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Abstract. Magmatic dykes play an important role in the ther-
momechanics of tectonic rifting of the lithosphere. Our un-
derstanding of this role is limited by the lack of models that
consistently capture the interaction between magmatism, in-
cluding dyking, and tectonic deformation. While linear elas-
tic fracture mechanics (LEFM) has provided a basis for un-
derstanding the mechanics of dykes, it is difficult to con-
sistently incorporate LEFM into geodynamic models. Here
we further develop a continuum theory that represents dykes
as plastic tensile failure in a two-phase Stokes—Darcy model
with a poro-viscoelastic—viscoplastic (poro-VEVP) rheologi-
callaw (Li et al., 2023). We validate this approach by making
quantitative comparison with LEFM, enabled by a novel for-
mulation for buoyancy-driven porous dykes (poro-LEFM).
The comparison shows that dykes in our continuum theory
propagate slowly — a consequence of Darcian drag on the
magma. Moreover, dissipation of mechanical energy in the
poro-VEVP model implies a high critical stress intensity in
LEFM. We improve the poro-VEVP model by reformulating
the compaction stress and incorporating anisotropic perme-
ability in regions of plastic failure.

1 Introduction

Dyking is an important mechanism for magma ascent, and
dykes can be formed, among other mechanisms, by fluid-
driven fracture. This is particularly true at rift zones, where
they are promoted by both magma supply and tectonic ex-
tension (Buck, 2006). Dykes may reach the surface and fuel
volcanic eruptions or may stall and solidify at depth within
the crust (Fiske et al., 1997; Gudmundsson and Loetveit,

2005; Delcamp et al., 2012; Passarelli et al., 2014; Mac-
caferri et al., 2014). Dyke propagation is affected by the
ambient stress field comprising tectonic stress, topographic
loading (McGuire and Pullen, 1989; Ferndndez et al., 2002;
Maccaferri et al., 2014; Rivalta et al., 2015; Sigmundsson
et al., 2024), and crustal heterogeneity (Thiele et al., 2020;
Drymoni et al., 2023). However, dyke propagation can also
modify the ambient stress field and weaken the lithosphere
(Kjgll et al., 2019; Brune et al., 2023). Consistently incorpo-
rating dyking in geodynamic models is therefore crucial for
understanding rifting processes; this remains an outstanding
challenge. To address this, the central goal of this paper is
to rigorously benchmark a continuum approach — modelling
dykes as plastic failure in a two-phase flow theory — against
the predictions of linear elastic fracture mechanics (LEFM).
This validation is a critical step towards the consistent incor-
poration of dyking in large-scale geodynamic models.

In most previous work, the mechanics of dykes are formu-
lated in terms of linear elastic fracture mechanics (LEFM).
LEFM conceptualises dykes as mode-I fractures (Griffith,
1921; Odé, 1957; McKenzie et al., 1992) opened at the tip
and widened by magma flow (see Rivalta et al., 2015, and
references therein). The magmatic flow is modelled as vis-
cous and parallel, in the narrow gap between the dyke walls,
as shown in the schematic in Fig. 1a. The gap opens behind
a sharp tip, where elastic stress in the wall rock overcomes
the fracture toughness and promotes tip advance. The elastic
stress arises from a combination of the fluid pressure within
the dyke and the preexisting stress field surrounding it.

LEFM models have explored the propagation rate and ge-
ometry of two-dimensional fractures with constant flux (Lis-
ter, 1990; Roper and Lister, 2007), as well as two- and three-
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Figure 1. Sketch of the LEFM (e.g. Lister, 1990) and poro-LEFM
models for a buoyancy-driven fracture. Here, Q denotes the volume
flux through the fracture, and v represents the cross-section aver-
age of vertical velocity component of the liquid. Both Q and v are
constants at z — —oo. The far-field conditions and the definition of
other notations are presented in Sect. 2.

dimensional fractures with constant volume (Spence and Tur-
cotte, 1990; Davis et al., 2020, 2023). These magmatic frac-
tures can be slowed or arrested due to loss of volatiles and
heat and by solidification (Rubin, 1995; McLeod and Tait,
1999; Bolchover and Lister, 1999; Taisne et al., 2011; Rivalta
et al., 2015; Abdullin et al., 2024). The direction of propaga-
tion has been investigated in relation to tectonic stress, topo-
graphic loading, and crustal heterogeneity (Maccaferri et al.,
2014; Acocella et al., 2024). Despite the many successes of
the LEFM approach, there are significant obstacles to consis-
tently embedding it into models that account for the causes,
dynamics, and consequences of dyking.

In the geodynamic context of the hot, ductile astheno-
sphere, magma transport has long been modelled using a
poro-viscous Stokes—Darcy theory (e.g. McKenzie, 1984;
Katz, 2022). This two-phase continuum formulation has been
applied to geological settings including mid-ocean ridges
(e.g. Sim et al., 2020; Pusok et al., 2022b), subduction zones
(e.g. Rees Jones et al., 2018; Cerpa et al., 2018), and beneath
continents (e.g. Schmeling et al., 2019). These studies were
limited to hot asthenospheric regions by the use of a purely
viscous rheological law.

In other work, the theory has been extended to accommo-
date elastic and brittle deformation at lower temperatures,
where a solely viscous response to stress is inadequate to cap-
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ture the mechanics (e.g. Connolly and Podladchikov, 1998;
Bercovici et al., 2001; Kaus and Podladchikov, 2006; Burov,
2011; Cai and Bercovici, 2013; Keller et al., 2013; Kiss et al.,
2023). This extension aimed to model melt transport upwards
across the ductile-brittle transition. Notably, Keller et al.
(2013) first incorporated plastic failure into a two-phase con-
tinuum model of magmatism. Li et al. (2023) improved the
theoretical formulation by employing a poro-viscoelastic—
viscoplastic (poro-VEVP) rheology after Duretz et al. (2021)
and by proposing a new hyperbolic yield surface (e.g. Abbo
and Sloan, 1995; Carol et al., 1997) to address physical,
mathematical, and computational issues of Keller’s model.
The present study uses the same numerical framework de-
tailed in Li et al. (2023), which showed how dyke-like fea-
tures emerge from this formulation and bear a quantitative
similarity with dykes described by LEFM theory. In partic-
ular, Li et al. (2023) observed that a poro-VEVP dyke can
be narrow and fast relative to advection and (de)compaction
in poro-viscous dynamics (Kelemen et al., 1997; Katz et al.,
2022), and the stress distribution around its tip matches the
LEFM model for some value of critical stress intensity.

However, two significant differences between the poro-
VEVP and LEFM theories are readily noted: Darcian versus
Poiseuille flow of the liquid phase and plastic yield versus
brittle fracture of the solid phase. Therefore, further explo-
ration and validation of the capabilities of the continuum rep-
resentation of dykes are necessary. In the comparison with
LEFM, two major issues require further investigation. The
first is the slower propagation speed predicted by the poro-
VEVP formulation (~ lmyr_1 versus ~ 1 kmd~!; Davis
et al., 2023). The second is the very high critical stress inten-
sity needed in LEFM for consistency between the predictions
(~1.5GPam!/?). The previous benchmark in Li et al. (2023)
is also incomplete in that the poro-VEVP dyke was driven by
far-field tensile stresses, not buoyancy, and did not reproduce
the classic LEFM cases of constant flux or constant volume
for comparison.

To organise our investigation of these issues, we propose
two hypotheses. We hypothesise that the slow speed of poro-
VEVP dyke propagation is due to the greater viscous resis-
tance to magma ascent in Darcian porous flow compared to
Poiseuille flow. Furthermore, we hypothesise that the frac-
ture toughness that provides an equivalent resistance to dyke
propagation can be directly calculated from the rate of plastic
energy dissipation in the poro-VEVP model. We verify these
hypotheses by simulating a constant-flux, buoyancy-driven
fracture in the poro-VEVP model and making quantitative
comparison to a corresponding LEFM model.

To facilitate the comparison, we introduce a modified
LEFM model in which the interior of the dyke is a porous
medium. This assumes a dyke region with fixed width but
variable porosity (Fig. 1b). In this poro-LEFM model, Darcy
flow supplies buoyant fluid to a toughness-dominated tip em-
bedded in an elastic medium. The poro-LEFM model con-
verges to the classical LEFM model in the limit of the poros-
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ity going to unity. However, at smaller porosity, it facilitates
a direct comparison with the poro-VEVP model in terms
of stress distribution, porosity profile, and dyke propagation
speed. We show that through the use of a poro-LEFM frac-
ture toughness, calculated with a poro-VEVP energy analy-
sis, there is a good match between the two models. This es-
tablishes a physics-based, quantitative relation between the
poro-VEVP and LEFM models. Moreover, it advances our
understanding of how distributed plastic failure affects dyke
propagation.

As we detail below, this comparison also highlights a
shortcoming of the poro-VEVP model. Isotropic permeabil-
ity within the poro-VEVP dyke promotes widening by hori-
zontal porous flow, a behaviour not associated with real (or
LEFM) dykes. We resolve this discrepancy by introducing
an anisotropic permeability tensor into the two-dimensional
poro-VEVP model to limit leakage and enhance fracture
propagation (e.g. Snow, 1969). Anisotropic permeability can
arise from anisotropic stresses and aligned pores or fractures
(e.g. Snow, 1969; Sibson, 1996; Daines and Kohlstedt, 1997,
Li et al., 2009; Takei, 2010; Taylor-West and Katz, 2015; Lei
et al., 2017; Lang et al., 2018; Seltzer et al., 2023; Medici
et al., 2023; Bader et al., 2024).

This paper is organised as follows. The next section
(Sect. 2) develops the poro-LEFM model, details the poro-
VEVP model, and explains how energy dissipation is used
to evaluate fracture toughness. The Results section (Sect. 3)
illustrates the steadily propagating dykes produced by the
poro-VEVP model. The Results section also verifies the esti-
mated toughness by comparing poro-VEVP and poro-LEFM
models in terms of their porosity and stress distributions. We
discuss the results and their broader relevance in Sect. 4 and
summarise in Sect. 5.

2 Models of a buoyancy-driven dyke

In this section, we develop two distinct models that are both
aimed to describe buoyancy-driven dyke ascent. We first in-
troduce the poro-LEFM model, which differs from the stan-
dard LEFM model in that it treats the dyke interior as a
porous medium (Sect. 2.1). We then review the continuum
mechanical, poro-VEVP model developed in Li et al. (2023),
and we equip it with two key enhancements: a reformulated
compaction pressure for improved numerical robustness and
anisotropic permeability to impose a preferred dyke-parallel
direction of Darcy flow (Sect. 2.2). Finally, we develop an
analysis of mechanical energy dissipation in the poro-VEVP
representation of a dyke (Sect. 2.3). This energy analysis pro-
vides a quantitative estimate of the effective fracture tough-
ness for the poro-LEFM model and hence a basis for com-
paring the models.
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2.1 The poro-LEFM formulation

The development of the poro-LEFM model follows Lister
(1990), both conceptually and mathematically. This section
gives an overview; full details are available in Appendix A.

Similar to the classic LEFM model in Fig. 1a, we consider
a vertical two-dimensional channel as shown in Fig. 1b, ex-
tending from —oo to a tip at position z = z;. This channel
represents an idealised dyke where buoyant fluid flows up-
ward, deforms the elastic solid phase, and drives the frac-
ture at the tip. Along the fracture walls, the elastic normal
stress p* is intensified by a critical factor K. near the tip.

Unlike the LEFM model, which assumes Poiseuille flow
in an open channel of variable width, the poro-LEFM model
assumes porous flow in a permeable channel of uniform,
fixed width A and variable porosity ¢ (z, t). The porous flow
is modulated by a porosity-dependent mobility My = kg /1,
where k is the permeability and w is the liquid viscosity. We
assume that this porous flow is driven purely by buoyancy,
leading to a constant porosity ¢y in the tail region, which we
refer to as the far field.

The mathematical formulation includes Darcy’s law for
the liquid flux ¢v, an elastic-stress-balance equation, and
boundary conditions at the tip and far field,

=M, (—8—}71+A ) (1)
Pv =My Py 0g ),

oo (G \ 1 [0 d
P t) = (1_‘))277/ o E @
5 r)~—L atz — z (3)
P T g g T
¢ = ¢, at 7 —> —00. @

Here v is the vertical component of liquid velocity, p' is
the dynamic liquid pressure (assumed equal to p® inside
the dyke), Ap = p® — o' is the density difference between
solid (s) and liquid (1), g is the gravitational force per unit
mass, G and v are the elastic shear modulus and Poisson’s
ratio of the solid, and K. is the critical stress intensity. In
this paper, we select v = 1/2, which enforces that the solid
phase is incompressible. Note that Eq. (2) adapts the stan-
dard LEFM elastic-stress formulation (e.g. Lister, 1990) to
account for porosity effects on solid deformation.

For a purely buoyancy-driven flow, buoyancy is balanced
by the Darcian drag force, and the propagation speed c¢ be-
comes constant. This speed is obtained by solving Eq. (1)
for v as z - —oo, where there is no gradient of dynamic
pressure,

o My (¢0) Apg
®o

Here My (¢o) is the fluid mobility at ¢ = ¢o. This implies a
constant volume flux from the far field: Qg = ¢ohc. We com-
pare this result with a canonical LEFM, buoyancy-driven,

®)
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Figure 2. Comparison of LEFM and poro-LEFM models. (a) Tip propagation speed as a function of melt fraction. The horizontal axis is
presented in a logarithmic scale. Three different permeability—porosity relationships are considered in the poro-LEFM model. The mobility
prefactor M is defined as My = h% /124, ensuring that ¢ — ¢f when ¢ — 1. (b) Profiles of porosity at different values of K. in the
poro-LEFM model (solid lines) compared with the profiles of scaled fracture width 4 /h¢ in the LEFM model (dashed lines) (Lister, 1990,

Fig. 3).Here, K and 7 denote scaled K¢ and z, respectively.

open fracture having far-field width 4 and hence tip speed
cr = h3Apg/12u (Lister, 1990).

Figure 2a shows how the poro-LEFM steady propaga-
tion speed c increases with the far-field porosity ¢g for two
choices of fluid mobility: a power-law relation My = Mo¢",
where n =2 and 3, and the Kozeny—Carman relation My =
M0¢3(1 — ¢)_2. We choose My = h%/lZu to achieve a con-
vergence between ¢ and cr. In particular, with our choice
of My in the power-law permeability relation, the speed ¢
approaches cf as ¢9 — 1. We adopt the cubic porosity de-
pendence for the remainder of this paper to enforce a quanti-
tative relationship between poro-LEFM and canonical LEFM
theory.

We solve the system of equations and boundary conditions
(Egs. 1-4) after rescaling variables and transforming into a
coordinate system that moves with the tip (see Appendix A
for details). Solutions for ¢ (z) are obtained with the numeri-
cal procedure given by Roper and Lister (2007).

Figure 2b presents results for three choices of K.. The
porosity is non-dimensionalised by the far-field porosity ¢g.
All porosity profiles show a bulging head approaching the tip
at which ¢ = 0 and a constant value in the tail where ¢ = ¢g.
The head widens (again, in terms of the porosity) with in-
creasing K, giving a larger solid deformation and therefore
reflecting the increasing stress required to propagate the tip.

Figure 2 verifies the anticipated alignment between the
poro-LEFM and LEFM models. Figure 2a displays the con-
vergence of propagation speeds when My is judiciously se-
lected as noted above. It is important to recognise that for the
far-field volume flux to converge as ¢ — 1, the poro-LEFM
width must equal the far-field width of the LEFM dyke,
meaning h = hg. Figure 2b shows the quantitative equiva-
lence between the porosity distribution in a poro-LEFM dyke
and the width variation in an LEFM dyke in dimension-
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less terms, corroborated by the numerical results from Lis-
ter (1990). This equivalence is also clear by comparing the
dimensionless equations Eqs. (A10)-(A13) in Appendix A
with Eqgs. (2.8)—(2.10) of Lister (1990).

2.2 The poro-viscoelastic—viscoplastic (poro-VEVP)
formulation

This section presents a two-dimensional (2D) Stokes—Darcy
model for simulating a buoyancy-driven dyke with constant
liquid influx from the boundary. This model shares Darcy’s
equation and mass continuity equation with the poro-LEFM
model but in 2D form and taking into account the solid veloc-
ity. The stress-balance equation for the solid phase is more
complex, balancing stresses of the two-phase medium in
the context of a poro-viscoelastic—viscoplastic (poro-VEVP)
rheological law. The solid phase deforms as a Maxwell ma-
terial combining viscous, elastic, and viscoplastic elements,
with a Kelvin viscosity for regularisation of plasticity. For
more details on this poro-VEVP model, see Li et al. (2023).
Here, we focus on improvements to the poro-VEVP model
for simulating a constant-width, fluid-driven fracture in a
porous medium and explain the computational model setup.

2.2.1 Stress-balance equation and a new compaction
formulation

Stress balance of a two-phase medium satisfies
—Vp + Y [(1 =) ] = VI — ) AP] - pApg =0. (6)

Here, (1—¢)75 and —(1—¢) A P represent the effective shear
and decompaction stresses, respectively. These are compo-
nents of Terzaghi’s effective stresses (Terzaghi, 1943). AP =
p’® — plis the pressure difference between phases (hereafter
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referred to as overpressure, following the convention in, for
example, Keller et al., 2013, and Li et al., 2023). The shear
and decompaction stresses must be expressed in terms of
strain rates and must also be constrained by the plastic yield
condition. This challenge was addressed by Li et al. (2023),
and we follow their approach, with a small modification.

Previous studies employed an effective viscosity method
for both shear and compaction (e.g. Moresi et al., 2003;
Keller et al., 2013; Li et al., 2023). While this approach is
appropriate for shear, it can lead to a divergence of the effec-
tive compaction viscosity during plastic failure, compromis-
ing computational robustness (Appendix B). We propose a
new formulation of A P to resolve this, which compares with
the old formulation as follows,

Old formulation : (1 —p)AP = —¢eeC/, @)
New formulation : (1 —@)AP =—¢"C'+(1 —d)APy, (8)

where

-1
f_[o U=®AP] o (1 1
C_[C ZyAt ]; _<g¢j+z¢m) - O

Here, C is the solid decompaction rate, g'(;’ and Zy are the
compaction viscosity and bulk modulus, At is the time step,
and A P° is the overpressure in the previous time step. Both
the effective viscosity Zefr in the old formulation and the term
we refer to as the dilatancy pressure, (1 —¢@)A Pgj, in the
new formulation are parameters utilised to enforce the plastic
yielding limit in the stress-balance equation. This is achieved
using Picard iterations as an outer loop that wraps around
the velocity—pressure solver to achieve global stress balance.
This iterative scheme enforces the plastic yielding limit by
updating the relevant parameter (efr or A Pg)) in each itera-
tion. The details of this implementation can be found in Ap-
pendix D of Li et al. (2023).

When the plastic yield limit is not reached, Zerf = ¢ and
A Pq1 = 0, making the two formulations equivalent. During
plastic yield, A P is calculated from the plastic model, and ei-
ther formulation can be rearranged to obtain the correspond-
ing parameter while maintaining a fixed C’. The old formu-
lation calculates the effective compaction viscosity as Ceff =
(1—¢)AP/C’, and feeds Zef to the stress-balance equation
as a constant, which becomes infinity when C’ = 0. This infi-
nite ¢efr impacts the convergence of the solver for the velocity
field from the stress-balance equation. The new formulation
resolves this issue by calculating (1—¢)APq = (1—¢)AP+
£¥°(C’ instead, and feeding it to the stress-balance solver as a
constant. The new constant always remains finite, improving
the robustness of the computational codes.

ve

2.2.2 Anisotropic permeability due to plastic failure

In the poro-VEVP model, a direct comparison with the es-
sentially one-dimensional poro-LEFM model in Sect. 2.1 re-
quires that the simulated dyke maintains a constant width.
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With an isotropic permeability, however, a vertical porous
dyke would inevitably widen over time due to a Darcy flux
in the horizontal direction. To prevent this methodologically
undesirable leakage, we introduce an anisotropic permeabil-
ity (Snow, 1969). It is critical to note that the purpose of this
anisotropy is to confine the flow vertically for the bench-
marking exercise, not to simulate the complex geological
controls that guide dyke trajectories in nature. The formu-
lation, detailed below, enhances permeability parallel to the
direction of maximum tensile plastic strain, thereby keeping
the dyke confined to a single column of cells.

Anisotropic permeability can be thought of as a macro-
scopic representation of melt-preferred orientation (MPO),
which refers to the alignment of interconnected, melt-filled
pores at the grain scale in partially molten rocks (e.g. Daines
and Kohlstedt, 1997; Takei, 2010; Bader et al., 2024). Un-
der the effect of differential stresses, these pores align and
elongate perpendicular to the direction of maximum tension,
causing differences in fluid transmissivity in different direc-
tions.

Mode-I fractures in a porous medium, from grain-scale
microcrack damage to fractures that span large numbers of
grains, have an effect on liquid permeability that is similar
to MPO. They create anisotropic permeability that favours
flow along the fracture. Indeed, macroscopic mode-I frac-
tures have been conceptualised as the result of the propa-
gation of microcracks under tension, with the propagation
direction perpendicular to the direction of maximum tension
(e.g. Griffith, 1921; Murrell, 1964). Aligned microcracks are
closely analogous to aligned, elongated pores. We therefore
assume that mode-I fractures also cause an anisotropic per-
meability.

To incorporate permeability anisotropy, we use a rank-2
tensor My to express the liquid mobility, with a size match-
ing the problem’s dimensionality. Darcy’s equation is then
written as

qﬁ(vl - vs> =—My- (Vpl + A,og) ,
where My = Mo¢"M,. (10)

Here, v' and v® represent liquid and solid velocity, respec-
tively. M, represents the anisotropic modification. When
M, is the identity tensor, the mobility is isotropic, and the
equation above becomes the standard Darcy equation.

For vertically propagating dykes simulated in this paper,
M, is a diagonal matrix,

M, = Koo 0 , where kyy,k;; € (0,k,). an
0 kg

Here, k, is a prescribed maximum permeability enhance-

ment. We define k. and k, based on the plastic strain com-

K K.
ponents, e,’, and e for example,

ka X 1

, with =—X ___ (12
1+ (kg — ) exp(ryx /€) WA P K. +eK 2 (2)

pad

kxx =
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Similarly, k., is defined in terms of r,,, which is written by
replacing X, with eX in the numerator of r.y. In Eq. (12)
and its variant for k,,, the quantities ry, and r,; measure the
anisotropy of accumulated plastic strain in the x and z di-
rections, respectively. Both are equal to 0 when e}fx = eg,
leading to ky, = k;; = 1, indicating isotropic mobility. The
anisotropy of mobility is related to the anisotropy of plastic
strain by € ~ 5 %, a characteristic scale of strain anisotropy.
As we model only small deformations in this paper, we ne-

glect advection of plastic strains.
2.2.3 Rbheological parameters

To facilitate comparison with the poro-LEFM model, we aim
to align the rheology of the poro-VEVP model as closely as
possible. Moreover, our focus here is on relating plastic de-
formation in a two-phase continuum to fluid-driven fracture.
Therefore, we suppress viscous deformation by assigning ef-
fectively infinite values to both the shear and compaction
viscosity. Furthermore, we assign a relative small, constant
value to the Kelvin viscoplastic viscosity n¥. The impact of
this viscosity is discussed in Sect. 2.3.

The elastic shear (Gy) and bulk (Zy) moduli follow
porosity-dependent relationships, as shown in Table 1. Note
that this bulk modulus relates to the compaction of a solid—
liquid aggregate, not to the compressibility of the solid phase.
In fact, we assume that the solid phase is incompressible,
which is enforced in the mass conservation equation.

2.2.4 Computational model

The governing equations, detailed in Appendix C, are discre-
tised on a staggered grid and solved using a finite-difference
method. This numerical framework, including the implemen-
tation of the poro-VEVP rheology, closely follows the ap-
proach in Li et al. (2023). We solve the momentum and mass
conservation equations using the FD-PDE framework (Pu-
sok et al., 2022a), built on PETSc (Balay et al., 2022a). The
model domain 2 is a tall rectangle, 2.44km in width and
20 km in height. It is discretised using a 61 x500 grid with a
cell size of Ax = Az =40 m. We refer to the bottom bound-
ary as B. A short time step of At = 1 year is chosen to ensure
solution accuracy. This time step is reduced further when the
maximum permeability enhancement (k,) increases. Details
are discussed in Sect. 3.1.

The model is initiated with a prescribed porosity field
designed to facilitate a direct comparison with the one-
dimensional poro-LEFM model which is infinitely long in
the z direction. The initial porosity field has a maximum
value of 0.2 at the centre of B. The initial porosity decays
laterally with a length scale of 10~* km and vertically with
scale 0.8 km according to a Gaussian function. This effec-
tively prescribes an initial porous region having a width of
one grid cell (40 m). Within this region, the porosity varies
only vertically — not horizontally. This setup intentionally de-
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termines the location where the dyke will form, ensuring only
one dyke is formed and that it propagates vertically through
the middle of the domain. While this initial condition guides
formation, the dynamics of the dyke’s propagation — associ-
ated with localised plastic tensile failure — is not prescribed.
It emerges from the solution of the governing equations when
stresses exceed the plastic yield limit.

To exclude the effect of external forces on the solution
within the domain, we prescribe zero shear and normal
stresses on all boundaries except the bottom. Along B, we
prescribe zero shear stress and zero normal velocity of the
solid phase. Liquid flows across B at a constant volume
rate Qg given by

" ap'
Q0=fMo¢ kz; <—B—Z+Apg>dx~ (13)
B

This is an integral of the vertical component of Eq. (10)
over B. Assuming a constant pressure gradient (3p'/dz) in
the region where ¢ > 0 at the bottom boundary, we can rear-
range Eq. (13) as a boundary condition for 3 p'/dz.

As we demonstrate below, this combination of domain,
boundary, and initial conditions is an appropriate choice
to simulate the poro-VEVP equivalent of dykes. We anal-
yse their behaviour with reference to the poro-LEFM dyke
model.

It should be noted that we do not prescribe the pressure
gradient at the bottom boundary of the poro-VEVP model
as dp'/dz =0, which is the far-field condition of the poro-
LEFM model. This is primarily due to the limitation inherent
in the finite computational domain and further affected by the
two-dimensionality in the poro-VEVP model. Firstly, a finite
domain cannot simulate an infinitely long dyke; thus, the bot-
tom boundary cannot be treated with a far-field condition.
Secondly, unlike the poro-LEFM model which only consid-
ers horizontal displacement, the 2D continuum model allows
for both vertical and horizontal deformation within the dyke
due to solid phase (de)compaction. This results in a more
complex solid stress tensor that must be balanced by the lig-
uid pressure. These solid stresses remain significant even fur-
ther away from the dyke tip, contrasting with the zero elastic
solid pressure assumed in the poro-LEFM model (details in
Appendix G). Given these restrictions, we define a constant
liquid volume rate Qg instead. The propagation rate of the
tip is a key point of comparison with the poro-LEFM model.
To quantify it, we define a tip location z; as the highest point
along the vertical cross section at x = 0 km where ¢ > 1073,
The tip speed is then diagnosed from the numerical results as
V= dZ[ / dr.

2.3 Energy analysis and the effective toughness

This section analyses the energy budget of the poro-VEVP
model of a dyke. It estimates the effective fracture toughness
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Table 1. Dimensional parameters for computational modelling.

6225

Parameter Name Unit Value

0 Solid density kgm™3 3000

ol Melt density kg m~3 2500

nk Viscoplastic viscosity Pas 1010

Gy Shear modulus GPa (1—-¢)G
Zg Bulk modulus GPa 1—-¢)Z
G Reference shear modulus GPa 5

V4 Reference bulk modulus GPa 10

C Cohesion MPa 5

0 Friction angle ° 30

ot Tensile strength MPa 1.25 (et =C/4)
My Mobility prefactor m?Pas)~! 1077

n Exponent in the permeability—porosity relation — 3

g Gravity constant ms—2 9.8

Pbg Background porosity 10-10
Qo Liquid volume flux rate m? yr_1 40

ka Maximum permeability enhancement - 10

€ Characteristic anisotropy of plastic strain - 0.05

in terms of the rate at which mechanical energy is dissipated
by the propagation of the dyke tip.

In the poro-VEVP model, the total work rate 1% deforming
the solid phase over a domain €2 is written as

W:/u‘;dA, with = " + w® + k. (14)
Q

Here, w is the local work rate at a point, decomposed into
viscous w", elastic w®, and viscoplastic wk components for
this Maxwell material. Appendix D provides details of the
formulation for each local work rate. The total poro-VEVP
work rate is similarly decomposed as

W =W+ Wwe+wk 15)

This can be compared with the (poro-)LEFM model, where
the work rate includes elastic and fracture components,

Wierm = Wegem + WiEem (16)

where the term with superscript “f” is the work rate to create
new surface area of the fracture.

As a basis for comparison of a steadily propagating, con-
stant flux, poro-VEVP dyke with a poro-LEFM dyke under
the same conditions, we require that W= WLEFM. Then, as-
suming that the elastic contributions to these work rates are
approximately equal, we obtain a relationship between the
dissipative parts,

WY+ WE =~ Wiy (17

We can use this result to diagnose a fracture toughness for
the poro-VEVP model.

https://doi.org/10.5194/gmd-18-6219-2025

In LEFM theory, the energy expended to propagate the
fracture a unit distance is commonly referred to as the strain
energy release rate G. This variable is also interpreted as
a measure of the material’s fracture toughness in Anderson
(2017), representing the resistance to fracture propagation.
For simplicity, we refer to G as the “fracture toughness”
throughout this paper. We adopt the same definition of G in
the poro-LEFM model and assume a constant propagation
speed ¢ = v, i.e. an identical speed between the two formula-
tions. Thus, the fracture energy rate is WEEFM = Guv, which
is the fracture energy budget per unit time. Combining this
with Eq. (17), we calculate fracture toughness G and criti-
cal stress intensity K. from the dissipation rate of the poro-
VEVP model as

v 7K
gV WV
Ut
26G\'2  [26 (W +wK)]"?
K. = (—) = |:—:| . (18)
1—v ve(1 —v)

The second equation is obtained from the LEFM relationship
between the critical stress intensity factor and the fracture
toughness for plane—strain deformation (Anderson, 2017),
with substitution of the first equation for the fracture tough-
ness in terms of the poro-VEVP dissipation rate.

As noted above, we suppress viscous deformation by pre-
scribing a Maxwell viscosity that is effectively infinite (with-
out changing the problem formulation). Because of this,
we have WY ~ 0; hence, the dissipation in the poro-VEVP
model is entirely viscoplastic. Furthermore, we choose a
small viscoplastic viscosity n¥ to reduce the viscous dissi-
pation in the Kelvin component. Appendix D2 discusses the
effect of X on the rate of mechanical energy dissipation.

Geosci. Model Dev., 18, 6219-6238, 2025
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3 Results

The results are divided into two parts. First we document the
output of the poro-VEVP model in terms of its dyke-like so-
lutions. Second, we describe the comparison of those solu-
tions to the poro-LEFM model.

3.1 Results of the poro-VEVP model

This section presents numerical solutions of the poro-VEVP
model. We first analyse a reference case (parameters listed
in Table 1) that demonstrates a steadily propagating dyke.
We then investigate the effects of varying viscoplastic vis-
cosity (r]K) and maximum permeability enhancement (k).

Figure 3a shows a snapshot of the porosity field from a rep-
resentative numerical solution (see the video in the Supple-
ment). The field includes a porous dyke with uniform width
that rises up through the middle of the domain. A close-up
investigation reveals that the central column of cells holds
>90% of the total volume of liquid in the domain. The
porosity in laterally adjacent cells is at least 10 times smaller.
This shows a negligible leakage through the wall and can
confine the porous dyke to one cell in width. This width re-
mains constant over time, enabling one-dimensional analysis
along the central column of cells that represents the dyke.
While advantageous in terms of comparison with a poro-
LEFM model in which dykes are narrow relative to our grid
spacing, this pattern raises questions about the grid-size de-
pendence of the results. We address questions of grid-size
dependence in Appendix E.

Figure 3b—d illustrates the steady advance of the dyke tip
and the liquid phase. Figure 3b depicts porosity ¢; Fig. 3c
depicts liquid pressure p'; Fig. 3d depicts local plastic dis-
sipation rate wX. Each panel shows four curves at different
times (0.8, 1.2, 1.6, and 2.0 kyr), confirming that the tip ad-
vances approximately the same distance in each 0.4 kyr inter-
val. This constant speed implies that a dynamic equilibrium
has been achieved at the moving tip, which is consistent with
the assumptions of the LEFM model. In Fig. 3b there is a re-
gion at z < 2 km where the interior solution adjusts to match
the boundary condition. Above this, for all four times, there
is a region with uniform ¢ ~ 0.13. The height of this region
grows linearly with time. Above this uniform region, each
curve has a region where the porosity varies from ¢ ~ 0.13
to 0 at the dyke tip.

Figure 3d shows that beneath the tip is a region where
plastic work is done. Indeed the position of the tip is char-
acterised by the spike in wX. We define the head of the
poro-LEFM dyke as where 1wX is non-zero — that is, the en-
tire region experiencing plastic tensile failure. In the refer-
ence case, this region is about 2.4 km high and confined to
the column of grid cells that contain liquid. This height re-
duces to about 1.3 km when the permeability enhancement is
100 times larger (dotted line). The head region has a promi-
nent solid displacement rate as shown in Fig. 3a. At the dyke
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tip, Fig. 3c shows that the pressure gradient is nearly singu-
lar; this is the location of tensile yielding, also corresponding
with the spike in dissipation rate.

The mechanics of the head region represent a key differ-
ence between the poro-VEVP and poro-LEFM models. In
the poro-VEVP model, buoyancy induces plastic tensile fail-
ure throughout the head region, whereas in the poro-LEFM
model, fracture is localised exclusively to the tip. This differ-
ence is reflected in the pattern of energy dissipation of each
model: distributed over a finite zone in poro-VEVP versus
localised to a point in poro-LEFM. It is also important to
note that our yield criterion combines both shear and tensile
failure (Li et al., 2023), which means that unlike in a poro-
LEFM model, we cannot isolate a purely mode-I (tensile)
fracture process.

The tail region in Fig. 3c shows another distinction be-
tween the two models. The poro-VEVP model has a con-
stant, non-zero pressure gradient d p'/9z ~ 3.2 MPakm~! in
the tail, contrasting to the zero far-field pressure gradient in
the poro-LEFM model. This distinction stems from the lim-
itations of the finite domain and the significant solid stress
gradient, which necessitates a balancing liquid pressure gra-
dient. This prevents the use of a zero pressure gradient as a
boundary condition on the bottom, as explained in Sect. 2.2.4
and further detailed in Appendix G.

Figure 3e shows tip propagation at various values of vis-
coplastic viscosity n® and permeability anisotropic enhance-
ment k,. All curves become linear in time after a short tran-
sient, indicating constant propagation speed. Speed increases
as ¥ decreases from 10'® Pas but converges to a constant
value below 10! Pas. Increasing k, further increases the tip
speed.

Figure 4a confirms the effect of k, on v; in a log—log plot,
indicating a power-law relationship arising from the mobility
closure,

v ki3, (19)

at constant influx rate. This relationship informs the choice of
time-step size to ensure the accuracy by maintaining a mod-
erate Courant number.

Figure 4a also demonstrates the agreement between the
power-law relationship measured in poro-VEVP numerical
solutions and the analytical prediction of the poro-LEFM
model. Use of Darcy’s law in the poro-LEFM model re-
quires that Qg o« My for constant width, which translates to
Qo o kapy; when fluid mobility is matched to the poro-VEVP
model. This relationship indicates that, for a fixed Qy, vary-
ing the permeability enhancement adjusts the far-field poros-
ity according to ¢g o< k, 1/ " Given that Qg = ¢ghc in the far
field, the propagation speed must therefore scale as ¢ o ké/ "
Recalling that we choose n = 3, this scaling governs prop-
agation speed in both models, despite their different values
resulting from distinct pressure gradients in the tail region.
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Figure 3. Results from a reference calculation of the poro-VEVP model. (a) Porosity and solid deformation field at #+ = 2 kyr. The white
curve represents the contour of ¢ = 1073, (b) Profiles of ¢ (solid lines) along a vertical cross section at x =0 for t = 0.8, 1.2, 1.6, and
2.0kyr. The dotted line represents ¢ = 0.13. (c) Profiles of p1 along x = 0 at the same time steps as (b). The slope in the tail region matches
the poro-LEFM prediction with a prescribed flow rate and porosity (the dotted line). (d) The corresponding local plastic dissipation rate along
x = 0. Solid lines represent the reference case with k; = 10; the dotted line shows a case with k; = 103 for comparison. The region below
the tip with non-zero wX is referred to as the head region; its size is denoted LK, (e) Tip propagation for different r)K (red) and kg (black).
Dashed red lines show propagation rate convergence for decreasing n¥ (1018, 1017, 1016, and 1013 Pas), as indicated by red arrows. The last
one converges to the reference case, 1019pas (thin solid line), with a speed of v¢ =7.6m yr_l, matching the poro-LEFM prediction. The
black lines show the variation of propagation speed for k, = 10 (reference case), 102, 103, and 10%.
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Figure 4. Key characteristics of simulated dykes as a function of the log of k,. (a) The power-law relation between tip speed vt and anisotroplc
permeability enhancement k,. Here vy is scaled by the speed in the reference case, vg = 7.6 m yr_1 (b) The rate of plastic work WX increases
with k, but only by ~ 7 % or less for each 10-fold increase of k,. Here WX is scaled by the reference result WK =3.1Pas L. (¢) The size
of plastic zone LK decreases with k. The scaling factor is the reference result Lg =2.4km. (d) The dissipation intensity at the tip W*
increases with k,. It measures the ratio of the dissipation rate in the tip cell to the overall rate. (e) Comparison of the porosity profiles of the
poro-VEVP model (solid lines) with the poro-LEFM model (dashed lines). The critical stress intensities are K¢ = 0.51 (black), 0.34 (red),
and 1.08 (green) GPa m!/2, calculated using the energy analysis of the poro-VEVP model (Eq. 18). Thicker solid lines indicate plastic zones

in each case.

Figure 4b shows that the overall plastic dissipation rate pation rate to be essentially independent of k,. Recalling the

increases with permeability enhancement but only by 20 % calculation for fracture toughness and critical stress intensity
over a factor of 10% change in k,. This change is negligi- in Eq. (18), we obtain the following power-law relationship
ble compared to the 10-fold increase in propagation speed for G and K, in terms of kg,
shown in Fig. 4a. Therefore, we can consider the total dissi- ~1/3 ~1/6.

Goxcky 7, Kook, (20)
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This contrasts with (poro-)LEFM models, where fracture
toughness is independent of permeability, while the fracture
energy rate changes in proportion to propagation speed.

Figure 4c and d show that larger permeability enhance-
ment leads to a shorter plastic zone LX, meaning a smaller
head region and more intense plastic dissipation at the
tip. This intensity is measured by the ratio of dissipation
rate in the tip cell to the overall dissipation rate, W* =
wXAxAz/WK. Here wX denotes the work rate at the tip,
which corresponds to the maximum value of curves in
Fig. 3d. Given that WX is constant when fixing Q¢ and vary-
ing k,, Fig. 4d also represents the variation of the peak dis-
sipation rate u'JrIf1 as a function of the permeability enhance-
ment. Together, Fig. 4c and d indicate that increasing k, re-
duces head height LX and focuses plastic failure onto the
tip. This trend provides an explanation for the reduction of
fracture toughness associated with increasing k,.

3.2 Comparison between the poro-VEVP and
poro-LEFM models

This section compares the poro-VEVP and poro-LEFM
dykes in terms of porosity profiles and stress distribution.
We impose that the poro-LEFM dyke has the same width as
the poro-VEVP dyke and has a far-field porosity equal to the
tail-region porosity. Based on the energy analysis of the poro-
VEVP results, we estimate an effective fracture toughness G
and thus a critical stress intensity factor K., which we then
apply to the poro-LEFM model. In the comparison below, we
evaluate whether this estimated K is an appropriate value to
link these two models.

On the basis of this estimated K, Fig. 4e compares poros-
ity profiles between the poro-VEVP (solid lines) and poro-
LEFM (dashed lines) models. The panel shows three cases:
the reference case (black), a case with increased viscoplas-
tic viscosity n¥ (green), and a case with increased maxi-
mum permeability enhancement k, (red). When n¥ is rela-
tively small (black and red lines), the continuum and fracture
models match well near the tip, suggesting that the plasticity-
based K. (and thus G) can quantitatively relate these two
models. However, when ¥ is relatively large (green), the
two models are not closely aligned, even near the tip. Consid-
ering all three cases, we notice that the poro-VEVP dykes do
not have the bulbous head which appears in the poro-LEFM
dykes. What we have defined as the head in the poro-VEVP
model (LX), where plastic failure takes place, is much shorter
than the head height in the poro-LEFM model.

Figure 5 compares components of the stress tensor be-
tween the two models in the zero-porosity region. The ten-
sor is evaluated at points (blue dots in Fig. 5a) around a
circle centred at the dyke tip and along a vertical line up-
wards from the tip (yellow dots in Fig. 5a). The stress calcu-
lation for the poro-LEFM is presented in Appendix F, which
is identical to the LEFM model in the zero-porosity region.
Figure 5b shows agreement of stress components between
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poro-VEVP and (poro-)LEFM along the azimuthal coordi-
nate ¥ along a circle of radius » = 160m (=4Ax) in the
region ¥ € [—7m /8, 7 /8]. Regarding the stress distribution
along the radial direction, the (poro-)LEFM model predicts
that o, and o, are both proportional to 1/./r, where r is
distance from the tip. Figure Sc shows that the poro-VEVP
results is somewhat but not entirely consistent with this pre-
diction; o, ~ r~!/? when r < 5Ax, and o, ~ r~'/2 when
r € [4,16]Ax.

Li et al. (2023) made a similar comparison of the stress
distribution between models but for the case of a dyke driven
by uniform horizontal tension, imposed in the far field. The
present paper enhances the credibility of such a comparison
in two key ways: first, the poro-VEVP dyke is driven purely
by buoyancy, consistent with the (poro-)LEFM dyke; second,
the stress intensity factor is derived from the plastic dissipa-
tion rate of the poro-VEVP model, rather than using a fitted
value.

4 Discussion

In the preceding sections, we compared poro-VEVP and
LEFM models for simulating buoyancy-driven dykes. The
comparison was facilitated by the introduction of an inter-
mediary poro-LEFM model. This section discusses the re-
sults and addresses the slow propagation and high toughness
of poro-VEVP dyking.

This study demonstrates that the poro-VEVP model can
represent dykes with plastic tensile failure. Specifically, by
incorporating anisotropic permeability, this model can simu-
late a long, thin dyke-like melt conduit with minimal liquid
leakage through the walls, such that it is generally consis-
tent with an LEFM model. The dyke width is determined by
the grid size, which is a limitation of the present discretised
solutions of the continuum models (see Appendix E for de-
tails). Despite this limitation, we can validate the poro-VEVP
model against a poro-LEFM model, comparing the porosity
and stress distributions of dykes with the same width.

The slow propagation speed of poro-VEVP dykes arises
from the large drag on fluid motion under Darcy flow com-
pared to Poiseuille flow in the LEFM model. This is quanti-
fied by the mobility My, the ratio of permeability to liquid
viscosity. Mobility is parameterised in terms of the product
of a prefactor My and a power of the porosity ¢. While ¢ is
part of the solution and cannot be directly manipulated to
control the speed, My can be increased within a dyke by pre-
scribing a permeability enhancement k,. Above we showed
that the speed increases with k, following the power law,
o k;/ n, when the liquid volume influx is fixed. However, a
faster dyke requires a smaller time step for accuracy, thereby
increasing the computational cost. Therefore, when using the
poro-VEVP model, consideration must be given to balancing
the desire for more accurately representing rapid dyke prop-
agation with the computational cost this incurs.
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Figure 5. Comparison of stress components between the poro-VEVP model and the (poro-)LEFM model with K. =510 MPa m!/2.
(a) Fracture-tip coordinate system, where angle ¢ is measured counter-clockwise from the vertical axis and where radial distance r is
measured from the origin. The background grey scale represents the liquid overpressure A P. (b) Fracture-tip stress distribution. LEFM solu-
tions are depicted as solid lines, while poro-VEVP stress components as points evenly spaced in ¢ around the fracture at » = 160 m (indicated
by blue dots in panel a). Regions where || > 77 /8 are shaded grey. (c) Fracture-tip stress asymptote. Squares represent poro-VEVP results
directly ahead of the fracture tip (along © = 0; yellow points in panel a). The dashed line represents the LEFM 1/./r singularity.

The fracture toughness of poro-VEVP dykes can be cal-
culated from the plastic dissipation energy of the continuum
model by assuming its equivalence to the fracture energy in
the poro-LEFM model. In this way, we relate the toughness
value to the speed of tip propagation and the size and inten-
sity of the distributed plastic failure over a head region close
to the dyke tip. This region is much shorter than the bulbous
head in the poro-LEFM model, defined by where the porosity
is distinct from the far-field porosity (2.4 km versus 12 km
for the reference case). The finite-size failure region repre-
sents another difference to the poro-LEFM model, in which
fracture occurs at the tip only. Despite this, by using the es-
timated toughness in the poro-LEFM model, we achieve rea-
sonable agreement in the porosity profiles and stress distri-
bution between the two models.

This toughness value is influenced by various physical pa-
rameters that alter the dynamics in the head region, includ-
ing permeability enhancement (k;), shear (G) and bulk (Z)
moduli, cohesion (C), tensile strength (o¢), and volume flux
rate (Qp). Figure 4 shows that increasing k, leads to a de-
crease in G, while Fig. 6 demonstrates a positive correla-
tion between G and increasing values of G, C, o, and Qy.

https://doi.org/10.5194/gmd-18-6219-2025

The elastic bulk modulus Z does not have a significant effect
onG.

These parameters affect fracture toughness in different
ways. Increasing k, reduces the head height (Fig. 4c) and lo-
calises dissipation to the tip (Fig. 4d), resulting in a reduced
toughness. A similar relationship between the localisation of
plastic dissipation and toughness is obtained by varying the
elastic shear modulus (Fig. 6, first column). Increasing G
leads to increased toughness, accompanied by a longer plas-
tic zone with a similar total dissipation rate, meaning a more
distributed failure and taller head. Increasing cohesion and
tensile strength also increases toughness, but it does so by
increasing the overall dissipation rate without affecting the
size of the plastic zone (Fig. 6, third and fourth columns). In
these cases, the strength of plastic failure, rather than its dis-
tribution, is the primary factor associated with the variation
of toughness. Furthermore, while a higher liquid volume flux
increases the overall dissipation rate more than cohesion or
tensile strength, it has a lesser effect on fracture toughness
(Fig. 6, fifth column). This can be attributed to the increased
propagation speed, which lowers the dissipation work per
unit length of fracture growth.

Geosci. Model Dev., 18, 6219-6238, 2025
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Figure 6. Dependence of the overall dissipation rate WK, propaga-
tion speed vy, fracture toughness G, and the head height LX on the
physical parameters: the shear modulus G, the bulk modulus Z, the
cohesion C, the tensile strength o, and the volume influx rate Q.
Grey and black bars in each panel represent the variation of each
variable by changing x2 and x1/2, respectively, on the reference
value of each parameter. The variation is shown as the change rela-
tive to the corresponding result in the reference case.

The dependence of toughness on liquid volume flux is in-
triguing because, in the poro-LEFM model, liquid-phase dy-
namics do not affect solid properties. This may be explained
in terms of two related ideas. First, the toughness as evalu-
ated in poro-VEVP is associated with the energetics of the
head region. This region has non-zero porosity, making the
dissipation a property of the two-phase medium, i.e. some-
thing affected by the liquid phase. In contrast, the non-zero
porosity in the poro-LEFM dyke does not affect the fracture
energy because the fracture occurs precisely at the tip, where
the porosity is zero.

Second, this sensitivity of toughness to liquid flux resem-
bles that of more complex fracture mechanics theories like
elastic plastic fracture mechanics (EPFM) (Anderson, 2017).
EPFM applies a plastic yield limit to an elastic fracture-
mechanics model. On this basis, it predicts a plastic zone
around the fracture tip, where the intensified elastic stress
reaches the yield limit. Papanastasiou (1999) uses EPFM to
model a constant-flux, fluid-driven fracture, showing that a
higher liquid flux leads to a larger plastic zone and, con-
sequently, higher effective toughness and stress intensity.
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A large toughness and stress intensity in the poro-VEVP
model can therefore be broadly related to plastic dissipa-
tion in the EPFM model. In fact, observations suggest that
a large toughness might be possible in the field: Gudmunds-
son (2009) suggests a toughness value in volcanic edifices
2 orders of magnitude larger than that reported by laboratory
experiments. Quantitatively aligning the poro-VEVP model
with both EPFM model and field observations is beyond the
present scope.

One limitation of the present research arises from the sim-
plified form of anisotropic permeability that we impose. In
particular, our formulation modifies only the horizontal or
vertical permeability. This is appropriate if the dyke (or sill)
aligns with one of these two directions, but it is unsuitable for
modelling curved dyke trajectories, such as those influenced
by ambient stresses (Maccaferri et al., 2014). Thus, the for-
mulation of anisotropic permeability needs to be generalised
to enable dyke propagation in an arbitrary direction. We will
address this in future work.

Another limitation of this work is the difference in bound-
ary conditions between poro-VEVP (constant volume flux,
leading to a non-zero pressure gradient) and poro-LEFM
(zero pressure gradient at the far-field). This is, however,
unavoidable because of the limitations of the finite domain
and also the two-dimensionality of the continuum model. As
a result, the stresses between the solid and liquid balance
differently inside of the dyke (see Appendix G for details).
Nonetheless, we achieve a reasonable agreement between the
two models near the tip by assuming the equivalence between
plastic dissipation and fracture energy.

The plasticity model itself has limitations, some of which
were discussed in Li et al. (2023). For instance, the model
cannot distinguish between failure modes, and the dyke
width is dependent on the grid resolution. Moreover, meth-
ods for plastic regularisation are an active area of research;
for example, Duretz et al. (2023) make a comparison of three
regularisation methods in the context of simulating shear fail-
ure (Duretz et al., 2023). A broader exploration of plasticity
theory is, however, beyond the scope of this benchmarking
study.

In conclusion, with some caveats, the representation of a
dyke in the continuum, poro-VEVP formulation is consis-
tent with linear elastic fracture mechanics. This consistency
supports the validity of our approach for geodynamic ap-
plications. Moreover, it gives us confidence in incorporating
poro-VEVP into large-scale rifting models requiring consis-
tent magma transport in both ductile and brittle regions of the
lithosphere (e.g. Pusok et al., 2025).

S  Summary
This study compares dyke propagation in a poro-

viscoelastic—viscoplastic model with that in a canonical lin-
ear elastic fracture mechanics model. The comparison is en-
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abled by interposing a novel poro-LEFM model. It highlights
two key discrepancies: slow propagation speed of the poro-
VEVP dyke and the requirement for large fracture toughness
in the LEFM model to match the poro-VEVP results. We
have reported on our progress in addressing these discrep-
ancies.

Slow propagation speed in the poro-VEVP model is pri-
marily attributed to low permeability relative to an open
fracture. This limitation can be mitigated by introducing an
anisotropic permeability enhancement. The large equivalent
toughness value inferred for the poro-VEVP model can be
explained in terms of plastic dissipation of mechanical en-
ergy. This effective fracture toughness depends on various
physical parameters that affect the plastic dissipation rate
in the solid-liquid aggregate. The poro-VEVP models now
incorporates a new formulation for the constitutive relation
between compaction stress and strain rates, which improves
solver reliability over that used by (Li et al., 2023). Future
development will focus on implementing the full anisotropic
permeability tensor to investigate how the ambient stress
field influences dyke (or sill) emplacement.

Appendix A: Mathematical formulation of the
poro-LEFM model

This section provides details of the mathematical formulation
of the poro-LEFM model that was introduced in Sect. 2.1. It
explains how the governing equations of the liquid and solid
phases are obtained and how they are non-dimensionalised.

Al The liquid phase

We derive a mass continuity equation for the poro-LEFM
model from Darcy’s law and the mass conservation equation
of a two-phase continuum model,

¢(v‘ —vS) = M, (VP‘—p‘g), (A1)
z—i’ +v. <¢v1) —0. (A2)

We decompose the full liquid pressure gradient, V P!, into
static and dynamic components as

VP =p'g+V)p. (A3)

We denote the vertical component of liquid and solid
velocity by v' and v®. Taking the vertical component of
Eq. (A1) and assuming zero vertical solid velocity (v5 = 0),
we obtain the liquid flux rate as

1_ dp'
pv = My e + Apg | . (A4)

We assume zero horizontal component of liquid velocity,
which implies no leakage through the fracture wall. Then
Eq. (A2) reduces to
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9 v
9¢ 9oV _
ot 0z

0. (AS5)

For an infinitely long buoyancy-driven dyke, we expect
uniform propagation at a fixed speed with constant far-field
porosity.

Assuming pure buoyancy drive (i.e. dp'/dz = 0 at the far
field), Eq. (A4) yields the constant propagation speed,

o My (¢>o)A
®o

where ¢ is the far-field porosity. In this case, the far-field
liquid volume rate is Qo = ¢phc.

g (A6)

A2 Solid and liquid stresses

We formulate the elastic solid stress distribution p*(z,t)
of the poro-LEFM model following the LEFM model (e.g.
Weertman, 1971; Lister, 1990; Roper and Lister, 2007). This
elastic stress, associated with dyke opening in the x direc-
tion, intensifies towards infinity at the tip, characterised by a
critical stress intensity K.

The mathematical formulations are

o]

sen=— (G )L [2heG.0) d&

pn= (1—1})271/ 98 E—z (A7)
K.

Pi(z,1) = — atz — z;h. (A8)

[2(z — 201"

Here, h¢ represents the horizontal deformation required to
open a porous dyke of width 4 with porosity ¢, and z is the
tip location.

We assume a force balance between the solid and liquid
phases in the non-zero porosity region, so p! = p* across the
dyke in the poro-LEFM model.

A3 Non-dimensionalisation

We transform the coordinate system to be fixed with respect
to the fracture tip, changing (z,1) to z'(t) = (z0 +ct) — z,
where z{ is the initial tip location.

We take the following non-dimensionalisation,

P Z:Z/(&)‘”
90’ (1-vaeg)
~s g Gheo -l
N <(1—v)Apg> ’
. —3/4
Re= ke T220)  onp (A9
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The system of governing equations (Eqs. 1-4) then leads
to the following non-dimensionalised system,

” 2

dp =<i> 1, (A10)

dz o}

o1 [dRE) &

5@ = n/ e (A11)
0

ﬁsm—w, atz — 07, (A12)

p~1, atz — oo. (A13)

Appendix B: A new formulation of A P in the
poro-VEVP model

This section addresses an issue with representing the consti-
tutive law for A P using the effective viscosity approach and
presents a new formulation to resolve this issue. This con-
stitutive law relates the compaction stress AP to the com-
paction rate C.

We recall that the compaction rate for a poro-VEVP rhe-
ology is

C=C"+C+CK, (B1)

[T TN T]

where superscripts “v”, “e”, and “K” represent viscous, elas-
tic, and viscoplastic components, respectively. Substituting
the rheological models of the viscous and elastic components
into the right-hand side of Eq. (B1) (cf. Li et al., 2023), we
rearrange the resulting formulation as

(1-¢)AP =—¢"(C'—CX),

-1
1 1
where ¢V = | — + ,
&+ zx)

o [C_ (1—¢>AP°].
Zy At

(B2)

Here, ;“(;J’ and Z are the compaction viscosity and bulk mod-
ulus, respectively, At is the time-step size, A P° is the over-
pressure at the previous time step, and CX is the plastic com-
paction rate.

The effective viscosity approach assumes

(1-¢)AP = —LeriC, (B3)

where Cefr is held constant when solving the force-balance
equation for strain rates. It is determined as follows. If there
is no plastic yielding or no dilatancy when yielding (i.e.
CK =0), then Zefr = ¢'°. Otherwise, when CX #£0, Zefr =
—(l_'é#, where AP is calculated using the return map-
ping method (Krieg and Krieg, 1977) to constrain stresses on
the yield surface. However, s becomes infinite when C' = 0
and A P # 0. In this circumstance, the effective viscosity ap-

proach is no longer appropriate.
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To address this issue, we propose an alternative formula-
tion of AP as
(1=¢)AP =—¢"C'+ (1 - ¢)APg, (B4)
where (1 —¢)A Py = ¢¥°CX represents a pressure increase
related to plastic dilatancy in our specific formulation. If dila-
tancy occurs during plastic failure (CX # 0), then A Py # 0.
Similar to Zeff, A Pq) is calculated after constraining stresses
on the yield criteria and is held constant when solving force-
balance equations for strain rates. This constant is calculated
by

(1=@)APy=(1—-¢)AP+*C, (B5)

which is always a finite value. Thus, the new formulation
using the parameter A Pgj resolves the degeneration issue in
the effective viscosity approach.

The algorithmic and code implementation of the new for-
mulation is nearly the same as that of the old formulation
(cf. Appendix D in Li et al., 2023). The only change is the
update of APy instead of Zefr in order to apply the plastic
limit on AP. Code is available on GitHub at https://github.
com/YuanLiAC/poroVEVP (last access: 6 September 2025).

Appendix C: Full system of equations for the
poro-VEVP model

We list the full system of equations for the poro-VEVP
model. Details on its development and implementation can
be found in Li et al. (2023). Note that the new formulation
of AP and the tensor-form permeability are employed in the
equations below.

The system of conservation and porosity-evolution equa-
tions is

—Vpl + V. (zneffé/) +V (é‘vec/) —VI[(1-¢)APal

—¢pApg =0, (ChH
V-vS—V-[M¢-(Vp1+Apg>]=O, (€2)
=9 g [(1-g)0] =0, (C3)

at

where the modified deviatoric and isotropic strain rates are

L1 . 6T _ 2o s (1-¢)z°
é E[(Vv + (Vv*) 3(V v)I>+G¢At ]
(1—-¢9)AP°
C ZgAr

=V (c4
Here 7° and AP° are the previous deviatoric stress and
overpressure, At is the time-step size. The dilatancy pres-
sure A Py is calculated by using Eq. (B5). The effective vis-
cosity nefr is calculated as nerr = (1 — @) tr/2¢q1, such that

= +/T : T/2 and & = /€ : €/2. The deviatoric stress and
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overpressure are constrained by the rate-dependent yield sur-
face such that

F (h, Pe,ir) = \/1121 + (Ccosf — oy sinf)?
— (Ccosf + P.sind) —n%i <0, (C5)

where P, is the effective pressure transiting from Terzaghi’s
stress (AP = PS — PY) to the full solid stress (P*) at small
porosity,

P.= AP +[1—exp(—¢c/9)] P. (C6)

Here, P! is the full liquid pressure taking into account of
static pressure. We choose ¢, = 107°.

The plastic modifier A is defined associated with plastic
potential Q such that

Y0 20

f=i—= *=-i—. (C7)
ot d P,
Here Q is defined as
O (Pe, 1) = \/1121 + (Ccos — aysinb)?
— (CcosO +cq) Pesing)
with cai = exp (—=@c/9) - (C8)

Here cq) is the dilatancy coefficient.

Note that we choose cq to depend on porosity. This choice
contrasts with the stress-dependent formulation used in Carol
et al. (1997), which studies cracks in an engineering context.
In our model, cq; & 1 everywhere, the porosity is not vanish-
ingly small, and c¢gq; & 0 in non-porous regions. The exponen-
tial function is chosen to provide a smooth transition between
these two states.

Although our models in this paper are dominantly elastic
and plastic, we retain viscosity in the formulation for gener-
ality. We employ the following porosity-dependent relation-
ships for the Maxwell shear and bulk viscosity;

ne = noexp(—=27¢), &y =no/. (C9)

Here we choose ng = 10%0 Pas. For numerical stability, we

limit their variation range as ny > 107350 and lp < 10370.
With this choice of parameter, the minimum shear Maxwell
time is extremely large, 179/ G ~ 10° years, compared to the
simulation time (< 10* years). The compaction Maxwell
time has a similar magnitude too. Therefore, it is essentially
a poro-elastic—viscoplastic rheology in this way.

Appendix D: Energy analysis of the poro-VEVP model

This sections explains the calculation of mechanical work
rates in the poro-VEVP model associated with different rhe-
ological component of the solid phase. Then it discusses the
condition that the viscous work in the Kelvin viscoplastic
component is negligible.
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D1 Local work rates

The local work rate associated with deformation at a point
can be expressed as the product of the strain rates and effec-
tive stresses causing the deformation (Batchelor, 2000; Katz,
2022). In the poro-VEVP model, the local work rate is given
by

w=0c°T":é, (D1)

where the effective stress and strain rates can be decomposed
into isotropic and deviatoric parts,

—eff ¢ . 1 .
o= —(1=@)API+(1-9)7", é= :Cl+é. (D2)

Here, C and é denote the isotropic (compaction rate) and
deviatoric strain rates, respectively.

Substituting Eq. (D2) into Eq. (D1) and regrouping with
respect to deviatoric and isotropic deformation (cf. Katz,
2022), we obtain

w=(1—¢)t:é—(1—$)APC. (D3)

The strain rates can be further decomposed into viscous,
elastic, and viscoplastic components:

é=év+ée+éK=%(Cv—i—ce—i—CK)I—i—(éV—i—ée—i—éK). (D4)

Consequently, the local work rate can also be decomposed
into viscous, elastic, and viscoplastic components:

w=w" + w4+ wk. (D5)

Each term on the right-hand side includes contributions from
both deviatoric and isotropic terms. For example,

Wk = ek = (1 —p)r*: 8 -1 —p)arck.  (D6)
D2 Viscoplastic viscous dissipation energy

The purpose of this subsection is to provide a brief justifica-
tion for our choice of a small Kelvin viscosity nK, rather than
to present a formal mathematical derivation. In short, a small
value of ¥ ensures that viscous work within the viscoplastic
component is negligible.

In the poro-VEVP model, a Kelvin viscous element with
viscosity n¥ is introduced to regularise the computation of
plastic deformation. It increases the total stress of the vis-
coplastic body by a rate-dependent overstress while sharing
the same strain rates as the plastic element. Therefore, the
dissipation rate of the viscoplastic component can be decom-
posed as

Wi = WP 4w, (D7)

where wP and w" are the Kelvin plastic and Kelvin viscous
dissipation rates. The Kelvin viscous dissipation arises from
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the rate-dependent overstress néX and thus can be written
as w' = pKeK : K,

Comparing Eq. (D7) with Eq. (D6), we find that the Kelvin
viscous term is negligible if ||n%e¥| « ||Eeff||. In the tensile
failure regime, the magnitude of effective stress is about the
similar size to the tensile strength when the Kelvin viscosity
is sufficiently small, that is ||Eeff|| ~ oy.Therefore, the condi-
tion for negligible Kelvin viscosity can be written as

K Ot
< m . (DY)

We use preliminary computations to extract le¥ || and then
estimate the conditions for n¥. The maximal plastic strain
rate is higher when the propagation rate is faster. In a com-
putation that has v~ 7myr~!, ||é¥| <10719s~!. Taking
ot = 1.25 MPa, we find n¥ < 101 Pas. A sensitivity test to
the value of #X can also confirm whether the effect of Kelvin
viscosity is negligible.

In this paper, we choose n¥ =10'°Pas which is suffi-
ciently small for all cases considered.

Appendix E: Mesh dependency of the poro-VEVP
model

We perform mesh-dependency tests, varying both time-step
and cell sizes, with results shown in Fig. E1. Since the dyke
width in our simulation always equals the width of one grid
cell, these tests require consideration of the boundary con-
ditions. Holding Qg (the volume flow rate into the domain)
constant causes Q¢/Ax (the volume flux) to vary with grid
spacing, altering the pressure gradient boundary condition in
Eq. (13) and significantly affecting results. Conversely, hold-
ing the flux constant ensures a constant pressure gradient but
results in a varying flow rate Qg as grid size changes. There-
fore, we conducted two sets of tests: one with fixed flow rate
and one with fixed flux.

Figure Ela demonstrates convergence in propagation
speed (v¢) with respect to decreasing time-step size (At). Re-
ducing At from 0.5 to 0.25 years increases v by only approx-
imately 2 %. Thus, At = 0.5 years provides sufficient accu-
racy for the reference case.

Figure Ela further shows that propagation speed is inde-
pendent of cell size when the flux (Qg/Ax) is held constant
rather than the flow rate (Qg). This difference highlights a
limitation of the current model: the dyke width cannot be
smaller than the cell width.

Figure Elb indicates that the viscoplastic dissipation
rate WX depends on cell size for both fixed flux and fixed
flow rate conditions. For the fixed flux case, it follows an
approximate power-law relationship, WX o« Ax!/2. Because
the total dissipation rate is the integral of the local dis-
sipation rate over the entire domain (Eq. 14), this depen-
dency reinforces the model’s limitation stated above. Note
that Az = Ax in these tests.
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Figure E1. Mesh-dependency test for fixed-flux (solid black lines)
and fixed-flow rate (dashed red lines) cases. The domain width is
held constant while varying cell size of the mesh. (a) Variation of
propagation speed (vt) versus cell size (Ax). Solid circles repre-
sent variations in cell size with a fixed time step of At = 0.5 years.
Open circles that are aligned vertically represent variations in the
time step (At =2, 1, 0.5, and 0.25 years, from bottom to top). De-
creasing At values leads to an increase of vt until a convergence is
achieved, as indicated by the arrow. The reference case uses Ax =
Az =40m and At = 0.5 years. (b) Variation of the viscoplastic dis-
sipation rate (WK) versus cell size (Ax). The inset triangle illus-
trates the approximate power-law relationship, WK~ Ax1/2] for
the fixed flux case (black line).

In summary, while the dyke propagation speed can be
insensitive to grid spacing when fixing the liquid flux, the
model requires further development for the viscoplastic dis-
sipation rate to converge to a mesh-independent value.

Appendix F: Stress distribution of the (poro-)LEFM
model

The stress distribution at the tip of the poro-LEFM model is
identical to the mode-I fracture of the LEFM model,

[axx ] K. {cos(z?/Z)[l—sin(z?/2)sin(3z?/2)]

cos(/2)[1 + sin(¥/2) sin(39/2)]
sin(¢/2) cos(1/2) cos(31/2)

. (FD

2mr

where r and ¥ are the polar coordinates from the fracture tip,
as shown in Fig. 5a. This formulation has also been used in
Li et al. (2023).

Appendix G: Stresses and pressure inside of the dyke

This section discusses the differences in stresses and pressure
inside the dyke between the poro-VEVP and poro-LEFM
models. Taking p' (liquid pressure) at the tail as an example,
we have p' =0 and 9p'/dz =0 in the poro-LEFM model
but non-zero values for both in the poro-VEVP model. These
differences stem from the nature of geometry and the com-
plexity of stress balances.

https://doi.org/10.5194/gmd-18-6219-2025



Y. Li et al.: Buoyancy-driven dykes: a comparison

Firstly, the poro-LEFM model assumes an infinitely long
dyke, while the poro-VEVP model cannot make such an as-
sumption. Consequently, the far-field condition of zero pres-
sure and pressure gradient can be applied directly to the poro-
LEFM model but not to the poro-VEVP model.

Secondly, the stress balance in the poro-LEFM model
is simpler than in the poro-VEVP model. The poro-LEFM
model assumes p! = p*® and takes p® as an elastic stress of the
solid phase under one-dimensional deformation, as shown
in Eq. (A7). However, the poro-VEVP model has a two-
dimensional force-balance equation involving the gradient of
tensor-form solid stresses and an extra term of static pressure
gradient  Apg, as shown in Eq. (6).

This complexity is evident in the force-balance equation
along the dyke, which is the z-component of Eq. (6),

ap!

9 s 9 s
_g + a [(] _¢)sz] + 8_2 [(1 _¢)Tzz]

0
—8—Z[(1—¢)AP]+¢A,0g=O. (G1)

Here, rjz and rzsz are components of the tensor-form solid
deviatoric stresses, and A P is the compaction stress. These
stresses are associated with deformation in both x and z di-
rections. Even assuming no solid deformation, we have
dp'/dz = ¢ Apg, where liquid pressure balances with static
pressure. In general, none of the terms in the equation can be
eliminated through scaling analysis.

Figure G1 shows numerical results of the vertical distri-
bution for all five terms in the equation above for the refer-
ence case at + = 2 kyr. Sufficiently far from the tip, all terms
become invariant with respect to their vertical position, and
none can be considered zero. Therefore, pl is coupled with
the gradient of full tensor-form stresses of the solid phase
and thus also the full tensor-form strain rates. These values
can only be determined through numerical computation, pre-
venting us from prescribing boundary conditions consistent
with the supposed stress gradient in the tail. This unavoidable
difference leads to a boundary layer at the bottom serving as a
transition in the numerical results, as shown in Fig. 3b and c.

Hence, quantitatively comparing stresses inside the dyke
between the poro-VEVP and poro-LEFM models may not
be reasonable, as evidenced by the mismatch in the grey re-
gion in Fig. 5b. However, we can compare stresses in the
zero-porosity region outside the dyke (Fig. 5), where both
models describe a two-dimensional elastic-stress distribution
associated with the tip fracture. The poro-LEFM model’s 2D
stress field components are shown in Eq. (F1), representing a
toughness-dominated distribution. The poro-VEVP model’s
components are computed numerically, with the dominant
rheology being elasticity and the strong plastic deformation
at the tip qualitatively similar to a discrete fracture. This in-
tense plastic deformation is seen as the abrupt peak of plastic
dissipation energy in Fig. 3d.

We also observe similarity in the porosity distribution in-
side the dyke near the tip (Fig. 4¢), implying similar  p!/dz
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Figure G1. Components of vertical stress gradients of the reference
case att = 2kyr.

near the tip due to Darcy’s equation. Figure G1 shows d p'/dz
can be a leading term in the force-balance equation near the
tip, suggesting similar fracture-dominated deformation de-
spite different far-field stresses in the poro-VEVP dyke.

Code and data availability. The current version of model is avail-
able at https://github.com/YuanLiAC/poroVEVP (last access: 22
September 2025) under the MIT licence. The exact version
of the model used to produce the results used in this pa-
per is archived on https://doi.org/10.5281/zenodo.14238175 (Li
et al., 2024), as are input data and scripts to run the model
and produce the plots for all the simulations presented in this
paper. The poro-VEVP model has dependencies on FD-PDE
(https://doi.org/10.5281/zenodo.6900871, Pusok et al., 2022a) and
PETSc (https://petsc.org, Balay et al., 2022b). Visualisation and
post-processing utilised the colour scheme from Scientific Colour
Maps (https://doi.org/10.5281/zenodo.1243862, Crameri et al.,
2020; Crameri, 2021). Full simulation data can be provided by
Yuan Li on request.

Supplement. The supplement contains an animation illustrating the
evolution of the porosity field and dyke propagation for the refer-
ence calculation of the poro-VEVP model. The supplement related
to this article is available online at https://doi.org/10.5194/gmd-18-
6219-2025-supplement.

Author contributions. All authors contributed through regular
meetings and critical feedback. RK conceptualised the research, ac-
quired the funding, and supervised the project. YL developed and
implemented the poro-VEVP method, made the analysis and the
visualisations. YL and TD developed codes for the poro-LEFM
model. YL and AP developed the codes for the poro-VEVP model.
YL and RK wrote the paper. TD and AP provided critical feedback
on the writing. All authors revised the final version of the paper.

Geosci. Model Dev., 18, 6219-6238, 2025


https://github.com/YuanLiAC/poroVEVP
https://doi.org/10.5281/zenodo.14238175
https://doi.org/10.5281/zenodo.6900871,
https://petsc.org
https://doi.org/10.5281/zenodo.1243862
https://doi.org/10.5194/gmd-18-6219-2025-supplement
https://doi.org/10.5194/gmd-18-6219-2025-supplement

6236

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. This research received funding from the Euro-
pean Research Council under the Horizon 2020 research and in-
novation programme (grant agreement 772255). Adina E. Pusok
acknowledges support from the Royal Society (URF\R1\231613).
Numerical simulations were computed on the Arcus-C cluster from
the Advanced Research Computing (ARC) services at the Univer-
sity of Oxford.

Financial support. This research has been supported by European
Horizon 2020 (grant no. 772255) and the Royal Society (grant
no. URF/R1/231613).

Review statement. This paper was edited by Ludovic Riss and re-
viewed by two anonymous referees.

References

Abbo, A.J. and Sloan, S. W.: A Smooth Hyperbolic Approximation
to the Mohr—Coulomb Yield Criterion, Comput. Struct. 54, 427—
441, https://doi.org/10.1016/0045-7949(94)00339-5, 1995.

Abdullin, R., Melnik, O., Rust, A., Blundy, J., Lgotina, E.,
and Golovin, S.: Ascent of Volatile-Rich Felsic Magma
in Dykes: A Numerical Model Applied to Deep-Sourced
Porphyry Intrusions, Geophys. J. Int., 236, 1863-1876,
https://doi.org/10.1093/gji/ggae027, 2024.

Acocella, V., Ripepe, M., Rivalta, E., Peltier, A., Galetto,
F, and Joseph, E.: Towards Scientific Forecasting of
Magmatic Eruptions, Nat. Rev. Earth Environ. 5, 5-22,
https://doi.org/10.1038/s43017-023-00492-z, 2024.

Anderson, T. L. Fracture Mechanics: Fundamen-
tals and Applications, Fourth Edition, in: 4th Edn.,
CRC Press, Boca Raton, ISBN 978-1-315-37029-3,
https://doi.org/10.1201/9781315370293, 2017.

Bader, J., Zhu, W., Montési, L., Qi, C., Cordonnier, B., Kohlst-
edt, D., and Warren, J.: Effects of Stress-Driven Melt Segre-
gation on Melt Orientation, Melt Connectivity and Anisotropic
Permeability, J. Geophys. Res.-Solid, 129, ¢2023JB028065,
https://doi.org/10.1029/2023JB028065, 2024.

Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown,
J., Brune, P., Buschelman, K., Constantinescu, E., Dalcin,
L., Dener, A., Eijkhout, V., Gropp, W. D., Hapla, V., Isaac,
T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G.,
Kong, F., Kruger, S., May, D. A., Mclnnes, L. C., Mills,

Geosci. Model Dev., 18, 6219-6238, 2025

Y. Li et al.: Buoyancy-driven dykes: a comparison

R. T., Mitchell, L., Munson, T., Roman, J. E., Rupp, K.,
Sanan, P, Sarich, J., Smith, B. F, Zampini, S., Zhang,
H., Zhang, H., and Zhang, J.: PETSc/TAO Users Manual,
Tech. Rep. ANL-21/39 — Revision 3.17, Argonne National Lab-
oratory, https://web.cels.anl.gov/projects/petsc/vault/petsc-3.17/
docs/docs/index.html (last access: 6 September 2025), 2022a.

Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J.,
Brune, P., Buschelman, K., Constantinescu, E. M., Dalcin, L.,
Dener, A., Eijkhout, V., Gropp, W. D., Hapla, V., Isaac, T., Jo-
livet, P., Karpeev, D., Kaushik, D., Knepley, M. G., Kong, F.,
Kruger, S., May, D. A., Mclnnes, L. C., Mills, R. T., Mitchell, L.,
Munson, T., Roman, J. E., Rupp, K., Sanan, P., Sarich, J., Smith,
B. F, Zampini, S., Zhang, H., Zhang, H., and Zhang, J.: PETSc
Web page, PETSc, https://petsc.org/ (last access: 6 September
2025), 2022b.

Batchelor, G. K.: An Introduction to Fluid Dynamics,
Cambridge ~ Mathematical  Library, = Cambridge  Uni-
versity  Press, Cambridge, ISBN 978-0-521-66396-0,

https://doi.org/10.1017/CB0O9780511800955, 2000.

Bercovici, D., Ricard, Y., and Schubert, G.: A Two-Phase Model for
Compaction and Damage: 1. General Theory, J. Geophys. Res.-
Solid , 106, 8887-8906, https://doi.org/10.1029/2000JB900430,
2001.

Bolchover, P. and Lister, J. R.: The Effect of Solidifi-
cation on Fluid-Driven Fracture, with Application to
Bladed Dykes, P. Roy. Soc. Lond. A, 455, 2389-2409,
https://doi.org/10.1098/rspa.1999.0409, 1999.

Brune, S., Kolawole, F., Olive, J.-A., Stamps, D. S., Buck, W. R,
Buiter, S. J. H., Furman, T., and Shillington, D. J.: Geodynamics
of Continental Rift Initiation and Evolution, Nat. Rev. Earth En-
viron., 4, 235-253, https://doi.org/10.1038/s43017-023-00391-3,
2023.

Buck, W. R.: The Role of Magma in the Development of the Afro-
Arabian Rift System, Geol. Soc. Lond. Spec. Publ., 259, 43-54,
https://doi.org/10.1144/gs1.sp.2006.259.01.05, 2006.

Burov, E. B.. Rheology and Strength of the Litho-
sphere, Mar. Petrol. Geol., 28, 1402-1443,
https://doi.org/10.1016/j.marpetgeo.2011.05.008, 2011.

Cai, Z. and Bercovici, D.: Two-Phase Damage Models of
Magma-Fracturing, Earth Planet. Sc. Lett., 368, 1-8,
https://doi.org/10.1016/j.epsl.2013.02.023, 2013.

Carol, I., Prat, P. C., and Loépez, C. M.: Normal/Shear Crack-
ing Model: Application to Discrete Crack Analysis, J.
Eng. Mech., 123, 765-773, https://doi.org/10.1061/(asce)0733-
9399(1997)123:8(765), 1997.

Cerpa, N. G., Guillaume, B., and Martinod, J.: The In-
terplay between Overriding Plate Kinematics, Slab
Dip and Tectonics, Geophys. J. Int., 215, 1789-1802,
https://doi.org/10.1093/gji/ggy365, 2018.

Connolly, J. A. D. and Podladchikov, Y.: Compaction-Driven
Fluid Flow in Viscoelastic Rock, Geodinam. Acta, 11, 55-84,
https://doi.org/10.1080/09853111.1998.11105311, 1998.

Crameri, F.: Scientific Colour Maps, Zenodo [data set],
https://doi.org/10.5281/zenodo.1243862, 2021.

Crameri, F., Shephard, G. E., and Heron, P. J.: The Misuse of
Colour in Science Communication, Nat. Commun., 11, 5444,
https://doi.org/10.1038/s41467-020-19160-7, 2020.

https://doi.org/10.5194/gmd-18-6219-2025


https://doi.org/10.1016/0045-7949(94)00339-5
https://doi.org/10.1093/gji/ggae027
https://doi.org/10.1038/s43017-023-00492-z
https://doi.org/10.1201/9781315370293
https://doi.org/10.1029/2023JB028065
https://web.cels.anl.gov/projects/petsc/vault/petsc-3.17/docs/docs/index.html
https://web.cels.anl.gov/projects/petsc/vault/petsc-3.17/docs/docs/index.html
https://petsc.org/
https://doi.org/10.1017/CBO9780511800955
https://doi.org/10.1029/2000JB900430
https://doi.org/10.1098/rspa.1999.0409
https://doi.org/10.1038/s43017-023-00391-3
https://doi.org/10.1144/gsl.sp.2006.259.01.05
https://doi.org/10.1016/j.marpetgeo.2011.05.008
https://doi.org/10.1016/j.epsl.2013.02.023
https://doi.org/10.1061/(asce)0733-9399(1997)123:8(765)
https://doi.org/10.1061/(asce)0733-9399(1997)123:8(765)
https://doi.org/10.1093/gji/ggy365
https://doi.org/10.1080/09853111.1998.11105311
https://doi.org/10.5281/zenodo.1243862
https://doi.org/10.1038/s41467-020-19160-7

Y. Li et al.: Buoyancy-driven dykes: a comparison

Daines, M. J. and Kohlstedt, D. L.: Influence of Deformation on
Melt Topology in Peridotites, J. Geophys. Res., 102, 10257—
10271, https://doi.org/10.1029/97jb00393, 1997.

Davis, T., Rivalta, E., and Dahm, T.: Critical Fluid Injection Vol-
umes for Uncontrolled Fracture Ascent, Geophys. Res. Lett., 47,
€2020GL087774, https://doi.org/10.1029/2020g1087774, 2020.

Davis, T., Rivalta, E., Smittarello, D., and Katz, R. F.: Ascent Rates
of 3-D Fractures Driven by a Finite Batch of Buoyant Fluid,
J. Fluid Mech., 954, A12, https://doi.org/10.1017/jfm.2022.986,
2023.

Delcamp, A., Troll, V. R., van Wyk de Vries, B., Carracedo,
J. C., Petronis, M. S., Pérez-Torrado, F. J., and Deegan,
F. M.: Dykes and Structures of the NE Rift of Tenerife, Ca-
nary Islands: A Record of Stabilisation and Destabilisation
of Ocean Island Rift Zones, Bull. Volcanol., 74, 963-980,
https://doi.org/10.1007/s00445-012-0577-1, 2012.

Drymoni, K., Tibaldi, A., Bonali, F. L., and Mariotto, F.
A. P: Dyke to Sill Deflection in the Shallow Heterogeneous
Crust during Glacier Retreat: Part I, Bull. Volcanol., 85, 73,
https://doi.org/10.1007/s00445-023-01684-7, 2023.

Duretz, T., Borst, R., and Yamato, P.: Modelling lithospheric defor-
mation using a compressible visco-elasto-viscoplastic rheology
and the effective viscosity approach, Geochem. Geophy. Geosy.,
22, e2021GC009675, https://doi.org/10.1029/2021gc009675,
2021.

Duretz, T., Riss, L., de Borst, R., and Hageman, T.: A Compar-
ison of Plasticity Regularization Approaches for Geodynamic
Modeling, Geochem. Geophy. Geosy., 24, €2022GC010675,
https://doi.org/10.1029/2022GC010675, 2023.

Fernandez, C., de la Nuez, J., Casillas, R., and Garcia Navarro,
E.: Stress Fields Associated with the Growth of a Large Shield
Volcano (La Palma, Canary Islands), Tectonics, 21, 13-1-13-18,
https://doi.org/10.1029/2000TC900038, 2002.

Fiske, R. S., Jackson, E. D., and Sutton, J.: Orientation and Growth
of Hawaiian Volcanic Rifts: The Effect of Regional Structure
and Gravitational Stresses, P. Roy. Soc. Lond. A, 329, 299-326,
https://doi.org/10.1098/rspa.1972.0115, 1997.

Griffith, A. A.: VI. The Phenomena of Rupture and Flow
in Solids, Philos. T. Roy. Soc. Lond. A, 221, 163-198,
https://doi.org/10.1098/rsta.1921.0006, 1921.

Gudmundsson, A.: Toughness and Failure of Vol-
canic Edifices, Tectonophysics, 471, 27-35,
https://doi.org/10.1016/j.tecto.2009.03.001, 2009.

Gudmundsson, A. and Loetveit, I. F.: Dyke Emplacement in a Lay-
ered and Faulted Rift Zone, J. Volcanol. Geoth. Res., 144, 311—-
327, https://doi.org/10.1016/j.jvolgeores.2004.11.027, 2005.

Katz, R. F.: The Dynamics of Partially Molten Rock, Princeton Uni-
versity Press, ISBN 0691176566, 2022.

Katz, R. F,, Jones, D. W. R., Rudge, J. F.,, and Keller, T.: Physics
of melt extraction from the mantle: Speed and style, Annu. Rev.
Earth Planet. Sci., 50, 507-540, 2022.

Kaus, B. J. P. and Podladchikov, Y. Y.: Initiation of Localized Shear
Zones in Viscoelastoplastic Rocks, J. Geophys. Res.-Solid, 111,
B04412, https://doi.org/10.1029/2005JB003652, 2006.

Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M., and Dick,
H.: A review of melt migration processes in the adiabatically up-
welling mantle beneath oceanic spreading ridges, Philos. T. Roy.
Soc. Lond. A, 355, 283-318, 1997.

https://doi.org/10.5194/gmd-18-6219-2025

6237

Keller, T., May, D. A., and Kaus, B. J. P.: Numerical mod-
elling of magma dynamics coupled to tectonic deformation
of lithosphere and crust, Geophys. J. Int., 195, 1406-1442,
https://doi.org/10.1093/gji/ggt306, 2013.

Kiss, D., Moulas, E., Kaus, B. J. P, and Spang, A.: Decompres-
sion and Fracturing Caused by Magmatically Induced Ther-
mal Stresses, J. Geophys. Res.-Solid, 128, €2022JB025341,
https://doi.org/10.1029/2022JB025341, 2023.

Kjgll, H. J., Galland, O., Labrousse, L., and Andersen, T. B.:
Emplacement Mechanisms of a Dyke Swarm across the
Brittle-Ductile Transition and the Geodynamic Implications for
Magma-Rich Margins, Earth Planet. Sc. Lett., 518, 223-235,
https://doi.org/10.1016/j.eps1.2019.04.016, 2019.

Krieg, R. D. and Krieg, D. B.: Accuracies of Numerical Solution
Methods for the Elastic-Perfectly Plastic Model, J. Press. Vessel
Technol., 99, 510-515, https://doi.org/10.1115/1.3454568, 1977.

Lang, P. S, Paluszny, A., Nejati, M., and Zimmerman, R. W.: Rela-
tionship Between the Orientation of Maximum Permeability and
Intermediate Principal Stress in Fractured Rocks, Water Resour.
Res., 54, 8734-8755, https://doi.org/10.1029/2018 WR023189,
2018.

Lei, Q., Latham, J.-P., and Tsang, C.-F.: The Use of Discrete Frac-
ture Networks for Modelling Coupled Geomechanical and Hy-
drological Behaviour of Fractured Rocks, Comput. Geotech., 85,
151-176, https://doi.org/10.1016/j.compgeo.2016.12.024, 2017.

Li, J. H.,, Zhang, L. M., Wang, Y., and Fredlund, D. G.:
Permeability Tensor and Representative Elementary Volume
of Saturated Cracked Soil, Can. Geotech. J., 46, 928-942,
https://doi.org/10.1139/t09-037, 20009.

Li, Y., Pusok, A. E., Davis, T., May, D. A., and Katz, R. F.:
Continuum Approximation of Dyking with a Theory for Poro-
Viscoelastic—Viscoplastic Deformation, Geophys. J. Int., 234,
2007-2031, https://doi.org/10.1093/gji/ggad173, 2023.

Li, Y, Davis, T., Pusok, A., and Katz, R.: poroVEVP
model  with  benchmark  (v1.0.0), Zenodo [code],
https://doi.org/10.5281/zenodo.14238175, 2024.

Lister, J. R.: Buoyancy-Driven Fluid Fracture: The Effects of Mate-
rial Toughness and of Low-Viscosity Precursors, J. Fluid Mech.,
210, 263-280, https://doi.org/10.1017/S0022112090001288,
1990.

Maccaferri, F., Rivalta, E., Keir, D., and Acocella, V.: Off-Rift Vol-
canism in Rift Zones Determined by Crustal Unloading, Nat.
Geosci., 7, 297-300, https://doi.org/10.1038/nge02110, 2014.

McGuire, W. J. and Pullen, A. D.: Location and Orientation of
Eruptive Fissures and Feederdykes at Mount Etna; Influence
of Gravitational and Regional Tectonic Stress Regimes, J. Vol-
canol. Geoth. Res., 38, 325-344, https://doi.org/10.1016/0377-
0273(89)90046-2, 1989.

McKenzie, D.: The Generation and Compaction of
Partially Molten Rock, J. Petrol., 25, 713-765,
https://doi.org/10.1093/petrology/25.3.713, 1984.

McKenzie, D., McKenzie, J. M., and Saunders, R. S.: Dike Em-
placement on Venus and on Earth, J. Geophys. Res.-Planets, 97,
15977-15990, https://doi.org/10.1029/92JE01559, 1992.

McLeod, P. and Tait, S.: The Growth of Dykes from
Magma Chambers, J. Volcanol. Geoth. Res., 92, 231-245,
https://doi.org/10.1016/S0377-0273(99)00053-0, 1999.

Medici, G., Ling, F, and Shang, J.. Review of Dis-
crete Fracture Network Characterization for Geother-

Geosci. Model Dev., 18, 6219-6238, 2025


https://doi.org/10.1029/97jb00393
https://doi.org/10.1029/2020gl087774
https://doi.org/10.1017/jfm.2022.986
https://doi.org/10.1007/s00445-012-0577-1
https://doi.org/10.1007/s00445-023-01684-7
https://doi.org/10.1029/2021gc009675
https://doi.org/10.1029/2022GC010675
https://doi.org/10.1029/2000TC900038
https://doi.org/10.1098/rspa.1972.0115
https://doi.org/10.1098/rsta.1921.0006
https://doi.org/10.1016/j.tecto.2009.03.001
https://doi.org/10.1016/j.jvolgeores.2004.11.027
https://doi.org/10.1029/2005JB003652
https://doi.org/10.1093/gji/ggt306
https://doi.org/10.1029/2022JB025341
https://doi.org/10.1016/j.epsl.2019.04.016
https://doi.org/10.1115/1.3454568
https://doi.org/10.1029/2018WR023189
https://doi.org/10.1016/j.compgeo.2016.12.024
https://doi.org/10.1139/t09-037
https://doi.org/10.1093/gji/ggad173
https://doi.org/10.5281/zenodo.14238175
https://doi.org/10.1017/S0022112090001288
https://doi.org/10.1038/ngeo2110
https://doi.org/10.1016/0377-0273(89)90046-2
https://doi.org/10.1016/0377-0273(89)90046-2
https://doi.org/10.1093/petrology/25.3.713
https://doi.org/10.1029/92JE01559
https://doi.org/10.1016/S0377-0273(99)00053-0

6238

mal Energy Extraction, Front. Earth Sci., 11, 1328397,
https://doi.org/10.3389/feart.2023.1328397, 2023.

Moresi, L., Dufour, F., and Miihlhaus, H.-B.: A Lagrangian Integra-
tion Point Finite Element Method for Large Deformation Mod-
eling of Viscoelastic Geomaterials, J. Comput. Phys., 184, 476—
497, https://doi.org/10.1016/s0021-9991(02)00031-1, 2003.

Murrell, S. A. F.: The Theory of the Propagation of Ellipti-
cal Griffith Cracks under Various Conditions of Plane Strain
or Plane Stress: Part I, Brit. J. Appl. Phys., 15, 1195-1210,
https://doi.org/10.1088/0508-3443/15/10/308, 1964.

Odé, H.: Mechanical analysis of the dike pat-
tern  of the Spanish Peaks Area, Colorado, GSA
Bull,, 68, 567-576, https://doi.org/10.1130/0016-
7606(1957)68[567:MAOTDP]2.0.CO;2, 1957.

Papanastasiou, P.: The Effective Fracture
in Hydraulic Fracturing, Int. J. Fract, 96,
https://doi.org/10.1023/A:1018676212444, 1999.

Passarelli, L., Rivalta, E., and Shuler, A.: Dike Intrusions during
Rifting Episodes Obey Scaling Relationships Similar to Earth-
quakes, Sci. Rep., 4, 3886, https://doi.org/10.1038/srep03886,
2014.

Pusok, A., May, D. A., Li, Y., and Katz, R.: apusok/FD-PDE: v1.0.0,
Zenodo [code], https://doi.org/10.5281/zenodo.6900871, 2022a.

Pusok, A. E., Katz, R. F, May, D. A.,, and Li, Y.: Chem-
ical Heterogeneity, Convection and Asymmetry beneath
Mid-Ocean Ridges, Geophys. J. Int., 231, 2055-2078,
https://doi.org/10.1093/gji/ggac309, 2022b.

Pusok, A. E., Li, Y, Davis, T., May, D. A., and Katz, R. F:
Inefficient Melt Transport Across a Weakened Litho-
sphere Led to Anomalous Rift Architecture in the Turkana
Depression, Geophys. Res. Lett, 52, e2025GL115228,
https://doi.org/10.1029/2025GL115228, 2025.

Rees Jones, D. W., Katz, R. F,, Tian, M., and Rudge, J. F.: Ther-
mal Impact of Magmatism in Subduction Zones, Earth Planet.
Sc. Lett., 481, 73-79, https://doi.org/10.1016/j.epsl.2017.10.015,
2018.

Rivalta, E., Taisne, B., Bunger, A., and Katz, R.: A Review of
Mechanical Models of Dike Propagation: Schools of Thought,
Results and Future Directions, Tectonophysics, 638, 1-42,
https://doi.org/10.1016/j.tecto.2014.10.003, 2015.

Roper, S. M. and Lister, J. R.: Buoyancy-Driven Crack Propagation:
The Limit of Large Fracture Toughness, J. Fluid Mech., 580,
359-380, https://doi.org/10.1017/S0022112007005472, 2007.

Rubin, A. M.: Propagation of Magma-Filled Cracks,
Annu. Rev. Earth Planet. Sc., 23, 287-336,
https://doi.org/10.1146/annurev.ea.23.050195.001443, 1995.

Schmeling, H., Marquart, G., Weinberg, R., and Wallner, H.:
Modelling Melting and Melt Segregation by Two-Phase Flow:
New Insights into the Dynamics of Magmatic Systems
in the Continental Crust, Geophys. J. Int., 217, 422-450,
https://doi.org/10.1093/gji/ggz029, 2019.

Toughness
127-147,

Geosci. Model Dev., 18, 6219-6238, 2025

Y. Li et al.: Buoyancy-driven dykes: a comparison

Seltzer, C., Pe¢, M., Zimmerman, M. E., and Kohlstedt,
D. L.: Melt Network Reorientation and Crystallographic Pre-
ferred Orientation Development in Sheared Partially Molten
Rocks, Geochem. Geophy. Geosy., 24, €2023GC010927,
https://doi.org/10.1029/2023GC010927, 2023.

Sibson, R. H.: Structural Permeability of Fluid-Driven
Fault-Fracture Meshes, J. Struct. Geol., 18, 1031-1042,
https://doi.org/10.1016/0191-8141(96)00032-6, 1996.

Sigmundsson, F., Parks, M., Geirsson, H., Hooper, A., Drouin,
V., Vogfjord, K. S., Ofeigsson, B. G., Greiner, S. H. M.,
Yang, Y., Lanzi, C., De Pascale, G. P.,J’onsdéttir, K., Hreins-
dottir, S., Tolpekin, V., Fridriksdéttir, H. M., Einarsson, P.,
and Barsotti, S.: Fracturing and Tectonic Stress Drive Ul-
trarapid Magma Flow into Dikes, Science, 383, 1228-1235,
https://doi.org/10.1126/science.adn2838, 2024.

Sim, S. J., Spiegelman, M., Stegman, D. R., and Wilson, C.: The
Influence of Spreading Rate and Permeability on Melt Focus-
ing beneath Mid-Ocean Ridges, Phys. Earth Planet. Inter., 304,
106486, https://doi.org/10.1016/j.pepi.2020.106486, 2020.

Snow, D. T.: Anisotropie Permeability of Frac-
tured Media, Water Resour. Res., 5, 1273-1289,
https://doi.org/10.1029/wr005i006p01273, 1969.

Spence, D. A. and Turcotte, D. L.: Buoyancy-Driven Magma Frac-
ture: A Mechanism for Ascent through the Lithosphere and
the Emplacement of Diamonds, J. Geophys. Res., 95, 5133,
https://doi.org/10.1029/JB095iB04p05133, 1990.

Taisne, B., Tait, S., and Jaupart, C.: Conditions for the Arrest
of a Vertical Propagating Dyke, Bull. Volcanol., 73, 191-204,
https://doi.org/10.1007/s00445-010-0440-1, 2011.

Takei, Y.: Stress-induced Anisotropy of Partially Molten Rock Ana-
logue Deformed under Quasi-static Loading Test, J. Geophys.
Res., 115, B03204, https://doi.org/10.1029/2009jb006568, 2010.

Taylor-West, J. and Katz, R. F.: Melt-Preferred Orientation,
Anisotropic Permeability and Melt-Band Formation in a Deform-
ing, Partially Molten Aggregate, Geophys. J. Int., 203, 1253—
1262, https://doi.org/10.1093/gji/ggv372, 2015.

Terzaghi, K.: Theoretical Soil Mechanics, John Wiley & Sons, Inc.,
https://doi.org/10.1002/9780470172766, 1943.

Thiele, S. T., Cruden, A. R., Micklethwaite, S., Bunger, A. P,
and Kopping, J.: Dyke Apertures Record Stress Accumu-
lation during Sustained Volcanism, Sci. Rep., 10, 17335,
https://doi.org/10.1038/s41598-020-74361-w, 2020.

Weertman, J.: Theory of Water-Filled Crevasses in
Glaciers Applied to Vertical Magma Transport be-
neath Oceanic Ridges, J. Geophys. Res., 76, 1171-1183,
https://doi.org/10.1029/JB076i005p01171, 1971.

https://doi.org/10.5194/gmd-18-6219-2025


https://doi.org/10.3389/feart.2023.1328397
https://doi.org/10.1016/s0021-9991(02)00031-1
https://doi.org/10.1088/0508-3443/15/10/308
https://doi.org/10.1130/0016-7606(1957)68[567:MAOTDP]2.0.CO;2
https://doi.org/10.1130/0016-7606(1957)68[567:MAOTDP]2.0.CO;2
https://doi.org/10.1023/A:1018676212444
https://doi.org/10.1038/srep03886
https://doi.org/10.5281/zenodo.6900871
https://doi.org/10.1093/gji/ggac309
https://doi.org/10.1029/2025GL115228
https://doi.org/10.1016/j.epsl.2017.10.015
https://doi.org/10.1016/j.tecto.2014.10.003
https://doi.org/10.1017/S0022112007005472
https://doi.org/10.1146/annurev.ea.23.050195.001443
https://doi.org/10.1093/gji/ggz029
https://doi.org/10.1029/2023GC010927
https://doi.org/10.1016/0191-8141(96)00032-6
https://doi.org/10.1126/science.adn2838
https://doi.org/10.1016/j.pepi.2020.106486
https://doi.org/10.1029/wr005i006p01273
https://doi.org/10.1029/JB095iB04p05133
https://doi.org/10.1007/s00445-010-0440-1
https://doi.org/10.1029/2009jb006568
https://doi.org/10.1093/gji/ggv372
https://doi.org/10.1002/9780470172766
https://doi.org/10.1038/s41598-020-74361-w
https://doi.org/10.1029/JB076i005p01171

	Abstract
	Introduction
	Models of a buoyancy-driven dyke
	The poro-LEFM formulation
	The poro-viscoelastic–viscoplastic (poro-VEVP) formulation
	Stress-balance equation and a new compaction formulation
	Anisotropic permeability due to plastic failure
	Rheological parameters
	Computational model

	Energy analysis and the effective toughness

	Results
	Results of the poro-VEVP model
	Comparison between the poro-VEVP and poro-LEFM models

	Discussion
	Summary
	Appendix A: Mathematical formulation of the poro-LEFM model
	Appendix A1: The liquid phase
	Appendix A2: Solid and liquid stresses
	Appendix A3: Non-dimensionalisation

	Appendix B: A new formulation of P in the poro-VEVP model
	Appendix C: Full system of equations for the poro-VEVP model
	Appendix D: Energy analysis of the poro-VEVP model
	Appendix D1: Local work rates
	Appendix D2: Viscoplastic viscous dissipation energy

	Appendix E: Mesh dependency of the poro-VEVP model
	Appendix F: Stress distribution of the (poro-)LEFM model
	Appendix G: Stresses and pressure inside of the dyke
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

