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Abstract. This study presents SanDyPALM, an innovative
toolkit designed to streamline the generation of both static
and dynamic input data for the PALM model, thereby facili-
tating urban microclimate simulations. SanDyPALM is capa-
ble of processing a diverse range of custom input data from
raster and vector files, and it incorporates two novel methods
– OSM2PALM and LCZ4PALM – that introduce the auto-
mated extraction of static input data from open data sources.
To investigate the impact of static input data on simulation
outcomes, we developed static drivers from four distinct data
sources. Our analysis reveals not only variations in the gen-
erated static drivers but also differences in the simulation re-
sults. Importantly, all simulations correlate well with mea-
surements from two different weather stations, underscor-
ing the robustness of the overall modeling approach. How-
ever, we observed variations in temperature, humidity, and
wind speed that are dependent on the static input data. Fur-
thermore, our findings demonstrate that automated process-
ing methods can yield results comparable to those achieved
through expert-driven approaches, significantly simplifying
workflows.

1 Introduction

Rapid urbanization and climate change are two significant
factors that drive the need for a better understanding of urban
climates. According to the Sixth Assessment Report of the
IPCC (Pörtner et al., 2022), “an additional 2.5 billion people
are projected to live in urban areas by 2050”. The report also
states that “there is at least a greater than 50 % likelihood that
global warming will reach or exceed 1.5 °C in the near term,
even for the very low greenhouse gas emissions scenario”. In

cities, the detrimental impacts of climate change will be in-
tensified by the urban heat island phenomenon (Pörtner et al.,
2022). To mitigate these adverse scenarios, urban microcli-
mate analysis is crucial for effective urban planning.

One approach to analyze the urban microclimate is
through the use of dense monitoring networks in urban areas.
However, a significant drawback of this method is the practi-
cal challenge of ensuring adequate temporal and spatial cov-
erage (Afshari, 2023). An alternative to direct measurements
is microscale modeling, which enables comparative analy-
sis of different scenarios and allows for the investigation of
a large number of points in space and time (Toparlar et al.,
2017).

The PALM (PArallelised Large-eddy simulation Model for
Urban applications) model system (Maronga et al., 2020) has
been increasingly utilized due to its accurate large eddy sim-
ulation (LES) core, which is based on the non-hydrostatic,
filtered, incompressible Navier–Stokes equations, where
buoyancy is considered using the Boussinesq approximation.
It incorporates an internal self-nesting capability developed
by Hellsten et al. (2021), as well as an offline-nesting ca-
pability implemented by Kadasch et al. (2021), which en-
ables simulations to be driven by a mesoscale model. The
PALM model system features PALM-4U, a suite of special-
ized components designed for detailed modeling of urban cli-
mate physics. Key components of this framework are (1) an
urban surface model (Resler et al., 2017), (2) a land surface
model (Gehrke et al., 2021), (3) a plant canopy model (see
Maronga et al., 2020), (4) a radiative transfer model (Krč
et al., 2021), (5) a building indoor climate model (Pfaffer-
ott et al., 2021), (6) an atmospheric chemistry model (Khan
et al., 2021), and (7) a biometeorology model (Fröhlich and
Matzarakis, 2020).
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While the PALM model enables realistic urban micro-
climate simulations, its setup can present significant chal-
lenges. A substantial number of input data must be collected
and formatted for both the static driver, which contains all
static geographic information such as terrain height, build-
ing height, and land surface classification, and the dynamic
driver, which includes transient initial and boundary condi-
tions derived from mesoscale data. The PALM model estab-
lishes a comprehensive standard for input data, the PALM
Input Data Standard (PIDS) – see PALM model system de-
velopers (2025a), and provides checks to ensure correctness
and consistency. However, the preparation of input data re-
mains a hindrance for researchers and users of the PALM
model, which has been acknowledged in the community; see,
e.g., Lin et al. (2024). This results in a need for user-friendly,
semi-automated processing tools to facilitate data prepara-
tion, as manual techniques are impractical for large city-scale
simulations. The following state-of-the-art review examines
recent advancements and applications of static and dynamic
drivers, referencing key literature and public software tools.

To create a static driver, the workflow provided by the
PALM model environment utilizes the tool “palm_csd” along
with geospatial input data that were preprocessed for the
three German cities – Berlin, Hamburg, and Stuttgart – by
Heldens et al. (2020) as part of the “MOSAIK” project,
which was included in the first phase of the [UC2

] project
(Scherer et al., 2019). There are minimum requirements for
basic simulations, with additional data available for more
detailed and complex studies. Various sources of geospatial
data were utilized: remote sensing data for building heights
derived from lidar (light detection and ranging) and land
cover classification from satellite imagery; municipal data
collections, including building registries with detailed infor-
mation and land use maps; and open data sources such as
OpenStreetMap (OSM), which provided basic building foot-
prints and street networks. A key limitation of “palm_csd” is
its predefined data format, primarily designed for the “MO-
SAIK” dataset. Adapting it to other locations or data sources
requires significant effort, as the data must first be manually
processed into the required format.

Besides “palm_csd”, other static-driver tools have been
developed. The following two packages have not been pub-
lished, but the code repositories are publicly available: the
first is “palmpy” (Fluck, 2023), a Python package that cre-
ates static drivers for the PALM model with comprehensive
documentation, and the second is “rpalm” (Stadler, 2024b),
an R package designed to create and edit static drivers for the
PALM model.

To alleviate some of the existing limitations of default
methods for creating a static driver, Lin et al. (2024) intro-
duced GEO4PALM, an open-source toolkit that streamlines
the processing of geospatial data from raw input to PALM-
ready formats. It can utilize open data sources directly and
includes tools for preprocessing and visualizing data.

Another static-driver tool, PALM-GEM, has been pub-
lished by Bureš and Resler (2024), and it utilizes the pub-
licly available data from UrbanAtlas, OSM, and EU-DEM.
The tool has already been applied to develop a model for in-
tegrated urban services by Esau et al. (2024).

The “PALM-4U GUI” (Winkler et al., 2023) is a cloud-
based graphical user interface (GUI) for the PALM model.
The code is open-source and can be accessed via a code
repository (Stadler et al., 2024a). The GUI provides a user-
friendly way to prepare input data and simulation setups.
Users can run, visualize, and analyze simulation results with-
out requiring code writing. This method can be particularly
helpful for new users or those unfamiliar with command-line
interfaces, making it the easiest option for getting started
with the PALM modeling workflow. Input data are created
via an interactive web map editor, representing the area to
be simulated as a polygonal city model. Geographic data can
be imported, modified, and supplemented with user-drawn
objects. Settings can be configured for global parameters
and for each individual map object up to Level of Detail 2
(LOD2). City models can be created from OSM and trans-
lated into the PALM input data types using the open-source
package OSM2PALM (Stadler, 2024a). The optional QGIS
plugin “PALMClassify” (Stadler et al., 2024b) can classify
custom geodata in shapefile format into PALM input data
types and export them to the PALM-4U GUI.

Dynamic drivers provide transient boundary conditions to
run the PALM model in “offline-nesting” mode, meaning
that the PALM boundaries are defined using data from an
external model. This approach can significantly improve the
model’s responsiveness to temporally varying large-scale at-
mospheric conditions and generally enhance the overall fi-
delity of the simulations. A major challenge in using dynamic
drivers is the inherent errors in the weather prediction mod-
els themselves, which propagate into the PALM simulations
and affect their accuracy (Radović et al., 2024).

The first method to create dynamic drivers from mesoscale
models was INIFOR (Mesoscale Interface for Initializing
and Forcing), developed by Kadasch et al. (2021). It has be-
come the standard tool for dynamic-driver creation in PALM
and interfaces with the mesoscale weather prediction model
COSMO (Baldauf et al., 2011). INIFOR processes meteo-
rological data (wind, temperature, humidity) and initial soil
data from the weather prediction model, preparing them for
use as dynamic boundary conditions in the PALM simula-
tion. PALM utilizes the prepared data to set the conditions at
its borders (top, sides, and bottom), ensuring that the smaller-
scale simulation within PALM aligns with the larger-scale
atmospheric processes.

Besides INIFOR, other methods have been developed to
create dynamic drivers from mesoscale models, particularly
for the Weather Research and Forecasting (WRF) model
(Skamarock et al., 2019). The first was the “wrf_interface”
presented by Resler et al. (2021), and it was used for a com-
prehensive study of realistic urban microclimate simulations.
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However, one downside of this approach is that it does not
provide a surface layer model to fill the atmospheric data in
the region below the first WRF model level.

Lin et al. (2021) introduced WRF4PALM – a tool designed
to facilitate the conversion of mesoscale data from the WRF
model into a dynamic driver. It implements a surface layer
extension to fill data below the first WRF level using a simple
logarithmic fit function.

Vogel et al. (2022) presented a new method for coupling
the WRF mesoscale weather model with the PALM mi-
croscale model to simulate urban microclimates under re-
alistic atmospheric conditions. The novel dynamic coupling
scheme incorporates a roughness-corrected Monin–Obukhov
surface layer representation (Arya, 2001), accounting for the
varying roughness of urban surfaces to improve the accuracy
of the initial and boundary conditions for the PALM model.
This scheme is particularly important for WRF setups with
relatively large vertical grid spacing near the surface. Simu-
lations were conducted in an urban district of Berlin to test
the new coupling scheme and investigate different WRF se-
tups. The results were compared to standalone WRF simu-
lations (without the microscale model) and actual measure-
ments from the area. The main findings indicated that PALM
simulations generally showed better agreement with mea-
surements than standalone WRF simulations, especially for
temperature. Refining the coupling time step or the WRF grid
spacing did not significantly improve accuracy.

Radović et al. (2024) also used the WRF model to force
the PALM model and described the challenges of establish-
ing ideal conditions for running accurate simulations. The
study determined that the accuracy of the model’s results
heavily relies on the quality of the boundary conditions. It
was observed that errors or limitations in WRF data can sig-
nificantly affect the results generated by PALM, although
the influence of boundary conditions on PALM simulations
can vary depending on the season and even the time of day.
PALM can, to some extent, mitigate the impact of errors in
wind speed from the boundary conditions. However, its abil-
ity to handle temperature variations arising from these errors
is less consistent. Overall, the study emphasizes the crucial
role of carefully chosen and high-quality boundary condi-
tions in achieving reliable results with PALM.

Finally, the PALM model system release 24.04 (PALM
model system developers, 2025b) features a new dynamic-
driver creation tool named PALM-METEO, which is the suc-
cessor of the “wrf_interface” by Resler et al. (2021). PALM-
METEO supports a range of mesoscale models including
WRF, ICON, and Aladin.

The study of the state of the art revealed that the options
for creating PALM input data have been continuously in-
creasing. However, several questions remain: (1) how can the
process of input data preparation be accelerated and made
more user-friendly? (2) What level of detail is necessary in
the input data to produce realistic urban microclimate sim-
ulations? (3) How can we develop models on coarse grids,

for instance, for a large parent domain that is driven by a
mesoscale model?

In this paper, we present a workflow and the necessary pro-
gram code to create static and dynamic input data for PALM
simulations as an all-in-one solution. We primarily investi-
gate how the level of detail in the geographic input data im-
pacts the simulation results. Additionally, we introduce two
novel methods, OSM2PALM and LCZ4PALM, to generate
static drivers from OSM or local climate zone (LCZ) maps
anywhere in the world. LCZ4PALM is particularly useful for
parametric studies and for coarser grids, where real build-
ing shapes cannot be resolved, making it preferable to have
an approximate but meaningful urban representation instead.
In this work, we compare four static drivers from differ-
ent data sources: (1) “MOSAIK” – the dataset by Heldens
et al. (2020), which has already been preprocessed but still
needs to be converted into a static driver; (2) “Custom” –
our own custom preprocessing of data openly available from
the municipality; (3) “OSM” – data preprocessed by our tool
OSM2PALM; and (4) “LCZ” – data preprocessed by our tool
LCZ4PALM. The four simulation variations were conducted,
validated by tower and station measurements, and then com-
pared to each other to address our stated research questions.

The findings of this study indicate that the choice and
quality of input data influence the accuracy of urban micro-
climate simulations using the PALM model. By comparing
various static drivers derived from different data sources, we
demonstrate how variations in data representation can lead to
differences in simulation outcomes, particularly in tempera-
ture, humidity, and wind speed. Despite these differences, all
simulation test cases could be validated using measurement
data, albeit with varying degrees of deviation. The introduc-
tion of the novel methods, OSM2PALM and LCZ4PALM, to
generate static drivers from widely available geospatial data
enhances the accessibility and applicability of urban climate
modeling. Ultimately, this research contributes to the devel-
opment of more reliable urban climate simulations, which
are essential for informed urban planning and effective cli-
mate change mitigation strategies.

2 Methodology

The methodology consists of five parts: the first in Sect. 2.1
describes the simulation test case defined for our investiga-
tion. The next section, Sect. 2.2, outlines the various geo-
graphic data sources and explains how the data were prepro-
cessed before generating the static driver. Section 2.3.1 pro-
vides a detailed account of the static-driver generation pro-
cess, while Sect. 2.3.2 briefly describes the dynamic-driver
creation. In Sect. 2.4, we present our specific PALM setup,
including grid and model settings. Finally, the measured data
from a tower station, which we used for validation in this
study, are presented in Sect. 2.5.
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2.1 Test case

The time period of our test case spans 2 d, from 19 July 2022
00:00 until 21 July 2022 00:00 central European summertime
(CEST). This 2 d period was characterized by a heat wave
with record-breaking temperatures in Germany and other Eu-
ropean countries. According to ERA5 reanalysis data eval-
uated for the region around Berlin, the average tempera-
ture over the 2 d was 28.0 °C, with temperature maxima of
35.4 °C on 19 July and 37.9 °C on 20 July. The wind speed
was relatively low, with an average value of 2.2 ms−1, and
the wind direction was predominantly southeast. The period
was cloud-free, with total cloud cover not exceeding 1 % over
the 2 d span.

Our test case uses nested domains to cover an overall
larger area with the parent domain while allowing a suffi-
ciently high resolution in the nested domain around the main
region of interest. The location of our test case is in the bor-
ough of “Steglitz-Zehlendorf” in Berlin, Germany. The av-
erage terrain height in the region is 46 m. The simulation
domains are centered at the weather monitoring tower situ-
ated in the garden of the Institute of Ecology at the Technical
University of Berlin (TUB). We chose this location specifi-
cally because it offers a high quantity and quality of measure-
ments, allowing for thorough validation of our simulation
models. In addition to the tower, there is also a measurement
station of the German Weather Service (DWD – Deutscher
Wetterdienst) in “Dahlem”, which is covered by the parent
domain and can therefore also be used for validation.

SanDyPALM facilitates the selection of coordinates and
domain size by offering a function that calculates the coor-
dinates in both latitude/longitude and the PALM native grid,
which is a local projection. It also plots the parent and all
nested domain borders over a geographic map. Our test case
is visualized in this manner in Fig. 1.

The local coordinate system we use for this test case is
EPSG:25833, a universal transverse mercator (UTM) pro-
jection for zone 33N. The center coordinates of our domain
are 52.457227°N, 13.315827°E (latitude/longitude) or y =
5813228.0m, x = 385566.5m (EPSG:25833). In SanDy-
PALM, the coordinates can be specified in four different
ways: (1) native PALM coordinate system of the domain cen-
ter, (2) latitude/longitude of the domain center, (3) native
PALM coordinate system of the domain lower-left corner,
and (4) latitude/longitude of the domain lower-left corner.

2.2 Geographic data sources

The SanDyPALM package allows input from different data
representations, which mainly include (1) raster data stored
in netCDF format, (2) raster data stored in GeoTIFF files,
and (3) vector data stored in commonly used formats, such
as ESRI Shapefile, GeoJSON, or GeoPackage. In this work,
we aim to prepare one test case with different data sources
and compare how the static driver varies depending on the

Figure 1. Open street map (OpenStreetMap contributors, 2024) of
the test case with illustrations of the domain outlines of the parent
and nested grids. The map also indicates two measurement locations
used in this study: the TUB tower in Rothenburgstraße “Roth” and
the DWD station in Botanischer Garten “Dahlem”.

data source and how this affects the simulation results. We
defined four data sources for our test case in Berlin. The first
is the data generated within the MOSAIK project, which are
readily preprocessed as netCDF raster files. The second is our
own custom preprocessing of openly available data from the
municipality of Berlin. The third is a dataset derived from
generally available open data sources, mainly OSM, which
requires special preprocessing to convert the data types into
a format compatible with PALM. The last source differs from
the others in that it does not represent the actual urban geom-
etry but instead derives a virtual city solely from a 100 m
LCZ map using our tool LCZ4PALM. Geographic maps of
the different data sources are presented in Fig. 2, where se-
lected data types are illustrated in different colors. Table 1
summarizes the main differences between the data sources;
detailed descriptions of each data source follow in the next
four sections.

2.2.1 MOSAIK

This dataset originates from the MOSAIK project, for which
several data sources were preprocessed for use in the PALM
model. This dataset was intended to be further processed and
converted into a static driver by the utility palm_csd that
is shipped with the PALM model. However, in this work, we
used SanDyPALM instead to convert this dataset into a static
driver. For a detailed description of the MOSAIK dataset, we
refer to Heldens et al. (2020).
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Figure 2. Geographic maps of the four different input data sources for SanDyPALM.

2.2.2 Custom

The “Custom” dataset contains openly available data from
the municipality of Berlin, specifically from the geodata por-
tal run by the Senate Department for Urban Development,
Building and Housing of Berlin. The data to be used were
selected after an in-depth search on the portal for informa-
tion compatible with PALM types.

The data were processed using our own custom processing
based on Heldens et al. (2020) and the workflow proposed
for “PALMClassify”. This resulted in a dataset where each
PALM type is represented by one shapefile, including infor-
mation on covered area, specific type, building height, and
tree height.

Often, multiple input datasets represented parts of the
same PALM type, necessitating their combination. In some
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Table 1. Comparison of the four different input data sources used in SanDyPALM to generate static drivers. The following abbreviations are
used: OSM, OpenStreetMap; DEM, digital elevation model; WSF3D, World Settlement Footprint 3D; LAI, leaf area index; CRS, coordinate
reference system.

MOSAIK Custom OSM LCZ

Data sources Municipality data
Sentinel-2
OSM

Municipality data OSM
NASA Earth DEM
WSF3D

Global LCZ
NASA Earth DEM
WSF3D

Source format Vector and raster data shape, .xyz, .txt, .jp2 XML, shape GeoTIFF

Target format netCDF shape GeoJSON GeoTIFF

Source CRS Various/unknown EPSG:25833 EPSG:4326 EPSG:4326

Target CRS EPSG:25833 EPSG:25833 EPSG:25833 EPSG:25833

Time period Last updated 2019 2021–2024 Last updated Jun 2024 Last updated Oct 2023

Strengths – tree patch LAI
– tree patch heights
– single trees
– bridges
– high-res DEM
– detailed street types
– detailed building types

– tree patch heights
– exact building footprints
– detailed building types
– high-res DEM
– correct construction sites

– open-source
– globally available
– exact building footprints

– open-source
– globally available
– ideal for coarse grids

Weaknesses – large building footprints
– overestimated vegetation

– no tree LAI
– few street types

– no tree LAI
– no tree heights
– sparse building heights
– few building types
– lacking vegetation areas
– low-res DEM

– no exact shapes of
buildings, streets, water,
vegetation, etc.
– no tree LAI
– no tree heights
– low-res DEM

instances, new datasets had to be created; for example, the
true orthophoto channels of red and near-infrared were used
to calculate the NDVI (normalized difference vegetation in-
dex), which helped identify vegetation and tree areas. The
topography and the digital surface model were used to create
the normalized digital surface model, which provided height
values for buildings and trees.

2.2.3 OpenStreetMap

Input data for PALM can also be created using OSM (Open-
StreetMap contributors, 2024). It contains surface classifica-
tions, building footprints, building heights, and trees. Data
quality varies by region, but for European cities, it is rel-
atively high. For more information on the completeness of
building data in OSM, we refer to Herfort et al. (2023).

OSM has an open API that allows filtering data on the
server side to reduce the number of data received from OSM.
However, experience has shown that requesting the entire
OSM chunk yields the most detailed datasets because useful
information can be found in any group and definition pro-
vided by OSM.

A Python package called OSM2PALM (Stadler, 2024a)
has been developed to request and process OSM data. It pri-
marily uses lookup tables defined by Heldens et al. (2020),

with minor adjustments to existing tables and new value pairs
for previously unused OSM attributes. Continuous efforts are
made to search for and identify unused OSM surface classifi-
cations that can be reasonably translated into PALM surface
types.

One advantage of OSM data is their detailed representa-
tion of features outside cities, including forests, shrubs, and
small rivers. In urban areas, building footprints and unique
features like swimming pools and parks are accurately de-
picted, but surface data are often insufficient. While roads
can be estimated using buffered line datasets, information on
sidewalks and the front and back yards of buildings is typi-
cally lacking.

Some data needed for PALM, like building and tree
heights, are often absent in OSM. The missing data are han-
dled as follows: if the building height is unavailable, the
number of stories is used to estimate it with a constant story
height. If neither the building height nor the number of stories
is found, a default height is assumed by OSM2PALM. To fill
these missing building heights, we used the global building
height data of the World Settlement Footprint 3D (WSF3D)
generated by Esch et al. (2022). All default heights previ-
ously set by OSM2PALM were replaced using the WSF3D
raster data interpolated onto the center points of the build-
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Figure 3. Workflow of conversion from OSM data into PALM input
data.

ing footprints. This way, every building in the OSM method
obtains a reasonable building height, albeit with varying ac-
curacy. For trees with missing heights, a default of 12 m is
used.

The general workflow of the OSM2PALM script can be
seen in Fig. 3. It begins by requesting all data from OSM,
converting them into a UTM coordinate system, and group-
ing them into three categories: multipolygons, line data, and
points. Multipolygons and points are translated according
to a lookup table. Single values from an attribute or infor-
mation from the other_tags attribute are used to define the
PALM surface type and its value. Line data require further
processing, including buffering, dissolving, and creating dif-
ferences; typical examples includes roads, train tracks, and
small rivers. Finally, all datasets are merged and saved as a
GeoJSON file.

2.2.4 Local climate zones

This dataset for the static driver is obtained using our tool
“LCZ4PALM”. It is a novel feature incorporated into SanDy-
PALM to create a static driver using the global LCZ map
provided by Demuzere et al. (2022). PALM requires a de-
tailed description of urban and rural neighborhoods for ac-
curate microclimate modeling and analysis. Unfortunately,

this information is neither readily available nor easily acces-
sible for every region in the world, which severely limits the
ability to perform microclimatic studies. The static data are
usually obtained from multiple sources and involve exten-
sive preprocessing, as outlined in the previous sections. This
problem is addressed with the help of globally available LCZ
maps. LCZs are defined by Stewart and Oke (2012) as “re-
gions of uniform surface cover, structure, material, and hu-
man activity that span hundreds of meters to several kilome-
ters in horizontal scale”. LCZ is the most popular landscape
classification scheme and is widely used in climate simula-
tions and related studies. It mainly focuses on the classifi-
cation of urban and rural landscapes (17 classes – 10 built
classes and 7 natural classes) based on surface characteristics
such as building packing densities, aspect ratio, building or
tree height, sky view factor, surface albedo, or anthropogenic
heat emissions. This makes it highly suitable for urban mi-
croclimatic studies, typically investigations of the urban heat
island effect.

Demuzere et al. (2022) generated a global map of LCZs
at a 100 m resolution by training a random forest model us-
ing a large labeled dataset. In our tool, these LCZ maps are
first reprojected onto the PALM simulation domain, and the
LCZs corresponding to the intended simulation region are
extracted. Then, for each LCZ tile, geospatial inputs (build-
ings, vegetation, waterbodies) that conform to the LCZ def-
initions are generated in a systematic approach, as shown in
Fig. 5. Using this method, we construct an idealized city with
buildings, vegetation, and pavements, which can be used as
an alternative for realistic domains. This approach is mainly
suitable for coarse grids with a grid spacing above 10 m, for
either parent domains in nested setups or generic LCZ studies
of large areas where coarse grids are needed to limit compu-
tational effort. The problem is that at low resolutions, real-
istic buildings, trees, and pavements are often either overes-
timated or underestimated. For example, narrow streets may
disappear, while wider streets are stretched to fit the entire
grid cell. The same applies to buildings and vegetation. This
leads to unrealistic inputs that negatively impact simulation
accuracy. The virtual city created by LCZ4PALM may not be
accurate in its details, but it represents the urban morphology
on average.

The process is shown in Fig. 4. The LCZ4PALM module
requires several inputs, including an LCZ map that covers
the desired region, a mapping of PALM type probabilities
to LCZ classes (building types, pavement types, vegetation
types, and vegetation properties), the LCZ definitions, and,
optionally, a global building height dataset. The mapping of
PALM type probabilities is not directly available and needs
to be derived from another data source. In this study, we per-
formed an exemplary analysis using a 30 km by 30 km re-
gion around Berlin from the MOSAIK dataset by Heldens
et al. (2020) to generate these data. For each LCZ class, the
probability of occurrence of all PALM types was derived.
The resulting mapping was saved in a JSON file and is valid
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Figure 4. Process diagram of the LCZ4PALM algorithm.

for Berlin and cities similar in urban morphology. The LCZ
definitions used in this study were provided by Stewart and
Oke (2012). For each LCZ class, they specify a range for sur-
face fractions, which include building surface fraction (BSF),
pervious surface fraction (PSF), impervious surface fraction
(ISF), aspect ratio, and building height. To achieve more ac-
curate building heights, we used the global building height
data of WSF3D (Esch et al., 2022). Alternatively, random
building heights within the LCZ range can be used. Before
generating the static driver, the input data undergo several
preprocessing steps. Initially, the global LCZ map is pro-
jected onto the PALM grid using a resolution specified by the
user. Next, it is resampled onto an LCZ grid with a resolution
of at least 100 m using a custom grid-resampling technique.
This technique assigns the LCZ value with the highest occur-
rence to the grid cell. Finally, once the LCZ grid is prepared,
the code generates the geospatial information for each LCZ
tile.

The approach of generating a virtual urban neighborhood
from LCZ classes is illustrated in Fig. 5. The grid cell size
is 20 m in this case. The virtual city is created in blocks
of 100 m by 100 m, and for each of these blocks, a domi-
nant LCZ class is assigned and urban surfaces are generated,
while different functions are used depending on the LCZ
class. For built types ranging from LCZ 1 to 10, building,
pavement, and vegetation tiles are created. One row and one

column of pavement tiles are always allocated in the south-
ern and eastern borders. The available length and width of
the buildings are utilized to compute the maximum num-
ber of buildings that can be accommodated without violating
the LCZ class specification. This information is then used to
determine the potential configurations of aligned arrays of
cuboidal buildings. For instance, this could involve arrange-
ments such as 2×3 or 2×1 building tiles, among others. From
the various possible configurations, one configuration is cho-
sen randomly, provided that it satisfies four conditions. These
conditions comprise ensuring that the building surface frac-
tion, total length, and total width of buildings, as well as the
length-to-width ratio of the buildings, all meet the require-
ments of the LCZ class. The building surface fraction condi-
tion is determined based on the LCZ definitions and must fall
within a specified range of minimum and maximum values.
Furthermore, the total width and length of the buildings and
streets should be smaller than the total width and length pos-
sible for the given tile. To prevent the presence of long and
slender buildings in the domain, a maximum length-to-width
ratio of 4 is enforced. Once all of these conditions are met,
the building array is generated for the LCZ grid.

The subsequent step involves creating vegetation around
the buildings up to a randomly determined limit within the
permissible range. The remaining tiles that are not part of the
buildings are designated as vegetation tiles until the criteria
for the pervious surface fraction are met. Once the vegetation
tiles are marked, each tile needs to be assigned a vegetation
type, for which the corresponding vegetation properties can
be further defined. This is accomplished using the data ob-
tained from the PALM type probabilities per LCZ discussed
earlier, which include the vegetation type along with its prob-
ability of occurrence. For each vegetation tile, a vegetation
type is randomly sampled based on its given probability and
is assigned to the tile. The vegetation types can be catego-
rized as either high or low, depending on the characteristics
of the vegetation present. In the case of a high vegetation
type (4, 5, 6, 7, 17, or 18), additional information such as
tree patch height and leaf area index (LAI) is required. The
PALM type probability mapping also contains the mean and
standard deviation of tree heights in the Berlin region for
each vegetation type within each LCZ. Using this informa-
tion, the tree patch height is calculated from a random normal
distribution.

After creating the vegetation, the remaining tiles are uti-
lized to create impervious surface elements (streets and pave-
ments). Building types and pavement types are assigned to
the corresponding tiles in a manner similar to that of vegeta-
tion types.

For land cover types ranging from LCZ 11 to 16, the cre-
ation of vegetation and pavement tiles follows the same pro-
cess as explained earlier. However, in this case, there are
no buildings present. Therefore, only the criteria for pervi-
ous and impervious surface fractions are satisfied. For water
(LCZ 17), water tiles are currently created using a default
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Figure 5. Creation of geospatial input data for the PALM model using LCZ4PALM with global LCZ maps.

type 4, which corresponds to ponds. However, this type can
also be modified to a user-defined type based on the domain.
All of the data needed for static-driver generation are saved
as GeoTIFF files for later processing into a static driver using
SanDyPALM.

2.3 SanDyPALM package

The new open-source repository SanDyPALM consolidates
our efforts to create static and dynamic drivers for PALM us-
ing Python code. It is a collection of steering scripts and func-
tions that are intended to run in the command line or in an
integrated development environment (IDE). The majority of
the static-driver generation code originates from the PALM-
4U GUI (Winkler et al., 2023), while the WRF dynamic-
driver code has been developed and utilized by Vogel et al.
(2022). SanDyPALM is a package that can generate all nec-
essary input data for a WRF-driven microscale simulation
setup. However, it can also be used to create only a static
driver for unforced PALM simulations or for combining it
with a different dynamic-driver tool. Also, it can be used to
only create a dynamic driver for an existing static driver. The
static and dynamic drivers are created according to the PIDS
(PALM model system developers, 2025a).

SanDyPALM comes with a default configuration and a set
of tutorial scripts that explain the basic setup and guide the
user through the complete process of creating a static driver
from various geographic data sources, as well as creating a

dynamic driver using WRF data. Further tutorials detail the
basic plotting of results and conversion of input data between
netCDF, GeoTIFF, and vector formats. In addition to tutori-
als, we also included example case files, where each script
directs one complete generation process. All our PALM se-
tups are nested cases and relatively small, allowing them to
be run without high-performance computing. The configura-
tion always starts from a predefined default configuration that
is modified in a tutorial or case file. The final configuration is
always saved together with the static and dynamic drivers to
enable the user to retrace the settings with which the drivers
were generated. SanDyPALM encourages users to work in
projects, where each project contains all generated data, con-
figuration parameters, and generated plots.

SanDyPALM also facilitates nesting and grid setup by of-
fering a simple and independent function to generate the
PALM grid positions before performing any time-consuming
processing. The grid positions are first generated as local co-
ordinates and then transformed into the user-specified geo-
graphic coordinate reference system. All nested domains can
be plotted together on an OSM to inspect their sizes and po-
sitioning. The grid extent in the three dimensions, as well as
all vertical grid levels and thicknesses, is printed to the termi-
nal. This allows the user to quickly test different grid settings
and optimize the vertical grid stretching parameters.

Once the domains are finished, open data can be automati-
cally downloaded from several available data sources. There
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is an interface to OSM2PALM (the code for OSM2PALM
needs to be downloaded separately) that can be used to down-
load OSM data for the given extent of the largest domain.
Another interface allows downloading the ASTER Global
Digital Elevation Model V003 with a resolution of 30 m
from NASA Earth Science data (ASTER Science Team,
2019) using the Python package earthaccess in the back-
ground. The data are freely available but require registra-
tion. SanDyPALM provides an HTTP interface to download
other needed files into an appropriate data folder. In our tu-
torials, the global LCZ map (Demuzere et al., 2023) and
the WSF3D building heights (Esch et al., 2022) are auto-
matically downloaded if desired. The LCZ map is needed
for the LCZ4PALM module, and WSF3D can be used in
both LCZ4PALM and OSM2PALM to provide approximate
building height information for better accuracy.

2.3.1 Static-driver generation

The static driver represents a domain in a Cartesian grid us-
ing raster data. A definition of all possible input data fields is
given in the PIDS (PALM model system developers, 2025a).
Depending on the application of PALM, the mandatory data
fields in the static driver vary; for example, in the case of
boundary layer studies, only the roughness length of the sur-
face is needed. For an urban simulation, more information
is required, such as surface classifications, topography, and
building positions and heights. PALM uses four major sur-
face classifications: vegetation, pavement, water, and build-
ings, each with sets of predefined physical parameters, such
as roughness for heat and momentum or albedo. For each
grid tile in the domain, these parameters can also be adjusted
from the predefined values. There are two major 3D datasets
that interact in the atmosphere: 3D buildings and leaf area
density (LAD). The 3D building data define a grid of ones
and zeros, where ones represent building grid points and ze-
ros represent atmospheric grid points. These data can be used
to model overhangs, gates, or bridges. The LAD dataset is
used to model the 3D influence of trees, which interact with
radiation and humidity in the atmosphere and act as a mo-
mentum sink.

SanDyPALM is able to create a static driver that fol-
lows the PIDS requirements and performs further processing
for certain datasets or according to the settings of SanDy-
PALM. A major feature of SanDyPALM is the support for
multiple types of geospatial data. Typically, geospatial data
are either vector data using polygons (i.e., surfaces, lines,
and points) or raster data using a grid format. SanDyPALM
can read many vector formats (shapefile, GeoJSON, SQLite,
GeoPackage), the GeoTIFF format, or the netCDF datasets
specifically defined within the MOSAIK project (Heldens
et al., 2020). The data are then rastered or resampled onto the
grid defined by the user and written to the static driver. Each
input file needs to be assigned to a surface classification of
PALM or set predefined names for processing. Depending on

Figure 6. SanDyPALM static-driver generation flowchart.

the input file type, further information and settings must be
provided. The static-driver generation method is visualized
in the flowchart in Fig. 6.

Shapefiles are converted into raster datasets via the raster-
ize function of the GDAL Python package. Besides the do-
main definition, this function also requires the attribute that
is to be rastered. Optional inputs include an attribute filter
as well as a rasterization parameter that specifies when grid
tiles are considered inside or outside of a polygon that is to
be rastered (“all touched”).
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GeoTIFF files are resampled onto the defined grid via the
“warp” function of GDAL. Typically, the raster band of the
desired dataset should be specified; otherwise, SanDyPALM
takes the first band (0) by default. If the resolution of the
dataset differs from the target resolution of the static driver,
a resampling or aggregation algorithm can be defined in the
GDAL “warp” function. The resampling algorithm needs to
be chosen wisely based on the type of data and whether the
data are up- or down-sampled.

The netCDF data that came from the MOSAIK project do
not have their geo-referencing inside each data file; instead,
additional files are needed that specify the x and y coordi-
nates in a UTM coordinate system. SanDyPALM reads the
data files as well as the coordinate files and first creates geo-
referenced GeoTIFF files; then they can be resampled using
GDAL tools similarly to the GeoTIFF files.

For the urban surface parameterizations, it is expected that
the provided data are already translated into the PALM sur-
face types with the corresponding sub-types. Data for these
parameters are converted to the grid and then saved di-
rectly onto the appropriate PALM variable. Level of Detail 2
(LOD2) parameters, such as roughness length of vegetation,
can also be adjusted from 2D input files in a separate sub-
dictionary of the configuration. The position of the 2D slice
inside the 3D dataset must be provided as additional input.

Resolved vegetation can be implemented in the static
driver using a 3D LAD field. There are two common meth-
ods to resolve trees: (1) single trees are resolved as 3D shapes
and (2) groups of trees are modeled using vertical LAD pro-
files. Currently, only the second method is implemented in
SanDyPALM following a similar approach to that in the tool
“palm_csd”. However, SanDyPALM features a new discrete
tree canopy generator, which asserts that the integral of the
LAD profile is exactly the LAI value of the grid tile.

The leaf area distribution is defined according to Markka-
nen et al. (2003) in Eq. (1), which is a probability density
function; therefore, we define this as normalized (denoted by
the overline) LAD:
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This equation is then discretized on the PALM grid, re-
placing the integral with a summation over the vertical grid
cells, which leads to the discretized version (denoted by the
asterisk) of the normalized LAD profile given in Eq. (2):
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Here, zi denotes the heights of the grid cell centers (above
ground) and h∗ is the discretized tree height of the current
grid tile. The discretized tree height is calculated for each
grid tile by rounding the tree height to the nearest stag-
gered vertical position zw (defined for vertical velocity) of

the PALM grid. We use these grid positions because they are
also the vertical grid cell faces (or boundaries) of the non-
staggered grid cells.

The discretized non-normalized LAD profile LAD∗ is then
obtained by multiplying by the LAI and dividing by the dis-
cretized tree height h∗ using Eq. (3):

LAD∗ =
LAI
h∗

LAD
∗
. (3)

This equation is applied to every grid cell of the PALM
domain. The formulation is fully conservative; if we integrate
over all LAD values on top of one grid tile, we exactly obtain
the LAI value of that grid tile. A check is in place to ensure
that this is always the case.

While the tree height is a mandatory input for SanDy-
PALM, the LAI and α parameters can be obtained from a pre-
defined default value if no appropriate data fields are avail-
able. The default LAI value can also be automatically scaled
by tree height. Therefore, instead of using one default value
for all trees, we define a default value for LAI

h
. From that, a

more appropriate default LAI value can be derived for differ-
ent tree heights. A typical default value would be LAI

h
= 0.2,

which means that a tree of 5 m height would have a default
LAI value of 1 and a tree of 25 m height would have a default
LAI value of 5. For these default LAI values, the LAD is still
calculated using Eq. (3). While this procedure is not highly
accurate, it is superior to simply specifying one default LAI
value.

We also implemented two different filtering strategies for
LAI data fields after encountering relatively high LAI values.
The first method limits the value of LAI

h
to a threshold of, for

example, 0.2. As a result, for each grid cell, the value of LAI
is reduced so that LAI

h
≤ 0.2. Alternatively (or additionally),

we can check the final values of the 3D field of LAD∗ and
limit them to a certain value, e.g., 0.1.

SanDyPALM creates the 3D building data from the 2D
building data, primarily for visualization purposes, since the
PALM model itself constructs the 3D building data. How-
ever, to be able to add custom buildings into the 3D building
data, we need to create the 3D building data beforehand. If
the height of the custom building exceeds the height of all
other buildings in the domain, we can set a user-defined max-
imum height for the 3D building data field to ensure there is
enough space in the data field to add the building. This en-
ables us to add specific buildings at a later stage after creating
the static driver. For example, we used this procedure to add
a custom model of the Berlin tower (Fernsehturm) in Vogel
et al. (2022).

Another feature of SanDyPALM is that it performs auto-
matic data consistency checks and allows the user to han-
dle inconsistencies. These inconsistencies could be grid tiles
that have no surface classification assigned (missing data)
or grid cells with multiple classifications (overlapping data).
After the initial assignment of surface parameters and build-
ing data to the static driver, all grid points are checked for
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missing data, and a default surface classification and value
are assigned to these grid points. Afterwards, all grid points
are checked for overlapping data, where a user-defined pri-
ority list is applied to decide which data field is to be kept.
The default setting uses the following priority (descending):
buildings, water, pavement, vegetation.

A data filter checks for specific values in data fields that
can be replaced with a given value. We used this functionality
to replace the building type “0” in the MOSAIK data, which
stands for “user-defined”, for which the user would need to
specify all LOD2 building parameters.

Another feature in SanDyPALM is to remove buildings at
the border of the domain to adhere to typical guidelines for
atmospheric boundary layer studies and to avoid potential
discontinuities at the inflow of the domain. Within a defined
number of grid cells from the domain edge, all buildings are
automatically removed and replaced by pavement. We can
further decide to remove all grid cells with the same build-
ing ID as already-removed buildings so that buildings are not
cut into pieces but are removed entirely. In a nested setup, it
makes sense to use this feature only in the outermost “parent”
domain.

The soil type can be provided as a 2D input file, but if it
is not available, a default value for the whole domain can be
used. In any case, SanDyPALM handles the correct alloca-
tion of the soil type as well as the surface fraction variable.
Finally, a domain-wide constant water temperature can be
defined that is then applied to all waterbodies in the static
driver.

2.3.2 Dynamic-driver generation

The dynamic-driver generation is the second main compo-
nent for setting up a realistic urban microscale simulation
using PALM. Currently, SanDyPALM supports WRF as the
input data source. Using the WRF model has the significant
advantage of allowing a relatively fine horizontal grid spac-
ing on the order of 1 km, and it enables the use of an urban
canopy layer scheme together with an urbanized land use/-
land cover map and optionally even average building heights
to better represent urban effects in the mesoscale forcing.
We believe that this leads to significantly improved bound-
ary conditions for the PALM model. The process of creating
the dynamic driver is illustrated in Fig. 7.

One novelty of our dynamic-driver creation is the han-
dling of mesoscale data below the first model level of the
mesoscale model. Since the data in this region are not avail-
able, we need to fill the gaps using reasonable values. As de-
scribed in Vogel et al. (2022), our dynamic coupling scheme
incorporates a roughness-corrected Monin–Obukhov surface
layer representation, which accounts for the varying rough-
ness of urban surfaces. As mentioned earlier, this scheme
is important for WRF setups with relatively large vertical
grid spacing near the surface, which are typically used to-
gether with the single-layer urban canopy model (SLUCM)

Figure 7. SanDyPALM dynamic-driver generation flowchart.

or the slab (or bulk) urban model in WRF. With small vertical
grid spacing near the surface in WRF, which is typically the
case when using the multi-layer urban canopy model named
building effect parameterization (BEP), a simple linear inter-
polation may be sufficient.

The dynamic-driver generation can utilize the building
height data in the static driver to derive the urban morpho-
logical parameters needed in the aforementioned roughness-
corrected Monin–Obukhov surface layer representation. Ad-
ditionally, the terrain height can be read from the PALM
static driver to adjust the atmospheric data from WRF to the
PALM terrain height. To achieve this, the WRF level heights
are shifted by the amount that the WRF terrain deviates from
the PALM terrain. However, this shifting is limited to the sur-
face so that we do not shift the atmospheric layers throughout
the entire boundary layer. Therefore, we can specify a verti-
cal distance for this transition region. The WRF level heights
will then be fully shifted at the reference height, which is ei-
ther the WRF first (half) model level height or a user-defined
reference height to which the WRF data are interpolated. At
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Figure 8. Adjustment of WRF mesoscale level heights based on
the difference between WRF and PALM surface heights, which ac-
count for actual terrain elevation at different horizontal resolutions.
The adjustment procedure employs a linear transition region. This
example is illustrative and does not represent the actual level heights
utilized in this study.

the specified distance above the reference height, the WRF
level heights will remain untouched. All level heights in be-
tween will be linearly shifted. This produces a smooth transi-
tion region and limits the level height shifting to a small area
close to the surface. The procedure is illustrated in Fig. 8.

2.4 PALM setup

This section provides a short summary of our most impor-
tant PALM model settings, which include offline nesting, the
choice of grid, the solver, and the setup of the urban physics
modules.

We used release 23.04 of the PALM model system from
the Institute of Meteorology and Climatology Hannover,
which can be obtained from their code repository (PALM
model system developers, 2025b).

The PALM model is forced by mesoscale data using the
offline-nesting capability. The mesoscale data are the result
of a WRF downscaling simulation using three nested do-
mains with spatial resolutions of 9, 3, and 1 km and a tem-
poral resolution of 1 h. The WRF model was itself forced by
ERA5 global reanalysis data (Hersbach et al., 2018a, b) with
a spatial resolution of 0.25° in both latitude and longitude,
which at the given latitude equates to approximately 28 km
by 17 km, respectively, and a temporal resolution of 1 h. The
WRF mesoscale simulation used here is similar to the setup
described in Vogel et al. (2022), which employed the multi-
layer urban canopy model BEP for urban representation. The
dynamic driver was created using the method described in
Vogel et al. (2022). The nesting setup is illustrated in Fig. 9.

The nesting mode of the PALM internal grid nesting is
set to one-way nesting, meaning the data are only transferred
from the parent to the nest and the refined results from the
nest are not transferred back to the parent. This is the recom-
mended setting. The parent domain has a coarse horizontal
grid size of dx = 20m by dy = 20m, and the nested domain

Figure 9. Nesting setup utilizing ERA5 for global boundary con-
ditions, WRF for mesoscale forcing, and PALM as the microscale
model.

has a finer grid size of dx = 5m by dy = 5m. The vertical
grid size is dz= 5m in both cases; however, in the parent do-
main, we used vertical grid stretching. The stretching starts
10 m above the nested domain, which has a height of Lz =
640m. Since the urban boundary layer is approximately at
a maximum height of 2045 m in our case, this means that
the grid stretches throughout the boundary layer; however,
the stretching is very gradual, using a small stretching fac-
tor of 1.0183. Although a uniform grid is recommended for
large eddy simulation (LES), this grid has the advantages
of a small vertical grid size at the surface, which allows
for the evaluation of near-surface measurements, a uniform
grid transition between the parent and nest near the surface,
and a relatively small vertical grid cell count. Throughout
the boundary layer, the vertical grid size increases gradually
and reaches about dz= 30m at the maximum boundary layer
height. In the upper damping layer above the urban bound-
ary layer, the grid size further increases up to dz= 40m at
the domain top at z= 3088m. The grid parameters are sum-
marized in Table 2.

In the last third of the vertical height of the grid, starting at
z= 2050m, we employed Rayleigh damping with a damping
factor of 0.1. According to the PALM model documentation,
this forces horizontal velocities, temperature, and humidity
to their respective mean values provided by the mesoscale
model. The damping is weak at the starting height and in-
creases towards the top. The Rayleigh damping is intended
to decrease gravity waves that might otherwise travel unhin-
dered through the domain and be reflected at the top of the
domain.

As the solver for the Poisson equation for perturbation
pressure, we used the multigrid method with 2 iterations of
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Table 2. Grid specifications in the PALM model for the parent domain (using vertical grid stretching) and the nested domain (without vertical
grid stretching).

Grid parameter x direction y direction z direction

Parent

Domain size 3200 m 3200 m 3088 m
Number of grid points 160 160 256
Grid size 20 m 20 m 5 m
Stretching factor – – 1.0183
Starting height – – 650 m
Max grid size – – 40 m

Nest

Domain size 1600 m 1600 m 640 m
Number of grid points 320 320 128
Grid size 5 m 5 m 5 m

the so-called W-cycle per time step and 2 iterations of the
Gauss–Seidel method on each grid level. For the multigrid
solver, the number of grid points needs to follow certain
rules to achieve enough grid coarsening levels, and the per-
formance of the solver is optimal when this number is 5 or
higher. In our case, the grid of the parent domain allows for
5 coarsening levels, and the grid of the nested domain allows
for 6 grid coarsening levels. In the case of parallel comput-
ing, these conditions need to hold for each partitioned sub-
domain.

In the urban surface model, the inner temperatures of
walls, roofs, and windows are set to 298.15 K. To facilitate
model spin-up and reduce atmospheric simulation spin-up
time, we employed a wall/soil spin-up with a duration of 24 h
and a time step of 10 s. In the OSM case, a smaller time step
was necessary due to a metal surface type with high heat con-
ductivity, which led to instabilities. The spin-up period cor-
responds to the 24 h interval from 18 July 2022 00:00 to 19
July 2022 00:00 (CEST), immediately preceding the simu-
lation start time. The PALM model performs the wall/soil
spin-up with a sinusoidal atmospheric temperature variation
over time, specified by the mean and amplitude of daily tem-
perature variation. The mean value θ spinup = 299.15K and
amplitude θ̃spinup = 9.0K for atmospheric temperature dur-
ing the wall/soil spin-up were approximately derived from
mesoscale model results for the spin-up period.

For global radiation input, we used the “external” setting,
where shortwave and longwave downwelling radiation are
read from the dynamic driver. This approach has the advan-
tage of considering clouds resolved by the mesoscale model
in the radiation input. To resolve radiation within the urban
canopy, the radiative transfer model is used in PALM. The
radiation time step is set to 60 s. In the plant canopy model,
the canopy drag coefficient is set to 0.2, and plant canopy
transpiration is enabled. To create dynamic boundary con-
ditions, the offline-nesting mode is used. To generate turbu-

lence at the boundaries, the synthetic turbulence generator
(Kadasch et al., 2021) is activated with an adjustment time
step of 1800 s.

2.5 Measurement data

For the validation of the different PALM model simulation
runs, we used measurement data from two different stations.
The locations of the stations are illustrated in Fig. 1.

The first station is a weather monitoring tower situated
in the garden of the Institute of Ecology at the Techni-
cal University of Berlin (TUB) on Rothenburgstraße (Fen-
ner et al., 2014). The exact coordinates are 52.457232°N,
13.315827°E, and the terrain height is 46.5 m. The meteo-
rological data generated by the tower are openly available
on the website of the Urban Climate Observatory (UCO)
(Scherer et al., 2024). This station is at the center of our inner
nested PALM domain. From the many quantities available,
we evaluated temperature, humidity, and wind. The available
measurement heights are 2, 5, 10, 20, 30, and 40 m. How-
ever, wind speed and direction are only available at heights
of 10 to 40 m, while humidity is only available at 2 and 5 m.
For simplicity, we evaluated only the heights of 5 and 40 m
for temperature, 5 m for humidity, and 10 and 40 m for wind
speed.

The second station is the weather monitoring station
“Dahlem” from the “Deutscher Wetterdienst” (DWD), which
is located in the botanical garden in Berlin-Steglitz. The data
were obtained from the DWD Open Data-Server (Deutscher
Wetterdienst, 2024). The coordinates of this station are
52.4537°N, 13.3017°E, and the terrain height is 51 m. This
location is only covered by our outer parent domain. The sta-
tion features temperature and humidity measurements at a
height of 2 m and wind speed measurements at a height of
36 m.
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3 Results and discussion

In this study, we present a novel method for generating static
and dynamic drivers for the PALM model, with an emphasis
on static geographic data. Our results focus on two primary
aspects: the impact of using various data sources to create
static drivers and the subsequent effects on the PALM simu-
lation outcomes. To achieve this, we compared the most rel-
evant static-driver variables from our four approaches, both
visually and statistically. Additionally, we evaluated how the
use of different static drivers influences PALM simulations
by running simulations for each case and comparing them
against measurements and one another. This comparison is
crucial for understanding the implications of data source se-
lection for simulation accuracy and reliability.

3.1 Comparison of static drivers

Referencing Fig. 2, it is evident that the input data sources
differ substantially in their representation of building foot-
prints, vegetation, and pavement. We further investigate these
variations in the final processed static drivers, focusing on the
most significant variables. The static-driver variables are cat-
egorized into continuous and categorical types. For contin-
uous variables, we examined terrain height (Fig. 10), build-
ing height (Fig. 11), tree height (Fig. 12), and leaf area in-
dex (LAI) (Fig. 13). For categorical variables, we evaluated
building type (Fig. 14), vegetation type (Fig. 15), and pave-
ment type (Fig. 16).

In addition to qualitative differences, a quantitative com-
parison containing several statistics was performed. For con-
tinuous variables, statistics (mean, standard deviation, min-
imum, and maximum) were calculated over the valid grid
tiles only (excluding no-data values); the results are shown
in Table 3. For categorical variables, the distribution of the
observed types was calculated as a percentage of the total
number of grid tiles (including no-data values); the results
are given in Table 4. Types that do not occur are omitted in
the table. To identify the valid types of a variable, we refer
to the figure of the specific type for a legend connecting the
type number to a text description. The table also lists no-data
values to compare the number of grid cells lacking specific
types. Calculations were performed separately for parent and
nested domains.

For terrain height, shown in Fig. 10, despite the four cases,
there are only two main data sources: the terrain height for
MOSAIK and Custom originates from municipal data, while
OSM and LCZ utilize a remotely sensed digital elevation
model (DEM). The MOSAIK terrain height was slightly
post-processed, resulting in negligible differences from the
municipal terrain height. The terrain height presented here is
relative to the origin of the z coordinate (originz) of the par-
ent domain, with originz ≈ 32m for MOSAIK and Custom
and originz ≈ 26m for OSM and LCZ. The remotely sensed
DEMs (OSM and LCZ) exhibit higher average and maxi-

mum values compared to the municipal DEMs (MOSAIK
and Custom). Additionally, the remote sensing DEMs (OSM
and LCZ) have a larger range of values, are generally noisier,
and lack the detail found in the municipal DEMs (MOSAIK
and Custom).

Regarding building height, shown in Fig. 11, the MOSAIK
data show larger building footprints compared to the Cus-
tom and OSM cases. All three datasets struggle to resolve
building footprints at the coarser scale of the parent domain.
The LCZ method does not accurately capture the exact build-
ing footprints at either scale but maintains consistency across
them. Building heights are similar in MOSAIK and Custom,
while OSM and LCZ exhibit comparable heights. OSM com-
bines available heights with WSF3D data, which can result
in occasional anomalies due to gaps filled by WSF3D data.
In contrast, LCZ relies solely on WSF3D, leading to more
consistent building heights.

Tree heights vary significantly across the datasets; see
Fig. 12. MOSAIK features extensive tree cover, while Cus-
tom has fewer trees. OSM includes only individual trees
with no tree patches, and LCZ shows sparse tree coverage.
Generally, tree heights in MOSAIK are larger than those
in Custom, although there are regions where the reverse is
true. OSM lacks specific tree height data, so default constant
heights were used. In contrast, LCZ tree heights align with
those in MOSAIK, as their distribution was derived from the
same data source.

For the tree leaf area index (LAI), which is shown in
Fig. 13, the MOSAIK, Custom, and LCZ cases exhibit sim-
ilar values due to the LAI limiting process during SanDy-
PALM processing. The original LAI values in MOSAIK
were significantly higher, requiring moderation to prevent
excessive humidity spikes near vegetation. The variation in
LAI for Custom arises from height-dependent default calcu-
lations. In contrast, OSM shows no variation in tree LAI; due
to the absence of values for both tree LAI and tree height,
constant default values are assumed for both.

Building types across the datasets show notable variations,
as can be seen in Fig. 14. Predominantly, buildings are clas-
sified as types 1, 2, 4, and 5 (residential and office before
2000), with types 3 and 6 (residential and office after 2000)
being rare. The Custom data, sourced directly from the mu-
nicipality, emphasizes type 1 (residential before 1950) and
type 4 (office before 1950), while types 2 and 5 are less com-
mon. In contrast, the MOSAIK data, also based on munici-
pal sources but further post-processed, show a significantly
higher occurrence of type 5 compared to Custom, nearly
matching type 4. Occasionally, buildings classified as of-
fice in MOSAIK are categorized as residential in Custom,
and vice versa. OSM data predominantly feature residential
buildings, while LCZ data closely resemble MOSAIK data,
as their type probabilities were derived from them. Over-
all, building type classifications exhibit significant variability
across the different approaches.
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Figure 10. Comparison of terrain height for the different static drivers.

Table 3. Comparison of static drivers showing the statistics mean, standard deviation (std), minimum, and maximum for the continuous
variables terrain height, building height, tree height, and tree LAI.

Variable MOSAIK Custom OSM LCZ
parent nest parent nest parent nest parent nest

Terrain height/m mean 14.0 14.5 14.0 14.6 25.3 26.6 25.3 26.6
std 5.4 6.1 5.4 6.1 6.9 7.3 6.9 7.3
min 0.0 3.5 0.0 3.6 0.0 7.0 0.0 7.0
max 37.0 37.2 37.1 37.4 52.0 52.0 52.0 52.0

Building height/m mean 14.4 15.0 14.6 15.3 11.9 12.1 12.1 13.4
std 6.4 7.4 6.1 7.3 5.9 5.9 7.9 9.2
min 2.5 2.5 2.5 2.5 2.5 2.5 3.0 3.0
max 118.7 118.7 114.6 115.8 107.3 61.9 109.4 109.4

Tree height/m mean 10.2 10.6 11.4 11.8 12.0 12.0 15.0 15.7
std 4.8 5.0 3.7 3.8 0.0 0.0 6.1 5.9
min 2.5 2.5 2.5 2.6 12.0 12.0 3.0 3.0
max 31.0 33.0 28.3 41.4 12.0 12.0 31.8 30.7

Tree LAI/m2 m−2 mean 0.7 0.7 0.4 0.4 0.4 0.1 0.1 0.1
std 0.9 1.0 0.8 0.8 0.7 0.4 0.5 0.6
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
max 4.7 4.9 4.2 6.2 1.8 1.8 4.8 4.6

Vegetation types – see Fig. 15 – have distinct variations
across the datasets as well. The highest vegetation amount is
in the MOSAIK case, followed by LCZ and Custom, with
OSM data having the sparsest vegetation. The dominant type
across all cases is type 3 (short grass). The LCZ case also
includes significant amounts of type 1 (bare soil) and type 2
(crops), while MOSAIK only includes type 2 (crops) in the

parent domain. The type distribution for LCZ was derived
from MOSAIK data for the entire city boundary of Berlin,
explaining the distribution differences. In the OSM case, a
small amount of type 1 (bare soil) and a significant amount
of type 2 (crops) are found in the parent domain. Both Cus-
tom and LCZ contain some type 8 (tall grass). A similar
amount of type 15 (evergreen shrubs) is found in both MO-
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Figure 11. Comparison of building height for the different static drivers.

SAIK and LCZ, while type 16 (deciduous shrubs) is present
in MOSAIK, OSM, and LCZ but absent in Custom. Overall,
the amount and distribution of vegetation vary significantly
among the four cases.

Pavement type, as shown in Fig. 16, varies as well signif-
icantly across the datasets. MOSAIK has sparse pavement
coverage (26.6 %–30.4 %), while Custom (50.8 %–54.2 %)
and OSM (65.2 %–69.2 %) likely overestimate pavement.
LCZ falls in between (36.8 %–41.3 %) but remains higher
than MOSAIK. The dominant pavement types differ: type
2 is prevalent in MOSAIK, OSM, and LCZ, while type 1 is
dominant in Custom. MOSAIK includes significant amounts
of types 5 and 6 (paving stones and cobblestone), OSM
shows types 4 and 5 (sett and paving stones), and both Cus-
tom and OSM contain some type 10 (fine gravel). Only

OSM includes type 7 (metal), which caused issues during
the PALM wall/soil spin-up due to high heat conductivity
and was resolved using a smaller time step. Other types are
sparse. Overall, the amount and type of pavement vary sig-
nificantly among the cases.

We found that the MOSAIK case tends to overestimate
building footprints and vegetation, while the OSM and Cus-
tom cases generally underestimate vegetation. The overes-
timation in MOSAIK likely results from the “all-touched”
rasterization technique, which rasters all grid tiles touched
by a vector polygon. Additionally, MOSAIK data may have
been post-processed to prioritize vegetation over pavement.
In contrast, the Custom and OSM cases raster only those grid
tiles whose centers are covered by a vector polygon, result-
ing in more realistic building footprints. However, a down-
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Figure 12. Comparison of tree height for the different static drivers.

side of the Custom and OSM cases is that the vegetation
appears too sparse, and LAI data are missing, necessitating
the use of default values. The overestimation of pavement
in these cases occurs because, with sparse vegetation, pave-
ment becomes the default surface type when no other type
is defined. While MOSAIK data have been post-processed
and prioritized, the other data sources are relatively raw. Dur-
ing processing in SanDyPALM, consistency checks and cor-
rections were uniformly applied across all datasets, although
customized strategies might have benefited different datasets.

This analysis illustrates that the choice of data source sig-
nificantly influences outputs, with each processing strategy
presenting its own advantages and disadvantages. Overall,
the key differences between the test cases highlight variations
in urban morphology, vegetation coverage, and data com-

pleteness, all of which may impact the outcomes of PALM
simulations.

3.2 Comparison of PALM results to measurements

The next step in our investigation involved simulating the
same test case using the four different static drivers, while
keeping the dynamic driver consistent. The dynamic driver is
created using the same mesoscale data, but it may still vary
slightly among the cases because the surface layer model
used to fill the near-surface data gaps in the mesoscale in-
put data depends on roughness properties derived from the
static driver. This approach allowed for a comparison of the
PALM results, along with the WRF results, against measure-
ments from the TUB monitoring tower located within the in-
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Figure 13. Comparison of leaf area index (LAI) for the different static drivers.

ner nested domain and the DWD weather station, which is
covered only by the parent domain. The comparison metrics
used in this study are the mean bias error (MBE) and the root
mean square error (RMSE).

3.2.1 Tower measurements

For our investigation, we selected a limited number of mea-
surement heights from the tower. For example, measure-
ments at 2 and 5 m are not expected to differ significantly,
particularly in numerical models where values are interpo-
lated from sparse data points near the surface. Air tempera-
ture T was evaluated at heights of 5 and 40 m above ground
level (a.g.l.), relative humidity φrel at 5 m, and horizontal
wind speed Uh at 10 and 40 m. The comparison of WRF and

PALM results with the tower measurements is presented in
Fig. 17, and the metrics for all models compared to the tower
data are compiled in Table 5.

The general agreement between WRF and PALM results
and the measurements indicates that all relevant physical pro-
cesses are well resolved. However, some notable deviations
exist. For temperature at 40 m, WRF and all PALM results
are nearly identical, but all show lower daytime tempera-
tures compared to tower measurements. At 10 m, the PALM
models using MOSAIK and Custom data deviate increas-
ingly from the WRF model, while the OSM and LCZ models
remain close to WRF. Unfortunately, this deviation is away
from the measurements and is likely related to humidity.

The 5 m relative humidity shows increased nighttime val-
ues between sunset and sunrise, particularly for the PALM
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Figure 14. Comparison of building type for the different static drivers.

models using MOSAIK and Custom static drivers. The main
difference is that these static drivers feature significantly
more vegetation than the others. The observed higher humid-
ity may result from a combination of evapotranspiration from
soil and vegetation, reduced atmospheric mixing, and dew
formation. Even after sunset, plants continue to release wa-
ter vapor through transpiration, while moisture retained by
soil and vegetation during the day can evaporate as temper-
atures drop. Additionally, surface cooling can create a stable
atmospheric layer near the ground, reducing vertical mixing
and allowing the air close to the surface to retain more mois-
ture. Dew formation and subsequent evaporation can also
contribute to localized increases in humidity.

These combined factors could explain the high humid-
ity levels observed in vegetated areas during the evening
and why these effects are more pronounced with MOSAIK
or Custom data, which feature greater vegetation coverage.
However, it remains unclear whether the amount of vege-
tation is overestimated in the input data or if the described
effects are exaggerated in the PALM model.

The measured wind speeds during this period are generally
low. At 40 m, WRF slightly overestimates wind speed com-
pared to tower measurements, while the PALM models gen-
erally follow WRF, showing deviations towards both stronger
and weaker wind speeds. At 10 m, the PALM models tend to
output lower wind speeds than WRF, aligning better with the
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Figure 15. Comparison of vegetation type for the different static drivers.

measurements, except for the LCZ case, which records sig-
nificantly higher wind speeds on the second day. The LCZ
case is unique, as the buildings are not accurately resolved,
and the arrangement near the tower may differ significantly
from the actual courtyard of the TUB tower.

Additionally, the generally low measured wind speeds and
the tendency for simulations to overestimate wind speed can
be attributed to the courtyard’s surroundings, which are lined
with tall, dense trees. This creates significant wind shading,
an effect not accounted for by the WRF model. The accu-
racy of the PALM models in this location also heavily relies

on the precise locations and characteristics of the trees and
buildings.

3.2.2 Station measurements

WRF and PALM results were compared to measurements
from the DWD station in Dahlem, which is only resolved
in the parent domain of our PALM setup. Air temperature
T and relative humidity φrel were evaluated at a height of
2 m a.g.l., while horizontal wind speed Uh was evaluated at
36 m. These evaluation heights correspond to the measure-
ment heights of the station. In the PALM simulation results,
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Figure 16. Comparison of pavement type for the different static drivers.

the temperature and humidity were approximately evaluated
at the first grid point above ground at a height of 2.5 m; the
wind speed was vertically interpolated from the neighboring
grid points to the exact measurement height. The comparison
of WRF and PALM results with the station measurements is
presented in Fig. 18, and the metrics for all models compared
to the station data are compiled in Table 6.

For this station, the WRF model overestimates nighttime
temperatures, likely due to an exaggerated urban heat island
effect. The LCZ map used in WRF classifies the area around
the station as “LCZ 6” (open low-rise), which is appropri-
ate for the entire 1 km WRF grid tile but does not accurately

represent the densely vegetated botanical garden around this
station. In contrast, the PALM models, which realistically re-
solve buildings and vegetation, are significantly closer to the
measurements in this case.

Humidity is underestimated by WRF at night and overes-
timated during the day. The PALM models generally predict
higher humidity than WRF, with a moderate increase during
the day and a more pronounced rise at night. At the end of
the first night, PALM results align more closely with mea-
surements than WRF, but on the second night and early on
the third night, they overestimate humidity compared to the
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Table 4. Comparison of static drivers showing the percentage distribution of observed types for the categorical variables building type,
vegetation type, and pavement type.

Variable MOSAIK Custom OSM LCZ
parent nest parent nest parent nest parent nest

Building type/% no data 69.2 63.0 80.9 77.1 80.5 76.1 71.6 66.2
1 17.3 19.7 10.5 12.2 0.0 0.0 8.7 13.1
2 6.0 8.5 2.8 2.6 18.8 22.5 11.9 12.6
3 0.0 0.0 0.3 0.2 0.0 0.0 0.0 0.0
4 3.0 4.7 4.8 7.2 0. 0. 1.1 1.5
5 4.5 4.3 0.6 0.8 0.7 1.5 6.6 6.6
6 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0

Vegetation type/% no data 61.9 64.2 73.9 74.2 89.3 89.6 69.7 70.6
1 0.0 0.0 0.3 0.0 0.3 0.0 2.6 1.8
2 2.6 0.0 0.0 0.0 2.0 0.6 1.1 1.2
3 32.3 31.9 24.7 24.8 7.4 8.5 22.8 21.8
8 0.0 0.0 1.1 1.1 0.0 0.0 0.5 0.6
14 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3
15 1.3 1.8 0.0 0.0 0.0 0.0 2.1 2.6
16 1.8 2.2 0.0 0.0 1.0 1.3 1.1 1.2

Pavement type/% no data 69.6 73.4 45.8 49.2 30.8 34.8 58.7 63.2
1 0.0 0.0 49.7 48.2 1.2 1.1 0.0 0.0
2 21.8 16.9 2.6 0.2 52.0 46.4 40.6 36.0
3 0.0 0.1 0.0 0.0 0.1 0.2 0.1 0.1
4 0.6 0.6 0.0 0.0 3.2 3.8 0.1 0.1
5 4.3 5.0 0.0 0.0 10.5 11.0 0.3 0.3
6 3.6 3.9 0.0 0.0 0.2 0.3 0.3 0.3
7 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
9 0.1 0.1 0.4 0.7 0.3 0.5 0.0 0.0
10 0.0 0.0 1.0 1.7 1.3 1.4 0.0 0.0
13 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0
14 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0
15 0.0 0.0 0.1 0.0 0.2 0.2 0.0 0.0

Table 5. Metrics for comparing WRF and the PALM results with measurements from the TUB Tower “Rothenburgstraße” (located in the
nested domain).

WRF MOSAIK Custom OSM LCZ
Quantity Unit MBE RMSE MBE RMSE MBE RMSE MBE RMSE MBE RMSE

T5 m °C −0.02 1.72 −1.41 2.38 −0.79 1.86 0.16 1.59 −0.19 1.84
T40 m °C −0.94 1.53 −1.11 1.64 −1.08 1.62 −0.98 1.49 −0.88 1.51
φrel, 5 m % 3.09 6.40 8.03 9.84 4.85 6.96 1.82 5.73 3.05 6.46
Uh, 10 m ms−1 1.32 1.57 0.32 0.45 0.55 0.70 0.97 1.04 2.11 2.57
Uh, 40 m ms−1 0.65 1.30 0.60 1.20 0.54 1.24 0.34 1.31 1.02 1.73

measurements. Similarly to the tower data, PALM humidity
shows significant spikes around sunset.

Wind speed at this location is comparable to that at the up-
per tower location, which has a similar height. While WRF
overestimates wind speed at the tower, it underestimates it
at the station. This discrepancy may arise because the tower
is surrounded by large trees and buildings that create wind
shading, whereas the station is situated in an open park with
less restricted wind flow. The WRF model, lacking detailed

information about trees and buildings, resolves both loca-
tions similarly. In contrast, wind speeds from the PALM
models are closer to the measurements, with all PALM mod-
els performing comparably well.

3.3 Comparison of PALM results to each other

To compare the PALM simulation results across the four test
cases, we evaluated the potential temperature θ (Fig. 19) and
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Figure 17. Comparison of WRF and PALM results of temperature T , relative humidity φrel, and horizontal wind speed Uh against measure-
ments from the TUB tower at “Rothenburgstraße” (located in the nested domain).

the mixing ratio q (Fig. 20) at the first vertical centered grid
level, corresponding to a height above ground of hAGL =

2.5 m. The horizontal wind speed Uh (Fig. 21) was evalu-
ated at the second vertical centered grid level, correspond-
ing to a height of hAGL = 7.5 m. All quantities were time-

averaged over the entire simulation period, which spanned
2 d. A quantitative comparison of the statistics for the four
different simulation test cases is presented in Table 7. For
each quantity, the mean, standard deviation (std), minimum
(min), and maximum (max) values were calculated over the
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Figure 18. Comparison of WRF and PALM results for temperature T , relative humidity φrel, and horizontal wind speed Uh against measure-
ments from the DWD station “Dahlem” (located in the parent domain).

Table 6. Metrics for comparing WRF and PALM results from the four test cases with measurements from the DWD station “Dahlem”
(located in the parent domain).

WRF MOSAIK Custom OSM LCZ
Quantity Unit MBE RMSE MBE RMSE MBE RMSE MBE RMSE MBE RMSE

T2 m °C 1.66 3.01 −1.08 2.35 −0.416 2.35 −0.861 2.35 −0.611 2.03
φrel, 2 m % −3.43 12.1 6.25 12.2 2.94 11.2 4.40 11.0 4.28 10.0
Uh, 36 m ms−1

−0.857 1.40 0.285 1.26 0.328 1.34 0.109 1.36 −0.0517 1.42

entire 2 d simulation period and across all grid points (ex-
cluding no-data values).

One issue we encountered, particularly when applying the
LCZ method to the parent grid at a coarse resolution of 20 m,
is the gap filling of terrain and building grid boxes performed
by PALM. While this gap filling is an important preprocess-
ing step for the PALM model, it prevents us from using the
exact building shapes we designed. We observed that narrow
street canyons became blocked, rectangular footprints were
altered into arbitrary shapes, and small courtyards formed
within building areas. The source of this problem is that street
canyons that are only one grid box wide are considered too

narrow by the PALM model. Conversely, we cannot use addi-
tional grid boxes at coarse resolutions, as this would result in
excessively wide street canyons. Our intention in creating the
LCZ4PALM method was to design regularly shaped build-
ings at coarse resolutions and to prevent the usual clustering
of dense building areas into one continuous mass. However,
running the model at such coarse resolutions remains chal-
lenging, and we must accept that, in the simulation, the build-
ings and street canyons do not take the shapes we intended.

In our investigation of temperature, humidity, and wind
speed, we observed notable differences among the test cases.
First, examining mean temperatures in the nested domain in
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Figure 19. Comparison of time-averaged potential temperature θ evaluated at hAGL = 2.5 m.

Fig. 19, we find 25.6 °C for MOSAIK, 26.3 °C for Custom,
27.0 °C for OSM, and 26.6 °C for LCZ. There is a clear in-
crease in temperature from MOSAIK to Custom to LCZ to
OSM. We suspect the reason for this is mainly due to dif-
ferences in vegetation because the amount of vegetation ap-
proximately follows the inverse order, with MOSAIK having
the highest and OSM the lowest amount. The temperatures in
the parent domain behave similarly: the mean temperatures
are lowest in MOSAIK, second in Custom, and third in OSM
and LCZ with the same value. The minimum and maximum
temperatures exhibit more variability between the parent and
nested domains.

The humidity, which is shown in Fig. 20, has the largest
divergence among the test cases and between the nested and

parent domains. The mean humidity is particularly high in
the MOSAIK case at 9.4 gkg−1, compared to the other cases,
which range from 8.8 to 9.0 gkg−1. This is likely due to
the higher vegetation density in the input data. MOSAIK
also produces extreme maximum humidity values of up to
29.1 gkg−1, which seem unrealistic. Conversely, the LCZ
case exhibits extremely low values, down to 0.0 gkg−1. How-
ever, such physically unrealistic values were observed only in
rare instances in space and time. Their occurrence was lim-
ited to only one or two output time steps at sunrise or sun-
down and only a few grid boxes in narrow street canyons or
courtyards, particularly in conjunction with an abundance or
absence of vegetation nearby. For example, the low humid-
ity in the LCZ case occurred only in one output time step
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Figure 20. Comparison of time-averaged mixing ratio q evaluated at hAGL = 2.5 m.

and in a single grid box that has a paved surface beneath and
is surrounded by tall buildings. Although it is advisable to
avoid narrow street canyons or courtyards, preventing them
in practical workflows is challenging, especially at relatively
coarse resolutions.

Finally, the wind speed (Fig. 21) is generally lowest in the
MOSAIK case, followed by Custom, OSM, and LCZ. This
trend may again be attributed to vegetation density, which is
highest in MOSAIK and lower in OSM and LCZ. Addition-
ally, the OSM and LCZ cases partially or fully utilize approx-
imate building heights derived from coarse global datasets,
and their terrain elevation data are less accurate compared to
the more precise representations in MOSAIK and Custom.

Interestingly, the OSM and LCZ test cases, despite being
automatically generated and using approximations, yield re-
sults comparable to the heavily preprocessed MOSAIK and
Custom cases. In the LCZ case, while the local distribution
is less realistic due to unresolved buildings and streets, ar-
eas like the botanical garden in the lower left of the nested
domain are well represented. Despite geographic-precision
shortcomings, the overall results of the LCZ case compare
surprisingly well to the other cases.

The main question remains: which dataset most accurately
represents the selected district, and how can we further im-
prove data quality? Each test case has its advantages and
disadvantages. The MOSAIK case utilized extensive data
and underwent significant preprocessing, yet it overestimates
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Figure 21. Comparison of time-averaged horizontal wind speed Uh evaluated at hAGL = 7.5 m.

building footprints and underpredicts temperature, suggest-
ing an excessive amount of vegetation or that PALM overes-
timates vegetation impact. The Custom case, designed by an
expert, benefits from more accurate building footprints and
less vegetation cover, leading to reduced temperature under-
prediction near the surface. The OSM case, fully automat-
ically processed, features similar building footprints to the
Custom case but significantly less vegetation, resulting in the
highest overall temperatures. Wind speeds are also higher
than in the MOSAIK and Custom cases, likely due to differ-
ences in vegetation, building heights, and terrain elevation.
Finally, the LCZ case, also automatically processed, shows
relatively high temperatures and the highest wind speeds,
with variations in building heights, footprints, and distribu-

tion impacting both temperature and wind speed results. Sim-
ilarly to the OSM case, differences in terrain elevation and
vegetation density also play a role.

Overall, this research indicates that the outcomes of real-
istic urban microclimate simulations clearly depend on input
data. Different data sources for the same test case can yield
varying results. However, the outputs do not diverge exces-
sively, especially when considering that the set of test cases –
including OSM and LCZ data sources – can be seen as quite
diverse. The overall features of the microclimate simulations
are similar, with no extreme outliers in the comparison statis-
tics, except for the described instabilities regarding humidity
in certain locations.
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Table 7. PALM result statistics for the four different test cases.

MOSAIK Custom OSM LCZ
Quantity Unit Statistic parent nest parent nest parent nest parent nest

θ2.5 m °C mean 25.6 25.6 26.3 26.3 26.7 27.0 26.7 26.6
std 5.9 5.6 5.5 5.3 5.4 5.2 5.3 5.2
min 13.8 14.1 14.5 14.6 14.6 14.9 14.1 14.4
max 37.5 37.6 37.1 37.7 37.0 38.3 37.1 38.0

q2.5 m gkg−1 mean 9.4 9.4 9.0 9.0 8.9 8.8 9.0 9.0
std 1.4 1.4 1.2 1.2 1.2 1.2 1.2 1.2
min 5.2 6.4 6.0 4.4 4.8 6.4 0.0 6.6
max 29.1 26.0 17.1 25.0 19.0 13.4 19.8 16.9

Uh 7.5 m ms−1 mean 0.7 0.5 0.8 0.7 1.0 0.9 1.1 1.1
std 0.7 0.5 0.7 0.6 0.8 0.8 0.9 0.8
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
max 6.1 5.7 6.1 6.8 6.9 6.7 7.0 7.4

4 Conclusions

In this study, we presented SanDyPALM, an innovative
toolkit designed to streamline the creation of static and dy-
namic input data for the PALM model, thereby enhancing re-
alistic microclimate simulations. The main motivation of this
toolkit was to make the preparation of input data faster and
more user-friendly. This was achieved by combining static
and dynamic-driver generation into one package and also by
introducing methods for automatic generation of static input
data.

We introduced two novel methods, OSM2PALM and
LCZ4PALM, which facilitate the generation of static drivers
from widely available geospatial data sources. These meth-
ods enhance the accessibility and applicability of urban
climate modeling, allowing for parametric studies and the
creation of models anywhere on the earth. LCZ4PALM
is especially useful for creating an approximate model on
coarse grids, where real building shapes cannot be resolved,
while OSM2PALM creates an accurate urban model resolv-
ing buildings and vegetation to the degree available in the
database.

By comparing four static drivers derived from different
sources – MOSAIK, Custom, OSM, and LCZ – we ob-
served substantial variations in the representation of building
footprints, vegetation, and pavement. The MOSAIK dataset,
while rich in detail, tended to overestimate building foot-
prints and vegetation, whereas the Custom, OSM, and LCZ
datasets underestimated vegetation coverage.

The results of our simulations were validated against mea-
surements from a weather monitoring tower and a weather
station, revealing that all models captured the essential phys-
ical processes. However, notable discrepancies were ob-
served, particularly in temperature and humidity. The PALM
models using MOSAIK and Custom data exhibited elevated
nighttime humidity levels, likely due to their greater vege-

tation density. In contrast, the OSM and LCZ models, de-
spite being based on approximations, produced results closer
to measurements due to their lower vegetation density. This
raises the question of whether the observed deviations stem
from the amount of vegetation or the modeling approach used
in PALM.

In very rare cases, unrealistic humidity values were ob-
served inside narrow street canyons or courtyards for a lim-
ited number of output time steps. To address this issue, ei-
ther the static input data need to be adjusted or the humidity
model in PALM needs to be refined to limit humidity to re-
alistic values. Another challenge is that the urban morphol-
ogy is altered by PALM preprocessing to fill narrow street
canyons and terrain, which modifies building shapes and
closes off a substantial number of street canyons. Without
changes to the PALM model itself, it may be advisable to ap-
ply further terrain smoothing, enforce wider street canyons,
or increase the grid resolution of the parent domain.

The results indicated that expert-driven approaches, such
as the MOSAIK and Custom datasets, provide the more de-
tailed and accurate representations of urban environments.
But the automated methods OSM2PALM and LCZ4PALM,
while lacking detail, can yield comparably accurate results.
Therefore, they offer a viable alternative when expert re-
sources are limited. As a result, the required level of detail
needed to obtain realistic meteorological quantities from ur-
ban microclimate simulations is lower than expected. How-
ever, to get the highest-precision results, it is still necessary
for an expert to thoroughly prepare the input data.

Future research can focus on refining these automated
tools, exploring additional data sources to further enhance
the reliability of urban microclimate simulations and per-
forming additional investigations on the role of static input
data: (1) terrain smoothing could be useful, especially when
using the LCZ method, to prevent the necessity for excessive
gap filling by the PALM model. (2) The LCZ method was
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used with data specifically generated for the city of Berlin
and needs to be extended to other cities to be able to general-
ize. (3) The dynamic-driver tool could be adjusted to accept
other input data sources besides WRF. (4) Additional open
data sources could be implemented, especially for tree height
and LAI, because these are lacking in OSM and LCZ data
sources. (5) An interesting application of the OSM2PALM
and LCZ4PALM methods would be to combine them in the
following way: a large and low-resolution parent domain is
based on LCZ and driven by a mesoscale model, while a
high-resolution nested domain is based on a detailed OSM
model. This approach based solely on open data would lever-
age the advantages of both methods, providing a low-detail
model at coarse resolution and a high-detail model at fine
resolution. (6) Further investigations are necessary about the
impact of static input data on mitigation strategies for climate
change or urban heating. (7) The issue of extreme humidity
values requires further investigation – specifically, by further
analyzing the impact of static input data and examining how
water content is managed in PALM.

Code and data availability. The code for SanDyPALM
v1.0 (Vogel et al., 2025) is publicly available at
https://doi.org/10.5281/zenodo.14772519. Either the neces-
sary input data are included (if not openly available) or instructions
are provided on how to download the data (if openly available). An
exception is the “MOSAIK” dataset, which could not be included
and is not openly available.
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