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Abstract. This research evaluates the performance of the
CE-QUAL-W2 v4.5 sediment diagenesis model in simulat-
ing water temperature, dissolved oxygen, total phosphorus,
total nitrogen, chlorophyll a, and biochemical oxygen de-
mand in a Portuguese reservoir over a six-year period (2016—
2021). The model was calibrated using 35 observed pro-
files of temperature and dissolved oxygen, as well as six
annual measurements of total nitrogen, total phosphorus,
chlorophyll a, and biochemical oxygen demand at multiple
depths. To benchmark performance to the sediment diagene-
sis model, three alternative sediment oxygen demand formu-
lations — a Zero-order, First-order, and a Hybrid model com-
bining both approaches — were also implemented and com-
pared. All models achieved NSE and RMSE values within
or near the ranges reported in the literature, effectively cap-
turing the system’s water quality dynamics. Among them,
the Hybrid model yielded the best overall performance while
maintaining a simpler structure (Water temperature — NSE:
0.96 +0.18; RMSE: 1.09+£0.23°C; Dissolved oxygen —
NSE: 0.76 £0.30; RMSE: 1.87 £0.72mg L_l). The sedi-
ment diagenesis model exhibited similar performance met-
rics (Water temperature — NSE: 0.95 +0.18; RMSE: 1.13 +
0.28 °C; Dissolved oxygen — NSE: 0.71 +0.14; RMSE:
2.01 £0.59 mgL~"). Overall, the results suggest that the di-
agenesis model may be better suited for capturing detailed
process-based dynamics over extended timeframes, whereas
simpler models, such as the Hybrid model, are more appro-
priate for short- to medium-term applications or situations
with limited data availability. Hopefully, the results of this
study will help improve water management strategies by sup-
porting more informed model selection tailored to the tem-

poral scope and data constraints of reservoir monitoring pro-
grams.

1 Introduction

Modeling water quality plays a crucial role in managing
lakes and reservoirs, providing essential insights into the
dynamics of nutrients, organic matter, and phytoplankton
within aquatic systems (Abbaspour et al., 2015; Whitehead et
al., 2009). These models simulate the physical, chemical, and
biological processes that influence water quality, with exam-
ples including widely-used tools like CE-QUAL-W2 (Wells,
2021), MIKE21 (Chapman, 1996), and DYRESM (Hamilton
and Schladow, 1997). The value of such modeling lies in its
capacity to aid researchers and policymakers in understand-
ing the complex interactions between various factors that im-
pact the ecological health of water bodies (Varis et al., 1994;
Loucks and Beek, 2017). However, the intricacy of these sys-
tems, combined with the substantial data requirements, often
presents significant challenges for those developing and ap-
plying water quality models. Effective inflow data character-
ization (quantity and quality) is hard to obtain, both for major
river branches and small tributaries, as is waterbody sediment
characterization related to carbon and nutrients due to the
significant cost associated with the sampling and laboratorial
analysis process and the fact that water management stake-
holders are still more focused on the classification of water-
body water quality rather than the collection of water quality
forcing data. The absence of sediment initial particulate or-
ganic carbon (POC), particulate organic nitrogen (PON) and
particulate organic phosphorus (POP) data can be decisive to
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the overall performance of a water quality model, in essence
generating an imbalance right from the start of the simulation
with regard to the sediment concentration of POC, PON and
POP, which then has a considerable impact on the SOD and,
consequently, the waterbody dissolved oxygen (DO). When
calibrating the model, water quality modelers therefore need
to plug this gap by evaluating the model performance con-
sidering: (i) different initial sediment oxygen demand (SOD)
where a zero-order model is applied, (ii) different POC, PON
and POP values where a predictive diagenesis model is con-
sidered.

The main challenge with these modeling approaches is that
the sources of DO depletion — such as the inflow of organic
matter and net algae growth and settling — can significantly
influence DO dynamics, and these sources must be well char-
acterized to ensure accurate predictions. While the baseline
model can reproduce observed DO profiles with reasonable
accuracy, its predictive reliability may be compromised if key
DO sinks and sources are not well defined.

For example, the model’s response to a reduction in ex-
ternal phosphorus loading is influenced by internal phos-
phorus release from sediments during anoxic periods. In
CE-QUAL-W2, when a zero-order SOD model is used, the
anoxic release of orthophosphate (PO4) is modeled as a lin-
ear function of SOD: SOD [gO, m—2 d_l] x POy release
rate [gP g~! O,]. Thus, any error in the estimation of SOD
will directly affect the predicted internal phosphorus load-
ing, and by extension, the overall phosphorus balance in the
waterbody. In contrast, when using the predictive sediment
diagenesis model, internal phosphorus loading depends on
the organic and nutrient inputs from particulate matter in the
water column and the sediment’s biogeochemical response,
which is highly influenced by the initial value of particulate
organic carbon (POC). As a result, this approach introduces
additional uncertainty when key particulate components are
not adequately measured or constrained in both the water col-
umn and sediments. Calibrating other constituents, such as
P-POy4, can help reduce uncertainty. P-POy is released from
sediments under anaerobic conditions, and its calibration can
enhance the accuracy of DO modeling. Still, this release
is influenced by multiple factors, including the initial sedi-
ment P-PO,4 concentration and the release rate (in the zero-
order model), or the mineralization of POP (in the diagenesis
model). In both cases, significant uncertainty remains with-
out observed data for POC, PON, and POP in both the water
column and sediments. Of these, POC has the most signifi-
cant influence on SOD, making access to sediment POC data
essential for improving model accuracy, even when PON and
POP measurements are lacking. The CE-QUAL-W?2 model
has been widely used to simulate various water bodies and
water quality scenarios, including reservoir physical and bio-
chemical dynamics in response to warming projections (Mi
et al., 2020, 2023). This model has also been used to predict
DO in a number of water bodies worldwide, although the
SOD has always been modeled with a zero-order and/or 1-
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order model (e.g. Park et al., 2014; Zouabi-Aloui et al., 2015;
Terry et al., 2017; Sadeghian et al., 2018; Lindenschmidt et
al., 2019). The bibliographic research conducted before and
during this study suggests that the CE-QUAL-W?2 sediment
diagenesis model has not been applied to any waterbodies
other than the Wahiawa Reservoir in central Oahu (Berger
and Wells, 2014). Moreover, no scientific publications on the
evaluation of this model in other contexts have been identi-
fied, further highlighting the importance of the primary moti-
vation for this study, namely, to evaluate the performance of
the CE-QUAL-W2 model with its new sediment diagenesis
component. This study benefited from having access to ob-
served reservoir sediment total organic carbon (TOC) values,
which are rare. Although, in theory, these values are typi-
cally higher than particulate organic carbon (POC) values,
they provided an excellent starting point for this study. The
methodological approach was, therefore, defined to evaluate
the performance of the CE-QUAL-W2 model considering the
new state-of the art sediment diagenesis model in modeling
a reservoir, DO, Total Phosphorus (Total P); Total Nitrogen
(Total N), Biochemical Oxygen Demand (BODs), Chloro-
phyll a (Chl a) and SOD.

To achieve this, the water quality of a highly productive
reservoir was simulated over a six-year period (2016-2021)
using the CE-QUAL-W?2 v4.5 model. The simulation incor-
porated a Zero-order sediment model, a First-order model,
a Hybrid model combining both approaches, and a sedi-
ment diagenesis model. The Zero-order, First-order, and Hy-
brid models were included to provide alternative represen-
tations of sediment oxygen demand, enabling comparative
analysis and supporting the calibration and evaluation of the
more complex sediment diagenesis model. In the case of
water temperature and DO, the modeling results were com-
pared with 35 water column profiles observed near the dam.
The remaining parameters were calibrated using time series
datasets collected at multiple depths, with six annual val-
ues available for each parameter. A sensitivity analysis was
performed to evaluate the reservoir water quality response,
namely DO, to the variation of POC, PON and POP concen-
tration in the reservoir sediments. The results of this study
will hopefully prove useful by helping to improve lake and
reservoir water quality modeling and, therefore, the water
management process from a practical perspective.

2 Methods
2.1 Site location and main characteristics

Portugal experiences a temperate maritime climate charac-
terized by a wet, cool season and a dry summer. Despite
most of the precipitation occurring during the winter months,
there is significant inter-annual variability. Precipitation pat-
terns are spatially and temporally heterogeneous, with an-
nual maxima exceeding 2500 mm in the rugged highlands of
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the northwest, while the low-lying plains of the southeast re-
ceive around 400 mm yr’1 (Cardoso et al., 2013; Soares et
al., 2015) (Fig. 1). The Torrdo dam, located in the north-
ern region of mainland Portugal in the Tamega River, is
a significant hydraulic structure designed for multiple pur-
poses, including water supply, irrigation, and hydroelectric
power generation. The reservoir has a substantial storage ca-
pacity, contributing to regional water management and flood
control (Table 1). This infrastructure plays a crucial role in
the socio-economic development of the region, balancing re-
source management and environmental preservation. How-
ever, it is also important to note that the reservoir was classi-
fied as eutrophic for all the simulated years, a condition that
can lead to persistent water quality issues.

2.2 CE-QUAL-W?2 v4.5 model

This study employed the latest version of CE-QUAL-W2
(Version 4.5), a model originally developed in 1975 by
the US Army Corps of Engineers and written in Fortran.
Since its inception, the model has undergone regular up-
dates and enhancements, primarily by researchers at Port-
land State University (Cole and Wells, 2006). CE-QUAL-
W2 is a two-dimensional, laterally averaged hydrodynamic
and water quality model capable of simulating free surface
elevation, hydrostatic pressure, density, horizontal and ver-
tical velocities, as well as constituent concentrations. The
model uses the finite difference method to solve key equa-
tions, including mean transverse momentum in the x- and z-
directions, the continuity equation, state equations, and wa-
ter surface elevation equations (Tavera-Quiroz et al., 2023;
Wells, 2021). This model represents SOD through four dis-
tinct approaches: (i) a user-defined zero-order formulation
that is decoupled from the water column, (ii) a simple pre-
dictive first-order model, (iii) a hybrid approach combining
the zero- and first-order methods, and (iv) a comprehensive
sediment diagenesis model. The zero-order model is not a
predictive approach, as, other than variations resulting from
the temperature dependence of the decay rate, the rates re-
main constant over time (Wells, 2021). Additionally, under
anoxic conditions in the water column, SOD is disabled in
the model. The first-order sediment model does not function
as a full sediment diagenesis model, as it lacks the capa-
bility to track the fate of organic nutrients delivered to the
sediments, their breakdown, and the release of byproducts
into the water column under low-oxygen conditions. How-
ever, it does represent the deposition of particulate organic
matter and dead algal biomass, along with the resulting oxy-
gen demand imposed on the water column. By including
this first-order sediment process, the model becomes sensi-
tive to increased organic loading to the sediment, which in
turn influences sediment oxygen demand. A combination of
the zero and first order model can be considered where or-
ganic materials accumulate and decay in the sediments un-
der aerobic conditions and are released based on the SOD
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zero-order decay rate under anaerobic conditions. In con-
trast, the sediment diagenesis model simulates kinetic pro-
cesses occurring within the sediment and at the sediment—
water interface. This module originally developed for appli-
cation in oil sand pit lakes, has been adapted for application
in other aquatic environments and integrated into version 4.0
(Vandenberg et al., 2015). The conceptual framework of the
model has been elaborated in works by Prakash et al., (2015),
Berger and Wells (2014), and Vandenberg et al. (2015). It is
important to note that significant enhancements to the sedi-
ment diagenesis module were introduced in version 4.5 of the
model, as detailed in the User Manual (Wells, 2021). These
improvements mark a substantial advancement over the ini-
tial version 4, which was more limited in its capabilities. The
CE-QUAL-W2 model has demonstrated its utility in simulat-
ing hydrodynamic and ecological processes — such as strat-
ification, internal waves, DO dynamics, and phytoplankton
blooms — in lakes and reservoirs worldwide (Zhang et al.,
2015; Chuo et al., 2019; Kobler et al., 2018; Uhlmann, 2017;
Terry et al., 2017; Mi et al., 2020). Additional details about
the model’s structure, algorithms, and historical applications
can be found in the user manual (Wells, 2021).

Model setup

The bathymetry of the Torrdo reservoir was initially defined
using a Digital Elevation Model (DEM) provided by Ener-
gies of Portugal, SA (EDP) and structured according to the
methodology outlined in Wells (2021). The reservoir com-
prises one main branch (the Tamega River), three tributaries
and one distributed tributary (Fig. 1). Tributaries 1 and 2 are
depicted in Fig. 1. Tributary 3 represents the inflow from
the Douro River into the pump-back system of the Torrdo
Reservoir. The bathymetric map includes 27 segments, each
measuring 1000 m in length, and a maximum number of
58 layers, each with a depth of 1 m. Following this prelim-
inary step, the reservoir boundary conditions (including wa-
ter quality, hydrology, meteorology, and sediment character-
ization) were defined according to the methods described in
Sect. 2.4. Due to the lack of available information, the model
structure only includes a single algae group (Diatoms).

2.3 Modeling approach

To thoroughly evaluate the capability of CE-QUAL-W?2 in
modeling dissolved oxygen using the sediment diagenesis
module, the four available SOD modeling approaches were
considered: Zero-order model; First-order model; Zero/First-
order model (Hybrid model) and the sediment diagenesis
model (SG model). The models were calibrated for the 2016—
2021 period (see Sect. 2.5). During the results analysis, the
performance metrics obtained during each model’s calibra-
tion process were compared, along with the SOD values
across the bottom layers of each model. A sensitivity anal-
ysis was conducted following calibration to evaluate each
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Figure 1. Torrdo reservoir watershed. Thiessen polygons. Water quality stations.
Table 1. Main features of Torrdo dam and reservoir.
Full Mean Average  Active Surface Structural Max  Turbine Hydraulic =~ Watershed Trophic
supply inflow annual  storage area at height depth  number/ residence  area state
volume (m3 s_l) inflow volume FLV (kmz) (m) (m) power time (kmz) (2016-2021)*
(hm?) (local  (hmd) (days)
basin)
123.9 76.98 2147 404 6.5 70 58 2 reversible 13.59 3252 Eutrophic
pump-
turbines/146
(MW)

* Classification according to OECD Trophic State limits (OECD, 1982).
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model’s response: (a) to varying POC, PON, and POP val-
ues in the case of the SG model; (b) to different SOD val-
ues in the Zero-order and Hybrid models and (c) to varying
the initial first order sediment concentration in the case of
the First-order model. Section 2.6 details the methodologi-
cal approach used for the sensitivity analysis. To assess the
sensitivity of each model to reductions in external organic
matter (OM) and P-PO;4 inputs, two separate scenario anal-
yses were conducted. The first scenario involved an 80 %
reduction in OM inflow load, while the second applied an
80 % reduction in both OM and P-POy4 inflow loads. These
reductions were implemented specifically in the main reser-
voir branch (Branch 1 — Tamega River), where the majority
of nutrient and organic inputs occur. Each sediment model
— SD, Zero-order, First-order, and Hybrid — was run under
baseline conditions and under both reduction scenarios. The
impact on DO dynamics was evaluated using time series of
depth- and segment-averaged DO concentrations. The eval-
uation of model performance, along with the results of the
sensitivity analysis, provided deeper insights into simulating
SOD dynamics using the sediment diagenesis approach in
comparison to the other SOD formulations.

2.4 Model forcing datasets

The meteorological data used to drive the model, includ-
ing hourly air temperature, dew point, solar radiation, cloud
cover, and wind characteristics, were sourced from ERAS-
Land, a high-resolution reanalysis dataset optimized for land
applications (Mufioz-Sabater, 2019). Although no on-site
meteorological stations are available in the study area for di-
rect validation, studies by Almeida and Coelho (2023b) and
Barbosa and Scotto (2022) have demonstrated a strong cor-
relation between ERA5-Land air temperature data and ob-
served measurements at regional scales, supporting the re-
liability of this dataset for our modeling purposes. Further-
more, the accuracy of water temperature predictions in our
simulations indicates that the meteorological forcing was
well represented, confirming the suitability of ERA5-Land
data for driving the model. Reservoir data, such as daily in-
flow/outflow, water levels, and water quality, covering the
years 2016-2021, were provided by EDP. Water quality data
specific to Branch 1 originated from the Praia Aurora Sta-
tion, accessed via the Portuguese National Water Resources
Information System (SNIRH, 2024). With only 21 recorded
measurements for Branch 1 during this period, three mod-
eling methods were employed to address the 99.04 % of
missing data. The variables include: water temperature; DO;
Total P; Ammonium (N-NHj); Nitrate+Nitrite (N-NO,);
BODs; Chl a; Alkalinity; Conductivity and Total Suspended
Solids (SST). The first method employed regression models
implemented through the LOADEST package (Runkel et al.,
2004) developed by the US Geological Survey. The second
method utilized the Extreme Gradient Boosting (XGBoost)
machine learning algorithm, implemented using the Chen
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and Guestrin (2016) open-source library, a method proven
effective in various environmental studies (Feigl et al., 2021;
Adedeji et al., 2022; Xu et al., 2022). For additional details
on the algorithm, refer to Almeida and Coelho (2023a). The
third approach relied on Support Vector Regression (SVR),
implemented via the scikit-learn library (Pedregosa et al.,
2011), which has also demonstrated strong performance in
environmental modeling applications (Adedeji et al., 2022;
Ji and Lu, 2018). For machine learning approaches, datasets
were split into training (80 %) and testing (20 %) sets. Hyper-
parameters for these models were optimized using the Tree-
structured Parzen Estimators (TPE) algorithm, executed with
the Hyperopt library (Bergstra et al., 2013) and 100 itera-
tions. The Nash—Sutcliffe Efficiency (NSE) was used to de-
termine the best model. Table A1 describes the input features
of each model. Correlations derived from Branch 1 informed
data extrapolation to other tributaries using flow as the pre-
dictor. Observed data for Tributary 3 was retrieved from the
Crestuma-Lever reservoir monitoring station.

Water quality variables used for model inputs included wa-
ter temperature, DO, P-PO4, N-NHy4, N-NO,, labile and re-
fractory dissolved and particulate organic matter (LDOM,
RDOM, LPOM, RPOM), alkalinity, inorganic suspended
solids (ISS), total dissolved solids (TDS), total inorganic car-
bon (TIC), and algal biomass (diatoms). For non-monitored
variables, estimations were made based on available data:
(i) P-PO4: Derived from total phosphorus, assuming in-
organic phosphorus represents 70 % of the total; (ii) Or-
ganic matter: BODs was converted to organic matter us-
ing a stoichiometric ratio of 1.4g0O, per 1.0g organic
matter, with 60 % assumed refractory and 40 % labile;
(iii) ISS: Estimated as 97.4 % of TSS; (iv) TDS: Calcu-
lated from electrical conductivity (Eq. 1); (v) TIC: Esti-
mated from alkalinity (Eq. 2); (vi) Algae biomass: Chl a
was converted to biomass using the following ratio: Algal
Biomass (mg L~!)/Chl a(ugL=")=5.0 x 1072

TDS (mg Lfl) = 0.65 x Electrical Conductivity (pS cmfl) @)

TIC (mgL—‘) — 0.2782 x Alkalinity (mgL—‘) 0.9706. (2)

This equation was derived from the relationship between TIC
and alkalinity values observed in four reservoirs within the
United States, utilizing a dataset comprising 55232 value
pairs available in the CE-QUAL-W2 v4.5 model examples
(Wells, 2021). The analysis achieved an R? value of 0.99.
Figure 2 illustrates the locations of the five sediment sam-
pling sites used to define the SD model baseline run. The
spatial distribution of the sediment samples depicted in the
figure were linked to specific reservoir segments to charac-
terize the initial sediment content of POC, PON, and POP,
as detailed in Table 2. Sediment values were assigned as fol-
lows: site A to segments 25-28, site B to segments 20-24,
site C to segments 16-19, site D to segments 11-15, and
site E to segments 2—10. Several assumptions were made to
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® Sediment sampling site
Torr&o reservoir
Segments (10 to 2)
Segments (15 to 11)
Segments (19 to 16)
Segments (24 to 20)
|:| Segments (28 to 25)

0 1 2 4 km
T

Figure 2. Sediment sampling sites. CE-QUAL-W2 model seg-
ments.

establish the sediment characterization: (i) a sediment den-
sity of 960 kg m~3(density of dried sediment with air in the
pore space) (Minear and Kondolf, 2009) was applied to con-
vert sample values from mgkg~! to mg L~!; (ii) POP values
were set at 25 mg L', based on established literature bench-
marks (Wells, 2021); (iii) the TN value observed at site B was
used to characterize sites C, D, and E; (iv) TOC and TN were
assumed to exist entirely in particulate form, represented as
particulate organic carbon and nitrogen. This approach en-
sured a consistent and representative characterization of sed-
iment properties across the reservoir segments.

2.5 Water quality model (CE-QUAL-W?2) calibration

The simulation period considered for this study spanned
2016 to 2021. This period was selected due to the availability
of flow and water quality data. The trial-and-error technique
was applied to calibrate the model for the simulation period,
considering the default calibration parameters described in
Wells, 2021. The error between observed and predicted val-
ues of six state variables was evaluated with five different
metrics (see Sect. 2.7). The observed data included six an-
nual values for water temperature, DO, TP, TN, BODs, and
Chl a. These time series were obtained from: (a) an inte-
grated sample between the reservoir surface and a depth of
5.8m, (b) a depth of 23 m, and (c) a depth of 43.7m. In
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Table 2. Torrdo Reservoir sediment chemical characterization ob-
tained for each sampling site.

Observed values

Sampling TOC, TN, POP,
site mg kg_1 mg kg_1 mg kg_l
A 25000 6020 -

B 20900 5990 -

C 22300 - -

D 20100 - -

E 5600 - -

Final values included in the sediment diagenesis model

POC, PON, POP,
mgL_1 mgL_1 mgL_1
A 24000 5779 25
B 20064 5750 25
C 21408 5750 25
D 19296 5750 25
E 5376 5750 25

addition, 35 water temperature and DO profiles — six per
year from 2016 to 2021 — were also included. These pro-
files were observed 300 meters upstream from the Torrdo
Dam. Details on the models’ initial conditions, parameters,
constants, and forcing datasets can be found in Almeida and
Coelho (2025) and in Tables A2 to A8. The models were
calibrated by adjusting their parameters to improve the fit
between the model output and observed data. Please refer
to Wells (2021) for a detailed account of the model calibra-
tion parameters and default values. Water temperature was
the first constituent to be calibrated. The wind sheltering co-
efficient (WSC) was manually adjusted to achieve the best fit
between the modeled and observed water temperature pro-
files, resulting in a final value of 1. A value of 1 implies that
the WSC has no effect over the wind velocity forcing the
model. The zero-order model for SOD was then manually
adjusted to improve DO predictions based on 35 DO profiles.
The optimal result was achieved with a zero-order SOD value
of 2.5 g0, m~2 d~!. Following this calibration, the phospho-
rus sediment release rate (PO4R) in the zero-order model was
modified from its default value of 0.015 to 0.001. The same
process was applied to the Hybrid model, where the best re-
sults were achieved using a PO4R of 0.001 and a zero-order
SOD value of 1.0g2 0O m~2d~L. In the first-order model, the
PO4R parameter was adjusted to 0.001, and the initial con-
centration of first-order sediment was set to 0.5 gm™2. All
other parameters were kept at their relevant default values
and the default settings for the sediment diagenesis model
were also maintained. The observed data included water tem-
perature, DO, TP, TN, BODs, and Chl a.
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2.6 Sensitivity analysis

A sensitivity analysis was conducted after the calibration
process to evaluate the model’s response:

i. Different initial sediment values for POC, PON, and
POP were used in the SD model (Table 3). It is im-
portant to note that for each of the 24 runs described
in Table 2, only the corresponding parameter was mod-
ified, while the other two parameters retained their de-
fault values shown in Table 3. The number of runs vary-
ing the PON and POP values is higher than the number
of runs considered for POC, with 6 versus 9 runs, re-
spectively. This adjustment was necessary to achieve a
minimal RMSE in the predictions of dissolved oxygen
in the water column;

ii. Different zero-order SOD values for the Zero-order
model (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 g O, m~2 d_l);

iii. Different initial first order sediment concentration (ISC)
for the First-order model (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and
30¢g mfz);

iv. Different zero-order SOD values for the Hybrid
model (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0g O, m~2d !

In the results analysis for each run and for both scenarios (i)
and (ii), the prediction error for DO was compared with the
SOD values derived from each model. Specifically, runs 5,
8, and 20 were forced with the POC, PON, and POP values
defined in the SD model baseline run.

2.7 Metrics

The evaluation of model calibration and the analysis of quan-
titative differences across simulation scenarios utilized var-
ious performance metrics. These included the root mean
square error (RMSE), mean absolute error (MAE), Nash—
Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), per-
cent bias (PBIAS), and the coefficient of determination (R?).
The calculations were carried out using equations where
m; and o; represent the simulated and observed values, re-
spectively, and o; the observed values mean.

1 N
RMSE = N;(m,-—o,»)z 3)
1 N
MAE= =% " |m; — oi| @
i=l1
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N —2
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R? = jv‘ x 100 7)
> (0 —0)?
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3 Results

3.1 Observed inflow water quality characterization

The SVR algorithm was more effective at predicting the in-
flow water temperature compared to the other models. The
R? and PBIAS values achieved with the SVR were 0.87,
and 3.77 %, respectively, indicating that the water tempera-
ture trends and average magnitudes are well described (Ta-
ble Al). Additionally, the RMSE and MAE values of 2.1 and
1.6 °C, respectively, demonstrate an accurate approximation
of the observed datasets. The SVR algorithm was also the
best model in predicting DO. The R2, PBIAS, RMSE, and
MAE values reached, 0.91, 0.92 %, 0.40 and 0.26 mg L1,
respectively, indicating that the model performed well. This
was not the case for the remaining parameters. In fact, the
Loadest regression outperformed the other models for the re-
maining water quality variables. This was primarily due to
the limited number of training samples. Simpler models like
regressions can have lower variance (i.e., be less susceptible
to overfitting) compared to SVR and XBOOST algorithms.
Overall, the PBIAS obtained for NH4, N-NO,, and Chl a
(10.88 %, 43.64 %, and 30.00 %) suggests that the average
magnitude was reasonably well represented.

3.2 CE-QUAL-W?2 calibration

Tables A2 through A8 display the most significant CE-
QUAL-W?2 coefficients obtained after the calibration pro-
cess. The results of the calibration process for all models, are
presented in Tables 4 and A9 and illustrated in Figs. 3 to 6
and Figs. 8 and 9. The performance metrics for water temper-
ature across the different sediment models show consistent
accuracy, with NSE and R? values ranging from 0.95 to 0.96
and minimal variation across models. The RMSE and MAE
for temperature also remain low, indicating reliable ther-
mal performance regardless of the sediment model applied.
In contrast, DO predictions show more variability. The Hy-
brid model achieved the best overall DO performance, with
the highest NSE (0.76 £ 0.30) and R%(0.76 £0.31), as well
as the lowest RMSE (1.87 +0.72) and MAE (1.22 £0.55),
while maintaining a near-zero PBIAS (—0.55 £ 11.14), in-
dicating minimal systemic bias. The Zero-order model also
performed reasonably well, with slightly lower error met-
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Table 3. TOC, PON, and POP initial sediment values for the SD model sensitivity analyses.

Parameter Sampling site/Model segments SD model run
A B C D E
28-25 24-20 19-16 15-11 102
4800 4013 4282 3859 1075 1
9600 8026 8563 7718 2150 2
POC 14400 12038 12845 11578 3226 3
19200 16051 17126 15437 4301 4
24000 20064 21408 19296 5376 5 (SD model-baseline)
28800 24077 25690 23155 6451 6
8669 8625 8625 8625 8625 7
5779 5750 5750 5750 5750 8 (SD model-baseline)
2890 2875 2875 2875 2875 9
1445 1438 1438 1438 1438 10
PON 722 719 719 719 719 11
361 359 359 359 359 12
181 180 180 180 180 13
90 90 90 90 90 14
45 45 45 45 45 15
128 128 128 128 128 16
85 85 85 85 85 17
57 57 57 57 57 18
38 38 38 38 38 19
POP 25 25 25 25 25 20 (SD model-baseline)
13 13 13 13 13 21
6 6 6 6 6 22
3 3 3 3 3 23
2 2 2 2 2 24

rics than the SD model. The First-order model, however,
showed the weakest DO performance, with a lower NSE
(0.68 +0.22), higher RMSE (2.15 £ 0.82), and a significant
negative PBIAS (—12.17 £ 15.44), suggesting an underesti-
mation of oxygen concentrations. Overall, the results sug-
gest that while temperature simulation is robust across all
models, DO dynamics are better captured using the Hybrid
or Zero-order models, with the Hybrid model offering the
most balanced and accurate representation under the tested
conditions. However, the differences in performance met-
rics for DO among the models are relatively small and of-
ten fall within overlapping standard deviations, with the ex-
ception of the First-order model, which consistently shows
lower accuracy and higher bias, suggesting that while the
Hybrid model offers slightly better overall performance, the
improvements over the SD and Zero-order models are mod-
est and should be interpreted with caution. In terms of nu-
trient dynamics, the Hybrid and Zero-order models improve
TN and TP predictions relative to the SD and First-order
models. The Hybrid model, for example, improves TN R?
to 0.31 and TP to 0.27, although the associated biases remain
significant (e.g., —18.75 % for TN and +36.49 % for TP).
BODS5 and Chl a remain poorly simulated across all mod-

Geosci. Model Dev., 18, 6135-6165, 2025

els, with R? values consistently low (< 0.06 for Chl a and
< 0.03 for BODS), and large PBIAS values, particularly in
the SD and First-order configurations. The Zero-order model
slightly reduces bias in Chl a and Total N compared to the
SD model but performs poorly for TP due to a large over-
estimation (PBIAS =103.43 %) (Fig. 4d). Notably, the SD
and First-order models failed to reproduce observed phos-
phorus release events from sediments on 18 September 2018,
8 September 2020, and 31 August 2021 (Figs. 3d and 5d).
In contrast, the Hybrid model successfully captured these
events by modeling phosphorus release as a linear function of
SOD, providing a more realistic representation of sediment—
water nutrient interactions (Fig. 6d). Overall, while no model
fully captures the complexity of all constituents, the Hybrid
model consistently provides the most balanced and improved
representation, particularly for DO and nutrient parameters.

3.3 Sensitivity analysis

The SOD values strongly influence the water column DO;
therefore, this parameter was considered to support this anal-
ysis. Figure 7 shows the SOD values from the reservoir bot-
tom layer, predicted by the SD model for Runs 1 to 6, com-
pared with the RMSE (Fig. 7a) and the NSE (Fig. 7b) values

https://doi.org/10.5194/gmd-18-6135-2025
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Figure 3. Constituents observed values at three different depths: (a) an integrated sample between the reservoir surface and an average depth
of 5.8 m, (b) an average depth of 23 m, and (c¢) an average depth of 43.7 m. These observed values were compared with the predicted time
series from the SD model (run 5 — baseline) (A to F) for the same depths.

obtained between the predicted water column DO profiles
and the mean initial POC values (across all sites values) for
each run. These results suggest that Run 4 was the best mod-
eling solution. Considering the results obtained for Run 5
(baseline), Run 4 reduced the RMSE from 2.015 mgL’1
(Run 5) to 2.011mgL~! (Run 4) and increased the NSE
from 0.714 (Run 5) to 0.716 (Run 4). The average SOD
value in the bottom layer of the reservoir (across all model
segments) decreased from 1.162g 0O, m3d~! (Run 5) to
1.071 g0, m~3d~! (Run 4). Although the reduction is mod-
est and had only a minor effect on the DO profile predic-
tions (Fig. 9), it suggests that the initial POC values used in
Run 5 were likely overestimated. This outcome aligns with
the assumption made in Run 5, where all observed TOC was

https://doi.org/10.5194/gmd-18-6135-2025

considered to exist entirely as POC. In contrast, Run 4 was
characterized using a lower average sediment concentration.
Specifically, the mean value used in Run 4 (14 170 mg L™")
represents approximately 80 % of the TOC value used in
Run 5 (17712mg L~1), which was derived from observed
TOC measurements (see Table 3). This comparison suggests
that a more realistic estimate is that about 80 % of the total
organic carbon exists in particulate form, with the remain-
der composed of dissolved organic carbon. Run 4 and Run 5
show negligible differences in the predicted water temper-
ature and DO profiles (Figs. 8 and 9). Table A10 presents
the performance metrics for water temperature, DO, TN, TP,
BOD5, and Chl a obtained for Run 4. While this run im-
proved the DO simulation in the reservoir, results for the

Geosci. Model Dev., 18, 6135-6165, 2025
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Table 4. Metrics between observed and predicted values for all models. Water temperature and DO metrics were obtained from 36 observed

and predicted profiles.
Constituent NSE R? PBIAS RMSE MAE
SD model (run 5 — baseline)
Water temperature  0.95+0.18  0.96+0.07 1.96+3.08 1.13+0.28 0.89+0.26
DO 0.71£0.14 0.73+£0.29 443+£15.06 2.01£0.59 1.384+0.46
Zero-order model (zero-order SOD =2.5g 0, m~2d~! - baseline)
Water temperature  0.95+0.19 0.96+0.07 1.91£3.09 1.13+0.28 0.89+0.25
DO 0.73+£0.20 0.74+0.30 1.75+£15.87 1.97+£0.74 1.29+0.57
First-order model ISC=0.5g m2- baseline)
Water temperature  0.96+0.19  0.96+0.08 1.46+£297 1.094+0.23 0.85+0.20
DO 0.68+£0.2 0.73+£0.27 —12.17+1544 2.154+0.82 1.50+£0.65
Hybrid model (zero—o_1 — baseline)
Water temperature  0.96+0.18  0.96+0.08 1.45+£297 1.094+0.23 0.85£0.20
DO 0.76 £0.30 0.76+0.31 —0.55+£11.14 1.87+£0.72 1.224+0.55

other constituents remained very similar to those of Run 5
(baseline). Overall, the water temperature profiles are very
well captured by all models (Fig. 8), reflecting their robust-
ness in simulating thermal dynamics. In contrast, DO profiles
are more complex and challenging to model due to their sen-
sitivity to multiple interacting processes. Nevertheless, the
models were able to capture the main seasonal and verti-
cal trends in DO concentrations, including stratification pat-
terns and general oxygen depletion in bottom layers during
warmer months (Fig. 9).

The sensitivity analysis also involved varying the initial
values of PON and POP for each run. The results indicate
that mean reservoir SOD values remained nearly constant,
as depicted in Fig. 10, suggesting that the SD model was
not significantly affected by variations in the initial PON and
POP values in the sediments. However, in Runs 7, 8, and 9,
where PON values were higher, there was a significant in-
crease in the release of N-NH4 and N-NO, from the reser-
voir sediments, leading to an impact on water column DO.
This is evidenced by the notable increase in RMSE and the
reduction of NSE values, as shown in Fig. 10a and b.

Figure 11 shows the RMSE (Fig. 11a) and the NSE
(Fig. 11b) values between observed and predicted water col-
umn DO profiles for all models: SD model (Runs 1 to 6),
Zero-order model and Hybrid model, each with six differ-
ent SOD values ranging from 0.5 to 3.0gm~>d~!, along
with the corresponding reservoir SOD values. Additionally,
this figure illustrates how the First-order model varies with
the initial sediment concentration. Among the four models
evaluated, the Hybrid model demonstrated the best overall
performance in predicting DO concentrations in the reser-
voir. With an average SOD of 1.49 g0, m~2d ™!, the hybrid
model achieved the lowest RMSE (1.87 mg L™!) and highest

Geosci. Model Dev., 18, 6135-6165, 2025

NSE (0.76), demonstrating superior predictive accuracy. The
Zero-order model followed closely, reaching optimal perfor-
mance at an average zero-order SOD of 1.43 g0, m2d~!,
with an RMSE of 1.965mgL~! and an NSE of 0.732. The
SD model also performed well, attaining its best accuracy at
an average SOD of 1.07 g0, m~2d~!, where the RMSE de-
creased to 2.011 mg L~! and the NSE peaked at 0.716; how-
ever, further improvements plateaued beyond this point. In
contrast, the First-order model consistently exhibited higher
RMSE values (ranging from 2.15 to 2.22mgL~") and lower
NSE values (between 0.66 and 0.68), regardless of the ini-
tial sediment concentration. Moreover, its SOD at the bottom
layer remained relatively stable, indicating limited sensitivity
to input variations. Overall, these results underscore the hy-
brid model’s robustness and accuracy, followed by the Zero-
order and SD models, while the First-order model demon-
strated the weakest performance in this context.

3.4 Inflow organic matter and phosphorus load
reduction scenarios

The results reveal clear differences in model sensitivity to in-
flow load reductions, with the First-order and Hybrid models
exhibiting a stronger response compared to the SD and Zero-
order models (Figs. 12 and 13). The SD model showed min-
imal change, indicating limited sensitivity to external load-
ing (Figs. 12a and 13a), likely due to strong internal loading
feedback from legacy phosphorus and organic matter stored
in sediments. The Zero-order model demonstrated limited
utility for management scenarios because it is decoupled
from the water column, reducing its responsiveness to ex-
ternal changes. The First-order model may overestimate sen-
sitivity as it tends to underestimate internal loading contribu-
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Zero-order model (zero-order SOD = 2.5 g O,/m?/day - baseline)
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Figure 4. Constituents observed values at three different depths: (a) an integrated sample between the reservoir surface and an average depth
of 5.8 m, (b) an average depth of 23 m, and (c) an average depth of 43.7 m. These observed values were compared with the predicted time

series from the Zero-order model (zero order SOD =2.5g O, m2d-1-

tions. The Hybrid model, which combines both approaches,
is less reactive than the First-order model due to the in-
fluence of the Zero-order component, offering a more bal-
anced response. However, the Zero-order SOD component
in the Hybrid model depends solely on temperature and re-
mains decoupled from water column conditions; this limi-
tation may gradually reduce the model’s accuracy in long-
term simulations. These differences in model sensitivity are
further reflected in the evolution of average SOD across
scenarios (Table 5). While the Zero-order and SD models
show virtually no change in bottom-layer SOD under re-
duced loading conditions, the First-order and Hybrid models

https://doi.org/10.5194/gmd-18-6135-2025

baseline) (A to F) for the same depths.

register clear declines. The First-order model’s SOD drops
from 0.87 to 0.42g0, m~2d~! (80% OM reduction) and
0.29g0, m2d~! (80% OM and P reduction) and the Hy-
brid model from 1.49 to 1.07 g0, m~2d~! (80 % OM reduc-
tion) and 0.94 g O, m~—2d~! (80 % OM and P reduction).

4 Discussion
Overall, the temperature and DO predictions for the reser-

voir boundary conditions (Tamega river) were quite good:
PBIAS: 0.76 % and 0.92 %, respectively. When a signif-

Geosci. Model Dev., 18, 6135-6165, 2025
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First-order model (ISC= 0.5 g/m? - baseline)
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Figure 5. Constituents observed values at three different depths: (a) an integrated sample between the reservoir surface and an average depth
of 5.8 m, (b) an average depth of 23 m, and (c¢) an average depth of 43.7 m. These observed values were compared with the predicted time
series from the First-order model (ISC=0.5¢g m2- baseline) (A to F) for the same depths.

Table 5. Average sediment oxygen demand (SOD) in the bottom layers of the reservoir, calculated across all segments, for each model
under three scenarios: Reference (baseline conditions), 80 % reduction in organic matter inflow (OM 80 %), and combined 80 % reduction
in organic matter and phosphorus inflow (OM and P %) in the in the main reservoir branch (Branch 1 — Tadmega River).

Scenario SD model Zero-order model First-order model Hybrid model (Zero-order
(Run5)  (SOD=25g0,m2d"!) (ISC=05gm™2) SOD=1.0g0, m 2d~ 1)
Aggregate Zero-order  First-order
term term
Baseline 1.16+0.82 1.43+2.12 0.87+1.19 1494+2.02 0.59+0.85 0.90+0.75
OM 80 % reduction 1.13+0.83 1.44+2.12 0.42+0.61 1.07£1.43 0.61+£0.85 0.46=£0.75
OM and P % 80 % reduction  1.13+0.82 1.46+2.11 0.294+0.37 0.94+1.19 0.64+£0.84 0.304+0.42

Geosci. Model Dev., 18, 6135-6165, 2025
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Hybrid model (zero-order SOD = 1.0 g O,/m?/day - baseline)
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Figure 6. Constituents observed values at three different depths: (a) an integrated sample between the reservoir surface and an average depth
of 5.8 m, (b) an average depth of 23 m, and (c) an average depth of 43.7 m. These observed values were compared with the predicted time

series from the Hybrid model (zero order SOD =1.0g O, m2d-1 - baseline) (A to F) for the same depths.

icant number of samples and forcing variables are avail-
able the accuracy of machine learning algorithms can be
greatly enhanced. This was demonstrated in the studies by
Lu and Ma (2020), Rajesh and Rehana (2021), and Feigl et
al. (2021), where the RMSE for river water temperature pre-
diction reached 1.04, 1.03, and 0.58 °C, respectively. The re-
sults obtained for alkalinity, conductivity and TSS were also
good: Alkalinity-PBIAS: 17.44 %; Conductivity — PBIAS:
8.23 %; TSS — PBIAS: 11.86 %. However, as expected, the
PBIAS values obtained for the remaining constituents were
not as favorable (Total P — PBIAS: 7.11 %; N-NO, — PBIAS:
3.92 %; BODs — PBIAS: 6.93 %; Chl a — PBIAS: 30 %).
The modeling of these constituents involves complex bio-
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logical, chemical, and physical processes that are harder to
model accurately. However, except for Chl a, the PBIAS
values were generally less than 10 %, reflecting acceptable
levels of bias. Ammonium (N-NH4) was the only parame-
ter for which performance was significantly lower, generat-
ing a PBIAS of 28.27 %. Moriasi et al. (2015) suggest that
410 <PBIAS < +25 is indicative of a satisfactory model
performance.

Based on the RMSE, the overall reservoir calibration re-
sults obtained for all constituents with all models for the
2016-2021 period were consistent with the results seen
in other studies (see Table All). The mean RMSE val-
ues for Chl a obtained with all models (SD model (run 5

Geosci. Model Dev., 18, 6135-6165, 2025



6148

(a) -=-gF--W2_SD model ==@=-Initial POC value
1.4 4 25000
q runé
1.2 1 run5 ___---g
] run4 livzr// 20000
< 1.0 Y
S 3 run3 Iﬁ\ =
) 1 S~ 15000 B
EN 0.8; ¢ Bl £
o ] ' run2 - TTTeell &
o 06 1 S & 10000 &
(=) ] hNY runl o
8 04 1 ~oa.
T T 5000
0.2 ] =~
0.0 1 ! . . Lo
1.95 2.00 2.05 2.10 2.15

RMSE (water column DO)

M. Almeida and P. Coelho: Evaluating the performance of CE-QUAL-W?2 version 4.5

(b) --£F--W2_SD model  ==-@=-Initial POC value
14 4 6 25000
55 ru%\\ run5
N 20000
So fmrund
<. 1.0 1 )
i %‘ﬂ run3 %,'
£ o8] Y 15000 g
s 1 run2 1 %}
s 06 1 e} yd 10000 &
8 0.4 1 __,0/
2l g 5000
.2 1 e~
0.0 T T + 0
0.67 0.69 0.71 0.73

NSE (water column DO)

Figure 7. (a) SOD values from the reservoir bottom layer, predicted by the SD_model for Runs 1 to 6, compared with the RMSE obtained
between the predicted water column DO profiles and the mean initial POC values (across all sites values) for each run of the SD_model.

(b) Similar to (a) but considering the NSE metric.

— baseline): 17.72ugL~!; Zero-order model (zero-order
SOD=2.5g0, m 2d~" — baseline): 17.78 ugL~"; First-
order model (ISC=0.5gm™2 — baseline): 14.88 ugL~! and
the Hybrid model (zero-order SOD=1.0g0, m™2d~! —
baseline): 14.88 ug L™!) are aligned with the results of other
modeling studies (Brito et al., 2018: 62.9ugL~!; Kim et
al., 2019: 6.7 to 13.2 ng’l; Tasnim et al., 2021: 0.6 to
27.6ugL~"; Almeida et al., 2023: 19.36 to 25.57 ugL™!).
For TP, the mean RMSE values were 0.03mgL~! for
both the SD model (Run 5 — baseline) and the First-
order model (ISC=0.5gm™2 — baseline), while the Hy-
brid model (zero-order SOD=1.0g O, m~2d~! - baseline)
showed a slightly higher value of 0.04 mg L™!. These results
fall within the range reported in previous studies, including
Brett et al. (2016) at 0.012mgL~!, Kim et al. (2019) be-
tween 0.014 and 0.068 mg L~!, Tasnim et al. (2021) from
0.005 to 0.036mgL~!, and Almeida et al. (2023) ranging
from 0.07 to 0.09 mg L~!. The only exception was the Zero-
order model (SOD=2.5g0, m~2d~! — baseline), which
overestimated phosphorus export from sediments during the
summer months (July to September) of 2018 to 2021, result-
ing in a notably higher RMSE of 0.1 mgL~!. Even with a
very low phosphorus release rate from the sediments — rep-
resenting a fraction of the SOD (0.001) — the Zero-order
model still overestimated phosphorus concentrations, partic-
ularly during periods of elevated sediment oxygen demand.
This suggests that the model may lack the sensitivity needed
to accurately simulate low-level sediment-phosphorus inter-
actions under such conditions. The mean RMSE values ob-
tained for TN were lower than the only reference value avail-
able in the literature — 0.77 mgL~! reported by Deliman
and Gerald (2002). Specifically, the SD model (Run 5 —
baseline) yielded an RMSE of 0.33 mgL~!, the First-order
model (ISC =0.5gm™2 — baseline) produced 0.36 mgL~!,
and the Hybrid model (zero-order SOD=1.0g0, m~2d~!
— baseline) resulted in 0.35 mgL~!. The only exception was
the Zero-order model (SOD =2.5g0; m~2d~! — baseline),
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which had a significantly higher RMSE of 0.79mgL~! —
slightly exceeding the value reported by Deliman and Ger-
ald (2002) yet still within a comparable range. The RMSE
obtained with the SD model (Run 5 - baseline), Zero-
order model (zero-order SOD=2.5g0, m~2d~! — base-
line); First-order model ISC=0.5g m~2 — baseline) and the
Hybrid model (zero order SOD=1.0g0O; m~>d~! — base-
line) for DO, 2.01, 1.97, 2.15 and 1.87 mg L} respectively)
are also in line with the results obtained in other studies
(e.g., Deliman and Gerald (2002): 1.34 mg L~!; Brett et al.,
2016: 1.2mgL~"'; Brito et al., 2018: 7.6 mgL~!; Luo et al.,
2018: 1.78 mgL~"; Tasnim et al., 2021: 2.33mgL~"). In
the SD model (Run 5 — baseline), bottom-layer SOD val-
ues ranged from 0.015 to 5.152g 0, m~24-! (uw=1.162;
o = 0.823), reflecting moderate variability driven by sea-
sonal biogeochemical processes. In comparison, the Zero-
order model (SOD=2.5g0, m~2d~! — baseline) showed a
broader but more temperature-driven range, from 0.000 to
1564020, m=2d~! (u=1432; 0 =2.122). The First-
order model (ISC=0.5gm™2 — baseline) yielded values
between 0.000 and 20.000g0,m~2d~!, with a much
lower mean (u = 0.870) and relatively high variability (¢ =
1.920), consistent with its sensitivity to organic matter load-
ing. The Hybrid model (zero-order SOD =1.0g O, m~2d~!
— baseline) incorporated both zero- and first-order pro-
cesses and produced the widest overall range, from 0.000 to
21.938g0, m2d~! (u=1.491; o =2.024), highlighting
its enhanced responsiveness to both physical (e.g., temper-
ature) and biogeochemical (e.g., organic matter) drivers.
The monthly variation in SOD across the four models re-
veals distinct seasonal patterns influenced by their underly-
ing formulations (Fig. A2). All models show notable peaks
in May and October, corresponding to periods of elevated
organic matter inflow, while a consistent decline is ob-
served during the summer months (June to August), when
external organic inputs are comparatively low. The Zero-
order model (baseline SOD =2.5g0> m~2d™!) exhibits a

https://doi.org/10.5194/gmd-18-6135-2025
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Figure 8. Observed water temperature profiles (300 m from the dam) compared to predicted profiles using the SD model (Run 4) and (Run 5
— baseline), Zero-order model (zero-order SOD=2.5g0, m2d-1 - baseline); First-order model ISC=0.5g m2 - baseline) and the

Hybrid model (zero order SOD = 1.0g 0, m~2d~! — baseline).

sharp rise from winter to a peak of 1.919g0; m~2d~! in
May, then gradually declines over the summer, before in-
creasing again in October (1.910g0, m~2d~"). A similar
double-peak pattern is observed in the Hybrid model (zero-
order SOD=1.0g0, m—2 a4 baseline), with SOD reach-
ing 1.715 g0, m~2d~! in May and a more pronounced max-
imum of 2.338 g0, m~2d~! in October, reflecting the com-
bined effects of temperature and organic matter availability.
The SD model (Run 5 — baseline) shows more moderate sea-
sonal variation, with values dipping to 0.679 g0, m~2d~!
in August, then rising to 1.501 gO, m~2d~! in November,
consistent with internal sediment dynamics. The First-order
model (ISC=0.5 gm’z, baseline), which is most sensitive
to organic matter loading, also mirrors this seasonal struc-

https://doi.org/10.5194/gmd-18-6135-2025

ture, peaking in October (1.235g0, m~2d~!) after a grad-
ual summer decline. Collectively, these patterns underscore
the importance of organic matter availability — particularly in
spring and autumn — as a key driver of SOD across the differ-
ent modeling approaches. This pattern indicates the model’s
responsiveness to both organic matter inputs and tempera-
ture, leading to a more nuanced representation of seasonal
variation compared to the other models. These values are
consistent with the SOD values obtained in other studies,
such as those of Schnoor and Fruh (1979), which concluded
that the SOD values of Lake Lydon B. Johnson (located in
the US) ranged from 1.7 to 5.8 g0, m~2d~!, and of Beu-
tel (2015), which measured SOD values in different loca-
tions around Lake Hodges (located in the US) ranging from

Geosci. Model Dev., 18, 6135-6165, 2025
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Figure 9. Observed DO profiles (300 m from the dam) compared to predicted profiles using the SD model (Run 4) and (Run 5 — baseline),
Zero-order model (zero-order SOD =2.5g 0, m~2d~! - baseline); First-order model (ISC = 0.5 g m~2 — baseline) and the Hybrid model

(zero order SOD=1.0g O, m2d-! - baseline).

0.6t02.3 g0, m~2d~". It would be useful to be able to com-
pare these results with SOD values measured at different sites
within the Torrao reservoir.

It is important to emphasize that this study was primarily
designed to evaluate the performance of the sediment dia-
genesis model. However, by incorporating alternative SOD
modeling approaches, it inevitably allowed for a compara-
tive ranking of model performance, highlighting the relative
strengths and limitations of each formulation. The perfor-
mance limitations of the Zero-order and First-order models
can be attributed to their structural simplifications. Specif-
ically, the Zero-order model’s strong temperature depen-
dence, coupled with its disregard for the dynamics of organic
matter loading, reduces its ability to capture temporal vari-
ability driven by external inputs. Similarly, the lower accu-

Geosci. Model Dev., 18, 6135-6165, 2025

racy of the First-order model likely stems from its exclusion
of anaerobic decay processes and limited representation of
sediment biogeochemistry, which becomes especially rele-
vant under low-oxygen conditions. The Hybrid model out-
performed all other approaches. Considering the principle of
parsimony (Occam’s razor) (Burnham and Anderson, 2002),
the simpler Hybrid model proved more effective than the
complex SD model, making it the preferred choice for sim-
ulating SOD dynamics in the reservoir. These findings un-
derscore the importance of selecting models that align with
the specific characteristics of the system being studied. Sim-
pler models, such as the Hybrid model, may be adequate for
steady-state conditions, short- to medium-term forecasts, or
scenarios with limited data. The zero-order SOD component
of the Hybrid model relies solely on temperature and is de-

https://doi.org/10.5194/gmd-18-6135-2025
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Figure 10. (a) SOD values from the reservoir bottom layer, predicted by the SD model for Runs 7 to 15, compared with the RMSE obtained
between the predicted water column DO profiles and the mean initial PON values (across all sites) for each run. (b) Similar to (a) but
considering the NSE metric. (¢) SOD values from the reservoir bottom layer, predicted by the SD model for Runs 16 to 24, compared
with the RMSE obtained between the predicted water column DO profiles and the mean initial POP values (across all sites) for each run.
(d) Similar to (c) but considering the NSE metric.
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Figure 11. (a) RMSE between observed and simulated DO profiles in the water column for all models: the SD model (Runs 1-6), the Zero-
order model, the Hybrid model with six SOD values ranging from 0.5 to 3.0 20O m~2d~!, and the First-order model with initial sediment
organic matter concentrations from 0.0 to 3.0 g m?~2. (b) Same as (a), but using the Nash—Sutcliffe Efficiency (NSE) as the performance
metric.

volving sediment accumulation and nutrient cycling — where
it may provide valuable insight into underlying processes,
provided that sufficient observational data become available
to support its additional state variables. Moreover, a model’s
effectiveness heavily depends on the user’s familiarity with

coupled from the water column; therefore, in long-term sim-
ulations, this limitation can gradually undermine the model’s
accuracy. In contrast, the SD model may be more appropriate
when the goal is to explore system-wide feedbacks and tem-
poral dynamics over extended periods — especially those in-
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(a) SD model (run 5)
R?2=1.0, RMSE=0.18, MAE=0.14, NSE=0.99, PBIAS=1.63
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(b) Zero-order model (zero-order SOD = 2.5 g Oz/m?/day)
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(d) Hybrid model (zero-order SOD = 1.0 g O2/m?/day)
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Figure 12. Time series of DO, averaged across all model layers and segments, for each baseline model scenario: SD model (Run 5),
Zero-order model (SOD =2.5g0, m—2 d_l), First-order model (initial sediment concentration=0.5 g m_z), and Hybrid model (Zero-order
SOD=1.0g0, m~2 d=1). The figure compares baseline conditions with an 80 % reduction in organic matter inflow load in the main reser-
voir branch (Branch 1 — Tamega River). Performance metrics (R2, RMSE, MAE, NSE, and PBIAS) are also shown for each case.
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Figure 13. Time series of DO, averaged across all model layers and segments, for each baseline model scenario: SD model (Run 5),
Zero-order model (SOD =2.5g0, m—2 d_l), First-order model (initial sediment concentration=0.5 g m_z), and Hybrid model (Zero-order
SOD=1.0g0, m~2 d—1). The figure compares baseline conditions with an 80 % reduction in organic matter and P-POy4 inflow loads in the
main reservoir branch (Branch 1 — Tamega River). Performance metrics (R2, RMSE, MAE, NSE, and PBIAS) are also shown for each case.
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its structure and their skill in calibration. Yet, it is unrealistic
to expect researchers to master the implementation of every
available modeling approach. As such, comparisons between
models should be interpreted carefully, acknowledging the
influence of user expertise on performance outcomes (Pic-
colroaz et al., 2024). Overall, to strengthen the analysis, it
is recommended that users apply all available SOD model-
ing approaches in the case of the CE-QUAL-W2 model and
assess the model’s behavior. This comprehensive evaluation
provides a solid foundation for further modeling efforts and
helps ensure that the chosen approach is well-suited to the
system’s specific conditions and objectives.

The results also revealed that the particulate fraction of or-
ganic carbon in the reservoir sediments corresponded to 80 %
of the TOC. This value is small compared to the results ob-
tained for Taihu Lake by Yu et al. (2022), where the ratio
of POP to TOC varied from 97.85 % to 89.53 %. However,
this value (80 %) was obtained indirectly through the anal-
ysis of the reservoir’s predicted SOD values as a function
of different initial POC values and may, therefore, reflect
other sources of uncertainty, such as inflow organic matter
characterization. Given the fact that the magnitude of TOC
in the sediment can be affected by numerous factors, in-
cluding water column productivity, terrestrial inputs of or-
ganic materials, sediment properties, and microbial activity
rates (Gireeshkumar et al., 2013), and that, partly due to dif-
ferences in reservoir productivity and morphology, the spa-
tial distribution and sources of organic carbon vary greatly
across regions (Anderson et al., 2009), it is reasonable to as-
sume that the only way to accurately assess the POC pre-
diction is by monitoring the reservoir POC content. Further-
more, this study has highlighted the need to expand research
to additional waterbodies across diverse regions to improve
our understanding of the CE-QUAL-W2 diagenesis model’s
performance under varying environmental conditions. This
includes evaluating its applicability in long-term scenarios,
which are essential for capturing cumulative sediment dy-
namics and climate-driven trends. Additional SOD moni-
toring studies need to be conducted in lakes and reservoirs
and extended to other latitudes, with particular focus on the
chemical characterization of sediments and the definition of
sediment burial rates.

https://doi.org/10.5194/gmd-18-6135-2025
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5 Conclusions

This research evaluates the performance of the CE-QUAL-
W2 v4.5 sediment diagenesis model in simulating water tem-
perature, dissolved oxygen, total phosphorus, total nitrogen,
chlorophyll a, and biochemical oxygen demand in a Por-
tuguese reservoir over the period from 2016 to 2021. Cal-
ibration was based on 35 sets of observed temperature and
dissolved oxygen profiles, supplemented by six annual mea-
surements of total nitrogen, total phosphorus, chlorophyll a,
and biochemical oxygen demand collected at various depths.
To evaluate model accuracy, three alternative sediment oxy-
gen demand formulations — a Zero-order model, a First-order
model, and a Hybrid approach combining features of both —
were also applied and compared. The Hybrid model consis-
tently outperformed the other formulations, striking an ef-
fective balance between accuracy and simplicity. It there-
fore represents the most suitable choice for modeling the
reservoir. In contrast, the Zero- and First-order models ex-
hibited limitations related to temperature dependence and in-
adequate sediment process representation, respectively. Sim-
pler models, such as the Hybrid model, may be adequate
for steady-state conditions, short- to medium-term forecasts,
or scenarios with limited data. In contrast, the SD model
—despite its good performance — may be more appropriate
when the goal is to explore system-wide feedbacks and tem-
poral dynamics over extended periods, especially in cases in-
volving sediment accumulation and nutrient cycling. In such
contexts, it may offer valuable insights, provided that suf-
ficient observational data are available to support its addi-
tional state variables. Overall, the study reinforces the impor-
tance of choosing models based on site characteristics, avail-
able data, and simulation goals. Future work should broaden
the evaluation of these models across various waterbodies
and extended timeframes, while highlighting the need for
enhanced sediment monitoring to support detailed process-
based modelling.

Geosci. Model Dev., 18, 6135-6165, 2025
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Appendix A
Torrdo dam
Segment length (m) l
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 Elevation (m) Helgth (m)
363 486 629 623 502 264 182 217 153 208 164 208 252 203 225 168 203 333 177 274 482 608 617 680 585 605 598 65 1
347 464 509 450 423 234 176 202 101 195 164 288 248 198 208 164 157 181 165 260 471 524 614 672 585 598 573 64 1
336 346 378 336 346 217 168 195 98 189 164 283 245 195 208 159 157 171 164 257 446 469 604 651 585 581 567 63 1
183 152 179 220 198 186 159 195 94 189 162 280 234 195 207 153 152 167 164 250 435 388 554 519 518 541 549 62 1
88 93 88 182 120 171 157 179 94 189 157 273 223 195 201 145 146 159 163 240 422 296 245 308 333 378 459 61 1
88 84 88 175 113 153 148 176 94 185 155 271 217 195 196 131 132 157 153 239 413 294 240 308 333 378 447 60 1
71 79 88 154 107 138 138 166 94 178 145 258 205 195 180 126 126 157 150 232 392 284 224 301 326 369 438 59 1
50 63 85 130 101 129 132 151 94 169 144 248 193 186 173 124 115 153 145 214 380 276 215 296 315 363 425 58 1
24 47 57 89 101 120 122 140 90 140 127 223 180 182 159 120 113 145 138 214 373 265 214 296 307 353 410 57 1
7 25 37 52 90 106 116 121 83 114 116 205 176 176 154 120 113 145 135 203 356 263 214 279 290 346 403 56 1
18 5 35 80 90 101 113 81 97 108 190 176 170 135 120 110 140 119 199 337 258 212 271 281 346 384 55 1
5 0 15 66 75 101 113 73 79 107 170 172 159 126 120 107 134 111 195 319 257 206 264 277 345 379 54 1
12 48 59 8 106 69 67 101 154 166 142 126 114 105 126 107 195 308 251 198 247 277 335 374 53 1
6 24 52 75 83 68 63 100 137 157 132 126 108 94 122 107 191 298 245 195 237 274 321 368 52 1
6 19 39 65 68 57 63 94 117 150 130 126 101 94 113 105 187 285 241 195 231 269 309 359 51 1
5 25 53 45 57 63 94 102 138 126 126 101 90 113 95 166 282 238 195 221 252 305 358 50 1
24 46 38 57 63 80 89 126 126 121 101 88 113 94 162 271 233 195 220 247 299 334 49 1
19 42 31 57 61 73 82 115 120 116 96 86 113 94 157 263 233 189 215 245 287 311 48 1
19 35 22 50 57 68 80 104 113 109 90 82 103 89 153 249 231 189 206 240 283 302 47 1
16 25 19 45 43 59 65 77 103 107 82 78 97 84 151 245 220 185 201 230 280 294 46 1
21 13 44 34 49 48 58 94 96 81 76 93 82 149 245 208 181 197 220 273 289 45 1
13 9 37 16 36 25 36 94 87 69 76 88 76 145 233 199 170 195 214 268 282 44 1
13 25 13 25 16 20 88 82 58 76 88 70 143 233 189 164 189 214 246 277 43 1
1 25 5 23 T4 19 81 79 57 T 88 69 130 218 189 164 182 209 239 270 42 1
24 5 6 18 53 70 57 66 84 69 124 210 182 158 171 208 228 251 4 1
5 6 12 39 67 57 63 82 69 115 205 176 151 163 201 211 244 40 1
6 5 20 60 51 63 76 69 110 186 165 146 157 189 208 223 39 1
6 10 55 39 56 64 63 107 174 164 145 156 184 205 218 38 1
47 33 50 59 57 101 160 157 145 151 182 195 208 a7 1
27 31 48 38 57 98 157 144 145 151 179 191 202 36 1
9 22 41 38 57 94 151 125 143 151 176 189 191 35 1
13 38 38 53 94 143 118 138 148 176 182 179 34 1
12 37 38 44 87 132 109 123 145 176 165 170 33 1
6 31 32 41 76 132 107 108 145 169 152 168 32 1
6 27 13 36 74 119 107 95 145 164 145 162 31 1
6 16 6 21 69 102 107 94 137 162 139 149 30 1
5 13 16 61 84 101 91 126 150 138 139 29 1
9 12 47 71 99 88 126 145 128 135 28 1
5 3 60 88 8 126 137 120 125 27 1
18 47 71 81 120 129 114 120 26 1
23 63 70 114 126 102 116 25 1
7 59 69 107 116 101 109 24 1
6 45 68 94 103 91 103 23 1
40 57 8 99 86 100 22 1
31 44 70 86 82 94 21 1
19 29 69 78 82 79 20 1
6 25 58 73 82 76 19 1
15 46 61 82 76 18 1
41 57 76 76 7 1
38 51 76 69 16 1
23 33 65 61 15 1
5 5 26 43 14 1
6 38 13 1
6 21 12 1
17 11 1
6 10 1
6 9 1
6 8 1
7 1

Figure Al. CE-QUAL-W?2 bathymetry — Cross section of the Tamega River with the average segment width.
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Figure A2. Average monthly sediment oxygen demand (SOD) at the reservoir bottom layer predicted by the SD model (Run 5 — baseline),
Zero-order model (baseline: SOD =2.5g0, m—2 d_l), First-order model (baseline: ISC=0.5¢ m_z), and Hybrid model (baseline: zero-
order SOD=1.0g 0, m~2 d—1). Also shown is the inflow BODS5 load from the reservoir’s main branch.
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Table A1. Model metrics. Characterization of Tamega river inflow.

Constituent Model R? PBIAS RMSE MAE Input features Input Sample
sample time
number period

LOADEST 0.81 5.14 2.61 1.86  Flow; Air T; WT

Water temperature  XGBOOST  0.85 0.76 2.19 1.76  AirT; WT 21 2016-2021
SVR 0.87 3.77 2.07 1.60 Air7T; WT
LOADEST 0.11 5.02 1.32 1.03  Flow, DO

DO XGBOOST 0.83 1.50 0.56 0.33  WT; DO; Month 78 2010-2021
SVR 0.91 0.92 0.40 0.26 WT; DO; Month
LOADEST 0.21 7.11 0.02 0.01 Flow, Total P

Total P XGBOOST 0.12 - 45.72 32.73  WT,; Total P; Month 47 2010-2021
SVR - - 38.74 38.74  WT; Total P; Month
LOADEST 0.11 43.64 0.02 0.02  Flow; N-NH4

N-NHy4 XGBOOST 0.26 32.20 0.02 0.02  WT; N-NHy; Month 46 2010-2021
SVR 0.03 28.27 0.02 0.02  WT; N-NHy; Month
LOADEST 0.11 10.88 0.18 0.14  Flow; N-NOy

N-NO, XGBOOST 0.15 3.92 0.16 0.12  WT; N-NO,; Month 63 2010-2021
SVR 0.26 7.48 0.16 0.13  WT; N-NO,; Month
LOADEST 0.19 6.93 0.98 0.83  Flow; BODj

BODj XGBOOST - 782.16 16.31 16.28 WT, BODs; Month 77 2010-2021
SVR 0.14 1438.34 30.64 29.93  WT; BOD5; Month
LOADEST  0.65 30.00 6.27 4.96  Flow; Chla

Chlorophyll a XGBOOST 0.12 774.02 39.12 29.36  WT; Chl a; Month 49 2010-2021
SVR 0.02 345.72 15.05 13.25 WT; Chl a¢; Month
LOADEST 0.26 17.44 6.59 6.30 WT; Chl a¢; Month

Alkalinity XGBOOST 0.26 471.67 88.57 57.64  WT; Alkalinity; Month 31 2013-2021
SVR 0.20 242.35 37.97 30.52  WT; Alkalinity; Month
LOADEST 0.80 8.23 8.81 7.69  Flow; Conductivity

Conductivity XGBOOST 0.32 184.79 133.16 120.16 WT; Conductivity; month 77 2010-2021
SVR 0.02 17.67 21.96 17.32  WT; Conductivity; month
LOADEST  0.00 11.86 1.83 1.45  Flow; SST

TSS XGBOOST 0.19 7.06 1.96 1.38  WT; SST; Month 78 2010-2021
SVR 0.24 8.44 1.62 1.24  WT; SST; Month

Table A2. Rates and constants: Hydraulic coefficients.

Geosci. Model Dev., 18, 6135-6165, 2025

Rates and constants Value
Transport solution scheme Ultimate
Time-weighting for vertical advection scheme 0.55
Longitudinal eddy viscosity (m%s—1 1.0
Longitudinal eddy diffusivity (m2 s~ 1) 1.0
Coefficient of bottom heat exchange (W m—2 s_l) 0.3
Sediment temperature (°C) 14.0
Interfacial friction factor 0.0
Heat lost to sediments that is added back to water column 0.0
Vertical eddy viscosity w2
Maximum value of vertical eddy speed (m2s 1) 1.0
Bottom friction solution CHEZY
Wind roughnessheight (m) 0.001

https://doi.org/10.5194/gmd-18-6135-2025
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Table A3. Rates and constants: Extinction coefficients.

Rates and constants Value
Extinction for pure water, m~! 0.25
Suspended solids light extinction, m! 0.01
EXOM - extinction organic matter, m? gfl 0.2

Fraction of incident solar radiation absorbed at the water surface (long-wave components of short-wave solar) 0.45

Table A4. Rates and constants: phytoplankton (Diatoms).

Rates and constants Value
Maximum algal growth rate @ 3
Maximum algal respiration rate (d—1) 0.04
Maximum algal excretion rate (d™ 1) 0.04
Maximum algal mortality rate @ 0.1
Algal settling rate @h 0.1
Algal half-saturation for phosphorus-limited growth, g m=3  0.003
Algal half-saturation for nitrogen limited growth, g m~3 0.014
Fraction of biomass going to POM at death 0.8
AT1 lower temperature for algal growth, °C 10
AT2 lower temperature for maximum algal growth, °C 30
AT3 upper temperature for maximum algal growth, °C 35
AT4 upper temperature for algal growth, °C 40
Fraction of growth rate at AT1 temperature 0.1
Fraction of maximum growth rate at AT2 0.99
Fraction of maximum growth rate at AT3 0.99
Fraction of growth rate at AT4 0.1
Chlorophyll a to algae biomass ratio 0.065

Table AS. Rates and constants: organic matter.

https://doi.org/10.5194/gmd-18-6135-2025

Rates and constants Value
Labile DOM decay rate, a1 0.3
Refractory DOM decay rate, d-! 0.001
Labile to refractory DOM decay rate, d! 0.01
Labile POM decay rate, d ! 0.08
Refractory POM decay rate, a1 0.01
Labile to refractory POM decay rate, d-! 0.001
POM settling rate, md~! 0.5
Lower temperature for organic matter decay, °C, OMT1 4
Upper temperature for organic matter decay, °C, OMT2 25
Fraction of organic matter decay rate at OMT1 0.1
Fraction of organic matter decay rate at OMT2 0.99

Geosci. Model Dev., 18, 6135-6165, 2025
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Table A6. Rates and constants: nutrients.

Rates and constants Value
PO4R Sediment release rate of phosphorus, fraction of SOD 0.015
PARTP Phosphorus partitioning coefficient for suspended solids 0.0
NH4R Sediment release rate of ammonium, fraction of SOD 0.15
NH4DK Ammonium decay rate, d-! 0.05
NHA4T1 Lower temperature for ammonia decay, °C 5
NH4T?2 Lower temperature for maximum ammonia decay, °C 25
NH4K1 Fraction of nitrification rate at NH4T1 0.1
NH4K?2 Fraction of nitrification rate at NH4T2 0.99
02NH4 Oxygen stoichiometry for nitrification (mg O mg~! N) 4.57
NO3DK Water column denitrification rate or nitrate decay rate, d_ 0.05
NO3S Nitrate loss velocity to the sediments because of sediment denitrification, md_ 0
FNO3SED Fraction of NO3-N diffused into the sediments that becomes part of organic N in the sediments (the rest is denitrified). 0.37
NO3T1 Lower temperature for nitrate decay, °C 5
NO3T2 Lower temperature for maximum nitrate decay, °C 25
NO3KI1 Fraction of denitrification rate at NO3T1 0.1
NO3K?2 Fraction of denitrification rate at NO3T2 0.99

Table A7. Rates and constants: SOD rates.

Rates and constants Value
SEDCI Initial first order sediment concentration, g m—2 0.5
SEDK First order sediment decay rate, d—! 0.1
SEDS First order sediment settling or focusing rate, m d-1 0.1
SEDBR First order sediment burial rate, da-! 0.01
DYNSEDK Turns ON/OFF dynamic calculation of the first order sediment model decay rate ON
SODT1 Lower temperature for zero-order SOD or first-order sediment decay, °C 4
SODT?2 Upper temperature for zero-order SOD or first-order sediment decay, °C 30
SODKI1 Fraction of SOD or sediment decay rate at lower temperature 0.1
SODK?2 Fraction of SOD or sediment decay rate at upper temperature 0.99

Geosci. Model Dev., 18, 6135-6165, 2025 https://doi.org/10.5194/gmd-18-6135-2025
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Table A8. Rates and constants: Sediment diagenesis model (con-
sidering 5 regions).

“Initial sediment temperature °C”,10, 10, 10, 10, 10,

“Initial sediment pH (only used if include modeling dynamic pH)”, 7, 7,7, 7, 7
“Initial POC (total) concentration mg C L™17, 4301, 15437, 17126, 16051, 19200, 12902
“Initial PON (total) concentration mgNLfl 1000, 1000, 1000, 1000, 1000
“Initial POP (total) concentration mg P L_l”, 0.001, 0.001, 0.001, 0.001, 0.001
“Initial SO4 concentration mg S L~!»,0.1,0.1,0.1,0.1,0.1

“Initial dissolved NH4 concentration mg NL™! ”,0.01, 0.01, 0.01, 0.01, 0.01
“Initial dissolved NO3 concentration mg NL_l”, 0.0, 0.0, 0.0, 0.0, 0.0

“Initial total PO4 concentration mgPL_l”, 0.00, 0.00, 0.00, 0.00, 0.00

“Initial dissolved HyS concentration mg S L-! ”.0.1,0.1,0.1,0.1, 0.1

“Initial CH4 concentration mg C L_l”, 0.092, 0.092, 0.092, 0.092, 0.092

“Initial TIC concentration mg C L_l”, 4.011,4.011,4.011,4.011,4.011

“Initial Alkalinity concentration for each region mg L1 as CaC03”, 50, 50, 50, 50, 50
“Initial Ferrous Iron concentration for each region mg Fe L=17,0.1,0.1,0.1,0.1, 0.1
“Initial Iron Oxyhydroxide concentration for each region mg Fe Lfl”, 0.1,0.1,0.1, 0.1, 0.1
“Initial Mn(II) concentration for each region mg Mn L_l”, 0.1,0.1,0.1, 0.1, 0.1
“Initial manganese dioxide concentration for each region mg Mn L=17,0.1,0.1,0.1,0.1,0.1
“Number of regions for different diagenesis related rates”, 1,

Region 1, Region 2, Region 3, Region 4, Region 5

“Starting segment for regions”, 2

“Ending segment for regions”, 21

“Fraction of labile POC”, 0.1

“Fraction of refractory POC”, 0.89

“Fraction of labile PON”, 0.1

“Fraction of refractory PON”, 0.89

“Fraction of labile POP”, 0.1

“Fraction of refractory POP”, 0.89

“Pore water diffusion coefficient m? d_l”, 0.0025

“Particle mixing velocity between aerobic and anaerobic layers m? d~1”, 0.00006
“Burial velocity md~1”, 0.00000685

“CHg4 production calculation method (0: Analytical 1: Numerical)”, 1, 1

“DO threshold for aerobic layer oxidation rates mg O, L~ 1> 2,2

“Nitrification rate in aerobic layer at DO below threshold md~!7,03
“Nitrification rate in aerobic layer at DO above threshold m d=17,03
“Denitrification rate in aerobic layer at DO below threshold m d=1», 0.1
“Denitrification rate in aerobic layer at DO above threshold md~!”, 0.1
“Denitrification rate in anerobic layer md_l”, 0.1,0.1

“CHy oxidation rate in aerobic layer m d=1,07,07

“Half-saturation oxygen constant for CH4 oxidation mg O, L~!7,00
“Nitrification half-saturation constant for NH4 in aerobic layer mg N L™ 1> 0.728
“Nitrification half-saturation constant for O, in aerobic layer mg O L™ 1> 0.37
“Temperature coefficient for pore water diffusion between layers”, 1.08
“Temperature coefficient for particle mixing diffusion coefficient”, 1
“Temperature coefficient for nitrification”, 1.123

“Temperature coefficient for denitrification”, 1.08

“Temperature coefficient for methane oxidation”, 1.079

“SOy4 concentration above which sulfide over methane is produced mg S L1720
“Hj,S oxidation rate in aerobic layer m d-! 7,02

“Temperature coefficient for HpS oxidation”, 1.079

“H,»S oxidation normalization constant for Oy mg O, L™ I» 4

“Diagenesis rate for labile POC (G1) d=17,0.035

“Diagenesis rate for refractory POC (G2) d=17,0.0018

“Diagenesis rate for inert/slow refractory POC (G3) d=17,0.0001

“Diagenesis rate for labile PON (G1) d=1,0.035
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Table A8. Continued.

“Diagenesis rate for refractory PON (G2) d=17,0.0018
“Diagenesis rate for inert/slow refractory PON (G3) d=1,0.0001
“Diagenesis rate for labile POP (G1) d~1”,0.035

“Diagenesis rate for refractory POP (G2) d™ 1> 0.0018
“Diagenesis rate for inert/slow refractory POP (G3) d~1”, 0.0001
“Temperature coefficient for labile POC”, 1.1

“Temperature coefficient for refractory POC”, 1.15
“Temperature coefficient for inert/slow refractory POC”, 1
“Temperature coefficient for labile PON™"", 1.1

“Temperature coefficient for refractory PON”, 1.15
“Temperature coefficient for inert/slow refractory PON”, 1, 1
“Temperature coefficient for labile POP”, 1.1, 1.1

“Temperature coefficient for refractory POP”, 1.15, 1.15
“Temperature coefficient for inert/slow refractory POP”, 1

“POy sorption coefficient in anaerobic layer m? kg*l”, 0.02
“Incremental POy partition coefficient”, 0,0

“Critical oxygen concentration for incremental sorption mg Oy L1 0.01

“NH4 sorption coefficient in aerobic layer m? kg*1 ”,0.001
“NH4 sorption coefficient in anaerobic layer m? kg~!17,0.001
“H,S sorption coefficient in aerobic layer m? kg_l”, 0.1
“H,S sorption coefficient in anaerobic layer m? kg_l, 0.1

“Algorithm for POM resuspension (0: Wind induced resuspension, 1: Bottom scour resuspension) Only used if Include POM resuspension is TRUE”, 1, 0

“Fe(II) sorption coefficient in aerobic layer m? g_l, 0.00005
“Fe(II) sorption coefficient in anaerobic layer m? gfl”, 0.01
“Mn(II) sorption coefficient in aerobic layer m3 g*l”, 0.00005
“Mn(II) sorption coefficient in anaerobic layer m3 g~ 17,0.01
“Write sediment fluxes”, TRUE

“Frequency of output days”, 1

Geosci. Model Dev., 18, 6135-6165, 2025
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Table A9. Metrics between observed and predicted values for both models. The predicted values were compared with observed values at
three different depths: (a) an integrated sample between the reservoir surface and an average depth of 5.8 m, (b) an average depth of 23 m,
and (c) an average depth of 43. m. The values shown in this table represent the mean value of the metrics obtained for each date and the
corresponding standard deviation.

Constituent R?  PBIAS RMSE MAE

SD model (run 5 — baseline)

Water temperature  0.95 —3.34 1.31 1.05
DO 0.79 —9.68 2.01 1.40
Total N 0.19 —15.85 0.33 0.27
Total P 0.09 —11.44 0.03 0.01
BODs 0.02 —-50.92 3.24 1.58
Chl a 0.14 51.62 17.12 11.51

Zero-order model (zero order SOD =2.5g 0, m~2d-1 - baseline)

Water temperature  0.95 —-3.34 1.32 1.06
DO 0.84 —-5.91 1.69 1.12
Total N 0.22 —1.07 0.79 0.46
Total P 026  103.43 0.10 0.04
BODs 0.03 —50.93 3.24 1.58
Chla 0.09 48.89 17.78 12.17

First-order model ISC=0.5¢g m2— baseline)

Water temperature  0.95 —3.18 1.31 1.05
DO 0.83 9.21 1.84 1.28
Total N 0.14 —24.73 0.36 0.28
Total P 0.10 -3.71 0.03 0.02
BODs 0.00 —53.34 3.24 1.59
Chla 0.06 —60.39 14.88 8.49

Hybrid model (zero order SOD =1.0g O, m~2d~! - baseline)

Water temperature ~ 0.95 -3.20 1.31 1.05
DO 0.87 —2.34 1.52 1.03
Total N 031 —18.75 0.35 0.28
Total P 0.27 36.49 0.04 0.02
BODjs 0.01 —51.93 3.25 1.61
Chla 0.06 —59.55 14.95 8.52

Table A10. Metrics between observed and predicted values for SD model (run 4). Water temperature and DO metrics were obtained from 36
observed and predicted profiles. The predicted values for the remaining constituents were compared with observed values at three different
depths: (a) an integrated sample between the reservoir surface and an average depth of 5.8 m, (b) an average depth of 23 m and (c) an average
depth of 43.7m. The values in this table represent the mean value of the metrics obtained at each date and the corresponding standard
deviation or, in the case of water temperature and DO, the mean value of the metrics obtained for each profile and the standard deviation.

Constituent SD model (Run 4)

R? PBIAS RMSE MAE

Water temperature  0.95 —3.45 1.34 1.07

DO 0.79 —8.20 1.98 1.37
Total N 0.18 —15.52 0.33 0.27
Total P 0.09 —11.18 0.03 0.01
BOD5 0.02 —50.93 3.24 1.58
Chla 0.15 52.95 1697 11.48
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Table A11. Root mean square error values obtained with different models and across different time frames.

Constituent ~ Model Simulation RMSE Author

Water CE-QUAL-W2 1984-1991 2.95°C Deliman and Gerald (2002)

temperature CE-QUAL-W2 2005-2010 1.93°C Kim and Kim (2006)
CE-QUAL-W2 1991-2000 0.56°C Zhang et al. (2015)
CE-QUAL-W2 20112013 < 2.0°C Lindenschmidt et al. (2019)
Delft3D-FLOW  2015-2017 0.96to 1.0°C Piccioni et al. (2021)
CE-QUAL-W2 20012011 1.80°C Brito et al. (2018)
CE-QUAL-W2 2010 2.36°C Liu et al. (2019)
MINLAKE2020 2007-2009 1.51°C Tasnim et al. (2021)
CE-QUAL-W2 2000-2019 3.01-3.17°C Almeida et al. (2023)

DO CE-QUAL-W2 1984-1991 1.34mg L-! Deliman and Gerald (2002)
CE-QUAL-W2 1991-2000 0.61 mg L! Zhang et al. (2015)
CE-QUAL-W2 2001 1.2mg L-! Brett et al. (2016)
CE-QUAL-W2 2001-2011 7.6mg L-! Brito et al. (2018)
DYRESM 4.0 2009-2011 1.78 mg L! Luo et al. (2018)
MINLAKE2020 2007-2009 2.33mg L-! Tasnim et al. (2021)
CE-QUAL-W2 2000-2019  2.22-3.46 mg L-! Almeida et al. (2023)

Total P CE-QUAL-W2 2001  0.012mg L-! Brett et al. (2016)
CE-QUAL-W2 2005-2010  0.014-0.068 mg L~!  Kimetal. (2019)
MINLAKE2020 2007-2009  0.005-0.036 mg L~!  Tasnim et al. (2021)
CE-QUAL-W2 2000-2019  0.07-0.09 mgL—! Almeida et al. (2023)

Total N CE-QUAL-W2 1984-1991 0.77 mg L-! Deliman and Gerald (2002)

BODs CE-QUAL-W2 2000-2019  3.06-4.83 mg L-! Almeida et al. (2023)
CE-QUAL-W2 1991-2000 1.08 ug L-! Zhang et al. (2015)

Chla CE-QUAL-W2 2001 4.6pgL~! Brett et al. (2016)
CE-QUAL-W2 2005-2010 6.7-13.2ug L! Kim et al. (2019)
CE-QUAL-W2 2001-2011 629 png L-! Brito et al. (2018)
MINLAKE2020 2007-2009 0.6-27.6 ug L-! Tasnim et al. (2021)
CE-QUAL-W2 2000-2019  19.36-25.57 ug L~!  Almeida et al. (2023)

Code availability. The exact version of the models’ source code
is archived on Zenodo at https://doi.org/10.5281/zenodo.14606105
(Almeida and Coelho, 2025). The current version of the open-
source CEQUAL-W2 model (version 4.5) used in this study is also
available from the project website (http://www.ce.pdx.edu/w2/, last
access: 24 January 2024).

Data availability. Input files needed to run the models’ and the hy-
drometric water quality and meteorological datasets used to force
and validate each model are freely available and are archive on
Zenodo at https://doi.org/10.5281/zenodo.14606105 (Almeida and
Coelho, 2025).

Author contributions. MA conceptualized the study, developed the
methodology, and handled software and data curation, as well as
writing the original draft. PC administered the project and con-
tributed to reviewing and editing the manuscript.

Geosci. Model Dev., 18, 6135-6165, 2025

Competing interests. The contact author has declared that neither
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors. Also, please note that this paper has not re-
ceived English language copy-editing. Views expressed in the text
are those of the authors and do not necessarily reflect the views of
the publisher.

Acknowledgements. The authors acknowledge the funding received
from Fundac@o para a Ciéncia e a Tecnologia (FCT, Portugal),
through the UIDB/04292/2020 and UIDP/04292/2020 strategic
projects granted to the Marine and Environmental Sciences Cen-

https://doi.org/10.5194/gmd-18-6135-2025


https://doi.org/10.5281/zenodo.14606105
http://www.ce.pdx.edu/w2/
https://doi.org/10.5281/zenodo.14606105

M. Almeida and P. Coelho: Evaluating the performance of CE-QUAL-W?2 version 4.5 6163

tre (MARE) and the LA/P/0069/2020 project granted to the Aquatic
Research Network Associate Laboratory (ARNET).

Financial support. This research has been supported by the Fun-
dag@o para a Ciéncia e a Tecnologia (grant nos. UIDB/04292/2020,
UIDP/04292/2020, and LA/P/0069/2020).

Review statement. This paper was edited by Wolfgang Kurtz and
reviewed by two anonymous referees.

References

Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R.,
Yang, H. and Klgve, B.: A continental-scale hydrology and water
quality model for Europe: Calibration and uncertainty of a high-
resolution large-scale SWAT model, J. Hydrol., 524, 733-752,
https://doi.org/10.1016/j.jhydrol.2015.03.027, 2015.

Adedeji, 1. C., Ahmadisharaf, E., and Sun, Y.: Predict-
ing in-stream water quality constituents at the water-
shed scale using machine learning. J. Contam. Hydrol.,
https://doi.org/10.1016/j.jconhyd.2022.104078, 2022.

Almeida, M. and Coelho, P. S.: An integrated approach based
on the correction of imbalanced small datasets and the appli-
cation of machine learning algorithms to predict total phos-
phorus concentration in rivers, Ecol. Inform., 76, 102138,
https://doi.org/10.1016/j.ecoinf.2023.102138, 2023a.

Almeida, M. and Coelho, P.: A first assessment of ERAS and ERAS-
Land reanalysis air temperature in Portugal, In. J. Climatol., 43,
6643-6663, https://doi.org/10.1002/J0C.8225, 2023b.

Almeida, M. and Coelho, P.: Evaluating the performance of CE-
QUAL-W?2 version 4.5 sediment diagenesis model (Manuscript
related material: input data and source code) (1.0.0), Zenodo
[data set and code], https://doi.org/10.5281/zenodo.14606105,
2025.

Almeida, M., Rebelo, R., Costa, S. Rodrigues, A. C., and Coelho, P.
S.: Long-Term Water Quality Modeling of a Shallow Eutrophic
Lagoon with Limited Forcing Data, Environ. Model. Assess.,
https://doi.org/10.1007/s10666-022-09844-3, 2023.

Anderson, N. J., D’ Andrea, W., and Fritz, S. C.: Holocene carbon
burial by lakes in SW Greenland, Glob. Change Biol., 15, 2590—
2598, https://doi.org/10.1111/j.1365-2486.2009.01942.x, 20009.

Barbosa, S. and Scotto, M. G.: Extreme heat events in the Iberia
Peninsula from extreme value mixture modeling of ERAS-
Land air temperature, Weather Clim. Extrem. 36, 100448,
https://doi.org/10.1016/j.wace.2022.100448, 2022.

Berger, C. and Wells, S.: Updating the CEMA Oil Sands Pit Lake
Model, Prepared for CEMA, 2014.

Bergstra, J., Yamins, D., and Cox, D. D.: Making a science of
model search: Hyperparameter optimization in hundreds of di-
mensions for vision architectures, in: Proc. of the 30th Inter-
national Conference on Machine Learning (ICML 2013), http:
/Mars.harvard.edu/urn-3:HUL.InstRepos: 12561000, 2013.

Beutel, M.: Lake Hodges Reservoir Oxygen Demand Study.
Final Assessment Report, City of San Diego Public Util-
ities Department, https://www.sandiego.gov/sites/default/files/

https://doi.org/10.5194/gmd-18-6135-2025

ceqa-hodges-reservoir-oxygen.pdf (last access: 15 August
2024), 2015.

Brett, M. T., Ahopelto, S. K., Brown, H. K., Brynestad, B. E.,
Butcher, T. W., Coba, E. E., Curtis, C. A., Dara, J. T., Doe-
den, K. B., Evans, K. R., Fan L., Finley, J. D., Garguilo, N.
J., Gebreeyesus, S. M., Goodman, M. K., Gray, K. W., Grin-
nell, C., Gross, K. L., Hite, B. R. E., Jones, A. J., Kenyon, P.
T., Klock, A. M., Koshy, R. E., Lawler, A. M., Lu, M., Mar-
tinkosky, L., Miller-Schulze, J. R., Nguyen, Q. T. N., Runde,
E. R., Stultz, J. M., Wang, S., White, F. P, Wilson, C. H.,
Wong, A. S., Wu, S. Y., Wurden, P. G., Young, T. R., and
Arhonditsis, G. B.: The modeled and observed response of
Lake Spokane hypolimnetic dissolved oxygen concentrations
to phosphorus inputs, Lake Reserv. Manage., 32-33, 246-258,
https://doi.org/10.1080/10402381.2016.1170079, 2016.

Brito, D., Ramos, T. B., Gongalves, M. C., Morais, M., and Neves,
R.: Integrated modelling for water quality management in a eu-
trophic reservoir in south — eastern Portugal, Environ. Earth Sci.,
77, https://doi.org/10.1007/512665-017-7221-5, 2018.

Burnham, K. P. and Anderson, D. R.: Model Selection and Mul-
timodel Inference: A Practical Information-Theoretic Approach,
in: 2nd Edn., Springer, ISBN 978-0-387-95364-9, 2002.

Cardoso, R. M., Soares, P. M. M., Miranda, P. M. A., and Belo-
Pereira, M.: WRF High resolution simulation of Iberian mean
and extreme precipitation climate, Int. J. Climatol., 33, 2591—
2608, https://doi.org/10.1002/joc.3616, 2013.

Chapman, D. V.: Water quality assessments: A guide to the use
of biota, sediments, and water in environmental monitoring,
in2nd Edn., CRC Press, ISBN 0 419 21590 5, 1996.

Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boost-
ing System, in: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, ACM, New York, NY, USA, 785-794,
https://doi.org/10.1145/2939672.2939785, 2016.

Chuo, M., Ma, J., Liu, D., and Yang, Z.: Effects of the impounding
process during the flood season on algal blooms in Xiangxi Bay
in the Three Gorges Reservoir, China, Ecol. Model., 392, 236—
249, https://doi.org/10.1016/j.ecolmodel.2018.11.017, 2019.

Cole, T. M. and Wells, S. A.: CE-QUAL-W2: A Two-dimensional,
Laterally Averaged, Hydrodynamic and Water Quality Model,
Version 3.5, https://pdxscholar.library.pdx.edu/cengin_fac/130/
(last access: 20 August 2024), 2006.

Deliman, P. N. and Gerald, J. A.: Application of the
Two- Dimensional Hydrothermal and Water Qual-
ity Model, CE-QUAL-W2, to the Chesapeake Bay -
Conowingo Reservoir, Lake Reserv. Manage., 18, 10-19,
https://doi.org/10.1080/07438140209353925, 2002.

Feigl, M., Lebiedzinski, K., Herrnegger, M., and Schulz,
K.: Machine-learning methods for stream water tempera-
ture prediction, Hydrol. Earth Syst. Sci. 25, 2951-2977,
https://doi.org/10.5194/hess-25-2951-2021, 2021.

Gireeshkumar,. R., Deepulal, P. M., and Chandramohanakumar,
N.: Distribution and sources of sedimentary organic matter
in a tropical estuary, southwest coast of India (Cochin es-
tuary): A baseline study, Mar. Pollut. Bull.,, 66, 239-245,
https://doi.org/10.1016/j.marpolbul.2012.10.002, 2013.

Hamilton, D. P. and Schladow, S. G.: Prediction of water quality in
lakes and reservoirs. Part I — model description, Ecol. Model., 96,
91-110, https://doi.org/10.1016/S0304-3800(96)00062-2, 1997.

Geosci. Model Dev., 18, 6135-6165, 2025


https://doi.org/10.1016/j.jhydrol.2015.03.027
https://doi.org/10.1016/j.jconhyd.2022.104078
https://doi.org/10.1016/j.ecoinf.2023.102138
https://doi.org/10.1002/JOC.8225
https://doi.org/10.5281/zenodo.14606105
https://doi.org/10.1007/s10666-022-09844-3
https://doi.org/10.1111/j.1365-2486.2009.01942.x
https://doi.org/10.1016/j.wace.2022.100448
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12561000
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12561000
https://www.sandiego.gov/sites/default/files/ceqa-hodges-reservoir-oxygen.pdf
https://www.sandiego.gov/sites/default/files/ceqa-hodges-reservoir-oxygen.pdf
https://doi.org/10.1080/10402381.2016.1170079
https://doi.org/10.1007/s12665-017-7221-5
https://doi.org/10.1002/joc.3616
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.ecolmodel.2018.11.017
https://pdxscholar.library.pdx.edu/cengin_fac/130/
https://doi.org/10.1080/07438140209353925
https://doi.org/10.5194/hess-25-2951-2021
https://doi.org/10.1016/j.marpolbul.2012.10.002
https://doi.org/10.1016/S0304-3800(96)00062-2

6164 M. Almeida and P. Coelho: Evaluating the performance of CE-QUAL-W?2 version 4.5

Ji, X. and Lu, J.: Forecasting riverine total nitrogen loads us-
ing wavelet analysis and support vector regression combina-
tion model in an agricultural watershed, Environ. Sci. Pollut.
Res. Int., 25, 26405-26422, https://doi.org/10.1007/s11356-018-
2698-3, 2018.

Kim, D., Kim, Y., and Kim, B.: Simulation of eutrophication in a
reservoir by CE-QUAL-W?2 for the evaluation of the importance
of point sources and summer monsoon. Lake Reserv. Manage.,
35, 64-76, https://doi.org/10.1080/10402381.2018.1530318,
2019.

Kim, Y. and Kim, B.: Application of a 2-dimensional water quality
model (CE-QUAL-W?2) to the turbidity interflow in a deep reser-
voir (Lake Soyang, Korea), Lake Reserv. Manage, 22, 213-222,
https://doi.org/10.1080/10402381.2018.1530318, 2006.

Kobler, U. G., Wiiest, A., and Schmid, M.: Effects of lake-reservoir
pumped-storage operations on temperature and water qual-
ity, Sustainability, 10, 1968, https://doi.org/10.3390/sul10061968,
2018.

Lindenschmidt, K. E., Carr, M. K., Sadeghian, A., and Morales-
Marin, L.: CE-QUAL-W2 model of dam outflow elevation im-
pact on temperature, dissolved oxygen and nutrients in a reser-
voir, Sci. Data, 6, 312, https://doi.org/10.1038/s41597-019-0316-
y, 2019.

Liu, M., Chen, X., Chen, Y., Gao, L., and Deng, H.: Nitro-
gen retention effects under reservoir regulation at multiple
time scales in a subtropical river basin, Water, 11, 1685,
https://doi.org/10.3390/w11081685, 2019.

Loucks, D. P. and van Beek, E.: Water Quality Modeling and Pre-
diction, in: Water Resource Systems Planning and Management,
Springer, Cham, https://doi.org/10.1007/978-3-319-44234-1_10,
2017.

Lu, H. and Ma, X. Hybrid decision tree-based
machine  learning  models  for  short-term  water
quality prediction, Chemosphere, 249, 126169,

https://doi.org/10.1016/j.chemosphere.2020.126169, 2020.

Luo, L., Hamilton, D., Lan, J., McBride, C., and Trolle, D.:
Autocalibration of a one-dimensional hydrodynamic-ecological
model (DYRESM 4.0-CAEDYM 3.1) using a Monte Carlo ap-
proach: simulations of hypoxic events in a polymictic lake,
Geosci. Model Dev., 11, 903-913, https://doi.org/10.5194/gmd-
11-903-2018, 2018.

Mi, C., Shatwell, T., Ma, J., Xu, Y., Su, F., and Rinke, K.: Ensemble
warming projections in Germany’s largest drinking water reser-
voir and potential adaptation strategies, Sc. Total Environ., 748,
141366, https://doi.org/10.1016/j.scitotenv.2020.141366, 2020.

Mi, C,, Shatwell, T., Kong, X., and Rinke, K.: Cascading climate ef-
fects in deep reservoirs: Full assessment of physical and biogeo-
chemical dynamics under ensemble climate projections and ways
towards adaptation, Ambio, https://doi.org/10.1007/s13280-023-
01950-0, 2023.

Minear, J. T. and Kondolf, G. M.: Estimating reservoir sed-
imentation rates at large spatial and temporal scales: A
case study of California, Water Resour. Res., 45, W12502,
https://doi.org/10.1029/2007WR006703, 2009.

Moriasi, D. N., Gitau, M. W.,, Pai, N., and Daggupati, P:
Hydrologic and water quality models: performance mea-
sures and evaluation criteria, T. ASABE, 58, 1763-1785,
https://doi.org/10.13031/trans.58.10715, 2015.

Geosci. Model Dev., 18, 6135-6165, 2025

Muiioz-Sabater, J.: ERAS-Land hourly data from 1981 to present,
Copernicus Climate Change Service (C3S) Climate Data
Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac,
2019.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models: Part 1. A discussion of principles, J. Hydrol., 10,
282-290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

OECD: Organisation for the Economic Cooperation and Develop-
ment. Eutrophication of Waters — Monitoring Assessment and
Control, OECD, Paris, 125 pp., 1982.

Park, Y., Cho, K. H., Kang, J.-H., Lee, S. W,, and Kim, J. H.: De-
veloping a flow control strategy to reduce nutrient load in a re-
claimed multi-reservoir system using a 2D hydrodynamic and
water quality model, Sci. Total. Environ., 466-467, 871-880,
2014.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn:
machine learning in Python, arXiv [preprint], 2825-2830,
https://doi.org/10.48550/arXiv.1201.0490, 2011.

Piccioni, F., Casenave, C., Lemaire, B. J., Le Moigne, P,
Dubois, P., and Vincon-Leite, B.: The thermal response of
small and shallow lakes to climate change: new insights from
3D hindcast modelling, Earth Syst. Dynam., 12, 439-456,
https://doi.org/10.5194/esd-12-439-2021, 2021.

Piccolroaz, S., Zhu, S., Ladwig, R.,Carrea, L., Oliver, S., Pi-
otrowski, A. P., Ptak. M., Shinohara, R., Sojka, M., Wool-
way, R. I, and Zhu, D. Z.: Lake water temperature mod-
eling in an Era of climate change: Data sources, models,
and future prospects, Rev. Geophys., 62, €2023RG000816,
https://doi.org/10.1029/2023RG000816, 2024.

Prakash, S., Vandenberg, J. A., and Buchak, E. M.: Sed-
iment Diagenesis Module for CE-QUAL-W2 Part 2: Nu-
merical Formulation, Environ. Model. Assess., 20, 249-258,
https://doi.org/10.1007/s10666-015-9459-1, 2015.

Rajesh, M. and Rehana, S.: Prediction of river water tem-
perature using machine learning algorithms: a tropi-
cal river system of India, J. Hydroinf.,, 23, 605-626,
https://doi.org/10.2166/hydro.2021.121, 2021.

Runkel, R. L., Crawford, C. G., and Cohn, T. A.: Load estima-
tor (LOADEST): a FORTRAN program for estimating con-
stituent loads in streams and rivers, in: USGS Techniques and
Methods Book 4, Chap. AS, US Geological Survey, Reston, Vir-
ginia, USA, https://doi.org/10.3133/tm4AS, 2004.

Sadeghian, A., Chapra, S. C., Hudson, J., Wheater, H., and Lin-
denschmidt, K. E.: Improving in-lake water quality modeling us-
ing variable chlorophyll a/algal biomass ratios, Environ. Model.
Softw., 101, 73-85, 2018.

Schnoor, J. L. and Fruh, E. G.: Dissolved Oxygen Model of a Short
Detention Time Reservoir with Anaerobic Hypolimnion, Water
Resour. Bull., 15, 506-518, 1979.

SNIRH: National information system of water resources, Por-
tuguese Environmental Agency — Sistema Nacional de Informa-
cao de Recursos Hidricos, http://www.https://snirh.apambiente.
pt (last access: 23 April 2024), 2024.

Soares, P. M. M, Cardoso, R. M., Ferreira, J. J., and Miranda, P. M.
A.: Climate change and the Portuguese precipitation: ENSEM-

https://doi.org/10.5194/gmd-18-6135-2025


https://doi.org/10.1007/s11356-018-2698-3
https://doi.org/10.1007/s11356-018-2698-3
https://doi.org/10.1080/10402381.2018.1530318
https://doi.org/10.1080/10402381.2018.1530318
https://doi.org/10.3390/su10061968
https://doi.org/10.1038/s41597-019-0316-y
https://doi.org/10.1038/s41597-019-0316-y
https://doi.org/10.3390/w11081685
https://doi.org/10.1007/978-3-319-44234-1_10
https://doi.org/10.1016/j.chemosphere.2020.126169
https://doi.org/10.5194/gmd-11-903-2018
https://doi.org/10.5194/gmd-11-903-2018
https://doi.org/10.1016/j.scitotenv.2020.141366
https://doi.org/10.1007/s13280-023-01950-0
https://doi.org/10.1007/s13280-023-01950-0
https://doi.org/10.1029/2007WR006703
https://doi.org/10.13031/trans.58.10715
https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.5194/esd-12-439-2021
https://doi.org/10.1029/2023RG000816
https://doi.org/10.1007/s10666-015-9459-1
https://doi.org/10.2166/hydro.2021.121
https://doi.org/10.3133/tm4A5
http:// www. https:// snirh.apambiente.pt
http:// www. https:// snirh.apambiente.pt

M. Almeida and P. Coelho: Evaluating the performance of CE-QUAL-W?2 version 4.5 6165

BLES regional climate models results, Clim Dynam. 45, 1771—
1787, https://doi.org/10.1007/s00382-014-2432-x, 2015.

Tasnim, B., Fang, X., Hayworth, J. S., and Tian, D.: Sim-
ulating Nutrients and Phytoplankton Dynamics in Lakes:
Model Development and Applications, Water, 13, 2088,
https://doi.org/10.3390/w13152088, 2021.

Tavera-Quiroz, H., Rosso-Pinto, M., Herniandez, G., Pinto,
S., Canales, F. A.: Water Quality Analysis of a Trop-
ical Reservoir Based on Temperature and Dissolved
Oxygen Modeling by CE-QUAL-W2, Water, 15, 1013,
https://doi.org/10.3390/w15061013, 2023.

Terry, J. A., Sadeghian, A., and Lindenschmidt, K. E.: Mod-
elling Dissolved Oxygen/Sediment Oxygen Demand under
Ice in a Shallow Eutrophic Prairie Reservoir, Water, 9, 131,
https://doi.org/10.3390/w9020131, 2017.

Uhlmann, W.: A Model-based Study on the Discharge of Iron-rich
Groundwater Into the Lusatian Post-mining Lake Lohsa, Mine
Water and Circular Economy, Germany, http://www.imwa.de/
docs/imwa_2017/IMWA2017_Uhlmann_626.pdf (last acess: 24
June 2024), 2017.

Vandenberg, J. A., Prakash, S., and Buchak, E. M.: Sedi-
ment Diagenesis Module for CE-QUAL-W2. Part 1: Con-
ceptual Formulation, Environ. Model. Assess., 20, 239-247,
https://doi.org/10.1007/s10666-014-9428-0, 2015.

Varis, O., Kuikka, S., and Taskinen, A.: Modeling for water qual-
ity decisions: Uncertainty and subjectivity in information, in
objectives, and in model structure, Ecol. Model., 74, 91-101,
https://doi.org/10.1016/0304-3800(94)90113-9, 1994.

https://doi.org/10.5194/gmd-18-6135-2025

Wells, S. A.: CE-QUAL-W2: A Two-Dimensional, Laterally Aver-
aged, Hydrodynamic and Water Quality Model, Version 4.5, De-
partment of Civil and Environmental Engineering Portland State
University, https://www.ce.pdx.edu/w2/ (last access: 21 January
2024), 2021.

Whitehead, P., Wilby, R., Battarbee, R., Kernan, M., and Wade, A.
J.: A review of the potential impacts of climate change on sur-
face water quality. Hydrological Sciences Journal, 54(1), 101-
123, doi.org/10.1623/hys;j.54.1.101, 2009.

Xu, G., Fan, H., Oliver, D.M,, Dai, Y., Li, H., Shi, Y., Long, H.,
Xiong, K., and Zhao, Z.: Decoding river pollution trends and
their landscape determinants in an ecologically fragile karst basin
using a machine learning model, Environ. Res., 214, 113843,
https://doi.org/10.1016/j.envres.2022.113843, 2022.

Yu, K., Zhang, Y., He, X., Zhao, Z., Zhang, M., Chen, Y., Lang, X.,
and Wang, Y.: Characteristics and environmental significance of
organic carbon in sediments from taihu Lake, China, Ecol. Indic.,
138, 108796, https://doi.org/10.1016/j.ecolind.2022.108796,
2022.

Zhang, Z., Sun, B., and Johnson, B. E.: Integration of a benthic
sediment diagenesis module into the two dimensional hydrody-
namic and water quality model — CE-QUAL-W2, Ecol. Model.,
297, 213-231, https://doi.org/10.1016/j.ecolmodel.2014.10.025,
2015.

Zouabi-Aloui, B., Adelana, S. M., and Gueddari, M.: Effects of
selective withdrawal on hydrodynamics and water quality of a
thermally stratified reservoir in the southern side of the Mediter-
ranean Sea: a simulation approach, Environ. Monit. Assess., 187,
292-311, 2015.

Geosci. Model Dev., 18, 6135-6165, 2025


https://doi.org/10.1007/s00382-014-2432-x
https://doi.org/10.3390/w13152088
https://doi.org/10.3390/w15061013
https://doi.org/10.3390/w9020131
http://www.imwa.de/docs/imwa_2017/IMWA2017_Uhlmann_626.pdf
http://www.imwa.de/docs/imwa_2017/IMWA2017_Uhlmann_626.pdf
https://doi.org/10.1007/s10666-014-9428-0
https://doi.org/10.1016/0304-3800(94)90113-9
https://www.ce.pdx.edu/w2/
https://doi.org/10.1016/j.envres.2022.113843
https://doi.org/10.1016/j.ecolind.2022.108796
https://doi.org/10.1016/j.ecolmodel.2014.10.025

	Abstract
	Introduction
	Methods
	Site location and main characteristics
	CE-QUAL-W2 v4.5 model
	Modeling approach
	Model forcing datasets
	Water quality model (CE-QUAL-W2) calibration
	Sensitivity analysis
	Metrics

	Results
	Observed inflow water quality characterization
	CE-QUAL-W2 calibration
	Sensitivity analysis
	Inflow organic matter and phosphorus load reduction scenarios

	Discussion
	Conclusions
	Appendix A
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

