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S1 Validation of background concentrations 

The approach for calculation of the background concentration, described in Section 2.2.1, is motivated by the 
need for a straightforward method using the coarse-resolution data from the CAMS regional ensemble, while 
avoiding double counting of NO2 from local emission sources. Validation of this method is presented in the 5 
Figure S1. 

 
Figure S1: Hourly NO2 concentrations measured at two suburban background locations, and the comparison against 
background concentrations calculated from the NO2 concentration fields from the CAMS regional ensemble. 

The top panel shows NO2 measurements from two suburban background stations: ES1193 (Casa de Campo) and 10 
ES1945 (El Pardo), which consistently record the lowest concentrations in the area. A third station, ES1946, 
also classified as suburban background, is excluded due to its elevated readings, likely influenced by nearby 
urbanization and proximity to Barajas International Airport. The time series show that the lowest NO2 
concentrations alternate between the two selected stations. This variation is partly explained by wind direction, 
represented by black arrows indicating 6-hour intervals. Typically, El Pardo registers lower NO2 levels when 15 
clean air arrives from the northeast to northwest, whereas Casa de Campo, being downwind, includes additional 
local pollution contributions. 

The bottom panel compares the lowest NO2 concentration measured between the two stations with the 
background concentration calculated from CAMS data along the partial municipal perimeter, as described in 
Section 2.2.1. The close agreement between the calculated background and the observed minima suggests that 20 
this method provides a realistic estimate of background NO2 under varying meteorological conditions. 

S2 Estimating the NO2/NOx ratio at the surface 

In the previous Retina version (Mijling 2020) we implemented the Ozone Limiting Method (OLM) as described 
in EPA (2015). The method uses ambient ozone (O3) to determine which fraction of NO is converted to NO2. O3 
concentrations are taken from the CAMS regional ensemble. The dispersed (locally produced) NOx 25 
concentration is divided into two components: the primary emitted NO2 (here assumed to be 10%) and the 
remaining NOx, which is assumed to be all NO available for reaction with ambient O3: NO + O3 → NO2 + O2 

If the mixing ratio of ozone (O3) is larger than the 90% of NOx, then all NO is converted to NO2. Otherwise, the 
amount of NO converted is equal to the available O3, i.e. (NO2) = 0.1(NOx) + (O3). The reaction is assumed to 
be instantaneous and irreversible. The resulting NO2 concentration is added to the NO2 background 30 
concentration. The OLM is a clear oversimplification as it assumes an instantaneous conversion from NO to 
NO2 and neglects the photochemistry from NO2 back to NO.  

Figure S1 shows diurnal cycles of NO2 ratios based on measurements of NO and NO2 at a roadside station for 
two different months. In wintertime, the NO2 ratio drops to lower values when the morning rush hour starts. The 
low temperatures slow down a fast conversion of primary emitted NO (mainly from nearby tail pipes) to NO2. 35 
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This conversion is faster in summer, resulting in higher NO2 ratios during the day. During the night, when no 
significant photolysis takes place, NO2 ratios are high in both seasons. 

  
Figure S2: Averaged diurnal NO2 ratios from hourly observations of NO and NO2 at Castellana road station, for January 
2022 (left) and July 2022 (right). The shaded area indicates the standard deviation. 

We want to estimate the NO2 ratio from parameters (features) which are available at simulation time: 40 

● local NOx concentration, i.e. the quantity which is simulated by the dispersion model (excluding the 
background concentration). 

● background O3 concentration, taken from the regional CAMS ensemble. 

● background NO2 concentration, taken from the regional CAMS ensemble. 

● temperature, as a measure of reaction speed for conversion NO to NO2. 45 

● solar elevation angle (SEA), as a measure of radiation available for photolysis of NO2. 

We use a training data set consisting of 810,071 records, spanning a 5-year period (2018-2022), taken from the 
14 reference stations in Madrid which simultaneously measure NO2, NO and O3. The corresponding solar 
elevation angles are calculated from latitude, longitude, the time in UTC, and the day of the year. 

As the relation between the NO2 ratio and these parameters is likely to be non-linear, we prefer machine learning 50 
methods above multiple linear regression. We opt for XGBoost for its rapid learning time and superior accuracy 
compared Random Forest. Additionally, the trained XGBoost model has a more compact file size when stored 
for future use. Being a tree-based model, it allows us to calculate the importance of each feature. From Fig. S2 
can be seen that all selected features contribute significantly to the prediction of the NO2 ratio. 

 55 
Figure S3: Feature importance in predicting the NO2 ratio, represented as scaled weights. 

The improvement of the XGBoost model over OLM is shown in Fig. S3. Here both methods are used to predict 
NO2 concentrations for a given NO2 and O3 background (taken from CAMS) and a locally produced NOx 
concentration. Especially for street stations the OLM introduces positive biases, related to the assumption of 
instantaneous NO to NO2 conversion. The portability of the Madrid-trained model is shown in the bottom right 60 
panel where it is applied to observations of a street station in Amsterdam, resulting in good correspondence with 
observations. 
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 65 
Figure S4: Comparison of predicted NO2 concentrations (based on locally produced NOx, and NO2 and O3 background 
concentrations) against observed NO2 concentrations. Left panels show results for the OLM, right panels show results for the 
XGBoost model. Observations are taken from a street station (ES0115A) and an urban background station (ES1939A) in 
Madrid, and a street station in Amsterdam (NL49017). 

S3 Estimating the NO2/NOx ratio in tropospheric columns 70 

Figure S4 shows the daily NO2/NOx ratio at 13 UTC for 4 cities as found in simulations by the CAMS regional 
ensemble for 2019. Note that NO2/NOx ratios in columns are generally higher than surface ratios due to 
increased ozone availability. There is a seasonal cycle visible which has a maximum in summertime for 
Barcelona and Madrid, but a maximum in wintertime for Amsterdam and Oslo. There are competing processes 
at work, roughly between temperature (formation of NO2 from NO) and sunlight (photodissociation of NO2 to 75 
NO).  
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Figure S5: Daily NO2/NOx ratio at 13 UTC for 4 cities as found in simulations by the CAMS regional ensemble for 2019. 
In blue: NO2 surface ratio for centre grid cell, and average surface ratio for the larger 3x3 grid cell area. In red: NO2 column 
ratio for centre grid cell, and average column ratio for 3x3 grid cell.  80 

S4 Estimating emission factors from observations 

We want to estimate the emission factors 𝑥! such that the concentration simulations (either surface or column 
concentrations) 𝑦" best match the observations. Writing Eq. 6 as 

𝑦" = 𝑏" + 𝑟" ∑ 𝛼"!𝑥!!   (S1) 

we can see that it can be interpreted as a matrix equation from which 𝑥! must be solved. For 𝑛 ground stations, 85 
we have 24𝑛 hourly in-situ measurements in a 24-hour period. For the Madrid area, there are about 14 column 
retrievals in this period (in general this number will depend on the domain size and cloud cover). 

We stabilise the estimation of the emission factors using a Kalman filter. Let vector 𝐱 consist of 25 elements: 
one emission factor for traffic, and 24 elements describing the diurnal cycle of the residential emissions. Starting 
from a priori values at 𝑡 = 0, the 24-h update (analysis) of the state vector depends on the difference between 90 
the observation vector 𝐲#$% and the simulation vector 𝐲%&': 

𝐱( = 𝐱()* +𝐊(𝐲#$% − 𝐲%&') (S2) 

Note that 𝐲 can contain both in-situ surface concentrations as column concentrations of NO2. 𝐊 is the Kalman 
gain matrix, calculated from 

𝐊 = 𝐏+𝐇,4𝐇𝐏+𝐇, + 𝐑6)* (S3) 95 

in which 𝐑 is the observation error covariance matrix. This is a diagonal matrix (the air pollution measurements 
are uncorrelated) with the observational variances on the diagonal. 𝐏+  is the error covariance matrix of the 
forecast, i.e. the expected error covariance in the state vector elements. The errors are converted from state space 
to observational space by 𝐇, the Jacobian of the observation operator. Element 𝐻"! of this matrix represents the 
partial derivative of observation 𝑦"  to state vector element 𝑥! . Neglecting non-linearity due to ozone 100 
interference, these elements can be written as  

𝐻"! = 𝑟"𝛼"! (S4) 
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Kalman filtering reduces the error covariance of the state vector elements, leading to the error covariance 
analysis calculated by 

𝐏- = (𝐈 − 𝐊𝐇)𝐏+ (S5) 105 

This analysis is accumulated with matrix 𝐐 in the next step of the filter, reflecting the increase in uncertainty of 
the emission factors in the 24-h period between the evaluation moments: 

𝐏(+ = 𝐏()*- +𝐐 (S6) 

Matrix 𝐐 can be used to tune the Kalman filtering. For small 𝐐 the emission factor update will be relatively 
insensitive to the observations, resulting in longer response (lag) times. For larger 𝐐 the response time will be 110 
faster, but this comes at the expense of increased noise. We decompose 𝐐 as 

𝐐 = diag(𝛔)	𝐂	diag(𝛔) , (S7) 

in which 𝐂 is the correlation matrix, describing the coupling between the state vector elements, and 𝛔 represents 
a vector of added errors. 𝛔 is taken as relative errors from the state vector elements 

𝜎* = 𝜀𝑥*  (S8) 115 

𝜎" = 𝜀𝑥./%CCCCC	,  for i = 2,...,25 

𝑥./%CCCCC	is the average of the residential emission factors, calculated as 

𝑥./%CCCCC = *
01
∑ 𝑥23*01
24*  (S9) 

We take 𝜀	 = 	0.03 as practical value. 

When no hourly surface measurements are present (i.e. only space observations), the satellite measurements can 120 
only sample the diurnal cycle at overpass time. We couple all elements of the residential diurnal cycle 
(𝑥0, … , 𝑥05) un matrix 𝐂 as follows: 

𝐶"! = I0	,  for (𝑖 ≥ 2, 𝑗 = 1) and (𝑖 = 1, 𝑗 ≥ 2)
1	,  elsewhere                                  					  (S10) 

such that not only the element at overpass time will be updated, but that the entire residential profile will be 
scaled. 125 

When hourly surface measurements are present, we choose the off-diagonal elements for the residential cycle in 
𝐂 to correlate depending on their lag ℎ"! in hours: 

𝐶"! = P
1																																											,	for	𝑖 = 𝑗																																																				
0																																											,	for	(𝑖 ≥ 2, 𝑗 = 1)	and	(𝑖 = 1, 𝑗 ≥ 2)
41 + 𝑝ℎ"!6 exp4−𝑝ℎ"!6 		,	elsewhere																																																

 (S11) 

For instance, the time lag between 𝑥0 and 𝑥6 is 1 hour, as is the time lag between 𝑥0 and 𝑥05. The Thiebaux 
autoregressive correlation function is less steep at larger distances than the (often chosen) Gaussian function, 130 
improving the condition number of matrix 𝐏+ while maintaining the coupling between neighbouring elements. 
By setting parameter 𝑝 = 0.6 in the Thiebaux function the correlation drops from 1 to 0.5 for a lag of ~2.8 h.  

S4.1 Collinearity 

The algorithm is not always capable of resolving the individual sectoral contributions from NO2 observations, 
particularly when using satellite data due to its coarse spatial resolution. This collinearity can result in 135 
unrealistic solutions, with excessive emissions being attributed either to the transport sector or the residential 
sector. We force a better balancing between the emission sectors by adding a larger error to the sector which 
contributes less to the total emissions. This is established by redefining Eq. (S8) as 

𝜎* = 𝜀 ^𝑥* +
7res
7tra

𝑥./%CCCCC_ (S12) 
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𝜎" = 𝜀 ^7tra
7res

𝑥* + 𝑥./%CCCCC_  , for 𝑖 = 2, . . . ,24 140 

In which 𝑃8.- is the sum of proxy emissions of the transport sector in the domain, and 𝑃./% is the sum of proxy 
emissions for the residence sector in the domain. 

S4.2 Negative values 

Given their physical meaning, only positive values for the state vector elements are allowed. However, the 
Kalman filtering in Eq. (S2) can result in negative values in the analysis. When this occurs, the covariance 145 
matrix 𝐏+ is decomposed as in Eq. (S7). The standard deviations 𝜎" 	for elements that became negative are halved 
(the smaller error will make it more difficult for the state vector element to drop below zero). A new 𝐏+ is 
reconstructed based on the adjusted 𝛔 and the Kalman filter is then reapplied. This process is repeated until all 
elements are positive after filtering, with a maximum of 20 iterations before giving up. 

S5 Diurnal cycles in residential emissions 150 

Since population density is used as a proxy for residential emissions, we lack information on the diurnal cycle of 
these emissions. This can be estimated from hourly measurements, as explained above. However, if we use 
TROPOMI observations only, we can only infer emission estimates around overpass time. In that case, we rely 
on a well-chosen a priori profile.  

A good candidate would be the hourly temporal profile for the residential sector provided by the CAMS-155 
TEMPO dataset (Guevara et al., 2020). This profile presents two peaks, one in the morning and one in the 
afternoon, when energy consumption is supposedly higher due to increased space heating or cooking activities 
(see Fig. S5). However, using this profile in the Retina algorithm introduces unwanted biases, particularly in the 
early morning and late evening. Better results are achieved with an averaged profile generated by the algorithm 
itself from a emission optimisation run over 2019 using data of 20 reference stations in Madrid. This profile 160 
features a distinct peak around 10:00. It should be noted that this profile does not necessarily represent a more 
realistic cycle for the residential sector, as it also compensates systematic hourly biases in the algorithm, such as 
incorrectly assumed traffic emission cycles or incomplete NOx chemistry. 

 
Figure S6: Comparison of diurnal temporal profiles for the residential sector from CAMS-TEMPO (blue line) and Retina 165 
(orange line), generated using measurements from 20 reference stations in Madrid during 2019. Both profiles are normalized 
to 1. 

S6 Spatial assimilation: model error covariance 

For optimal interpolation a realistic representation of the model error covariance is essential, as it strongly 
determines the behaviour of the optimal interpolation. The covariance between two locations 𝐱* and 𝐱0 for a 170 
given hour 𝑡 is defined as 

cov(𝐱*, 𝐱0, 𝑡) = 𝜎*(𝑡)𝜌(𝐱*, 𝐱0, 𝑡)𝜎0(𝑡) , (S13) 
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where 𝜎* and 𝜎0 are the model errors at the corresponding locations. 𝜌 represents the correlation between the 
errors at time 𝑡. A classical approach for modelling 𝜌 is by assuming a Gaussian decay over distance 𝑑 =
‖𝐱* − 𝐱0‖, parameterized by correlation length 𝐿: 175 

𝜌(𝑑) 	= 	exp(−(𝑑 𝐿⁄ )0) (S14) 

Note that this approach is time-independent and isotropic. We refine the covariance modelling by including 
spatial representativity of the observations (which is different for street locations than for background locations), 
and atmospheric dispersion (which changes every hour), writing: 

cov(𝐱*, 𝐱0, 𝑡) = 𝜎*(𝑡)𝜌9(𝐱*, 𝐱0)𝜌:(𝐱* − 𝐱0, 𝑡)𝜎0(𝑡) , (S15) 180 

𝜌9  represents the correlation between simulated time series at different locations. This time-independent 
correlation is precalculated for a given period between 𝑚 locations where measurements are available and all 
other receptor locations, resulting in 𝑚 correlation fields. As can be seen from Fig. S6, street locations correlate 
better with each other than background locations, and vice versa. 

 185 
Figure S7: Examples of spatial correlation fields for a street location (left) and an urban background location (right). The 
locations are indicated with black dots. 

𝜌: represents the correlation resulting from atmospheric dispersion. This dispersion determines the extent to 
which errors in simulated concentrations, caused by wrongly assumed emissions, can propagate to neighbouring 
areas. We want to express this correlation in terms of the dispersion kernel (i.e. the dispersion of a unit of 190 
emission calculated by AERMOD), as this information is available from previous calculations by Retina. 
Different kernels introduce different spatial correlation, depending e.g. on wind direction and atmospheric 
stability. 

Assume a random signal 𝑠"(𝑡), representing the unbiased error in emissions at location 𝑖. Assume a 1D kernel 
𝑘(𝑥), describing how a unit of emission is dispersed as concentrations in downwind direction. This kernel is 195 
applied to random, uncorrelated signals 𝑠"(𝑡) at equidistant locations, separated by distance Δ (see Fig. S7): 

 
Figure S8: Schematic representation of the dispersion per unit emissions at equidistant locations along the downwind axis. 

At origin, we have a superposition of concentrations from all signals transported by 𝑘: 
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𝑐(0, 𝑡) = ∑ 𝑘(−𝑖Δ)𝑠"(𝑡);
"4);  (S16) 200 

At arbitrary distance 𝑥, the accumulated concentration is: 

𝑐(𝑥, 𝑡) = ∑ 𝑘(−𝑖Δ + 𝑥)𝑠"(𝑡);
"4);  (S17) 

When signal 𝑠"(𝑡) is written as a discrete signal 𝑠"( with 𝑡 = 1, . . . , 𝑇 the covariance between two signals at two 
locations 𝑖 and 𝑗 can then be expressed as: 

cov4𝑠"( , 𝑠!(6 ≝
*
<
∑ (𝑠"( − 𝑠=(CCC)4𝑠!( − 𝑠>(CCC6<
(4* = *

<
∑ 𝑠"(𝑠!(<
(4* = I

0		for	𝑖 ≠ 𝑗
1		for	𝑖 = 𝑗 (S18) 205 

The covariance between the concentrations found at locations 0 and 𝑥  can now be calculated using Eqs. 
(S16)−(S18): 

cov4𝑐(0, 𝑡), 𝑐(𝑥, 𝑡)6 = *
<
∑ (∑ 𝑘(−𝑖Δ)𝑠"(" )( 4∑ 𝑘(−𝑗Δ + 𝑥)𝑠!(! 6

	 = ∑ ∑ 𝑘(−𝑖Δ)𝑘(−𝑗Δ + 𝑥) ^*
<
∑ 𝑠"(𝑠!(( _!"

	 = ∑ 𝑘(−𝑖Δ)𝑘(−𝑖Δ + 𝑥);
"4);

 (S19) 

This can be interpreted as an element-wise multiplication of the kernel k with a copy of itself, shifted by distance 
𝑥. In Retina, the 2D dispersion kernels from AERMOD are gridded on a regular high-resolution grid. 𝜌:(𝐱* −210 
𝐱0, 𝑡) in Eq. (S15) can therefore be calculated from an element-wise multiplication of the AERMOD kernel at 
time 𝑡 with a copy of itself, shifted by a vector 𝐝	 = 	𝐱* − 𝐱0  . We use the covariance found for 𝐝 = 0 for 
scaling, such that 𝜌:(0) = 1.  

Figure S8 shows some examples of dispersion kernel correlations. Note the point symmetry in 𝜌:, as 𝜌:(𝐝) =
𝜌:(−𝐝). The figure also clearly shows the symmetry axes along the downwind and crosswind direction. To 215 
speed up calculations of 𝜌:, we calculate the dispersion kernel correlation field for a given time 𝑡 once, and 
evaluate transects along the main axes. We fit range parameters 𝐿 along each symmetry axis with a heuristically 
determined fit model 

𝜌(𝑑) ≈ s1 + t?
@
t
A.C5

u 𝑒𝑥𝑝 s− t?
@
t
A.C5

u (S20) 

This equation is a modification of the Thiebeaux function, which is found to be the best concession between 220 
providing high correlations at short distances, and a good description of the tails at longer distances. 

𝐿 can be considered as the correlation length along a main axis. Once 𝐿DE (along the downwind axis) and 𝐿FE 
(along the crosswind axis) are determined, 𝜌: can be calculated quickly for each (𝐱*, 𝐱0) using Eq. (S20) and 
assuming elliptical symmetry of the dispersion correlation field. 

 225 

 
Figure S9: Three examples of correlation associated with different dispersion kernels in Madrid. Distances are in metres. 
The two symmetry axes are in downwind and crosswind direction. Transects along these axes are shown (blue lines), 
together with the numerical fit (orange lines). 
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S6 Simulation comparison TROPOMI and in-situ 230 

 
Figure S10: Comparison of simulation of surface concentrations for March 2019 in Madrid. (left) Simulation based on 
emission optimisation using TROPOMI data only. (center) Simulation based on emissions optimisation using in-situ 
measurements of 24 stations. The difference map (right) shows that the TROPOMI-based simulation results in up to 5 µg/m³ 
higher concentrations on roads and up to 1.5 µg/m³ lower concentrations in urban backgrounds. 235 

S7 Seasonal performance of the Retina algorithm 

To get a better insight in the seasonal behaviour of the Retina algorithm, we performed a processing for 2019 for 
three different scenarios: 

(A) Emission optimisation based on TROPOMI only 
(B) Emission optimisation based on 24 surface stations only 240 
(C) Emission optimisation and spatial assimilation of 24 surface stations 

Table S1 shows the validation statistics per month, based on time series of hourly simulation, averaged over the 
24 stations. March 2019, indicated in bold font and evaluated in the main text, offers a reasonable approximation 
for the yearly performance.  

 Table S1: Monthly city-wide validation statistics for 2019 245 

2019 Obs. 
(µg/m³) 

 Correlation  RMSE (µg/m³)  Bias (µg/m³) 
A B C A B C A B C 

January 55.6  0.760 0.788 0.908  23.7 22.2 16.3  -4.7 -0.5 -1.5 

February 55.4  0.790 0.835 0.909  22.2 19.6 15.9  -4.9 -1.2 -1.6 

March 36.2  0.753 0.792 0.900  18.5 17.2 13.0  -2.7 1.1 -0.9 

April 27.3  0.728 0.752 0.892  15.0 14.6 11.0  -2.4 0.6 -0.8 

May 22.3  0.705 0.719 0.877  13.7 13.6 10.2  -2.6 -0.1 -1.1 

June 24.7  0.698 0.705 0.855  14.3 14.0 11.1  -0.4 0.5 -0.7 

July 26.2  0.716 0.693 0.877  15.7 15.8 11.4  -2.1 -0.2 -0.7 

August 25.9  0.777 0.795 0.901  15.9 15.1 11.8  -1.8 -0.4 -1.0 

September 31.5  0.741 0.795 0.901  18.5 15.8 12.6  -0.3 -0.4 -1.3 

October 41.4  0.753 0.794 0.890  19.6 17.5 14.1  -2.9 0.0 -1.1 

November 27.4  0.836 0.844 0.925  12.2 11.5 8.5  -2.2 -0.0 -0.6 

December 40.1  0.826 0.836 0.925  15.5 14.4 10.4  -3.1 0.1 -0.7 
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Average 34.5  0.757 0.779 0.897  17.1 15.9 12.2  -2.5 -0.0 -1.0 
 

As shown in the table, NO2 observations peak during winter months. This is due to lower mixing heights and 
colder temperatures (leading to stronger NOX emissions from e.g. heating and longer atmospheric lifetimes of 
NO2). During the summer months, both scenarios A and B show the lowest RMSE, but also show poorer 
correlation. This can be explained the higher ratio of the RMSE to the mean observations of NO2 during 250 
summer. 

Note that the results for scenario A in March differ slightly from those in Table 3 (where for TROPOMI-only 
the city-wide correlation is 0.740, RMSE is 19.3 µg/m³, and bias is 0.8 µg/m³). This can be explained from the 
starting point of the processing (November 2018) being different from the main text (January 2019).  

Additionally, in scenario A all months show negative biases, with the largest biases occurring in winter. This is 255 
likely due to the use of a fixed diurnal profile for residential emissions throughout the year (see Section S5). 
Introducing a seasonal component in this profile could improve the results. 

S8 Monitoring stations in European cities 

In Europe there are approximately 2800 cities with a population above 50,000. The European Environment 
Agency AirBase database (EEA, 2018) lists 2035 cities in 40 countries having at least 1 air quality monitoring 260 
station and 71 cities having at least 5 stations.  

Table S2: Size of air quality monitoring network in European cities 

Amount of reference 
stations Number of cities 

0 811 
1 1571 
2 245 
3 104 
4 44 
5 26 
6 17 
7 4 
8 7 
9 6 
10 2 
11 3 
12 1 
13 2 
15 1 
17 1 
25 1 

 
Table S3: European cities having 5 or more reference stations 

City Country Amount of reference 
stations 

MADRID Spain 25 

WIEN Austria 17 
LONDON United Kingdom 15 

ROMA Italy 13 
AMSTERDAM Netherlands 13 

BERLIN Germany 12 
VALLADOLID Spain 11 

HAMBURG Germany 11 
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SANTA CRUZ DE TENERIFE Spain 11 
ANTWERPEN Belgium 10 

BRUSSELS Belgium 10 
TARANTO Italy 9 

MILANO Italy 9 
ROTTERDAM Netherlands 9 

NAPOLI Italy 9 
PALERMO Italy 9 

PRAHA Czech Republic 9 
TRIESTE Italy 8 

CARTAGENA Spain 8 
BRINDISI Italy 8 

BARCELONA Spain 8 
ZARAGOZA Spain 8 

BUCHAREST Romania 8 
GENOVA Italy 8 

DUBLIN Ireland 7 
BELGRADE Serbia 7 

SAN ROQUE Spain 7 
SEVILLA Spain 7 

OSLO Norway 6 
HUELVA Spain 6 

VALENCIA Spain 6 
TORINO Italy 6 

STOCKHOLM Sweden 6 
LINZ Austria 6 

GRAZ Austria 6 
SIRACUSA Italy 6 

LA SPEZIA Italy 6 
Sofia Bulgaria 6 

PLZEN Czech Republic 6 
MARSEILLE France 6 

TOULOUSE France 6 
CAGLIARI Italy 6 

BARI Italy 6 
MANTOVA Italy 6 

LECCE Italy 6 
GUBBIO Italy 5 

MÁLAGA Spain 5 
SKOPJE North Macedonia 5 

ZÜRICH Switzerland 5 
UDINE Italy 5 

HELSINKI Finland 5 
DIJON France 5 

TARRAGONA Spain 5 
LE HAVRE France 5 
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VENEZIA Italy 5 
SAINT-DENIS France 5 

NÍJAR Spain 5 
VICENZA Italy 5 

GDANSK Poland 5 
BUDAPEST Hungary 5 

GIJÓN Spain 5 
CASTELLÓN DE LA PLANA Spain 5 

PESCARA Italy 5 
CANDELARIA Spain 5 

BARRIOS (LOS) Spain 5 
CATANIA Italy 5 

GALATI Romania 5 
FERRARA Italy 5 

LISBOA Portugal 5 
WARSZAWA Poland 5 

TERNI Italy 5 
 265 
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