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Abstract. Recent land surface models (LSMs) have evolved
significantly in complexity and resolution, requiring com-
prehensive evaluation systems to assess their performance.
This paper introduces the Open Source Land Surface Model
Benchmarking System (OpenBench), an open-source, cross-
platform benchmarking system designed to evaluate the
state-of-the-art LSMs. OpenBench addresses significant lim-
itations in the current evaluation frameworks by integrating
processes that encompass human activities, facilitating arbi-
trary spatiotemporal resolutions, and offering comprehensive
visualization capabilities. The system utilizes various metrics
and normalized scoring indices, enabling a comprehensive
evaluation of different aspects of model performance. Key
features include automation for managing multiple reference
datasets, advanced data processing capabilities, and support
for station-based and gridded data evaluations. By examining
case studies on river discharge, urban heat flux, and agricul-
tural modeling, we illustrate OpenBench’s ability to identify
the strengths and limitations of models across different spa-
tiotemporal scales and processes. The system’s modular ar-
chitecture enables seamless integration of new models, vari-
ables, and evaluation metrics, ensuring adaptability to emerg-
ing research needs. OpenBench provides the research com-
munity with a standardized, extensible framework for model
assessment and improvement. Its comprehensive evaluation
capabilities and efficient computational architecture make it
a valuable tool for both model development and operational
applications in various fields.

1 Introduction

Land surface models (LSMs) simulate the complex inter-
actions among the land surface, planetary boundary layer,
rivers and lakes, glaciers and frozen soils, plant physiology
and ecology, vegetation dynamics, biogeochemistry, human
activities, and other processes occurring on the land sur-
face (Blyth et al., 2021; Dai et al., 2003; Lawrence et al.,
2019; Pokhrel et al., 2016). These models play an important
role in understanding and predicting various changes in the
Earth system, serving as a bridge connecting the land sur-
face, ocean, and atmosphere (Fisher and Koven, 2020; Ward
et al., 2020; Liu et al., 2024). As such, they are key compo-
nents of Earth system models (ESMs) and have significant
impacts on our ability to comprehend and predict weather,
climate, hydrological cycles, carbon cycles, and various other
environmental factors. In recent decades, LSMs have un-
dergone rapid development, evolving from basic “bucket”
models (Manabe, 1969) to advanced multi-module systems
(Blyth et al., 2021) that incorporate both biogeochemical pro-
cesses (e.g., greenhouse gas, carbon, nitrogen, and phospho-
rus cycles) and geophysical processes (including land-use
changes, three-dimensional surface water, subsurface flow,
and flooding), as well as human activities (such as agricul-
ture, reservoir management, and urban development). This
evolution has been driven by advances in hydrology, me-
teorology, computer science, and measurement technology,
leading to the development of increasingly complex mod-
els. Concurrent with the increasing complexity of processes
represented in LSMs, there has been a significant improve-
ment in spatial resolution as well. Models have progressed
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from traditional forecasting scales of 25—-100km (Dai et al.,
2003) to current fine scales of 0.1-10 km (Chen et al., 2024).
The increasing complexity and resolution of models require a
comprehensive evaluation and analysis of simulation results.

In recent years, various model benchmarking systems (see
Table 1) have been developed. These systems assess model
performance in comparison to multiple sources of refer-
ence datasets. Most of these benchmarking systems consist
of benchmark datasets, evaluation software, metrics, model
operating environments, and auxiliary tools. The bench-
mark datasets standardize observation, reanalysis, and re-
mote sensing data to evaluate model accuracy in simulating
land processes. Evaluation software includes metrics, execu-
tion environments, and tools designed for automated assess-
ment and quantifying LSMs’ performance. The operating
environment comprises the software and hardware for run-
ning evaluations, while ancillary tools support benchmark-
ing. Despite the importance of LSM evaluation and the de-
velopment of various benchmarking systems, several limi-
tations persist in current evaluation approaches. These lim-
itations have become increasingly apparent as the complex-
ity and resolution of LSMs have increased. One significant
area for improvement is the scope of evaluation variables
in most existing evaluation systems. These systems typi-
cally focus on some range of commonly used variables, such
as water, heat and carbon fluxes, temperature, and vegeta-
tion coverage. This restricted scope fails to capture the full
range of processes simulated by modern LSMs. For instance,
TraceMe (Zhou et al., 2021) is primarily designed to eval-
uate model outputs related to the carbon cycle, while the
MetEva software developed by the National Meteorological
Center of China (https://github.com/nmcdev/meteva, last ac-
cess: 5 March 2025) focuses on meteorological fields. How-
ever, neither of these tools provides a comprehensive assess-
ment of land surface processes, nor can they easily adapt to
new evaluation indicators or datasets. In particular, there is
a lack of comprehensive evaluation for hydrological cycles
and human activities, making it challenging to fully assess
model performance in these critical areas. Human activity,
while an important factor affecting surface processes, is one
of the most challenging aspects to model and evaluate. This
is primarily due to the small-scale nature of human activ-
ity data (e.g., crop yields, dam operation, and anthropogenic
heat) and the involvement of complex socio-economic and
land-use change data. These datasets are often multi-source,
complex, and highly uncertain. To date, no evaluation system
has been found to integrate the assessment of human activi-
ties in LSMs broadly.

Another significant challenge in current LSM evaluation
practices is the difficulty in conducting inter-model com-
parisons. This comparative work is a key step in improving
model performance and understanding model differences and
uncertainties. However, the lack of a universal and compre-
hensive evaluation tool presents significant challenges, espe-
cially in the context of high-resolution complex models and

Geosci. Model Dev., 18, 6517-6540, 2025

Z. Wei et al.: OpenBench: a land model evaluation system

evolving underlying datasets. Traditionally, software tools
for evaluating LSMs have often been customized for spe-
cific models or datasets. For example, the evaluation tools
for the Canadian Land Surface Scheme (CLASS) (Verseghy,
1991) and the Community Atmosphere Biosphere Land Ex-
change (CABLE) model (Haverd et al., 2018), i.e., AM-
BER (Arora et al., 2023) and benchcab (https://github.com/
CABLE-LSM/benchcab, last access:30 June 2025), are opti-
mized for their respective outputs. Customized software de-
signs lead to several issues. Researchers must invest time
in learning specific usage methods and data formats for
each new model, limiting their ability to try new models
and slowing down comparisons. Different tools using differ-
ent evaluation criteria and formats make it difficult to com-
pare model performance. Evaluation tools like the Interna-
tional Land Model Benchmarking (ILAMB) platform (Col-
lier et al., 2018) require complex data processing, such as
converting model outputs to the Coupled Model Intercom-
parison Project (CMIP) standard. This process consumes
time and computing resources, increasing the risk of errors
and potentially affecting the reliability of evaluations. In the
meantime, some platforms, such as ILAMB and the Land
Surface Verification Toolkit (LVT) (Kumar et al., 2012), of-
fer a wide range of assessments for process variables. How-
ever, their spatiotemporal resolution is relatively low (typi-
cally at a monthly scale and 0.5°). They have limitations in
processing data conversion at different scales, making it diffi-
cult to perform simulation evaluations at multiple spatiotem-
poral scales.

Visual analysis capabilities are another area where cur-
rent evaluation tools often fall short. Many lack visual func-
tions or produce low-quality visualizations, making it dif-
ficult to display evaluation results effectively. For instance,
while some can produce graphical diagnostics, the quality
is often insufficient to meet publication standards, and it is
unable to customize output. Platform compatibility is also
a significant issue, as most evaluation tools are designed to
run only on Linux. This limits their application on Windows
or macOS operating systems, thus restricting their popularity
and accessibility.

To address these challenges and meet the high standard re-
quirements of new-generation LSM verification and evalua-
tion, we have developed OpenBench (Open Source Land Sur-
face Model Benchmarking System). The core goal of Open-
Bench is to provide an open-source, fast, efficient, diverse,
and accurate evaluation mechanism for high-resolution land-
surface model outputs. OpenBench is designed as a universal
and high-performance LSM evaluation system, fully written
in Python, that realizes functions such as data processing,
evaluation method encapsulation, and result analysis visu-
alization. OpenBench supports cross-platform operation, in-
cluding Windows, macOS, and Linux, enhancing its acces-
sibility and usability across different research environments.
OpenBench incorporates evaluation metrics and datasets that
account for human activities on land surface processes, filling
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Table 1. The software that can be used or partly used for land surface model evaluation. The abbreviations for specific nouns in the table are
described as follows: AMWG — NCAR’s CAM Diagnostics Package; CVDP — NCAR’s Climate Variability Diagnostics Package; ESMVal-
Tool — Earth System Model Evaluation Tool; PMP — PCMDI’s Metrics Package; ILAMB — International Land Model Benchmarking System;
MDTF — NOAA'’s Model Diagnostics Task Force Framework; MPAS-Analysis — analysis for MPAS (Model for Prediction Across Scales)
components of E3SM Ocean and Sea-ice analysis for E3SM’s MPAS components; E3SM Diags v2.7 — The E3SM Diagnostics Package;
AMBER - Automated Model Benchmarking; PALS — Protocol for the Analysis of Land Surface models; LVT — Land Surface Verification
Toolkit; benchcab — evaluation tool for the land surface model CABLE; TraceMe — traceability analysis system for model evaluation; AMET
— Atmospheric Model Evaluation Tool; MET — Model Evaluation Tool; MVIETool — Multivariable Integrated Evaluation Tool.

Name Range of application Arbitrary Cross- Reference Link
spatiotemporal  platform
resolution

MetEva GRAPES model No Yes NA https://github.com/nmcdev/meteva (last access: 5 March 2025)

AMWG (retired) CAM No No (Linux) NA https://www2.cesm.ucar.edu/working_groups/Atmosphere/amwg-
diagnostics-package/ (last access: 12 June 2023)

CVDP CMIP-style No No (Linux) Phillips et al. (2014)  https://www2.cesm.ucar.edu/working- groups/cvewg/cvdp (last ac-
cess: 13 August 2025)

ESMValTool CMIP-style No No (Linux) Weigel et al. (2020)  https://esmvaltool.org/ (last access: 3 July 2025)

PMP CMIP-style No No (Linux) Lee et al. (2023) https://github.com/PCMDI/pcmdi_metrics (last access: 11 Septem-
ber 2025)

MDTF Single point, CMIP-style, Yes No (Linux NA https://mdtf-diagnostics.readthedocs.io/en/latest/ (last access: 2 May

NCAR, and GFDL model and macOS) 2025)

MPAS-Analysis MPAS model Yes No (Linux) NA https://github.com/MPAS-Dev/MPAS- Analysis (last access: 28 Au-
gust 2025)

E3SM Diags E3SM model, CMIP-style Yes No (Linux) Zhang et al. (2022) https://github.com/E3SM-Project/e3sm_diags  (last access: 11
September 2025)

ILAMB CMIP-style No No (Linux) Collier et al. (2018)  https://www.ilamb.org/ (last access: 28 June 2023)

AMBER CLASSIC, CTEM Yes Yes Arora et al. (2023) https://cccma.gitlab.io/classic_pages/benchmarking/ (last access: 15
September 2025)

modelevaluation.org  Single point Yes Yes Best et al. (2015) https://modelevaluation.org/ (last access: 15 September 2025)

LVT Various Yes No (Linux) Kumar et al. (2012)  https://github.com/NASA-LIS/LISF/tree/master/Ivt (last access: 7
February 2025)

benchcab Single point, CABLE model  Yes Yes https://github.com/CABLE-LSM/benchcab (last access: 30 June
2025)

TraceMe CMIP-style Yes No (Linux) Zhou et al. (2021) http://traceme.org.cn/ (last access: 15 September 2025)

AMET CMAQ model Yes No (Linux) Appel et al. (2011) https://www.epa.gov/cmaq/atmospheric-model-evaluation-tool (last
access: 23 July 2025)

MAT WRE, UFS, and SIMA mod-  Yes No (Linux) Jensen et al. (2024) https://metplus.readthedocs.io/projects/met/en/latest/ (last access: 9

els September 2025)
MVIETool CMIP-style No No (Linux) Zhang et al. (2021) https://github.com/Mengzhuo-Zhang/MVIETool (last access: 21 Jan-

uary 2024)

a significant gap in current evaluation systems. The system
provides a unified and standardized benchmark test method
framework, allowing for efficient and comprehensive valida-
tion and evaluation of typical land surface models, such as
CoLM, CLM, Noah-MP, GLDAS, and JULES, as well as
CMIP-style model output. By ensuring the widespread shar-
ing of evaluation results, OpenBench aims to advance sci-
entific research and operational work in land surface model-
ing. The system maximizes the use of available observational
and reanalysis data through its efficient data management and
processing capabilities.

In the following sections of this paper, we will detail the
methodology behind OpenBench, including its system archi-
tecture, its key components, and the benchmark datasets de-
veloped for it. We will then present case studies that demon-
strate its application in evaluating and comparing different
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LSMs or parameterizations, highlighting its capabilities in
handling high-resolution data and complex processes. Fi-
nally, we will discuss the implications of this new evaluation
system for the field of land surface modeling and outline fu-
ture directions for its development and application.

2 Opverall structure

OpenBench represents a significant advancement in the field
of model evaluation and intercomparison. This section out-
lines the system’s overall structure, highlighting its key com-
ponents and workflow. OpenBench is designed with modu-
larity and flexibility in mind, enabling efficient processing of
diverse datasets and model outputs. The OpenBench code is
designed to simultaneously handle various data types, includ-
ing plot-scale data (such as station data) and gridded data (re-
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The Open Source Land Surface Model Benchmarking System (OpenBench)

Data Preprocessing Module

Y

File Read HVariable Select]—)[ Unit Convert ]—D[

Numerical
Statistics

A\ 4

Configuration

Module Check

patiotemporal .
Interpolate Dz St

Transform

OpenBench
Core Module

Diagnostic

I S
| [ Data Merge H
|

|

P

Module

>|| GUI Interface

|
|
|
|
|
|
|
Coordinate ] :
|
|
|
|
|
|

Diagnostic
Output

Figure 1. General flowchart of OpenBench.

gional or global) for both simulation and reference datasets.
The flowchart of OpenBench is shown in Fig. 1.

The system includes six components: configuration man-
agement, data processing, evaluation, comparison process-
ing, statistical analysis, and visualization. The configura-
tion management module accommodates three configuration
namelist formats (YAML, JSON, and Fortran namelist) to
meet different user preferences and workflows, with JSON
as the default format. Users can utilize the configuration
namelist to define evaluation parameters, data sources, and
model outputs. This adaptable configuration system facili-
tates straightforward customization of evaluation scenarios.
The data processing module handles the preprocessing of
both reference and simulation data, including temporal and
spatial resampling to ensure consistent comparison between
datasets with different spatiotemporal resolutions. The eval-
uation module implements the core evaluation logic, ap-
plying various metrics and scores to quantify model per-
formance. It supports both gridded and station-based data
and adapts its methods accordingly. The comparison mod-
ule facilitates multi-model and multi-scenario comparisons,
enabling comprehensive analysis across different models or
configurations. Finally, advanced statistical techniques are
implemented in the statistical analysis module, providing
deeper insights into model behaviors and performance pat-
terns. The system also includes capabilities for generating
visualizations of evaluation results, which are crucial for in-
terpreting and communicating findings provided in the visu-
alization module.
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The system’s workflow follows a logical sequence of
operations. The process begins with initialization, where
command-line arguments are parsed and configuration files
are read. This stage sets up necessary directories and ini-
tializes key variables, laying the groundwork for subsequent
operations. The system then moves into the data prepara-
tion phase, where both observational and model data are
processed to ensure compatibility in terms of temporal and
spatial resolution. This crucial step handles various data for-
mats and structures, normalizing them for consistent analy-
sis. At the core of the system is the evaluation process. Here,
a wide array of metrics and scores is applied to quantify the
agreement between model outputs and observational data.
This step is highly parallelized to efficiently handle large
datasets, allowing for a comprehensive assessment across
multiple variables and time frames. If multiple models or sce-
narios are being evaluated, the system performs comparative
analyses to highlight relative strengths and weaknesses. This
comparison stage provides valuable perspectives into model
performance across different conditions or implementations.
Following the primary evaluation, the system conducts ad-
vanced statistical analyses to gain a profound understand-
ing from the evaluation results. This may include uncertainty
quantification, trend analysis, or other sophisticated statisti-
cal methods. The final stages involve result generation and
visualization. The system compiles evaluation results, gener-
ates summary statistics, and prepares data for visualization.
The system can produce various charts, graphs, and maps to
effectively communicate the evaluation outcomes. Through-
out these stages, the system demonstrates flexibility in han-
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dling different types of data (grid-based or station-based),
various temporal resolutions, and a wide range of environ-
mental variables. It also incorporates specialized handling for
different land surface models, recognizing the unique char-
acteristics and outputs of each. This comprehensive approach
allows for a thorough, standardized evaluation of land surface
models, providing valuable feedback for model development
and application in Earth system science.

Nevertheless, OpenBench is developed to serve as a spe-
cialized tool for land surface model output analysis, evalua-
tion, and comparison. The software package is freely avail-
able to the community. The code is modular and can be eas-
ily extended or modified to accommodate the specific re-
quirements of different evaluation tasks. OpenBench relies
on various popular and well-established Python packages
specific to the scientific computing stack: NumPy (Harris
et al., 2020), Xarray (Hoyer and Hamman, 2017), Pandas
(Mckinney, 2010), SciPy (Virtanen et al., 2020), Matplotlib
(Hunter, 2007), Cartopy (Elson et al., 2024), Dask (Rocklin,
2015), and Joblib (Joblib, 2020). For the remap functions,
there are several options: SciPy, Cdo (Schulzweida, 2022),
xESMF (Zhuang et al., 2023), and xarray-regrid (Schilper-
oort et al., 2024) are available for selection. We use as few
packages as possible, reducing dependencies to improve per-
formance and compatibility. The software is developed and
hosted on GitHub and is distributed under the Apache-2.0 li-
cense. The latest version of OpenBench can be found in the
Zenodo repository, where it has been assigned a digital object
identifier (https://doi.org/10.5281/zenodo.14540647).

OpenBench achieves speed improvements through its
parallel processing architecture. Benchmark tests demon-
strate clear advantages over sequential processing meth-
ods. In station-based evaluations, processing a single vari-
able across 142 stations takes 3.12 min using single-process
execution, whereas parallel processing with 48 cores re-
duces this to 0.509 min on an Intel(R) Xeon(R) CPU ES5-
4640 v4 @ 2.10 GHz with 48 GB RAM. OpenBench uses
Dask’s lazy execution and chunked arrays for efficient
gridded data processing, balancing memory use and pro-
cessing speed. Processing 0.25° resolution model outputs
(2001-2010, monthly) against two reference datasets takes
2.302 min sequentially versus 1.301 min in parallel on the
same hardware. These performance improvements are par-
ticularly beneficial for comprehensive model evaluations in-
volving multiple variables, reference datasets, and spatial do-
mains. The efficiency gains from parallel processing become
more substantial with higher-resolution datasets and increas-
ing numbers of evaluation sites, making OpenBench suitable
for both rapid diagnostic evaluations on personal worksta-
tions and extensive comparative studies on high-performance
computing systems.
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3 Evaluation
3.1 The metric index

OpenBench uses a variety of metrics to evaluate LSM perfor-
mance thoroughly (Table 2). This approach offers different
viewpoints on model behavior, detailed comprehension of
model strengths and weaknesses, versatile comparison abili-
ties for both individual and inter-model assessments, and ef-
ficient implementation using Xarray and Dask software for
handling large datasets. The system incorporates various cat-
egories of metrics to capture different aspects of model per-
formance. For example, bias metrics, such as percent bias
(PBIAS) and absolute percent bias (APBIAS), measure sys-
tematic over- or under-estimation and bias magnitude, re-
spectively. Error metrics, including the root mean square er-
ror (RMSE), unbiased root mean square error (ubRMSE),
centralized root mean square error (CRMSE), and mean ab-
solute error (MAE), provide different perspectives on the
magnitude and nature of model errors. Efficiency metrics like
the Nash—Sutcliffe efficiency (NSE) and Kling—Gupta effi-
ciency (KGE) evaluate model performance relative to base-
lines and combine multiple aspects of the model-data agree-
ment. Correlation metrics, including the Pearson correlation
coefficient (R) and coefficient of determination (R2), quan-
tify the strength and direction of linear relationships between
model outputs and observations. The index of agreement
(IA) provides a more comprehensive assessment of magni-
tude and phase agreement. Variability metrics such as the ra-
tio of standard deviations (rSD) and specialized bias metrics
for maximum (PC_MAX), minimum (PC_MIN), and am-
plitude (PC_AMPLI) values help identify whether models
accurately capture the range of system variability and ex-
treme conditions. For categorical data, the Cohen’s Kappa
coefficient (KC) evaluates agreement while accounting for
chance. Variability metrics such as relative variability (RV)
and the coefficient of variation (CV) help identify whether
models accurately capture the range of system variability.
Bias-corrected versions of several metrics focus on assess-
ing agreement in variability patterns after removing mean bi-
ases. In summary, this comprehensive approach provides a
robust foundation for quantitative LSM assessment, enabling
a multi-faceted evaluation that captures various aspects of the
model-observation agreement. By implementing this range
of metrics, OpenBench offers a thorough and nuanced evalu-
ation of LSMs, supporting scientific understanding and prac-
tical model improvement.

3.2 The scoring index

OpenBench implements a suite of normalized score indices
developed in ILAMB (Collier et al., 2018; Arora et al., 2023),
ranging from O to 1, with 1 indicating perfect agreement
between the model and observations. ILAMB encompasses
several key indices, each designed to evaluate specific as-
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Metric Full name Range Reference Additional description
Bias metrics (The smaller, the better. The ideal value is 0.)
BIAS Bias (=00, +00) Cole (1981) -
PBIAS The percentage of bias (=00, +00) Sorooshian -
etal. (1993)
APBIAS Absolute percent bias [0, +00) Sorooshian -
etal. (1993)
PC_MAX Percent bias of maximum (—00, +00) Zhou et al. Measuring the bias of a model when pre-
(2024) dicting the maximum value.
PC_MIN Percent bias of minimum (=00, +00) Zhou et al. Measuring the bias of a model when pre-
(2024) dicting the minimum value.
PC_AMPLI Percent bias of amplitude (=00, +00) Zhou et al. Measuring the bias of a model when pre-
(2024) dicting the data range.
APFB Annual high-flow percent bias (—00, +00) Mizukami et al. Measuring the relative bias between simu-
(2019) lated and observed annual peak flows.
PBIAS_HF Percent bias of high flows (—00, +00) Mizukami et al. Measuring the model’s bias in predicting
(2019) high flows (typically above the 98th per-
centile).
PBIAS_LF Percent bias of low flows (=00, +00) Mizukami et al. Measuring the model’s bias in predicting
(2019) low flows (typically below the 30th per-
centile).
PBIAS_FDC Percent bias in the slope of the (=00, +00) Yilmaz et al. Measuring the model’s bias in predicting
midsegment of the flow duration curve (2008) moderate flows (typically between the 25th
and 75th percentiles).
P-factor Percent of simulations [0,1] Abbaspour Measuring the percentage of reference data
without the given uncertainty bounds et al. (2007) falling outside the given uncertainty range.
Error metrics (The closer to 0, the better. The ideal value is 0.)
RMSE Root mean square error [0, +00) Kenney and -
Keeping (1962)
MSE Mean squared error [0, +00) Makridakis -
et al. (1982)
ubRMSE Unbiased root mean square error [0, +00) Entekhabi et al. Remove systematic bias from RMSE and
(2010) consider only random errors.
CRMSE (NRMSE)  Centralized root mean square error [0, +-00) Stephen and Measuring the random component of model
(normalized root mean square error) Kazemi (2014)  error, independent of their mean values.
MAE Mean absolute error [0, +00) Yapo et al. Less sensitive to outliers.
(1996)
RSS Residual sum of squares [0, +-00) Archdeacon -
(1994)
RSR RMSE minus observations standard [0, +-00) Legates and -
deviation ratio McCabe (1999)
IPE Ideal point error [0,1] Dawson et al. -
(2012)
Correlation metrics (The larger, the better. The ideal value is 1.)
R Correlation coefficient [—1,1] Pearson (1920) -
R? Coefficient of determination [0, 1] Box (1966) and -

Barrett (1974)
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Table 2. Continued.
Metric Full name Range Reference Additional description
ubR Unbiased correlation coefficient [—1,1] Olkin and Pratt  Not affected by systematic bias.
(1958)
ubR? Unbiased coefficient of determination [0, 1] Olkin and Pratt  Not affected by systematic bias.
(1958)
rSpearman Spearman’s rank correlation coefficient [—1,1] Spearman Measuring the monotonic relationship be-
(1961) tween two variables.
br? R-squared multiplied by [0,1] Krause et al. Combines the model’s bias and goodness of
regression slope (2005) and fit.
Kirstic et al.
(2016)
Efficiency metrics (The larger, the better. The ideal value is 1.)
NSE Nash-Sutcliffe efficiency (—o00,1] Nash and Sut- -
cliffe (1970)
LNSE Log Nash—Sutcliffe efficiency [0, 1] Lamontagne More sensitive to lower values.
et al. (2020)
mNSE Modified Nash—Sutcliffe efficiency [0, 1] Legates and Uses absolute differences instead of
McCabe (1999)  squared differences.
rNSE Relative Nash—Sutcliffe efficiency (—00,1] Legates and Suitable for evaluating relative errors.
McCabe (1999)
wsNSE Weighted seasonal Nash—Sutcliffe (—00,1] Zambrano- Allows for evaluating model performance
efficiency Bigiarini and across different seasons while considering
Bellin (2012) the relative importance of seasons.
KGE Kling—Gupta efficiency (=00, 1] Gupta et al. -
(2009)
KGESS Standardized Kling—Gupta efficiency (—00,1] Knoben et al. A normalized version of KGE, facilitating
(2019) comparison between different models.
mKGE Modified Kling—Gupta efficiency (—00,1] Kling et al. Ensure the bias and variability ratios are not
(2012) cross-correlated.
KGEkm Kling—Gupta efficiency with known (—00,1] Pizarro and Jor-  Considering the coefficient of variation.
moments quera (2024)
KGEIf Kling—Gupta efficiency for low flows (—o00,1] Garcia et al. Evaluating the model’s ability to predict
(2017) low flows.
Agreement metric (The larger, the better. The ideal value is 1.)
1A Index of agreement [0,1] Krause et al. -
(2005)
RIA Relative index of agreement [0, 1] Krause et al. -
(2005)
RelA Refined index of agreement [0, 1] Willmott et al. -
(2012)
valindex Valid index [0,1] Criss and Win-  Measures the proportion of model predic-
ston (2008) tions falling within an acceptable range.
L Likelihood estimation [0,1] Myung (2003) Evaluating the probability of model predic-
tions.
Others
rSD Ratio of standard deviations (—00, +00) Everitt and Greater than 1 indicates that the simulation
Skrondal has larger variability, and vice versa.
(2010)
RV Relative variability (—00, +00) Everitt and -
Skrondal
(2010)
(6\% Coefficient of variation (=00, +00) Lovie (2005) -
KC Cohen’s Kappa coefficient [—1,1] Cohen (1960) Evaluates agreement for categorical data

while accounting for chance agreement.
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pects of model performance. The normalized bias score (nBi-
asScore) quantifies systematic errors in the model’s predic-
tions, normalized by observational variability. For a given
variable v(f,x), where ¢ represents time and x represents
spatial coordinates, we first calculate the bias from the tem-
poral means of both the reference vier(x) and model Vi, (x)
data. To score the bias, we normalize it by the centralized
root mean square (CRMS) of the reference data:

\/ 1 (ret(t, x) — Drep(x)) dt
CRMS(x) = 0 s 1)

Ir—1

where 7y and #; are the first and final time step, respectively.
We then compute the bias as bias(x) = veef(t, X) — Vsim (¢, X).
The relative error in the bias is then given as epjas(x) =

C‘gﬁ(s’g). The bias score as a function of space is then com-
puted as:
nBiasScore(x) = ¢ bias®) 2)

This score effectively penalizes large biases relative to the
natural variability of the system. To evaluate the model’s
ability to capture observational variability, we employ the
normalized RMSE score (nRMSEScore). Similar to nBiasS-
core, we first calculate the centralized RMSE (CRMSE):

S (@sim (1, %) = Vsim (x))

- —7. 2
CRMSE(x) = (Uref(t’x;_;)oref(x))) ar N

The relative error in bias is then given as emmge(x) =
%SSE((X). The nRMSEScore as a function of space is then
x)

computed as:
nRMSEScore(x) = e~ &mse®) “)

This metric is particularly sensitive to differences in vari-
ability patterns between model outputs and observations.
For variables with strong seasonal patterns, the normalized
phase score (nPhaseScore) assesses the model’s ability to
capture the timing of seasonal cycles, providing insight into
the model’s representation of temporal dynamics. The nPhas-
eScore is calculated as:

1 [ <27‘r 0(x) ) ]
nPhaseScore(x) = 5 14 cos , 5)

nstep

where 0 (x, A, ¢) is the time difference between modeled and
observed maxima:

6 (x) = maxima(cgjm (x, 1)) — maxima(cref(x, 1)). (6)

Here, csim and cref are the climatological mean cycles (i.e.,
the average seasonal patterns) of the model and reference
data, computed by averaging each month or day across all
years in the time series. “maxima”() identifies the timing
(month for monthly data, day for daily data) when the peak
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value occurs in these average seasonal cycles at each spa-
tial location x. The parameter nstep represents the number of
time steps in a complete annual cycle (e.g., 12 for monthly
data or 365 for daily data) and normalizes the phase differ-
ence to the annual cycle.

Interannual variability, a critical aspect of climate model-
ing, is evaluated using the normalized interannual variability
score (nlavScore). nlavScore is given by first removing the
annual cycle from both the reference and model:

favi () = \/ft;f(vii(f»x) - Cii(tsx))zdt, N

It—1

where ii represents sim or ref. Then, the relative error is cal-
culated as:

' _ 1avgim(x) — 1aVref(x)
Slav(x) == iaVref(X) : (8)

Similar to Egs. (2) and (4), the nlavScore is given by
nlavScore(x) = ¢ v, 9)

This score is crucial for assessing the model’s performance
in representing year-to-year variations driven by climate fac-
tors. The spatial score (nSpatialScore) evaluates how well
the model captures the spatial distribution of a variable com-
pared to observations by assessing both the spatial correla-
tion and the relative variability across the domain. The nSpa-
tialScore is calculated as:

1\2
nSpatialScore = 2(1 4 R)/<G + —) , (10)
o

where R is the spatial correlation coefficient between the
model and reference period mean values and o is the ratio
of spatial standard deviations:

o = stdev (Vgim (X)) / stdev (Vref(x)) . (11D

To provide an overall assessment of model performance,
we calculate an overall score (OvScore) that combines these
individual metrics. This composite score gives double weight
to the nRMSEScore due to its importance in capturing both
bias and variability aspects, which is consistent with ILAMB.
The relative score (ReScore) is designed to compare perfor-
mance across simulations by normalizing a model’s overall
score relative to the multi-simulation mean and standard de-
viation. Positive values indicate above-average performance,
while negative values indicate below-average performance.
Detailed information can be obtained from Collier et al.
(2018) and Arora et al. (2023).

ILAMB and OpenBench exhibit two key differences in
their scoring methodologies. The first distinction lies in their
approach to calculating global mean scores. ILAMB applies
mass weighting when evaluating variables that represent car-
bon or water mass/flux, such as gross primary production
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(GPP) or precipitation. This method can lead to global mean
scores being disproportionately influenced by middle and
low latitudes, as exemplified by the significant impact of
GPP or precipitation in the Amazon. In contrast, OpenBench
offers greater flexibility in its weighting methods. Open-
Bench supports multiple weighting options that users can
select based on their requirements. Users can choose be-
tween a simple spatial integral for unweighted averaging,
area weighting to account for varying grid cell sizes across
latitudes, or mass weighting for mass/flux variables. This
flexibility allows researchers to choose the best weighting
method for their particular analysis. For example, when eval-
uating GPP, researchers might opt for mass weighting to
align with ILAMB’s methodology, or they could choose area
weighting to ensure more balanced representation across lat-
itudes. The choice of weighting method can significantly im-
pact the final results, particularly when analyzing variables
with strong spatial heterogeneity. The second major differ-
ence pertains to how these systems handle multiple reference
datasets. ILAMB combines evaluation results from different
reference datasets, assigning weights to each and combining
them multiplicatively to produce a single final score that in-
corporates all datasets. OpenBench, on the other hand, pro-
vides users with multiple reference datasets and allows them
to select one or more that they consider most accurate. It
then reports scores separately for each chosen dataset with-
out applying weights. This approach gives users more flexi-
bility and transparency in interpreting results, allowing them
to make informed decisions based on their knowledge of
dataset quality and relevance to their specific research ques-
tions. These methodological differences reflect the distinct
philosophies and goals of each system. ILAMB’s approach
emphasizes a comprehensive, weighted assessment that ac-
counts for the relative importance of different regions and
datasets. OpenBench prioritizes user choice and equal spa-
tial representation in its scoring methodology, allowing for a
more customizable and potentially more equitable evaluation
process. Both approaches have their merits, and the choice
between them may depend on the specific needs and pref-
erences of the research community using these benchmark-
ing tools. It is worth noting that, although we refer to Open-
Bench as a “benchmarking system” in accordance with com-
munity convention, the tool primarily functions as an eval-
uation and comparison framework rather than adhering to
strict benchmarking with predetermined performance stan-
dards. This design choice affords users the flexibility to es-
tablish their own performance criteria while benefiting from
standardized evaluation methodologies.

In summary, by combining multiple normalized scores that
assess different aspects of model performance, we enable a
nuanced understanding of model strengths and weaknesses.
This approach not only supports the evaluation of individual
models but also facilitates inter-model comparisons and the
tracking of model improvements over time.
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3.3 Datasets

OpenBench integrates a diverse array of benchmarking data
spanning multiple variables, levels, and spatiotemporal res-
olutions. This approach ensures a thorough evaluation of
modern high-resolution LSMs, which require increasingly
detailed and accurate input data to capture complex land—
atmosphere interactions.

The strength of OpenBench lies in its extensive collection
of baseline datasets, categorized into five main groups: ra-
diation and energy cycle, ecosystem and carbon cycle, hy-
drology cycle, parameters and atmospheric forcing, and hu-
man activity. These datasets are derived from five primary
sources: field observations, satellite remote sensing, reanaly-
sis data, machine learning, and model outputs. Each source
offers unique advantages, contributing to a more compre-
hensive understanding of land surface processes. Field ob-
servations provide high-accuracy, ground-truth data essen-
tial for model validation and calibration. While often limited
in spatial coverage, these datasets offer unparalleled accu-
racy and temporal resolution. Satellite remote sensing deliv-
ers extensive spatial coverage and consistent temporal sam-
pling, which are crucial for monitoring large-scale land sur-
face processes. Reanalysis data combine model simulations
with observations to create consistent, gridded data products,
particularly useful for long-term studies or filling observa-
tional gaps. Model outputs and machine learning, while not
direct observations, provide estimates of variables that are
challenging to measure directly.

The spatiotemporal scope of OpenBench’s datasets is an-
other critical feature. Many datasets span several decades, al-
lowing for the evaluation of long-term trends and interannual
variability. This extended temporal coverage enables assess-
ing LSMs’ performance over long historical periods. The res-
olution ranges from coarse (e.g., 0.5° for ILAMB datasets;
Collier et al., 2018) to very fine (e.g., 500 m for MODIS-
based products; Varquez et al., 2021), making it possible to
evaluate LSMs across different spatial scales, from global as-
sessments to regional or plot-scale studies.

A unique aspect of OpenBench is its inclusion of datasets
focused on human impacts on land surface processes. This
approach recognizes the growing importance of anthro-
pogenic factors in shaping the Earth system. Datasets like
AH4GUC (Varquez et al., 2021), which provides global an-
thropogenic heat flux data, and GDHY (lizumi and Sakai,
2020), offering detailed information on global crop yields,
enable the evaluation of urban heat island effects and agri-
cultural impacts in LSMs.

OpenBench’s inclusion of multiple datasets for each vari-
able allows for a more robust evaluation of LSMs. This multi-
dataset approach enables users to assess model performance
against a range of reference data, providing a more com-
prehensive evaluation. For instance, in evaluating evapotran-
spiration, OpenBench includes datasets like GLEAM4.2a
(Miralles et al., 2011), FLUXCOM (Jung et al., 2019), X-
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BASE (Nelson et al., 2024), Xu2024 (Xu et al., 2025), and
ERAS5-Land (Muioz-Sabater et al., 2021), each with its own
methodology and characteristics. Users can assess model
performance across multiple variables simultaneously, iden-
tifying potential compensating errors or cross-variable incon-
sistencies that might be missed when evaluating single vari-
ables in isolation. This multi-dimensional approach provides
a more complete picture of model performance and helps
guide future model development efforts. Meanwhile, Open-
Bench'’s dataset collection is designed to be expandable and
updatable, ensuring its relevance in the rapidly evolving field
of Earth system science. As new datasets become available
or existing datasets are updated, they can be seamlessly inte-
grated into the OpenBench framework.

It is noted that while OpenBench integrates with a com-
prehensive collection of datasets, we cannot directly pro-
vide specific data due to copyright restrictions and licens-
ing agreements. However, to ensure transparency and repro-
ducibility, we have included relevant links to the original data
sources in Tables S1-S5 in the Supplement. These links will
guide users to the appropriate platforms to access the datasets
following the respective terms and conditions set by the data
providers. To demonstrate the functionality and structure of
OpenBench, we have included a set of self-generated sam-
ple data. These sample data mimic the characteristics and
format of the actual datasets, allowing users to familiarize
themselves with the OpenBench framework and its capabil-
ities without infringing on any copyright issues. We encour-
age users to utilize these sample datasets for initial testing
and exploration of the OpenBench system and then proceed
to acquire the complete datasets from the original sources for
comprehensive model evaluations.

3.4 Supporting models

OpenBench has been designed to accommodate a diverse ar-
ray of land surface models, facilitating comprehensive inter-
comparison and evaluation studies. This multi-model sup-
port is a key feature of OpenBench, enabling researchers
to assess and compare the performance of various models
across different land surface processes and variables. Cur-
rently, OpenBench supports various state-of-the-art land sur-
face models, including multiple versions of the Common
Land Model (CoLM2014 and CoLLM2024) (Bai et al., 2024;
Dai et al., 2003; Fan et al., 2024), the Community Land
Model Version 5 (CLMS5) (Lawrence et al., 2019), Noah-
MP 5.0 (He et al., 2023), the Minimal Advanced Treatments
of Surface Interaction and Runoff model (Version 2021)
(Nitta et al., 2014), the Atmosphere—Vegetation Interaction
Model (AVIM) (Li et al., 2002), the Global Land Data As-
similation System (GLDAS2) (Rodell et al., 2004), Today’s
Earth (TE) (https://www.eorc.jaxa.jp/water/index.html, last
access: 8 July 2025), the Variable Infiltration Capacity (VIC)
model (Hamman et al., 2018), and so on. OpenBench has ex-
panded its capabilities to support Lambert conformal projec-
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tion outputs from regional climate models such as the climate
extension of the Weather Research and Forecasting model
(CWREF) (Liang et al., 2012) and the Weather Research and
Forecasting (WRF) model (Lo et al., 2008).

Furthermore, OpenBench supports CMIP-style series out-
puts, such as CMIP-style simulation, e.g., LS3MIP (Van Den
Hurk et al., 2016) and ISIMIP (Wartenburger et al., 2018), al-
lowing for seamless integration of global climate model data
into the evaluation framework. Each supported model is inte-
grated into the system through a dedicated namelist file that
maps the model’s output variables to standardized variables
used within OpenBench. This approach ensures consistent
comparison and evaluation across different models, regard-
less of their native output format or projection.

3.5 Case studies

To illustrate the analytical capabilities of our evaluation sys-
tem, we present comprehensive case studies focusing on two
critical aspects of hydrological modeling: river discharge
evaluation and inundation fraction assessment. These anal-
yses were conducted using simulations from the CaMa-
Flood Version 4.22 model (Yamazaki et al., 2013), driven
by 0.25° remapped daily runoff data from the Global Reach-
level Flood Reanalysis (GRFR) (Yang et al., 2021). The
evaluation was performed globally with 0.25° spatial reso-
lution, utilizing observational data from the Global Runoff
Data Centre (GRDC) for discharge validation and the Global
Inundation Extent from Multi-Satellites (GIEMS) (Prigent
et al., 2020) for inundation fraction assessment. Our analy-
sis demonstrates the system’s versatility in conducting site-
specific and global-scale evaluations. Figure 2a presents a
detailed comparison of simulated and observed discharge hy-
drographs for a representative station. This station-level anal-
ysis reveals the model’s strong performance in capturing both
the magnitude and temporal variability of discharge patterns.
The close alignment between simulated and observed val-
ues indicates robust model performance at the local scale.
Figure 2b illustrates the spatial distribution of KGESS val-
ues for simulated discharge across the globe. The analysis
reveals distinct regional patterns in model performance. The
model demonstrates particularly strong capabilities in sim-
ulating discharge across wet regions, including the Ama-
zon basin, Japan, and the Eastern United States. However,
performance metrics indicate lower accuracy in the West-
ern United States, Central Australia, and Southern Africa.
These regional variations can be attributed to several factors,
including the influence of human activities, uncertainties in
precipitation datasets, and limitations in model parameteriza-
tion schemes (Wei et al., 2020). The impact of human activ-
ities on model performance is particularly evident in regions
like the Western United States, where discharge patterns are
significantly modified by dam operations (Hanazaki et al.,
2022). This finding underscores the importance of incorpo-
rating human water management practices in regions with

https://doi.org/10.5194/gmd-18-6517-2025


https://www.eorc.jaxa.jp/water/index.html

Z. Wei et al.: OpenBench: a land model evaluation system

6527

ID: 2587103, Lat: 43.62, Lon:142.12
] —_—
400 @ i N
I Sim
350 i RMSE: 38.23
'. R: 0.92
7300 ! KGESS: 0.89
E 250 \
o
gzoo
A 150
100
50 N ! NA
2000 Jul 2001 Jul 2002 Jul 2003 Jul 2004
Date
90°N
60°N{
30°N
00
30°S
60°S e .
120°W 60°W 0° 60‘°E 120°E 180°
-1.0 -08 -06 -04 -02 00 02 04 06 0.8 1.0
KGESS
90°N

60°N{

30°N

0°

30°8{

60°S

120°W 60°W

0° 60°E

120°E

-1.0 -0.8 -0.6 -04

-0.2 0.0

02 04 06 08 1.0

Correlation

Figure 2. Example of river discharge evaluation: (a) simulated and observed discharge hydrographs for an example station; (b) global maps
of KGESS values for the simulated discharge dataset; and (¢) global maps of R values for the simulated inundation dataset.

intensive anthropogenic influence to achieve reliable simu-
lation results. Figure 2¢ presents global patterns of correla-
tion coefficients for the simulated inundation fraction. The
results indicate strong model performance in low-latitude
regions, particularly in the Amazon basin and South Asia.
However, significant discrepancies emerge in high-latitude
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areas (above 60° N). This spatial pattern of model perfor-
mance highlights the need for improved representation of
snow-related processes and precipitation phase partitioning
in these regions (Jennings et al., 2018).

OpenBench implements automated grouping of metrics
and scores according to both IGBP and PFT classifications to
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Figure 3. An example of a scores heat map for GPP classified by IGBP land cover.

provide a comprehensive evaluation of model performance
across diverse ecological zones. Figure 3 presents a de-
tailed heat map visualization of performance indices catego-
rized by IGBP land cover type, based on CoLM2024 sim-
ulations evaluated against X-BASE reference data (Nelson
et al., 2024) for 2002-2003. The analysis incorporates six
fundamental performance scores developed within the IL-
AMB framework, as detailed in Sect. 3.2. The visualiza-
tion reveals several significant patterns in model performance
across different ecosystems. The overall nPhaseScore of 0.84
demonstrates the model’s robust capability in capturing sea-
sonal variations across all biomes. Particularly noteworthy
is the model’s exceptional performance in forest ecosys-
tems, where evergreen needleleaf forests (ENFs), deciduous
needleleaf forests (DNFs), and mixed forests (MFs) exhibit
consistently high nPhaseScore. These results indicate the
model’s sophisticated ability to simulate the complex dynam-
ics of multi-layered forest ecosystems. However, the analysis
also identifies specific challenges in certain environmental
contexts. The model’s performance notably decreases in ex-
treme environments, with lower scores across multiple met-
rics for snow and ice (SNO) and barren or sparsely vegetated
(BSV) regions. It is important to highlight that the GPP val-
ues found in the SNO and BSV classes could stem from spa-
tial or temporal misalignments between the IGBP land cover
classification and GPP datasets. Specifically, pixels identi-
fied as non-vegetated during the land cover survey might
have had vegetation during the GPP measurement periods, or
mixed pixels may consist of minor vegetated fractions within
primarily barren regions. Additionally, evergreen broadleaf
forests (EBFs) show a particularly low nBiasScore, reflect-
ing substantial magnitude discrepancies between simulated
and observed values. This finding underscores the persistent
challenges in accurately modeling these data-sparse, highly
dynamic ecosystems. These insights have important impli-
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Figure 4. Pearson’s correlation coefficient between the CoLM2024
simulation and AH4GUC generation for urban anthropogenic heat
flux over Southeast Asia.

cations for model application across different research con-
texts. Researchers focusing on temperate and boreal forest
ecosystems can proceed with high confidence in the model’s
capabilities. However, studies targeting arid regions, snow-
covered areas, or tropical rainforests should incorporate ad-
ditional validation steps and exercise greater caution in in-
terpreting results. This systematic evaluation across biomes
thus provides essential guidance for appropriate model appli-
cation in diverse ecological settings.

Figure 4 demonstrates OpenBench’s capability to evalu-
ate anthropogenic influences on urban thermal environments
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Figure 5. Percentage bias between CoLM2024 simulated and
GDHY generated crop yield of corn for the United States.

through a detailed comparison of CoLM2024 simulations
with AH4GUC observational data for Southeast Asia. The
analysis reveals generally strong agreement between simu-
lated and observed anthropogenic heat flux patterns across
most regions. However, notable discrepancies emerge in spe-
cific areas, particularly the corridor extending from central
China to northern Vietnam and regions near Laos, where
negative correlations indicate potential systematic biases in
model representation. While the exact mechanisms driving
these regional differences are still being investigated, these
results demonstrate OpenBench’s ability to identify spatial
patterns of model-observation disagreement that require fur-
ther exploration. The system’s evaluation capabilities extend
beyond thermal processes to encompass multiple aspects
of human—environment interactions. Through a comprehen-
sive assessment of variables, including latent heat, albedo,
and surface temperature changes, OpenBench provides valu-
able insights into the complex relationships between anthro-
pogenic activities and land surface processes, guiding im-
provements in their model representation.

Figure 5 presents a detailed analysis of agricultural mod-
eling capabilities, comparing CoLM2024 simulated corn
yields with GDHY-generated observational data across the
United States. The analysis reveals distinct regional patterns
in model performance: approximately 20 % yield underesti-
mation in the Western United States, significant overestima-
tion in central regions, and notable underestimation in east-
ern areas. These spatial patterns of bias may stem from mul-
tiple sources, including uncertainties in the GDHY observa-
tional dataset and the CoLM2024 model structure. Partic-
ularly noteworthy are the substantial differences in planted
area and crop distribution between the two datasets, indicat-
ing fundamental challenges in representing agricultural sys-
tems within current modeling frameworks. These findings
underscore the significant opportunities for advancement in
both modeling and observational approaches to crop yield
estimation. Future research efforts should focus on reducing
uncertainties in simulation and observational datasets while
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improving the representation of agricultural processes in land
surface models.

In summary, these case studies demonstrate the com-
prehensive analytical capabilities of our evaluation system.
Through its ability to conduct detailed analyses across mul-
tiple spatial scales and variables, OpenBench provides re-
searchers with powerful tools for assessing model perfor-
mance and identifying specific areas for improvement. This
multi-scale, multi-variable approach supports theoretical un-
derstanding and practical application of land surface models,
ultimately contributing to enhanced representation of Earth
system processes.

4 Comparisons
4.1 Overview

OpenBench offers a comprehensive suite of comparison ca-
pabilities designed to facilitate a thorough evaluation of
model performance across diverse scenarios, land cover
types, and temporal scales. The system incorporates several
key functionalities that enable sophisticated analysis while
maintaining user accessibility and scientific rigor.

The framework’s evaluation architecture encompasses
multiple complementary approaches to model assessment.
At its foundation, ecosystem-based comparisons allow re-
searchers to evaluate performance across different IGBP and
PFT land cover classifications, providing crucial insights into
model behavior within specific ecological contexts. This ca-
pability is enhanced by multi-metric visualization tools, in-
cluding heat maps, Taylor diagrams, and target diagrams,
which offer intuitive yet comprehensive overviews of model
capabilities by simultaneously displaying multiple statistical
metrics for model-observation comparisons. To support de-
tailed analysis of model behavior, OpenBench implements
advanced distribution and pattern analysis tools. These in-
clude kernel density estimation plots and parallel coordinate
plots, which facilitate the comparison of metric distributions
across models and enable the identification of patterns in
multivariate performance data. The system’s temporal per-
formance evaluation capabilities, implemented through sea-
sonal portrait plots, provide detailed insights into variations
in model accuracy across different seasonal cycles. Statistical
analysis within OpenBench is supported by robust summary
tools, including box and whisker plots that offer concise yet
comprehensive overviews of model performance across dif-
ferent metrics and scenarios. This statistical framework en-
sures that comparisons remain objective and scientifically
sound while presenting results in an accessible format for
interpretation.

The implementation of multiple model comparisons fol-
lows a systematic and efficient approach. The process begins
with the standardization of model outputs through a sophis-
ticated data processing pipeline, capable of handling vari-
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Figure 6. Overall score comparisons of sensible heat, latent heat, total runoff, and canopy transpiration using (a) heat map and (b) parallel

coordinates approaches for GLDAS2, TE, CLMS5, and CoLM2024.

ous input formats and temporal/spatial resolutions. The com-
parison processing module orchestrates this analysis through
support for multiple comparison methods, with parallel pro-
cessing capabilities implemented via the Joblib library to en-
sure computational efficiency. Evaluation items and refer-
ence sources systematically organize results from the com-
parison process within a structured output directory. The sys-
tem automatically generates comparison artifacts, including
metrics and score files, which form the basis for comprehen-
sive visualization and analysis. This structured approach en-
sures that adding new models to the comparison framework
requires minimal effort, typically involving only the update
of the simulation namelist with new model information and
data sources. This integrated approach to model comparison
and evaluation provides researchers with powerful tools for
understanding model behavior while maintaining the flexi-
bility needed to address diverse research questions in land
surface science. The system’s design philosophy emphasizes
scientific rigor and practical utility, ensuring that compara-
tive analyses can be conducted efficiently while maintaining
the highest standards of scientific validity.

4.2 Case studies

To demonstrate the comprehensive capability of our evalua-
tion system, we present several case studies to demonstrate
the ability of the evaluation system to compare between mod-
els, compare between different parameterized schemes, and
compare between CMIP-style datasets. It’s important to note
that our primary goal is to showcase the evaluation system’s
functionality rather than to make definitive judgments about
any particular model’s performance. These case studies are
practical examples of the system’s versatility and analytical
power.
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4.2.1 Comparison of multiple models

To demonstrate the analytical capabilities of OpenBench
for multiple models, we conducted a comparative analy-
sis of four state-of-the-art land surface models: GLDAS2,
TE, CLMS5, and CoLM2024. The evaluation period spanned
from 2002 to 2006, utilizing a monthly temporal resolution.
Multiple reference datasets were incorporated, including Li
et al. (2024) for canopy transpiration, the FLUXCOM dataset
(from ILAMB) and GLEAM4.2a for surface heat fluxes, and
LORA (from ILAMB) for total runoff assessment (Hobeichi
et al., 2019).

Figure 6 illustrates the comparative analysis through two
complementary visualization approaches: a heat map and
a parallel coordinates plot. The heat map (left panel) pro-
vides an intuitive visualization of relative model performance
across different variables, while the parallel coordinates plot
(right panel) reveals intricate relationships between various
performance metrics. This dual visualization strategy en-
ables researchers to quickly identify patterns and trade-offs
in model performance across multiple variables simultane-
ously. The analysis reveals that under current configurations,
CoLLM2024 and TE achieve the highest score for canopy
transpiration, while CLMS5 and CoLLM2024 show the high-
est score for total runoff. CoLM2024 maintains a relatively
higher score for the other variables.

For detailed variable-specific analysis, Fig. 7 presents an
in-depth examination of canopy transpiration across all mod-
els, utilizing both conventional metrics (Fig. 7a) and nor-
malized scores (Fig. 7b). The metrics analysis reveals that
CoLLM2024 exhibits a tendency to overestimate canopy tran-
spiration, while other models show varying degrees of under-
estimation, as indicated by the percent bias metric. Further-
more, CoLM2024 achieves optimal performance regarding
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Parallel Coordinates Plot - Canopy Transpiration
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Figure 7. Evaluation of canopy transpiration using various (a) metrics and (b) score indexes for GLDAS2, TE, CLMS5, and CoLM?2024.

RMSE minimization, correlation maximization, and KGESS
optimization. TE demonstrates particularly strong perfor-
mance in NSE and ranks second in KGESS. Regarding scor-
ing indices, TE excels in nRMSEScore, nPhaseScore, and
nlavScore, whereas CoLM?2024 achieves the highest nBiasS-
core.

This comprehensive comparative analysis not only high-
lights the relative strengths and weaknesses of each model
but also offers valuable insights into their simulation capa-
bilities regarding various aspects of land surface processes.
Such a detailed evaluation helps identify areas where models
excel or need further refinement, effectively guiding future
development efforts.

4.2.2 Multiple parameterizations and multiple
references

To evaluate the versatility of OpenBench in analyzing model
parameterization schemes, we conducted a comprehensive
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assessment of different runoff generation parameterizations
within the CoLM2024 model framework. The analysis fo-
cused on daily discharge simulations at 0.1° resolution from
1985 to 1999, comparing three distinct parameterization
approaches: SIMTOP, Xinanjiang, and SimpleVIC. These
simulations were evaluated against observational data from
GRDC.

Figure 8 presents a spatial analysis of model performance
using the KGESS metric across the continental United States.
The station-based visualization (Fig. 8a—c) reveals distinct
spatial patterns in model performance for each parameteriza-
tion scheme. The SimpleVIC parameterization demonstrates
superior performance across most regions, particularly in ar-
eas with complex hydrological processes. In contrast, the Xi-
nanjiang scheme exhibits notable strengths in simulating dis-
charge patterns within arid and semi-arid regions, suggesting
its particular effectiveness in water-limited environments.

To further elucidate the statistical characteristics of these
parameterizations, we employed a ridgeline plot analy-
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Figure 8. Comparison of daily discharge simulated from different parameterizations of the CoLM2024 model’s runoff generation scheme

with GRDC observations using the KGESS metric.

sis (Fig. 8d). This visualization technique effectively cap-
tures the distribution of performance metrics across differ-
ent schemes, with the dashed lines and accompanying num-
bers indicating median values for each parameterization.
The analysis confirms that the SimpleVIC parameterization
achieves the highest overall performance metrics, though
each scheme shows specific regional strengths.

OpenBench’s capability to handle multiple reference
datasets is demonstrated through a detailed evaluation of la-
tent heat simulations. Figure 9 illustrates this multi-reference
analysis framework, comparing CoLM2024 simulations
against four distinct reference sources: satellite-derived prod-
ucts (CLASS), machine learning outputs (FLUXCOM), in
situ measurements (PLUMBER?2) (Ukkola et al., 2022), and
reanalysis data (ERASLand). This comparison was con-
ducted at a monthly temporal resolution and 0.5° spatial res-
olution for the period 2002-2006. The resulting heat map vi-
sualization reveals strong model-data agreement across all
reference datasets, with correlation coefficients consistently
exceeding 0.90.

This comprehensive evaluation approach validates the
model’s performance against multiple independent data
sources and provides insights into the structural uncertain-
ties inherent in different observational datasets. Such multi-
reference validation is particularly valuable for variables
where direct measurements are sparse and each observa-
tional approach has its own uncertainties and biases. The
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References

Figure 9. Evaluation of latent heat flux simulated by CoLM2024
using various metrics with different reference datasets.

consistently high correlation values across different refer-
ence datasets enhance confidence in the model’s ability to
capture fundamental physical processes while also highlight-
ing areas where uncertainties in observational data may im-
pact validation efforts.
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Figure 10. The Taylor (a) and target (b) diagram for comparing evapotranspiration among the six models in LS3MIP.

4.2.3 CMIP styles comparison

OpenBench’s evaluation framework incorporates robust ca-
pabilities for analyzing CMIP-style datasets, with particu-
lar emphasis on experimental outputs from initiatives such
as ISIMIP and LS3MIP. The system’s architecture includes
specialized data processing modules designed to handle the
standardized conventions of CMIP outputs, including vari-
able naming conventions, temporal frequencies, and grid
structures, ensuring seamless integration with the evaluation
framework.

Figure 10 demonstrates this capability through a compre-
hensive analysis of evapotranspiration simulations from the
LS3MIP experiment. The analysis employs both Taylor and
target diagrams to provide complementary perspectives on
model performance. The Taylor diagram (Fig. 10a) effec-
tively visualizes the relationship between correlation coef-
ficients, normalized standard deviations, and centralized root
mean square errors. This multi-metric representation enables
immediate identification of models that achieve optimal bal-
ance across these key performance indicators. The target
diagram (Fig. 10b) supplements this analysis by providing
additional insight into bias components and pattern varia-
tions, with distinct symbols differentiating between the vari-
ous LS3MIP simulations.

To further elucidate the performance distribution across
different models, Fig. 11 presents a ridgeline plot analysis
of the KGESS metric. This visualization technique reveals
the full spectrum of model performance, highlighting both
central tendencies and variations in simulation quality. The
analysis demonstrates that while certain models consistently
achieve higher performance metrics, considerable variation
in simulation quality exists across the ensemble. This varia-
tion provides valuable insights into the structural uncertain-
ties inherent in current land surface modeling approaches.
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The integration of CMIP-style evaluation capabilities
within OpenBench serves multiple critical functions in the
broader context of Earth system modeling. First, it enables
systematic assessment of land surface processes within cou-
pled climate models, providing essential feedback for model
development and improvement. Second, it facilitates direct
comparisons between offline land surface model simulations
and their behavior within coupled frameworks, helping to
identify potential interactions and feedback that may affect
model performance. Finally, this capability supports compre-
hensive model intercomparison studies, contributing to our
understanding of model uncertainties and their implications
for future climate projections.

This robust framework for evaluating CMIP-style outputs
positions OpenBench as a valuable tool for both model de-
velopment and climate change research. By providing stan-
dardized, comprehensive evaluation metrics for these com-
plex datasets, OpenBench supports the ongoing effort to im-
prove our understanding and prediction of land surface pro-
cesses in the context of global climate change.

5 Extensibility and customization

OpenBench is engineered with extensibility and customiza-
tion as core design principles, enabling the system to evolve
alongside the rapidly advancing field of land surface science.
This flexible architecture accommodates the integration of
new models, variables, datasets, measurement units, evalu-
ation metrics, and scoring systems while maintaining oper-
ational consistency and scientific rigor. The system’s mod-
ular design facilitates seamless incorporation of new refer-
ence datasets through a streamlined configuration process.
Researchers can integrate additional observational or reanal-
ysis data by creating appropriate entries in the reference con-
figuration file, specifying dataset locations and characteris-
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Figure 11. Ridgeline plot comparing evapotranspiration for the six models in the LS3MIP Land-hist experiment.

tics. This process involves defining dataset properties, in-
cluding directory structures, temporal and spatial resolutions,
and variable-specific parameters. For datasets with unique
characteristics, users can develop custom processing scripts
that integrate smoothly with the existing evaluation frame-
work.

Variable integration follows a similarly structured ap-
proach. Adding new variables requires coordinated updates
to both reference and simulation configuration files, along-
side corresponding dataset configurations that define variable
properties. This process may include the development of spe-
cialized evaluation metrics and visualization components to
effectively represent and analyze the new variables within
the system’s analytical framework. The integration of new
land surface models demonstrates OpenBench’s architectural
flexibility. Users can incorporate additional models by cre-
ating model-specific namelist files that establish straightfor-
ward mappings between model outputs and OpenBench’s
standardized variables. This integration is supported by up-
dates to the simulation configuration and, where necessary,
the development of custom variable filtering scripts to han-
dle model-specific output characteristics. OpenBench’s unit
conversion system exemplifies its sophisticated approach to
extensibility. The unit processing module employs a flexible
design that readily accommodates new measurement units
for existing and new variables. Users can implement addi-
tional unit conversions by creating methods within the desig-
nated class, following established naming conventions. The
system’s dynamic method calling architecture ensures that
new unit conversions integrate seamlessly into the evaluation
workflow without requiring modifications to other system
components. The system’s evaluation framework maintains
equal flexibility in incorporating new metrics and scoring
methodologies. Users can implement additional evaluation
metrics by creating new methods within the metrics class,
properly handling missing data, and maintaining comprehen-
sive documentation. Similarly, new scoring systems can be
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integrated into the scores class within Mod_Scores.py, with
appropriate attention to normalization procedures and inter-
pretation guidelines.

This comprehensive approach to extensibility guarantees
that OpenBench stays at the forefront of land surface model
evaluation capabilities. As new scientific questions emerge,
new models are developed, and new observational datasets
become available, the system can readily adapt to incorporate
these advances. This flexibility is essential for maintaining a
state-of-the-art evaluation framework that effectively serves
the evolving needs of the land surface modeling community
while ensuring consistent, high-quality analysis across vari-
ous applications and research contexts.

6 Conclusions

Our newly developed OpenBench represents a significant ad-
vancement in land surface model evaluation methodology,
addressing critical gaps in existing evaluation frameworks
while introducing innovative capabilities for comprehensive
model assessment. By integrating high-resolution benchmark
datasets, sophisticated evaluation metrics, and efficient data-
handling mechanisms, OpenBench provides users with a
powerful tool for enhancing the understanding and perfor-
mance of land surface models. The system’s key strengths
lie in several areas. First, its ability to handle diverse data
types and formats, from station-based measurements to grid-
ded products, enables comprehensive evaluation across mul-
tiple spatial and temporal scales. Second, incorporating hu-
man activity impacts into the evaluation framework fills a
crucial gap in current assessment tools, allowing for a more
realistic evaluation of model performance in anthropogeni-
cally modified landscapes. Third, the system’s robust com-
putational architecture, built on efficient parallel processing
and standardized data-handling protocols, ensures scalability
and reliability in processing large-scale datasets. The case
studies presented demonstrate OpenBench’s practical util-
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ity across various applications. The system has proven ef-
fective in identifying model strengths and areas requiring
improvement, from evaluating hydrological processes and
urban heat fluxes to assessing agricultural modeling capa-
bilities. The multi-reference approach to model evaluation
provides particularly valuable insights, helping distinguish
between model deficiencies and observational uncertainties.
OpenBench’s extensible architecture ensures its continued
relevance as the field evolves. The system’s ability to incor-
porate new models, variables, datasets, and evaluation met-
rics allows it to adapt to emerging research needs and tech-
nological advances. This flexibility, combined with its com-
prehensive evaluation capabilities, positions OpenBench as
a valuable resource for both model development and oper-
ational applications. Looking forward, OpenBench’s role in
advancing land surface modeling extends beyond technical
evaluation. By providing standardized and reproducible eval-
uation methods, OpenBench facilitates more effective collab-
oration within the modeling community and supports more
informed decision-making in environmental management.
As we face increasing environmental challenges and seek to
improve our understanding of Earth system processes, tools
like OpenBench will be crucial in developing more accurate
and reliable land surface models.

Code and data availability. All codes and data used can be found
in Wei (2025a). The CoLM2024 model used in this study can
be downloaded from https://github.com/CoLM-SYSU/CoLM202X
(https://doi.org/10.5281/zenodo.17120235, Wei, 2025¢). The high-
resolution land surface characteristics datasets for CoLM2024
can be downloaded from http://globalchange.bnu.edu.cn/research/
data (last access: 25 September 2025). The OpenBench soft-
ware is available at https://doi.org/10.5281/zenodo.15811122
(Wei, 2025b) and is updated routinely at https://github.com/
zhongwangwei/OpenBench (last access: 4 September 2025). The
TE dataset is available at https://www.eorc.jaxa.jp/water/index.
html (last access: 8 July 2025); the CLMS5 dataset is available
at https://doi.org/10.5065/SRTG-H391 (Oleson et al., 2019); the
GLDAS2 dataset is available at https://ldas.gsfc.nasa.gov/gldas
(last access: 16 September 2025); the LS3MIP dataset is avail-
able for download on the ESGF node: https://esgf-node.llnl.gov/
search/cmip6/ (last access: 28 May 2025); and the GRDC discharge
datasets are available at https://grdc.bafg.de/GRDC (last access: 22
September 2025).
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