”) and is zero outside the stencil of nearest triangles. The
continuous Galerkin approximation is obtained by requiring
the weak equation above be valid for w = N, for any v. This
results in

<Mvv’ + Vf)vv/) av’ =M,y dy.

Here, the summation over repeating v’ is implied; My, =
[ NyN,dS is the mass matrix and D,y = [ ¢2VN,-VN,/dS.
Keeping the full mass matrix in this case does not improve
the accuracy, and it can be replaced by its diagonally lumped
approximation Mﬁv/ = A,I,y, where A, is the area of con-
trol volume associated with v. Note that the system matrix
S = ML + (1/2)D is symmetric and positive definite.

In the biharmonic case, S=MZX + yﬁ(ML)_lﬁ. The
derivation procedure consists of two steps. One writes
AAg, = AV, with ¥, = A¢,. Using the weak form of the
last equality and expanding ¥, in the same set of basis func-
tions, one gets ME i, =Dy, In the second step one
applies the finite-element method to ¢, + y Ay, = ¢. The
flux terms that would appear in the weak equations are omit-
ted by virtue of boundary conditions. The procedure can be
generalized to higher-order filters.
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The procedure above can be given a finite-volume treat-
ment. Turning to Fig. 1a, we first compute V¢, on triangles
using three vertex values (v, v’ and v” for triangle c¢;) and
then combine fluxes through the segments of boundary (for
edge vv’ there are two segments with area vectors s; and s,
taken with gradients at ¢; and ¢, respectively). Such treat-
ment will lead to the same result.

For the quasi-hexagonal control volumes the —¢?A oper-
ator is expressed in a finite-volume way as

ADF = Y Bty 3)

v'eN(v) dyy

where d,,, is the length of edge vv’, and [, is the distance
between circumcenters c¢; and ¢, on both sides of edge vv’
(see Fig. 1b). The system matrix is

va@u/ =Avpy, Sy =AvLy +vADyy, “4)

with I,y being the identity matrix. The summation over re-
peating index v’ is implied. On uniform meshes, MEH~ID =
D. The matrix of the biharmonic operator can be obtained by
applying the procedure used for D twice,

va// = AVIUU” + VAVDUU,DU/U”' (5)
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For scalars at triangle circumcenters, the expression is sim-
ilar to Eq. (3)

Ac(D)e=0> e =) (6)

c’eN(c) dcc/

where A, is the area of triangle ¢, N(c) is the set of neigh-
boring triangles, [, is the length of edge vv’ and d,,, is the
distance between the circumcenters of triangles with com-
mon edge vv’ (see Fig. 1d). The biharmonic case is similar
to the previous case. In the last two cases the expressions for
Laplacians are simplified because of the orthogonality of the
lines connecting centroids to edges.

2.1.2 Vector Laplacians

For the discretization of FESOM2 the easiest method is to
seek for u, at vertices even though the discrete u values are
at centroids. One reason is that the number of vertices is half
as small, leading to a matrix problem of smaller dimensions.
Due to the appearance of metric terms, equations for both
components of #, are coupled, as explained in Danilov et al.
(2023). The resulting matrix problem is S, = M + y D, for
the Laplacian filter and Sp = M, + yDz(Mé)’lDz for the
biharmonic filter. It acts on the vector ({it,}, {v,})7 . Here

D R M 0

v (Gen ) e=(0 w)

The entries of matrix R are computed as R,y =
ézfm(—eraxNU + Nyd, Ny )dS. It is the operator account-
ing for metric terms linear in the metric factorm = R_ Ltang,
where R. is Earth radius, which is taken constant on tri-
angles, and 6 is the latitude. Compared to the scalar case,
the entries of D are also modified by the metric terms as
D,y =2 [(VN,-VNy+(R;24+m?)N,N,)dS. Finally, the
right-hand side is obtained by projecting from cell to ver-
tices: u, = Rycu., where R, = fNUMCdS, and M, is the
indicator function on triangle ¢. Summation is implied over
repeating indices in matrix—vector products.

There are several options to do the filtering keeping u, at
cells. For the stencil of nearest triangles (see Fig. 1¢) the lines
connecting the centroids on general meshes are not perpen-
dicular to edges. For this stencil, there is no universally valid
discretization for Laplacian. We use a simplified expression
instead of true —¢2A,

AcDu)e=AC Y (ue—up), (7)
c'eC(c)

which works stable in practice. One gets a valid discretiza-
tion for —¢% A taking A = 1 on uniform quadrilateral meshes
and A =+/3 on uniform triangular meshes composed of
equilateral triangles. On a triangular mesh obtained by split-
ting regular squares it corresponds to —dyy — dyy & dyy for
A = 3/2, with the sign dependent on the direction the quadri-
lateral cells are split. The appearance of mixed derivatives is
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caused by the low symmetry of the mesh (only to rotations
by 180°). Such meshes will make scale analysis essentially
anisotropic; however all operators on such meshes have a
similar mesh imprint. The operator (Eq. 7) is symmetric and
positive semidefinite. In spherical geometry, the unit zonal
and meridional vectors are different at ¢ and ¢’ locations. The
account for this difference leads to metric terms that include
the derivatives of unit directional vectors.

Other options for cell-based filtering of velocities will rely
on a much larger stencil. Based on triangles ¢/, ¢’ and ¢”’
(see Fig. 1c) one can estimate Vi, on triangle ¢. Combining
such estimates on ¢ and ¢/, the gradient will be estimated on
edge vv” and similarly on other edges, and then the diver-
gence of such gradients will be computed at ¢. On uniform
meshes this will involve a stencil of 10 triangles. Yet an-
other method is to use the vector invariant form A = VV . —
curlcurl. For centroidal velocities both the discrete di-
vergence and vorticity are naturally computed on vertices,
through the cycle over the boundary of median-dual control
volumes. The operation of gradient and second curl will in-
volve three vertex values and return the result to cells. In this
case the stencil will occupy 13 triangles on uniform meshes.
In can be shown that such Laplacians are not more accurate
than the vertex-based Laplacian but will lead to more expen-
sive matrix vector multiplications in the solver procedure. We
therefore have not tried these Laplacians thus far.

For the C-grid type of discretization of MPAS-Ocean and
ICON-o the vector invariant form of Laplacians presents the
main interest. The locations of normal velocities are given
by small red circles in Fig. 1b and d. The divergence will be
computed at vertices for the hex-C grid and at triangles for
triangular C-grid, and vice versa for relative vortices. On uni-
form meshes 11 normal velocities will be involved in compu-
tations. These operators have not been implemented yet, but
this might be done in future.

2.2 Implementation

The computational process is divided into two phases: ini-
tialization and solution. The initialization stage is indepen-
dent of the filtering scale and involves precomputing auxil-
iary arrays that are reused during the solution phase. This
optimization strategy significantly reduces the overall com-
putational time, particularly for large-scale problems. Python
3 was chosen as the primary programming language due to
its widespread adoption in the Earth sciences community and
its extensive ecosystem of libraries. The implementation is
publicly available as open-source software on GitHub.

2.2.1 Initialization
The implementation of the implicit filter method involves
precomputing several auxiliary arrays based on the mesh

connectivity matrix. These arrays are independent of the fil-
tering scale and can be reused for multiple filter applications.

https://doi.org/10.5194/gmd-18-6541-2025
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The non-zero coefficients of the D operator are determined
using Eq. (3) and can be efficiently computed using sparse
matrix algebra. To further enhance the computational perfor-
mance, JAX’s just-in-time compilation and vectorization ca-
pabilities were employed, resulting in a speedup of approx-
imately 100x compared to a pure NumPy implementation.
The precomputed auxiliary arrays can be saved to disk to re-
duce the computational overhead for subsequent filter appli-
cations. This approach leverages NumPy’s file I/O capabili-
ties and promotes efficient reuse of precomputed data across
multiple filter scales. The time required for precomputation is
approximately several minutes. In the case of high-resolution
data (see Sect. 3) it took 15 m 40s.

2.2.2 Solving linear system

After computing the coefficients of the D operator, they are
assembled into a sparse matrix using SciPy’s implementation
of compressed sparse column (CSC) matrices. The S opera-
tor is then calculated based on either Egs. (4) or (5). Follow-
ing the suggestion of Guedot et al. (2015), the product of S
and ¢ is subtracted from ¢ to simplify the solution of the lin-
ear system (Eq. 1). The resulting modified ¢ is then used by
the conjugate gradient solver along with S. A solver tolerance
of 10~° was used for convergence.

Several alternative solvers, including the generalized min-
imal residual method (GMRES), were tested, but the conju-
gate gradient method consistently exhibited the best perfor-
mance. The use of a preconditioner (incomplete LU factor-
ization) was also investigated, but it did not lead to significant
performance improvements.

To harness the parallel processing capabilities offered by
GPUs, the CuPy library was employed. CuPy provides an
identical interface to SciPy and requires minimal modifica-
tions to the method implementation. This library is optimized
for NVIDIA GPUs but also supports graphics cards from
other vendors, such as AMD. By utilizing CuPy, the algo-
rithm maintains independence from both the operating sys-
tem and hardware vendors.

2.3 Convolution filter

To make a comparison with the explicit filter, it is neces-
sary to implement the box filter method proposed by Aluie
et al. (2018). The crucial aspect involves defining the convo-
lution kernel. The following formula was used for the low-
pass method:

G(x) =A(1 —tanh(c(|x| = 1.75/k¢) /a)) . ®)

Here, A is a normalizing factor, ensuring that [ Gdx = 1;
c is the filter sharpness factor set to 1.5; and a is a mesh
resolution. The combination 1.75/k, corresponds to £pox /2.
It is replaced by 3.05/k, for the high-pass method.
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To implement this method, JAX was used to create the ker-
nel matrix, while SciPy (in the case of CPU) and CuPy (in the
case of GPU) were employed to apply the matrix to the data.

3 Data

The model data used were generated by the Finite-
Element/volumE Sea ice-Ocean Model version 2 (FESOM?2)
simulation. FESOM?2 is a multi-resolution sea ice—ocean
model that solves the ocean primitive equations on unstruc-
tured meshes (Danilov et al., 2017). The sea ice module, that
is part of the model, is formulated on the same meshes as the
ocean module. Configuration of the model has horizontal res-
olution of 1km in the entire Arctic Ocean, which smoothly
coarsens to 30km in the rest of the global ocean. There are
70 z levels in the vertical direction, with 5 m spacing within
the upper 100 m. ERAS atmospheric reanalysis fields (Hers-
bach et al., 2020) were used to force the model. The model
was initialized from the PHC3 climatology (Steele et al.,
2001) and run for 11 years starting from 2010. The first 4
years was considered a spinup. The realizations of velocity
field from the last 7 years (2014-2020) were used in this
work.

In order to be able to directly use the box filter on this
dataset it was interpolated to a regular rectangular grid with
0.01° resolution. Prior to interpolation, the coordinate trans-
form was performed such that the Arctic Ocean corresponds
to the equatorial region in new coordinates. Using this ro-
tation minimizes the error caused by using a regular longi-
tude/latitude grid, since it ensures that the grid cells are very
close to squares. Linear interpolation was used. As this is a
very costly process, the domain was restricted to areas north
of 73° latitude on the original mesh. The final mesh had di-
mension of 3200 by 3200 cells, resulting in 10240000 cell
mesh.

4 Results

Figure 2 illustrates the application of the implicit filter for
high-pass filtering of the velocity field. The left panel shows
a snapshot of the absolute value of velocity at 70m depth.
Together with eddies and jet flows it shows a region with
smoothed velocities, presumably caused by the sea ice drift.
The velocity field in the right panel is obtained by subtract-
ing the velocity field coarse grained with the scale of 100 km,
which only leaves the small scales. Using the implicit filter
allows one to perform this operation on the native mesh and
on the spherical Earth surface, without the need of regridding
the data. The continental-break currents are rather strong and
carry a significant part of kinetic energy. As is seen compar-
ing the panels of Fig. 2, they contribute very substantially to a
large-scale part of the flow. One can expect therefore that en-
ergy spectra computed for the entire Arctic Ocean will have
an elevated spectral density at large scales.

Geosci. Model Dev., 18, 6541-6551, 2025



6546 K. Nowak et al.: Implementation of implicit filters for spatial spectra extraction

(a) Speed [m/s]
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Figure 2. A snapshot of ocean currents at 70 m depth (logarithmic scale). Panel (a) shows the simulated results, while panel (b) shows the
results of high-pass filtering with the scale of 100 km. The implicit Laplacian filter has been used over data on a native unstructured grid,

taking into account spherical geometry.
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Figure 3. Wavenumber spectra for the entire Arctic Ocean. The red line corresponds to the implicit harmonic filter applied to the data on the
original grid. The blue and green lines correspond to the implicit harmonic and explicit box filter applied to the interpolated data. The highest
wavenumber is 7t/ h, where £ is the height of triangles of the original grid.

Figure 3 presents kinetic energy spectra obtained with the
implicit Laplacian filter using the original data (on the origi-
nal triangular mesh) (red line) and interpolated data (blue).
They are compared with the spectrum obtained by coarse
graining with the explicit box filter (green). The latter is com-
puted ignoring the Earth curvature (the cosine of latitude is
replaced with 1), enabling the convolution via the Fourier
transform. The implicit filter allows us to compute the spectra
of the interpolated data on both the longitude—latitude mesh
and on its flat geometry approximation. Although the coarse-

Geosci. Model Dev., 18, 6541-6551, 2025

grained velocities show some small differences (25 % at the
largest scale) in these two cases, the energy spectra turn out to
be almost identical, which substantiates the approach taken
for the box filter.

As seen in Fig. 3, the implicit Laplacian filter and the ex-
plicit box filter provide matching results (1 % difference at
the largest scale). The largest wavenumber is 7/ h ~= 4 cy-
cle per kilometer, where % is the height of triangles of the
original mesh. One can note that for larger scales there is a
small shift between the results computed on original and reg-

https://doi.org/10.5194/gmd-18-6541-2025
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= Original data harmonic filter
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Figure 4. Comparison between the spectra computed with the box filter and the implicit harmonic filter applied to data on native grid and

interpolated to regular grid.

ular meshes. We guess that this is related to the effect of no-
flux boundary conditions (Danilov et al., 2023), which are
applied along the boundary between water and land on the
original mesh but along the boundary of interpolation mesh
in the other case. Interestingly, for the interpolated data, the
spectra for the implicit and box filter are very close despite
the difference in boundary conditions. Note that the spec-
tra obtained using the implicit Laplacian filter are smoother
than spectra based on the box filter. This correlates with bet-
ter spectral sensitivity of the latter, which is, however, worse
than the sensitivity of the biharmonic filter.

In Fig. 4 we compare the spectra computed with harmonic
and biharmonic filters. For the biharmonic filters, the conju-
gate gradient algorithm requires more iterations to achieve
required tolerance. This results in longer computation, and
on large scales it might not converge, so we stopped on the
wavenumber k; ~ 0.025 cycle per km, which corresponds to
the wavelength of 250 km. While the spectra are close on the
wavelength larger than approximately 12 km, they start to de-
viate at smaller wavelengths. This could have a numerical
explanation at wavelengths that correspond to grid scales, as
discrete Laplacians deviate from their continuous counterpart
at grid scales, and this deviation is larger in biharmonic oper-
ators. However, the spectra in Fig. 4 also disagree at larger
scales, which is an indication that the real spectra have a
slope steeper than —3 at these scales. We give elementary
illustrations in Sect. 6.

5 Performance benchmarks

To facilitate the computational demands of this study, ex-
tensive computational resources were generously provided

https://doi.org/10.5194/gmd-18-6541-2025

by the Jiilich Supercomputing Centre (JSC). As the primary
computing environment, a single node from the JUWELS
Booster Module was used. This node was made of two AMD
EPYC Rome 7402 CPUs, 512 GB of DDR4 RAM and four
NVIDIA A100 GPUs, each equipped with 40 GB of HBM2e
memory. To optimize computational efficiency and resource
utilization, only a single GPU was employed for the duration
of this study.

The performance evaluation of the implicit filter method
focuses on its computational efficiency, assessed by measur-
ing the execution time required to process data. However,
data access from disk can introduce substantial overhead, po-
tentially influencing the overall execution time. To isolate the
computational efficiency of the method, IO time, represent-
ing the duration spent reading and writing data to disk, is ex-
cluded from the execution time measurements. To ensure the
accuracy and consistency of time measurements, each con-
figuration is executed 10 times, and the mean value is taken.

As evident from Fig. 5, the performance of the implicit
filter method exhibits a linear relationship with mesh size
above 10° nodes. Furthermore, the method effectively han-
dles meshes with over 11 million nodes, achieving process-
ing times of approximately 5 s for a 100 km filter scale. Such
remarkable efficiency is attributed to the method’s inherent
scalability, enabling it to process data efficiently on increas-
ingly large meshes without performance degradation.

This capability to handle large meshes is essential for an-
alyzing real-world datasets, which often cover vast areas and
demand high-resolution meshes for accurate representation.
The implicit filter’s scalability ensures its effectiveness in
processing these large datasets, making it suitable not only
for current state-of-the-art meshes but also for future genera-
tions of increasingly high-resolution meshes.

Geosci. Model Dev., 18, 6541-6551, 2025
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Figure 5. Execution time of implicit filter on synthetic data. Presenting data on both a Cartesian and a spherical mesh. Filter size of 100 km
was used at all cases. Dashed lines illustrate fitted linear functions.
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Figure 6. Execution time of implicit filter on FESOM2 output. Results show computation time of both vector and scalar data on a mesh with
11 million nodes (see Sect. 3). Dashed lines illustrate fitted linear functions.

For the benchmarks, a fully unstructured mesh was used, depend on specific data, but the scale is typically larger than
which has 11538465 surface nodes. The measured results 1000 km.
of the execution time, as shown in Fig. 6, exhibit a close-
to-linear dependency with filter scale for those larger than
50 km. In particular, computation for a filter scale up to ap-
proximately 100 km is done within 6's, even for a mesh with
more than 10 million nodes and a resolution of about 1 km in
the focus area. As this is the range of scales that is of the most
interest, it shows remarkable performance. Convergence be-
comes more challenging for larger scales, and results diverge
from a linear dependency. The scales where those issues arise

6 Some comments

The present implementation supports triangular meshes of
FESOM?2 and produces coarse-grained fields at mesh ver-
tices. Since the original discrete horizontal velocities in FE-
SOM2 are at the centers of triangles, computation of coarse-
grained velocities at triangles was also attempted and found
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to lead to very close results regarding the kinetic energy spec-
tra. Vertex computations should therefore be preferred, as
they require smaller matrices. Nevertheless, triangle-based
computations might be required if dissipation is studied, as
the dissipation tendency is noisy. They are under implemen-
tation and are based on the simplified Laplacian (Eq. 7). The
support of C-grid type discretization for ICON-o discretiza-
tion (scalar Laplacians for data on circumcenters of trian-
gles and vector-invariant Laplacians for velocities normal to
edges) and the support of regular quadrilateral C-grids will
be added in the near future. Our aim is a tool that supports
different meshes.

The calculation of spectra can be based on the low-pass
method, as proposed by Sadek and Aluie (2018) and used in
Danilov et al. (2023). A new method, based on high-pass fil-
tering, was proposed recently by Zhao and Aluie (2025), af-
ter this paper was submitted. The method only modifies the
calculations of spectra but relies on the same coarse-grained
fields as the low-pass method. We added it to our implemen-
tation, which required minor updates. According to the anal-
ysis by Zhao and Aluie (2025), the new method can handle
much steeper spectra than the low-pass method, and we illus-
trate some points here. As discussed in Danilov et al. (2023),
the low-pass method based on implicit Laplacian filter can
handle spectra which are not steeper than k3. The use of
implicit biharmonic filter extends this range to k. Based
on the analysis of Zhao and Aluie (2025), these ranges ex-
tend to k> and k7 respectively with the high-pass method.

In Fig. 7 we present the spectra computed using the im-
plicit filters of different order given the Fourier spectrum
Ex ~ k=2 /(1 4 (k/k*)?), with k* = 30 kyin, Where ki, cor-
responds to the domain wavelength taken as 2048 km. The
spectra were computed using the analytical expression for
the form factor and the Fourier symbol of one-dimensional
discrete Laplacian given in Danilov et al. (2023). The dark-
and light-blue (thick black and gray) curves correspond, re-
spectively, to the Laplacian and biharmonic filters used with
the low-pass (high-pass) method.

While one expects that the Laplacian filter will fail for
large k in the case of low-pass method, the dark-blue line has
a slope flatter than —3 over a range of wavenumbers where
the real slope is —4. One can erroneously interpret this inter-
val as a true spectrum (since it is flatter than —3). This behav-
ior is caused by aliasing from the side of small wavenumbers
where the spectral energy density is much larger. With the
high-pass method the spectrum is much closer to the Fourier
spectrum even for the Laplacian filter (thick black line) and
is only slightly worse than the result with biharmonic filter
for the low-pass method. Increasing the order of filter leads
to very accurate behavior (gray curve). Thus, while the high-
pass method should be a preferred one, there are also argu-
ments in favor of higher-order filters.

The illustration in Fig. 7 stresses the fact that one generally
needs to test the results obtained by sequential filtering if they
show spectral slopes approaching their critical limits. In any
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Figure 7. Theoretical energy spectra obtained using Laplacian (dark
blue) and bi-Laplacian (light blue) implicit filters with low-pass
method. The thick black and gray curves show the same but for
the high-pass method. The Fourier spectrum is shown by the thin
red line, and the straight black line corresponds to a slope of —3.

case, as mentioned by Zhao and Aluie (2025), this is a strong
argument in favor of the high-pass method or higher-order
filters. Guided by this fact, the behavior shown in Fig. 4, and
the possibility to compute the Fourier spectrum for the inter-
polated data, we compare the spectra obtained with implicit
harmonic and biharmonic filters with the Fourier spectrum
in Fig. 8. The spectrum obtained with the harmonic filter de-
viates from the Fourier spectrum, but the biharmonic filter
follows the Fourier spectrum very closely. This issue with
the harmonic filter can be eased using the high-pass filter
method, resulting in spectra with a slope steeper than —3,
without the need for the additional compute required by the
biharmonic filter.

The use of the biharmonic filter is computationally more
expensive, and even worse, the convergence can be lost for
large ¢, which correspond to wavelengths of domain size in
the case of very fine meshes if the conjugate gradient solver
is used. At present, we rely on the conjugate gradient solver
available in Python, and we work on preconditioners and so-
lution methods that will remove these difficulties. The im-
proved convergence for biharmonic filter is important, as it
opens up perspectives of using filters of higher order, as ex-
plained in Guedot et al. (2015) and Danilov et al. (2023).

It is reminded that the wavenumber scale k; = 1/£ used by
us corresponds to the wavenumber of the Fourier spectrum.
This means that £ corresponds to A/(27), with A the wave-
length. This requires care when comparing our approach to
that based on other filters, as their meaning of ¢ might be
different. For the box-type filter, £pox & 3.5¢ or 6.1¢ for the
low-pass and high-pass method.

Geosci. Model Dev., 18, 6541-6551, 2025
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Figure 8. Fourier energy spectrum compared to the spectra obtained with implicit harmonic and biharmonic filters for the data interpolated
to a regular grid. For the harmonic filter, both low-pass and high-pass methods were used.

7 Conclusions

This work presents a high-performance implementation of a
novel method for extracting spatial spectra from unstructured
mesh data, offering a compelling alternative to conventional
methods. The open-access code and elementary documen-
tation can be found at GitHub (https://github.com/FESOM/
implicit_filter, last access: 25 August 2025) and Zenodo
(Nowak and Danilov, 2024). Unlike its predecessors, the im-
plicit filter method directly operates on unstructured meshes,
such as triangular and quasi-hexagonal meshes, eliminating
the need for computationally expensive interpolation to regu-
lar grids. This capability makes the implicit filter directly ap-
plicable to the output of unstructured-mesh ocean circulation
models, surpassing the limitations of traditional methods.

To enhance practical applicability, the implicit filter
method is implemented in Python using a high-performance
algorithm that employs a two-phase approach to optimize
computational efficiency. The first phase involves precom-
puting mesh-specific data, significantly reducing the compu-
tational load during the actual filtering process. This opti-
mization strategy ensures efficient resource utilization and
minimizes overall execution time. The second phase can use
GPU-accelerated sparse matrix algebra. Depending on the
conditions, use of the GPU reduces computation time by
up to 2 orders of magnitude. This computational prowess
enables the processing of high-resolution data from meshes
with millions of surface vertices within seconds.

The efficacy of the implicit filter method is demonstrated
by applying it to compute spatial spectra of ocean currents
from high-resolution general circulation model output. The
results obtained from the proposed method exhibit agree-
ment with those obtained using traditional methods, such as

Geosci. Model Dev., 18, 6541-6551, 2025

a box filter, validating its accuracy and robustness. Further-
more, the method’s ability to handle unstructured meshes
directly provides a more comprehensive analysis compared
to traditional methods that require interpolation to a regular
grid. However one needs to note that for spectra with slopes
steeper than —3, a biharmonic filter needs to be used.

Code and data availability. Source code, along with
documentation and examples, is available at https:
//github.com/FESOM/implicit_filter and Zenodo

(https://doi.org/10.5281/zenodo.10907365, Nowak and Danilov,
2024). All scripts used for making figures presented in this work
are available on Zenodo (https://doi.org/10.5281/zenodo.10957614,
Nowak et al., 2024).

Data used for Fig. 3 are not included as they would re-
quire files with size exceeding the capacity of the Zenodo repos-
itory. As this figure is only for illustrative purposes, a simi-
lar figure can be obtained using any data and included exam-
ple scripts (https://doi.org/10.5281/zenodo.10907365, Nowak and
Danilov, 2024).
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