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Abstract. Integrated assessment models (IAMs) occupy a
central role in understanding and assessing the intricate in-
terlinkages within the human-climate system for informing
climate mitigation and adaptation strategies. However, there
has been limited work on explicitly representing the internal
social system dynamics that underlie human behavioural re-
sponses to climate change within IAMs. Instead, behavioural
change and demand-side strategies are assessed with ex-
ternal, non-probabilistic narrative-based scenario analyses.
In this paper, we introduce an alternative fully endoge-
nous behavioural change modelling framework within the
FRIDA v2.1 model, operationalized with the system dynam-
ics method. Applied to the context of dietary behaviour,
the framework models behavioural change as a function
of perceived accessibility, descriptive norm, and personal
norms, constrained by accessibility and past behaviour. By
doing so, it captures the complex social-economic-cultural-
environmental feedback processes within the human-climate
system that dynamically determine per capita food demand
and consumption. Our simulation results show that endoge-
nizing human behaviour leads to lower future demand pro-
jections compared to the more prevalent GDP-driven mod-
elling approach. This demonstrates the significant impact of
behavioural feedbacks on emission behaviours and thus cli-
mate outcomes. Importantly, using an uncertainty approach,
our results account for a range of plausible behaviours within
the 95 % confidence bounds, which includes scenarios where
we observe reversals of sustainable behavioural change in
the future. We contribute to the limited work on human be-
haviour in IAMs, extending the complexity of current repre-
sentations. Future work will extend this framework to other

domains of high-impact behaviours, enhancing the robust-
ness of IAMs for assessing demand-side mitigation.

1 Introduction

Global climate change is a highly complex issue charac-
terized by multifarious interconnected feedback interactions
between subsystems in the broader human-climate system
(Wohlgezogen et al., 2020). Integrated assessment mod-
els (IAMs), that integrate knowledge from various disci-
plines, have come to play a pivotal role for understand-
ing and assessing the impacts of such complex interactions
(van Beek et al., 2020). Today, the Intergovernmental Panel
for Climate Change (IPCC) relies on IAMs for scenario
analysis to support the design of climate mitigation and
adaptation strategies. While IPCC authors have emphasized
the potential of demand-side mitigation for reducing emis-
sions (e.g., Creutzig et al., 2016, 2018, 2023), most IAMs
still do not adequately represent the human system com-
ponents necessary for assessing climate-relevant behaviours
— whether these behaviours are direct responses to climate
change or arise from other broader drivers (Beckage et al.,
2020; van Valkengoed et al., 2025). The dominant approach,
instead, is coupling separate behaviour change narratives and
scenarios with IAMs to exogenously drive relevant technoe-
conomic decisions that interface with biophysical processes
(e.g., van den Berg et al., 2019, 2024; Riahi et al., 2017).
However, Beckage et al. (2022) warn that the external narra-
tives approach does not provide information about the like-
lihood of distinct future trajectories, and importantly, fails
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to capture the internal feedback processes that describe the
co-evolution of adaptive human behaviour and biophysical
impacts. Accordingly, scholars have called for improved rep-
resentations of endogenous social processes in IAMs to dy-
namically model and assess demand-side behavioural change
(Beckage et al., 2020; Mathias et al., 2020).

In this paper, we formally introduce our fully endogenous
behavioural change modelling framework, operationalized
as a system dynamics model, that responds to such calls.
System dynamics is a simulation modelling methodology
that focuses on representing dynamic complexity surround-
ing problem behaviours — i.e., the dynamic interactions of
key feedback loops, within a closed boundary of a system,
that endogenously give rise to system behaviour (Forrester,
1968). Such models are quantified with a system of stocks
and flows, which are expressed through integral equations for
continuous accumulations over time and differential equa-
tions for defining the rates of change. This approach allows
us to represent our framework as a set of endogenous feed-
back processes that determine changes in environmentally
significant consumptive behaviour. Briefly, consumptive be-
haviour is modelled as a function of three sources of motiva-
tions (perceived accessibility, descriptive norm, and personal
norms), constrained by accessibility and past behaviour. Im-
portantly, these determinants are embedded within and re-
sponsive to feedback processes between the human and
climate sub-systems. We iteratively developed the frame-
work by abstracting and integrating knowledge from sev-
eral sources, including an array of behavioural theories (e.g.,
Bamberg and Moser, 2007; Shove, 2010; van Valkengoed et
al., 2025), systematic reviews of extant literature (e.g., God-
fray et al., 2018; Hammerseng, 2024; Milford et al., 2019), as
well as insights from participatory modelling activities (see
Rajah and Kopainsky, 2024, 2025) and preliminary proof-of-
concepts (see Tusch, 2024; Rajah et al., 2024).

Our framework is incorporated within the Behavioural
Change module of the novel FRIDA (Feedback-based knowl-
edge Repository for IntegrateD Assessments) model ver-
sion 2.1. Also based on system dynamics, FRIDA aims to
represent the co-evolution of the climate and human pro-
cesses by closing all major feedback loops at the global ag-
gregate scale, and in doing so, provide a fully endogenous,
process-based explanation of system behaviour (Schoenberg
et al., 2025b). The module endogenously models dietary be-
havioural change in terms of changes in total caloric food
demand and diet shifts between animal products and vege-
tal products. After situating our modelling framework among
existing work, the remaining sections of this paper provide
a formal description and evaluation of the framework as
applied to dietary behavioural change in FRIDA v2.1. In
Sect. 3, we detail the conceptualization and quantification
of the framework. Section 4 reports the calibration and un-
certainty analysis process used for model parameterization,
along with the results. In Sect. 5, we compare and explain
differences in the baseline results from our endogenous mod-
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elling framework versus the standard GDP-driven modelling
approach that does not represent behavioural change pro-
cesses. We conclude with a discussion of the results, the
framework’s contributions and its limitations.

2 Existing behavioural change models

To date, there have been limited studies that have fully endo-
genized behavioural change within existing IAMs or similar
human-climate models. Beckage et al. (2018) were among
the first to fully couple a social model with a climate model to
capture human behavioural responses as part of climate feed-
back: people’s perceptions of a climate risk, based on the fre-
quency of extreme events, alter their subsequent emission be-
haviours. In turn, such behavioural change affects emissions,
influencing global mean temperature and the occurrence of
extreme events. Climate risk is modelled as a function of
stochastic extreme events in memory (events are perceived
but also forgotten after a certain delay time), with structural
uncertainty over the functional form as either linear, logis-
tic, or cubic (Beckage et al., 2018). Premised on the Theory
of Planned Behaviour (Ajzen, 1991), perceived climate risk
endogenously influences attitudes, which then determines
emissions behaviour change. All other theoretical constructs
(e.g., efficacy, social norms, behavioural control) were kept
exogenous. Having demonstrated that such coupling resulted
in altered climate projections, the authors emphasize the need
for endogenizing human behavioural change (Beckage et al.,
2018, 2020).

Following this study, Eker et al. (2019) adapted the model
to the behaviour-specific context of diet shifts within the Fe-
liX TAM, while retaining the original climate risk perception
model structures and the main theoretical constructs. They
innovate by closing an additional social transmission loop to
endogenize social norms. For this purpose, the global popu-
lation is segmented into a two-stock structure for meat-eaters
and lacto-ovo vegetarians (Eker et al., 2019). People shift
from meat-based to vegetarian diet based on changes in in-
come (per capita GDP). On the other hand, the shift from
vegetarian to meat-based diet is determined by attitudes, so-
cial norms, and a constant perceived behavioural control.
Here, descriptive social norms are represented as the preva-
lence of the population segments: as the proportion of vege-
tarians increases, more people shift their diets by way of so-
cial transmission. In addition to the effect of climate risk on
attitudes (as described above), Eker et al. (2019) further in-
clude perceived health risk from changes in deaths related to
red meat consumption as another determinant, following the
Protection Motivation Theory (Rogers, 1975; Prentice-Dunn
and Rogers, 1986).

The behavioural components of both models are grounded
on compatible social-psychological theories (i.e., Theory
of Planned Behaviour and Protection Motivation Theory)
with similar constructs. However, psychologists contend that
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there is a plurality of theories that could challenge or ex-
pand upon any one theory, and focusing only on theories
could exclude non-psychological determinants of behaviour
(Nielsen et al., 2021; van Valkengoed et al., 2025). To mit-
igate this challenge, our framework integrates various theo-
ries consistent with the Motivation, Agency, Past Behaviour
meta-theoretical framework (van Valkengoed et al., 2025),
along with insights from experiential knowledge and non-
psychological determinants in the literature. Consequently,
our framework extends existing work by closing additional
feedback loops involving socioeconomic and sociocultural
processes.

Pettifor et al. (2023, 2024) recently introduced an alter-
native framework to endogenously model shifts in lifestyle
archetypes (Resourceful, Active, Constrained and Cau-
tious) as opposed to behaviours. Each of the four lifestyle
archetypes is assigned different propensities for low-carbon
behaviours, which then serve as inputs to IAMs. Arguably,
population segmentation into neatly defined identity cat-
egories masks internal variations and assumes that peo-
ple consistently adhere to their respective identities across
various social and material contexts of environmentally
significant behaviours. This contradicts the known value-
action gap, wherein “people who espouse green values do
not always act in accordance with them” (Shove, 2010,
p. 1276). Instead, social scientists have varyingly called for
a behaviour-specific focus to understand how complex feed-
back processes, embedded in socio-material arrangements,
contribute to behaviour change (e.g., Demski et al., 2015;
Lange and Dewitte, 2019; Manfredo et al., 2017; Nielsen
et al,, 2021; Shove, 2010). Accordingly, our behaviour-
specific modelling framework seeks to represent important
social-economic-cultural-environmental feedback processes
that endogenously determine changes in dietary behaviours.

Moreover, our modelling choices significantly depart from
previous behavioural models (i.e., Beckage et al., 2018; Eker
et al., 2019). First, we model climate risk perception as a
function of both experiential (i.e., extreme events exposure)
and cognitive processes. This accounts for the modulating
effects of climate knowledge and is more consistent with
psychological models of risk (van der Linden, 2015; Vil-
lacis et al., 2021). Also, perceived risk is not determined by
present state values (i.e., stock of extreme events in memory
in both models) but by normalized values to changing ref-
erence conditions of normality. This is in line with models
of human judgments where “reference dependence is ubiqui-
tous in sensation and perception” (Kahneman, 2011, p. 275),
allowing us to capture the psychophysical process by which
people adapt to changing conditions over time. Second, we
do not segment the global population into dietary categories
(e.g., meat-eaters vs. vegetarians). Dietary choices are multi-
dimensional and heterogenous, encompassing an array of in-
dividual consumption practices within each identity category.
In Eker et al. (2019), for instance, changes in followers of
meat-based diets and vegetarian diets are modelled endoge-
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nously. However, the time-varying shifts in average diet com-
position for each of these identity categories are modelled
exogenously. Accurately representing such nuances in iden-
tities and practices requires high-resolution intra-sectoral
modelling, which contrasts with FRIDA’s focus on highly ag-
gregated processes to close the inter-sectoral feedback loops
within the human-climate system. Instead, our modelling
framework captures the endogenous behavioural processes
that determine changes in both aspects of dietary behaviour:
(i) the aggregate per capita caloric intake of food products,
and (ii) the average dietary composition (animal vs. vege-
tal products). In that sense, we do not focus on any one di-
rection of behavioural change (e.g., pro-environmental shift
from meat-based to vegetarian diets); rather, diet shifts may
or may not be sustainable from a climate mitigation perspec-
tive, depending on the underlying behavioural processes.

3 Model description

Given that our model is embedded within the novel global
IAM, FRIDA v2.1, we first present a brief overview of the
FRIDA model (see Schoenberg et al., 2025b for more de-
tails). FRIDA represents the climate and human systems
together, each represented with similar levels of fidelity.
FRIDA places strong emphasis on feedback dynamics and
interpretability. It endogenously incorporates key compo-
nents of the Earth system such as the radiation balance, car-
bon and water cycles, and it does so alongside the endoge-
nous representation of human factors like population, econ-
omy (including GDP), agriculture, and energy use. The only
exogenous inputs to FRIDA are solar radiation cycles, Mon-
treal gas emissions, and global policy (economic, climate or
otherwise). The FRIDA model is capable of simulating from
1980-2150, reproducing historical behaviour with no addi-
tional exogenous inputs.

In prevailing technoeconomic modelling approaches, food
demand, D, is typically expressed as a function of per capita
real GDP (proxy for income) and population, P (e.g., Bijl et
al., 2017; Tilman et al., 2011; Tilman and Clark, 2014). Fitted
to empirical data and projected into the future, D increases
less than proportionally (Bgap < 1) with higher income lev-
els. Within FRIDA’s Land Use and Agriculture (LUA) mod-
ule, we reproduce this standard formulation with a switch
(“‘use GDP for food demand”) to toggle between the GDP-
driven model and our novel endogenous modelling frame-
work for comparison purposes. Equation (1) represents the
GDP-driven model, which is applied to both food demand
for direct consumption, measured in kilocalories per per-
son per day (kcalp~!'d~!), and animal products demand
per capita, measured in petacalories per million person per
year (Pcal Mp~—! yr=1).

ﬂgdp
GDP, (1) ) ’ )
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where D represents the respective food demands, P is the to-
tal global population (Mp), GDP;, is the perceived real GDP
per capita (BUSDMp~! yr~1), and Bedp 1s the sensitivity of
demand to changes in income (dmnl).

GDPj, is modelled as an exponential smooth of real GDP
per capita (GDP) — see Eq. (2). Exponential smooths are
used to model perception delays, where perceptions are up-
dated gradually as newer information becomes available,
thus smoothing out temporary fluctuations in the information
input (Sterman, 2000).

t

GDP, (1) = GDP,(0) + / (

0

GDP(7) — GDPy(7)
Angp

) dr, ()

where GDP,,(0) is the initial perceived real GDP per capita
set to GDP(0), and ATgqp is the averaging time or the delay
time for changes in income to affect demand.

The averaging time determines the rate at which exist-
ing perceptions are discounted: smaller averaging times give
more weight to newer information (i.e., quick to update per-
ceptions), while larger averaging times gives more weight to
older information (i.e., slow to update perceptions).

Our endogenous modelling framework, encapsulated
within FRIDA’s Behavioural Change module, comprises
three sub-modules: Animal Products Demand, Total Food
Demand, and Climate Risk Perception (see Fig. 1). Total
Food Demand captures changes in overall diet (total desired
caloric intake), whereas Animal Products Demand computes
changes in the share of animal products in the average
diet. Vegetal products demand is calculated as the remain-
ing share. We model the key behavioural processes that en-
dogenously determine changes in total food demand (i.e.,
diet) and animal products demand (i.e., diet composition).
This provides input to the supply-side dynamics within LUA
module, where food production adjusts to changes in de-
mand. In turn, production determines the available supply
for consumption, which influences the various behavioural
processes that determine food demand. This creates direct
two-way feedback between the Behavioural Change and
LUA modules, placing demand and supply on equal foot-
ing. Additional indirect feedback interlinkages are formed
with the Climate, Demographics, and Economy modules.
For a description of these other modules, see Schoenberg et
al. (2025b). The rest of this section documents the conceptu-
alization and formulations of our modelling framework. For
expediency, we report uncertain parameter values and ranges
in Appendix A.

3.1 Modelling dietary change

The framework represents several endogenous processes, be-
yond the simplified GDP-driven model, which influence di-
etary behaviour in terms of per capita demand and con-
sumption (see Fig. 2). Unless otherwise stated, the struc-
ture is replicated for both total food demand and animal
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product demand. The average daily demand (ADD), mea-
sured in kcalp~! d~!, is determined by the desired average
daily demand (DADD) or the accessible demand from per-
ceived accessibility (DADD,), whichever is smaller. This en-
sures that dietary behaviours are constrained by agency or
the ability to act on intentions (Ajzen, 1991; van Valkengoed
et al., 2025). After accounting for population and unit con-
version, total demand influences total production (Pcal yr—!)
in the LUA module. Here, the supply-demand balance each
year influences future decisions for adjusting production
capacity and yield. Additionally, a reserve capacity mul-
tiplier is included to buffer against demand fluctuations,
implicitly capturing the role of strategic reserves without
modelling explicit inventory dynamics. Global food inven-
tory dynamics were deemed unimportant over the multi-
decadal time scale of FRIDA. The average daily consump-
tion (ADC; kcal p~! d~!) is computed as either the total pro-
duction or total demand (smaller of the two) and normal-
ized by population. This provides an additional constraint
on behaviour such that people cannot consume beyond the
available supply. In this context, DADD is the dietary be-
havioural intention that is adjusted by four groups of be-
havioural processes: (i) past behaviour from habits that mod-
erate desired changes in behaviour; (ii) perceived accessibil-
ity in terms of socio-economic factors determining the af-
fordability and availability of food products; (iii) descriptive
norm that describes what others in the social environment are
doing, which exerts a conformity pressure; and (iv) personal
norms or standards that people hold and expect of them-
selves, which are shaped by perceptions of the social and
natural environment.

3.1.1 Past behaviour

Humans are creatures of habit, where past habitual behaviour
exerts an unconscious influence that could inhibit sustained
behaviour change (Linder et al., 2022; van Valkengoed et al.,
2025). Sustained repetition is required for the formation of
a new habitual behaviour. To represent habituation and the
barrier it poses, DADD is modelled as a stock (i.e., inte-
gral) that adjusts gradually to its indicated value, measured
in kcalp~!d~!, with a certain delay time for the new be-
havioural pattern to become sustained, as shown in Eq. (3):

t
DADD(t) = DADD(0) + / (
0

DADDi(r)—DADD(r)> & O
ATgp

where DADD is desired average daily de-
mand (kcalp’1 d~!); DADD; is the indicated value
that the stock adjusts towards, and AT, is the averaging
time to adjust consumption patterns (year).

As explained previously, larger averaging times give more
weight to past habitual behaviour, representing its inhibit-
ing influence. DADD); is modelled as a weighted average of
the desired demand computed from the remaining motiva-

https://doi.org/10.5194/gmd-18-5997-2025



J. K. Rajah et al.: An endogenous modelling framework of dietary behavioural change 6001

Behavioral
Change

Animal Products

/\

Demand
Land Use
and
Agriculture
Total Food
Demand
Climate Risk
\ Perception
\_/

Climate

Demographics

Economy

Figure 1. Sub-system diagram of Behavioural Change module (in blue) and its interlinkages with other relevant top-level modules in

FRIDA v2.1.

tional processes that determine behavioural intentions: per-
ceived accessibility, descriptive norm, and personal norms —
see Eq. (4).

DADD; (¢) = MIN [DADD,(t), (w,(f) - DADD,(¢)
+®dn (1) - DADDgy () + wpn (1) - DADDpy (1)) ], (4)

where DADD, is the desired demand from perceived accessi-
bility, DADDyj, is the desired demand from descriptive norm,
DADDy,, is the desired demand from personal norms, and
o is the average weight (dmnl) or relative importance at-
tributed to each motivational process.

An additive weighted average is used to account for actor
heterogeneity at the global scale. Within and across coun-
tries, individuals hold differing stable value priorities (Fis-
cher and Schwartz, 2011), placing varying weights on each
behavioural motivation. Conflicting values may also be ac-
tivated under different situational contexts, causing certain
motivational processes to become more prominent (De Groot
and Steg, 2009): e.g., a person might succumb to the social
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pressure of the descriptive norm in one situation, but act on
their personal norms in another. Using a weighted average
formulation allows for the integration of these diverse moti-
vational processes while reflecting their relative importance,
on average, across different individuals and contexts.

3.1.2 Perceived accessibility

Accessibility, here, refers to perceptions of the affordability
and availability of food products, generally involving socio-
economic factors such as price, income, and economic de-
velopment (Godfray et al., 2018; Milford et al., 2019). For
animal products, people are not only responsive to changes
in price, but also to its relative price: they are more will-
ing to purchase and consume animal products when its price
decreases more than changes in the price of its substitute,
and vice versa (Milford et al., 2019). However, since FRIDA
does not model the prices of products directly given its level
of aggregation, the concept of scarcity (represented by the
supply-demand balance) is used as proxy for price. Follow-
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Figure 2. Simplified causal loop diagram of the endogenous modelling framework; colour coding: grey is associated with past behaviour,
blue is associated with perceived accessibility, yellow is associated with descriptive norm, and red with personal norms; R labels denote
reinforcing loops (changes are amplified) whereas B labels denote balancing loops (changes are attenuated); double strokes on connectors
indicate delays; solid connectors are internal to the Behavioural Change module while dashed connectors denote connections to other modules

in FRIDA.

ing the microeconomic principle, we assume that gaps in the
supply-demand balance drive price changes at the margins
(Tomek, 2000). Relative prices, then, is captured by compar-
ing the supply-demand balance between animal products and
all crop products (e.g., food products, feed for animals, bio-
fuel crops, and other uses). Hence, when the animal products
are relatively more available (i.e., less scarce) than crop prod-
ucts, people are more willing to increase their animal prod-
ucts demand. The responsiveness of the perceived accessible
animal products demand to relative scarcity is modelled fol-

lowing Eq. (5):
Bs
). ®

where production,, is the animal products production
rate (Pcal yr™1), demand,, is the total animal products
demand (Pcal yr_l), productionge, is the crop produc-
tion rate (Pcal yr_l), demandp, is the total crop de-
mand (Pcal yr—!), and S is the sensitivity of demand to rel-
ative scarcity (dmnl) and is set to less than 1 (Milford et al.,
2019).

production,, ()  / production, ()

scarcity effect(r) = <

demand,p (1) demandcyop (1)

Geosci. Model Dev., 18, 5997-6022, 2025

The structure is different for total food demand, since there
are no alternatives to food — i.e., food scarcity is not rela-
tivized. Instead, the combined animal and vegetal products
supply-demand balance is used as a measure of food avail-
ability/scarcity and the attendant proxy for changes in price.
It should be noted that with FRIDA, we do not model mal-
nourishment; crop demand for direct food consumption is
first met, taking away from the availability for all other uses.
Consequently, food scarcity is mainly responsive to the ani-
mal products balance.

The other key driver of accessibility is changes in income:
as income increases, people not only expand their caloric in-
take but also substitute more of their diet with animal prod-
ucts (Milford et al., 2019; Schmidhuber and Shetty, 2005;
Tilman and Clark, 2014). Like other models, we express the
income effect on demand as a function of changes in GDP as
in Eq. (6):

https://doi.org/10.5194/gmd-18-5997-2025
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GDP(t) )ﬂi ©

income effect(t) =
GDP(0)

where GDP(0) is the initial real GDP per capita converted
to USDp~! yr~! and held constant to the 2021-dollar value,
and g; is the sensitivity of desired demand from perceived
accessibility to changes in income (8; < 1; dmnl).

In the GDP-driven model, described previously, GDP is
exponentially smoothed to account for delays. Here, DADD,
is exponentially smoothed to account for the perception of
both scarcity and income effects — as shown in Egs. (7)
and (8):

t

DADD, () = DADD, (0) + / (DADDiam — DADD; (1)

AT,

)df, 7

DADD;, (1) = DADD,(0) - scarcity effect(z) - income effect(z), (8)

where DADD, is the desired demand from perceived acces-
sibility (kcalp~!d~!), DADDj, is the indicated perceived
accessible demand (kcalp~!d~!), AT, is the averaging
time (year) for taking stock of changing socioeconomic con-
ditions and adjusting the perceived accessible demand, and
DADD,(0) is the initial value of the stock set to DADD(0),
which is the reference average daily demand.

With the multiplicative formulation in the indicated acces-
sible demand (DADD;,), the response to changes in income
is moderated by availability. Equation (8) is formulated dif-
ferently for animal products demand, since it is a subset of to-
tal food demand. Instead, the effects are applied on the initial
share of animal products in diets, %ap(, representing more
substitution of diet with animal products as it becomes more
available (less scarce) and/or income increases. %ap is con-
strained to a maximum of 1, under extreme conditions, and
multiplied with the average daily food demand (ADDrF in-
put from Total Food Demand module) to determine DADD;,
for animal products. In doing so, we account for both the de-
sired expansion and substitution of calories.

However, econometric analyses of empirical data have
found that the income effect follows an inverted u-shaped
curve: while consumption increases with income (less than
proportionally), it reaches an inflection point at a certain
level of income and declines thereafter (Cole and McCoskey,
2013; Milford et al., 2019; Vranken et al., 2014). Using a
non-monotonic function to represent both an increase and
decrease in demand serves as an unsatisfactory explanation
from a process-based perspective. A social-psychological
perspective might provide a better explanation: less accessi-
ble dietary behaviours can amass a symbolic value as mark-
ers of socioeconomic status, making them more desirable to
individuals from lower socioeconomic groups as a form of
compensatory consumption aimed at signalling upward so-
cial mobility or aspirational identity (Chan and Zlatevska,
2019; Doyle and Richardson, 2025). Higher socioeconomic
class consumers, having greater material security and social
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capital, are generally less influenced by the symbolic status
of consumption; instead, they are more likely to prioritize
post-material concerns and cultural values such as health, en-
vironmental sustainability, and ethical considerations (Doyle
and Richardson, 2025; Vranken et al., 2014). We capture this
socioeconomic effect as a distinct process. While DADD,
represents the potential accessible desired demand, the ex-
tent to which it becomes realized is determined by how much
weight is given to accessibility, w,. Less weight is given to
accessibility as GDP per capita increases over time, by way
of a logistic function as expressed in Eq. (9):

L—m
) e
14+ EXP[—k - (1 — GDP(t)/GDPr) |

Wy (1) = Wref - (m +

where w, is the weight of perceived accessibility (dmnl),
wret 18 the reference weight (dmnl), GDPy is the reference
GDP value for the inflection point (USD p~! yr=!), m is the
minimum effect (dmnl), L is the maximum effect (dmnl), and
k is the steepness of the curve (dmnl) that determines the rate
of change.

The reference weight, wyet, is set to one-third denoting that
all three motivational processes (accessibility, descriptive
and personal norms) are weighted equally when GDP reaches
its inflection point. As income increases beyond the reference
value, the socioeconomic effect on w, decreases at a decreas-
ing rate to a minimum effect (:m). The effect increases de-
creasingly to a maximum (L) as income falls below its refer-
ence. A variance parameter, v, is added to L and m (: 1+ %)
in order to vary the minimum and maximum effects sym-
metrically around the inflection point in sensitivity analyses.
This allows us to explore different ranges of socioeconomic
effects while holding the inflection point at GDPrt. The re-
maining weight is then evenly distributed between the other
two processes as computed in Eq. (10):

I —aw,(2)

2 b
where wqy is the weight of descriptive norm and wy, is the
weight of personal norms.

wdn (1) = wpn(1) = (10)

3.1.3 Descriptive norm

The descriptive norm refers to perceptions of typical or pre-
vailing behaviours within the social environment, which pro-
vides a social motivation for people to conform (Cialdini,
2007; Cialdini et al., 1991; van Valkengoed et al., 2025).
Sparkman and Walton (2017) further distinguish between
static and dynamic descriptive norms. The static norm indi-
cates the current state of the prevailing behaviour (e.g., eat-
ing meat is normal), whereas the dynamic norm points to
how the norm is changing over time (e.g., more people have
been reducing their meat consumption). They contend that
people may form expectations about the future state of nor-
mative behaviour based on their perceptions of changing so-
cial trends, which motivates “preconformity” to behaviours
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that are presently counter-normative (Sparkman and Walton,
2017, p. 1664).

We model the process of conformity to the dynamic de-
scriptive norm as a weighted adjustment of DADD to expec-
tations of the normative behaviour (DADDy,) — see Eq. (4).
Expectation formation can be modelled with the TREND
function, which computes the past growth rate of an input
variable in order to estimate its likely future value (Ster-
man, 1987). In our case, the input variable is the current
(static) normative behaviour, ADC, (perceived average daily
consumption), which is an exponential smooth of ADC, as
shown in Eq. (11):

t

ADCy (1) = ADC,(0)+ / (ADC(T ) — ADCy(7)
0

ATadc

)dr, an

where ADC,, is the perceived average daily consump-
tion (kcalp~!d~"), ADC is the actual average daily con-
sumption rate (kcalp~!d~!), AT,qc is the averaging time
(year) for perceiving the current behaviour, and ADC(0) =
ADC(0).

People do not have perfect information on the year-on-
year changes in consumption rates; rather the perceived trend
is anchored on an estimated normal reference consumption
from the recent past. This short-term reference, ADCsryef, 1S
thus modelled as an exponential smooth of the ADC; with
a short-term time horizon of the recent past (ATstrer), ini-
tialized with ADC,(0). The short-term trend for changes in
perceived consumption is then computed in Eq. (12) as the
average yearly growth rate of ADC, relative to ADCgryef:

ADCy (1) — ADCsret(1)
ADCSTref(t)

Trendst () = ATSTref, (12)

where Trendsr is the short-term trend (dmnlyr—!), ADC,
is the perceived average daily consumption (kcalp~!d~1),
ADCgryer 1s the short-term reference average daily consump-
tion rate (kcal p_1 d™1), and ATsrrer is the short-term time
horizon time (year).

The Trendst provides an indication of whether the static
descriptive norm is trending upwards or downwards over the
short term — i.e., the perceived changing social trend. Based
on this indication, people form an expectation of what the
dynamic descriptive norm (i.e., DADDy,) would be in the
immediate future by adjusting the desired demand (DADD)
proportionally to the growth rate of the trend, as shown in
Eq. (13):

DADDyy (t) = DADD(7) - (1 4 Trendst(t) - ATexp),  (13)

where DADDy, is the desired average daily demand from de-
scriptive norm (kcal p~! d~!), DADD is the desired average
daily demand (kcalp~!d~!), and ATeyp is the expectation
time horizon for the immediate future set to 1 (year).

Here, the anchoring and adjustment of previous be-
havioural intentions (i.e., DADD) captures the reinforcing
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habituation feedback: DADDy, is both determined by and
a determinant of DADD. Thus, a persistent upward trend
in consumption would amplify the upward adjustment of
DADD over time, counteracting the inertia of past habitual
behaviour.

3.1.4 Personal norms

Personal norms refer to the individually-held personal stan-
dards that one expects of themselves and are founded in per-
sonal values, moral beliefs, and attitudes toward a certain be-
haviour (Kaiser et al., 2005; Niemiec et al., 2020; Schwartz,
1977; van Valkengoed et al., 2025). This is distinguished
from injunctive social norms, which are society-wide stan-
dards or socially approved ways of acting (Cialdini et al.,
1991). While there is no consensus within psychology lit-
erature on the nature of relationships between the various
norms, Niemiec et al. (2020) found personal and descrip-
tive norms to be more significant predictors of behavioural
intentions than injunctive social norms. However, personal
norms are not formed in a vacuum but shaped by the existing
social environment that provides information about socially
approved ways of acting (Bamberg and Moser, 2007). Sim-
ilarly, from a sociocultural perspective, personal values are
socially constructed within a social system and reproduced
through feedback processes: certain behaviours are assigned
a social-cultural value or worth and reinforced as social prac-
tices (Demski et al., 2015; Godfray et al., 2018; Kendal and
Raymond, 2019; Manfredo et al., 2017). In other words, peo-
ple internalize injunctive social norms, at least in part, as per-
sonal norms (Bertoldo and Castro, 2016).

We represent the internalization of injunctive norms by
modelling the perceived social-cultural value, PSV, of the di-
etary behaviour based on long-term consumption patterns.
Like descriptive norm perception, a reference long-term
ADC is modelled as an exponential smooth to represent the
normal consumption level in the distant past, as shown in
Eq. (14):

ADCrrref(t) = ADCrrref(0)

t

ADC — ADC ¢
+/( p(T) LTret(T))d_L_’ (14)
ATLTref

where ADCprrr is the reference long-term average daily
consumption rate (kcalp~!d~1), ADC,, is the perceived
average daily consumption rate (kcal p_l d_l), AT Tref 1S
the long-term time horizon (year) under consideration, and
ADCl1rer(0) = ADC,(0).

We assume that when ADC; is more (or less) than
ADC 1ref, the behaviour has become more (or less) institu-
tionalized as a social practice, in turn adjusting PSV propor-
tionally. As sociocultural scholars contend, reproduction of
social practices make social values sticky phenomena that re-
quire lasting long-term observation for change (Manfredo et
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al., 2017). A delay process is thus introduced for the adjust-
ment of PSV to its indicated value — see Egs. (15) and (16).

t

PSV(¢) =PSV(0) + / < (15)
0

PSVi(t) — PSV(1) ) i
ATpsy ’

ADC, (1) — ADC
PSVi(1) = PSV, - (1 T dade - p() LM(”) . (16)

ADCLTref(Z)

where PSV is the perceived social-cultural value of the be-
haviour (dmnl), PSV; is the indicated value (dmnl) that the
stock adjusts to, ATpsy is the averaging time (year) for the
social value perception, PSVj, is the normal perceived social-
cultural value (dmnl), and a4, is the sensitivity parameter for
value perception (dmnl).

PSV,, is fixed at a normalized value of 1 since PSV is con-
ceptualized as a dimensionless relative variable. The sensi-
tivity parameter, ayqc, determines how aggressively PSV ad-
justs to relative changes in long-term consumption patterns.
In turn, PSV provides the contextual information about soci-
etal standards that is internalized as a source of influence on
personal norms.

Personal norms are also shaped by the socio-ecological
environment, which provides informational cues about
risks and consequences of certain behaviours (Bamberg
and Moser, 2007). For one, the perceived consumption
risk (PCR) represents the direct tangible impacts of over-
consumption that pose a threat to people, adversely influenc-
ing moral beliefs and attitudes. For food and animal prod-
ucts, this is often tied to concerns over adverse health conse-
quences and moral concerns over animal welfare (Berndsen
and van der Pligt, 2005; Godfray et al., 2018). We model
PCR as the average daily consumption relative to a healthy
reference level, ADCpyer, With exponential smoothing ap-
plied to capture the delay for consequences to be observed,
as shown in Eq. (17):

PCR(t) = PCR(0)

! ADC(T)/ADCHref— PCR(7)

-
ATper

0

dr, (17)

where PCR is the perceived consumption risk (dmnl),
ADC is the average daily consumption rate (kcalp~'d~1),
ADCHret is the healthy reference average daily consumption
rate, AT, is the averaging time (year) to observe the conse-
quences in consumption risk perception, and PCR(0) is the
initial ADC relative to ADCpyet.

ADChyer is set to the planetary health diet recommenda-
tion of 2500 and 304 kcal p~' d~! for total food and animal
products respectively, which accounts for both nutritional re-
quirements and sustainable production (Willett et al., 2019).
PCR is the second source of influence on personal norms.

The third source of influence on personal norms is the per-
ceived climate change risk, PCCR, which is an input from
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the Climate Risk Perception module, described in the next
section. Unlike PCR that is based on direct observable con-
sequences of overconsumption, PCCR stems from indirect
consequences. Therefore, subjective attribution is necessary
for connecting indirect climate consequences to behaviour
(Ogunbode et al.,, 2019; Wong-Parodi and Berlin Rubin,
2022). PCCR represents the attribution of perceived changes
in climatic conditions to climate change, more generally. It is
then differentially attributed to personal norms surrounding
specific behavioural domains. For instance, the same PCCR
might have a stronger influence on reducing animal products
demand (i.e., dietary shifts), than on reducing total food de-
mand (i.e., reducing waste).

The desired demand from personal norms, DADDy,,
accounts for people’s response to all three informational
sources. In psychophysical models of human perception, the
sensation of the intensity of a certain stimulus is often mod-
elled as power function (Stevens, 1975). The exponent in this
power function tends to be less than 1 for social stimuli, in-
dicating that people’s response diminishes with larger mag-
nitudes due to desensitization from psychophysical numb-
ing (Fetherstonhaugh et al., 1997; Slovic, 2007). Others have
also emphasized reference dependence in human judgments,
where the magnitude of the stimulus is judged relative to
a reference point, such as expected values or past expe-
riences (Kahneman, 2011; Kahneman and Tversky, 1979).
The power law has been applied to scale social phenomena,
for quantifying responses to social influences (e.g., Stevens,
1975), humanitarian disasters (e.g., Slovic, 2007), and epi-
demic risks (e.g., Bagnoli et al., 2014; Noyes, 2021). Accord-
ingly, we express DADDy, as a scaled adjustment of DADD
to the three perceptions, as shown in Eq. (18):

DADD,,(7) = DADD(r) - PSV (r)Prsv
. PCR(t)Prer . PCCR (1) Precr 8)

where DADDy, is the desired average daily demand from
personal norms (kcalp~!'d~!), DADD is the desired av-
erage daily demand (kcalp~!d~!), PSV is the perceived
social-cultural value (dmnl), PCR is the perceived consump-
tion risk (dmnl), PCCR is the perceived climate change
risk (dmnl), and the dimensionless sensitivity parameters (8)
determine the responsiveness of personal norms to each per-
ception.

The perceptions, here, are already expressed as relative
values, accounting for reference dependence. A multiplica-
tive formulation is used since the effects are likely not in-
dependent: e.g., a high social-cultural significance attached
to meat consumption (PSV) weakens the moral imperative
to protect the climate (PCCR). These perceptions, together,
provide the social cues for adjusting DADD upwards or
downwards, contributing to the gradual habituation of new
behavioural intentions guided by personal norms. For total
food demand, a minimum caloric intake of 1800 kcal p_1 d-!
is set for DADDp, to prevent malnourishment under ex-
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treme scenarios. The MAXSOFT function (see Mathemati-
cal builtins, 2025) is used to smoothly transition DADD,
towards the minimum with a tolerance of 100kcal p~!d~!.

3.2 Modelling perceived climate change risk

Psychological models of climate risk perception generally
consider four main determinants: experiential, cognitive,
socio-demographic and socio-cultural factors (van der Lin-
den, 2015; Villacis et al., 2021). Experiential processes refer
to affective evaluations of personal experience with climate
change (e.g., exposure to extreme weather events) and/or in-
direct vicarious experience (e.g., media representations) that
attach negative risk-as-feelings (Akerlof et al., 2013; Leis-
erowitz, 2006; van der Linden, 2015). Cognitive factors such
as levels and accuracy of climate change knowledge under-
pin reasoning about risk severity and have found to be posi-
tively associated with climate risk perceptions (van der Lin-
den, 2015; Xie et al., 2019). In our model, we express PCCR
as a function of both experiential and cognitive processes as
shown in Eq. (19):

PCCR(#) = PCCR,, - experiential effect(z)
- cognitive effect(t), (19)

where PCCR is the perceived climate change risk (dmnl) and
PCCR;, is the normal perceived risk set to an index value
of 1 (dmnl).

PCCR > 1 indicate that current climatic conditions are
perceived as abnormal, whereas PCCR < 1 indicate better-
than-normal perceived conditions. A multiplicative formula-
tion allows cognition to modulate experience: when knowl-
edge about climate change is taken more seriously, affective
responses to climate events are heightened and thus risk per-
ception is amplified. We exclude socio-demographic factors
(e.g., age, gender, income and educational level) in our model
since they have been found to be relatively insignificant pre-
dictors (Xie et al., 2019). Socio-cultural factors, such as indi-
vidual value orientations and norms surrounding climate mit-
igation (Xie et al., 2019), are implicitly included as weights
assigned within the cognitive and experiential processes (i.e.,
averaging times and sensitivities). Pro-environmental values
and norms, for instance, would suggest a higher weight and
therefore a stronger risk perception. Such socio-cultural fac-
tors are kept exogenous and captured as part of model-wide
calibration due to the lack of time-series data for PCCR, es-
pecially at the global level.

3.2.1 Exposure

In our model, the experiential effect captures affective re-
sponses to extreme weather events exposure and flooding ex-
posure from sea level rise (SLR). Extreme weather events are
modelled in the Climate module as climate indices (listed
below) with record-breaking exposure, measured in indices
per p per year. The climate indices estimate the average expo-
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sure to at least one historically record-breaking weather event
at the global scale, weighted by population (see Wells et al.,
2025). Expressed as a function of global mean surface tem-
perature anomaly (STA), the climate indices aggregate lo-
cal record-breaking exposures calculated at the grid-cell level
data from 35 climate models across seven metrics as found in
Li et al. (2023): annual total precipitation, maximum 1 d pre-
cipitation, days with heavy precipitation, warm days, heat-
wave, sequential precipitation-humid heatwave, and com-
pound drought and heatwave. In the Climate Risk Percep-
tion module, the perceived extreme weather events exposure
is modelled as an exponential smooth of climate indices to
account for the perception delay, as in Eq. (20):

climate indices(t) — PWE(7)
ATpye

t
PWE(t) = PWE(0) + / (
0

) dz, (20)

where PWE is the perceived extreme weather events expo-
sure (indices per p per year), “climate indices” represents the
average exposure to extreme or record-breaking events (in-
dices per p per year), ATpye is the averaging time (year) to
update perceptions of exposure, which also reflects the rate
of discounting of new experiences, and PWE(0) is set to cli-
mate indices(0).

Since human judgments are reference dependent, Os-
berghaus (2017) argues that climate change responses are de-
pendent on people’s reference for the baseline climate con-
dition. Importantly, perceptions of normality changes over
time as people acclimatize — i.e., what is defined as abnor-
mal today could become the new normal at a later point in
time (Hulme et al., 2009; Osberghaus, 2017). Consequently,
not only does the sensation of risk marginally diminish as
exposure increases (from the power law), but it further de-
clines over time as the reference condition updates to a newer
normal. The reference exposure, PWE., is an exponential
smooth of PWE to model updating reference conditions, as
shown in Eq. (21):

t

PWE(t) — PWE;et(7)
PWEref(t) = PWEref(O) + / (

Apre + ATrpwe

)dt, 1)

where PWE,.r is the reference perceived extreme weather
events exposure (indices per p per year), ATpwe is the addi-
tional averaging time (year) for updating perceptions of the
reference normal exposure, and PWE.f = PWE(0).

The additive formulation ensures that the perception of
the reference condition can never update faster than percep-
tions of the present condition (e.g., in multivariate sensitivity
analyses). This representation is consistent with definitions
of the reference climate condition as a rolling experienced
past, used to “anomalize” the present condition (Hulme et al.,
2009; Osberghaus, 2017). In other words, the present expo-
sure to extreme weather events is considered abnormal only
if it exceeds the average exposure from the experienced past.
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While this updating reference condition captures the psycho-
logical adaptation process, it could also relate to physical
adaptation of the built environment to accommodate higher
extreme exposures.

Exposure to SLR is included as a distinct input to the ex-
periential effect for two reasons. First, unlike temperature-
related weather events, SLR impacts are directly experienced
by relatively smaller coastal populations. Second, SLR im-
pacts manifest as flooding, which people tend to associate
with local storm surges rather than SLR and global climate
change (Akerlof et al., 2017). Nevertheless, SLR commu-
nication may still capture public imagination as the magni-
tude of its impacts increases in the future, providing a vicari-
ous experience to the broader global population for influenc-
ing risk perceptions (Akerlof et al., 2013, 2017). The SLR
sub-module in the Climate module computes changes in sea
level from climatic processes, whereas the SLR Impacts and
Adaptation sub-module in the Economy module estimates
the number of people exposed to SLR-induced floods from
coastal populations, measured in Mp~! yr~! (see Ramme et
al., 2025). The sensation of SLR exposure is similarly mod-
elled as function of both the perceived SLR flooding expo-
sure (PSE) and the reference normal level, PSE..s. PSE is
an exponential smooth of the exposure metric (Mp~! yr=1)
from the SLR sub-module. For PSE,.f, however, there is a
conceptual difference: perceptions of risk or abnormality are
sensed only when the extent of the exposure is large enough
to warrant global media attention. Therefore, we constrain
PSE;.f to a minimum reference value, as shown in Egs. (22)
and (23):

t

PSEret(r) = PSErer(0) + /

0
(MAX (PSEminreﬁ PSEiref(T)) B PSEref(f) > d‘L', (22)
dr
PSE(t) — PSEef(?)
PSEire (1) = PSEef(t -dr, >
iref (1) ref (1) + ATpse + AT pse )

where PSE..r is the reference perceived SLR flooding expo-
sure (Mp_1 yr_l), PSEminref is the minimum reference SLR
flooding exposure (Mp~! yr=!), PSE;s is the indicated ref-
erence perceived SLR flooding exposure (Mp~! yr=1), ATpge
is the averaging time (year) to update perceptions of SLR ex-
posure, AT e is the additional time horizon (year) for updat-
ing the reference perceived SLR exposure, and PSE.(0) =
PSE(0).

PSEj;.r is the instantaneously calculated indicated refer-
ence value that accounts for the updating process of the nor-
mal condition over the much longer time horizon. The MAX
function in Eq. (22) ensures that PSE;.r updates only if the
computed indicated value is larger than the minimum refer-
ence value, PSEpinrer. In doing so, it prevents PSE,.r from
falling below the minimum threshold for risk perception.
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Following the psychophysical power law, the experiential
effect of climatic events on risk perception is expressed as a
power function of both inputs normalized to their respective
reference conditions, as shown in Eq. (24):

Bex
PWE(r) . PSE(r) ) P’ 24)
PWE_es(7)

experiential effect(r) = ( PSEnr(1)
ref

where Bexp is the sensitivity of PCCR to changes in percep-
tions of climatic events exposure: perceived extreme weather
events (PWE) and perceived SLR flooding (PSE).

We use an additive formulation since temperature-related
weather events and SLR-induced flooding are conceptualized
as independent sensory experiences that accumulate in the
individual and collective human imagination (Hulme et al.,
2009). Moreover, since SLR impacts are negligible for most
of the historical period and only expected to cross the mini-
mum reference in a future point in time, Bexp is set to be one
and the same for both types of climatic events.

3.2.2 Cognition

To model the cognitive influence of climate change knowl-
edge on risk perception, we use information about STA, mea-
sured in °C, as a proxy for knowledge. Here, changing levels
of STA are taken to be positively associated with awareness-
raising initiatives to raise climate change knowledge. As
STA increases over time, knowledge of global warming (i.e.,
STA,) increases with a perception delay. STA, (in °C) is
modelled with a third-order exponential smooth, where the
input is smoothed three times over a total averaging time,
ATy, (year). Multistage or higher-order exponential smooth-
ing provides a much more gradual and smoother updating
of climate information, which is required to account for de-
lays in scientific information gathering, reporting, and even-
tually broader societal awareness-raising (Sterman, 2000).
This contrasts with other first-order perception delays, such
as those related to climatic events, which are more immedi-
ate and readily perceived by people. ATy, also functions as
a weight given to climate information: smaller values would
indicate stronger receptivity (cf. socio-cultural factors), en-
abling a faster updating of awareness, and vice versa. Climate
information is further valuated against a reference “normal”
condition, STAper. Just as people acclimatize to abnormal
climatic conditions over time, people could become desensi-
tized to increasing climate change knowledge over time (e.g.,
climate fatigue). Hence, STAer similarly updates over time
to account for the desensitization following Eq. (25):

t

STA,(t) — STA T
STApref (1) = STApres(0) + / ( p(r) pret (7)
0

ATty + ATrsta

) dr, (25)

where STAef is the reference perceived surface tempera-
ture anomaly (°C), STA,, is the perceived surface temper-
ature anomaly (°C), AT, is the averaging time to report
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and perceive climate information (year), AT}, is the addi-
tional time horizon (year) for updating the reference, and
STAprer(0) = STA,(0).

AT, also determines the rate at which climate informa-
tion is discounted over time. A smaller time horizon sug-
gests that people evaluate global warming less seriously (cf.
socio-cultural factors), since the reference condition updates
more quickly and shifts the reference point to the right for the
evaluation. The cognitive effect is then expressed as a power
function of this climate information evaluation as shown in
Eq. (26):

/Scog
M) , 26)

cognitive effect(t) = <STA B
pref

where B is the sensitivity of PCCR to changes in percep-
tions of climate information about STA (dmnl). Since the
cognitive effect is multiplicative, risk perception is modu-
lated by climate information: i.e., when climate knowledge
is taken more seriously, PCCR is amplified.

4 Model calibration and uncertainty analysis

The above formulations were implemented in Stella Archi-
tect 3.8 (isee systems) with a simulation horizon from 1980
to 2150 and a time-step of 1/8 using the fourth-order Runge—
Kutta (RK4) integration method. Given the high level of ag-
gregation in FRIDA, where the dynamic complexity of main
system-wide feedback processes is prioritized over speci-
ficity, uncertainty is inherent in the model’s parameterization.
A multi-step protocol was, therefore, developed for parame-
ter estimation under deep uncertainty and presentation of re-
sults as an ensemble of runs, reporting the sample median
and uncertainty range (see Schoenberg et al., 2025b).

First, model calibration was performed in Stella Architect,
which uses Powell’s BOBYQA algorithm (Powell, 2009).
For parameters without known ranges from data or litera-
ture, a wide range was set based on prior belief. The cal-
ibration process minimized the squared error between ob-
served and simulated data across seven model variables for
the historical period between 1980 to 2020: animal products
production, animal products demand, crop production, vege-
tal products demand (subset of crops used for food), average
daily animal products demand per capita, average daily veg-
etal products demand per capita, and average daily food de-
mand per capita. The calibration data were obtained or calcu-
lated from Food and Agriculture Organization of the United
Nations (FAO, 2024), assuming demand equates to available
caloric supply at retail. Hence, demand includes consumer
food waste. We performed partial model calibration of pa-
rameters in the Behavioural Change module and the GDP-
driven model, separately, to prevent errors from propagating
to other modules in FRIDA. It should be noted that all three
sub-modules within the Behavioural Change module were
calibrated together due to the lack of reliable time-series for
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Climate Risk Perception. In other words, climate risk param-
eters were calibrated to fit both total food and animal prod-
ucts data simultaneously. The calibration parameters and es-
timated values are reported in Appendix A.

Figure 3 presents the default model run using the cali-
brated values, for both our endogenous modelling framework
and GDP-driven model, which does not yet account for un-
certainty within that calibration. We refer to the simulated
behaviour produced by FRIDA v.2.1 that incorporates our
modelling framework as the endogenous model behaviour
(hereafter, EMB). Even though both models provide a good
fit to data for the historical period between 1980 and 2020,
our framework performs marginally better when comparing
the root mean squared error (RMSE) that quantifies the error
between the simulated and observed data. The total RMSE
for animal products production, animal products demand,
crop production and vegetal products (Fig. 3a—d; measured
in Pcal yr=!) for the default EMB is 484.34, lower than the
498.75 for the default GDP-driven behaviour. As for the av-
erage daily animal products, vegetal products, and total food
demand (Fig. 3e-g; measured in kcalp~!yr~!), the total
RMSE for EMB is 61.11 compared to 64.18 for GDP-driven.
Despite the marginal difference in performance for the past,
the difference in structure for the two models generates sig-
nificantly different future projections, as will be shown in the
next section.

Given the lack of quantitative measurements for the Cli-
mate Risk Perception module, we qualitatively assess the cal-
ibrated PCCR, as depicted in Fig. 3h, against available liter-
ature. Psychological inventories measuring climate change
risk perceptions are relatively recent developments (e.g.,
Libarkin et al., 2018), and even then collected data tend to
be analysed cross-sectionally rather than temporally. Nev-
ertheless, Capstick et al. (2015) provide an international
and temporal analysis of public opinion surveys and polls.
Briefly, they found that basic climate change knowledge
and awareness burgeoned in the 1980s, which resulted in a
rapid growth in public concern between the mid-1980s and
early 1990s. Despite some fluctuations, public concern saw
a sustained growth from the mid-1990s to mid-2000s, along-
side increased scientific and media attention. From the mid-
to late-2000s, they found growing climate scepticism in some
parts of the world, but globally, the decline in public concern
was offset by increased concern from other regions. Since
the 2010s, they suggest that public concern has stabilized
and, in some cases, increased. More recent survey polls, as
found in van Valkengoed et al. (2023), further indicate that
public concern has been gradually increasing since the late-
2010s. Though not from validated psychometric measures,
these findings may be indicative of the dynamic develop-
ment in risk perception. The EMB produced by our mod-
elling framework broadly captures these major trends, fol-
lowing a somewhat s-shaped curve. Regardless, without val-
idated time-series for partial model calibration of the module,
the uncertainty in this calibration remains irreducible.

https://doi.org/10.5194/gmd-18-5997-2025



J. K. Rajah et al.: An endogenous modelling framework of dietary behavioural change

(a) Animal Products Production (b) Animal Products Demand

1400 — 1400+

1200 1200

ES S
< ©
& 1000 & 1000
800 800 -
r, P
600 600 -
T T T T T T 1T T T T T T T 1T
N o S Q N N N N Q S
K & %@ (79\ q/@, K & (790 {LQ\ Q/Q"l/
(e) Average Daily (f) Average Daily
Animal Products Demand Vegetal Products Demand
500 —
T
©
“-Q_
= 450 —
o
X
400"

Pcal yr'

keal p™' d”'

6009

(c) Crop Production (d) Vegetal Products Demand

16000 —
6500 —

6000 —
14000 —

5500 4
12000 ] > 5000
4500
10000 4000 .

3500

T T T
N
)
K

T T T
Q
N

®

%

T

Q Q

o) O
S I

S

(g) Average Daily
Food Demand

(h) Perceived Climate Change Risk

2800

27004

2600

2500 1

Legend @

Data === EMB defaultrun === GDP-driven default run

Figure 3. Comparison of simulated single-run EMB produced by our modelling framework (black solid line) against GDP-driven behaviour
produced by changes in income (blue dashed line) and observed data points (in red).

Relying on single model runs, as above, misrepresents the
model’s precision because it does not account for the deep
uncertainty in the calibration process. To represent this cal-
ibration uncertainty, the second step in the protocol reduces
the prior sampling range of parameters to a likely range. The
algorithm determines a likely range for each parameter in-
dependently by: (i) finding the maximum value and mini-
mum value before the likelihood drops below 1/1000th of
the maximum likelihood found via calibration and (ii) sym-
metrizing the range using the minimum distance between a
discovered endpoint and the calibrated value without break-
ing the prior range. The likelihood is the probability that the
model, with a given set of parameters, reproduces histori-
cal data. The estimated uncertainty ranges for each parame-
ter are reported in Appendix A. The algorithm was not able
to determine a likely range for ATy (additional time hori-
zon of reference SLR flooding) since it has no historical im-
pact. However, since it impacts future projections, we exter-
nally loaded a range with a variance of £15 % from the cal-
ibrated value. This relatively narrow range represents only a
gradual desensitization to SLR flooding, which is projected
to have significant cascading societal and economic impacts
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(Akerlof et al., 2017; Ramme et al., 2025). As for the GDP-
driven model, the parameters were not reduced using the al-
gorithm due to the associated computational costs — except
for the time constant, ATgqgp, which is used elsewhere in the
EMB. Instead, we used local sensitivity analyses to select
sufficiently wide ranges that represented the maximum pos-
sible variance while still accurately capturing historical data.

Thereafter, we performed multivariate sensitivity analysis
using Sobol Sequences sampling (Sobol’ and Levitan, 1999)
across all uncertain parameters in FRIDA, including those
in other modules, for EMB and GDP-driven models sepa-
rately (see Rajah, 2025 for the full list of varied parameters
along with the ranges). This produced two sets of 100 000-
run ensembles, with the median plotted alongside the 67 %
and 95 % confidence intervals. Sample runs that do not com-
plete due to overflow and divide errors are excluded from
the ensemble, and all remaining ensemble runs are equally
weighted. Given the small sample size relative to the number
of parameters varied, likelihood weighting was not applied to
the ensemble runs since doing so would have resulted in too
few runs being included in the uncertainty range. Therefore,
the ensembles include runs with low statistical likelihood and

Geosci. Model Dev., 18, 5997-6022, 2025
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results in a larger uncertainty range than if we were to weight
the runs by likelihood with a sufficiently large sample size.

5 Simulation results and discussion

Figure 4 presents the baseline results of the key in-
dicators for dietary behaviour, comparing the perfor-
mance of our endogenous modelling framework (i.e.,
EMB) to the GDP-driven model. In general, we ob-
serve that future projections for GDP-driven food de-
mand are higher than our EMB. GDP-driven animal prod-
ucts demand (Fig. 4d) increases at a diminishing rate to
3980Pcalyr_l by 2150, 95% CI[2352,6593]. Whereas
the median vegetal products demand (Fig. 4e) peaks at
10986 [8828, 13683] Pcal yr—! around 2120 before gradu-
ally declining to 10864 [8059, 14319] in 2150. The slow-
ing growth and even decline in demand, however, is largely
attributed to the decline in the global population towards
the end of the simulation (Fig. 4f) due to reduced fertility
from increased literacy and income, and increased mortal-
ity from climate damages. Accounting for population and
unit conversion, we arrive at developments in the vari-
ous average daily food demands (Fig. 4a and b) that in-
crease throughout the simulation duration to high figures,
especially at the global scale: total food demand reaches
4230[3387,5526]kcalp~' d~! in year 2150 with animal
products constituting about 27[22,31] % of food demand.
These results are unsurprising since demand is unbounded,
allowing it to increase so long as real income increases.

On the other hand, our endogenous modelling frame-
work captures people’s dynamic response to changes in their
social-ecological environment, which results in consider-
ably lower future estimates across all food-related indica-
tors. The median average daily food demand (Fig. 4c) peaks
around 2070 at 3175 [2990, 3373] kcal p_l d~!, then declines
to 3083 [2669,3727] by 2150. In contrast, the average daily
animal products demand (Fig. 4a) peaks earlier in 2060
at 697[624,781]kcalp~!d~!, drops to 507 [413,777] by
around 2140, and gradually increases to 510[417,856]
by 2150. This translates to a share of about 22[21,23] %
in 2060, 16[15,21]% around 2140, and 17[16,23]%
by 2150. This trend indicates that more people, on aver-
age, are likely to reduce their overall intake and shift their
diet composition, substituting animal products with vege-
tal products. Daily vegetal products demand (Fig. 4b), how-
ever, is dependent on the dynamics of the other two: the
median peaks at around 2140, when animal products de-
mand is at its minimum, at 2560 [2250, 2924] kcalp_1 d-1,
or 83 [83, 80] % share, and stabilizes thereafter, given that the
more pronounced decline in animal products demand drives a
substitution that outpaces the overall decline in food demand.

However, considering the confidence bounds, dietary be-
havioural change is uncertain. For instance, we observe sam-
ple runs in the lower bound that result in more marked re-
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ductions in total food demand, allowing vegetal products de-
mand to peak earlier and decline more considerably — i.e.,
reduction exceeds diet substitution. As for the upper bound,
more concerning dynamics are observed: both daily food
demand and animal products demand decline for a period
before increasing once again towards the end of the sim-
ulation. In fact, a slight increase in daily animal products
demand has already been observed in the median. Conse-
quently, there is a declining share of vegetal products de-
mand at the 97.5th percentile despite higher quantities being
demanded: between 2120 and 2150, the quantity demanded
increases from 2779 to 2941 kcalp’1 d~1, but the share de-
clines from 83 % to 78 %. In other words, the increased over-
all caloric food intake toward the end of the simulation is
accompanied by a faster rate of increase in animal products
demand compared to vegetal products. These results suggests
that there are plausible scenarios where sustainable dietary
behavioural change reverses.

To account for such complex dietary behavioural changes,
Fig. 5 presents the simulation results of the key explana-
tory variables for endogenous behavioural responses mod-
elled within our framework. Average daily animal products
demand and total food demand are driven by the relative
importance of perceived accessibility, descriptive norm, and
personal norms, as depicted in Fig. 5a and b respectively.
The perceived accessibility of food products exerts an up-
ward pressure on dietary behaviour. The perceived food ac-
cessibility increases steadily over time (Fig. 5b) mostly from
a sustained increase in real income; although in the lower
bound of the 95 % CI, real income and thus accessibility de-
clines sometime after 2120 from climate-driven inflation in
the Economy module. As for animal products, income and
relative scarcity determine the accessible share of animal
products in diets. Consequently, a declining desired caloric
intake (i.e., total food demand) could lead to a reduced ani-
mal products demand despite increased desired animal prod-
ucts shares (depending on the relative rate of change). The
perceived accessible animal products demand therefore starts
slowing down around 2070 (Fig. 5a), as total food demand
declines, but increases again as animal products are relatively
less scarce than vegetal products as well as the behavioural
change reversal in the 95 % CI of total food.

For the first half of the simulation, people are most re-
sponsive to this perceived accessibility of food products from
changing socioeconomic conditions, giving it relatively more
weight in their behavioural intentions as shown in Fig. 5d. As
income levels in developing regions catch up, more people
can increase their food consumption not only to meet nu-
tritional needs but also to signal changes in socioeconomic
class. This is reinforced by the descriptive norm process that
exerts a conformity pressure to increase consumption. Hence,
we observe increased per capita demand during this period of
nutrition transition in many parts of the world —i.e., increased
caloric intake and higher composition of animal products in
diets (Schmidhuber and Shetty, 2005). During this period,
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Figure 4. Comparison of simulation results for EMB (in black) and GDP-driven (in blue) 100 000-member ensembles across key dietary

performance indicators in the human system, with confidence intervals.

the perceived climate change risk (PCCR; Fig. 5¢) and per-
ceived consumption risk (PCR; Fig. 5f) exert a downward
pressure on personal norms and therefore behavioural inten-
tions. While these balancing feedback loops dampen the rate
of growth of in demand, they are weaker than the more domi-
nant reinforcing socio-cultural process that assigns more per-
ceived social value (PSV) to the food product (Fig. Se) as it
is consumed more.

At this juncture, it is important to reiterate that PCCR,
PCR and PSV are not independent factors; rather they in-
teract multiplicatively to shape personal norms and, by ex-
tension, dietary intentions. While the feedback effects are
interdependent, the calibrated weights offer insight into
the relative influence of each feedback process. For total
food demand, the median sensitivity to PSV is estimated
at 0.936, while sensitivities to PCR and PCCR are —0.798
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and —0.138, respectively. In the case of animal products
demand, the corresponding median estimates are 0.974 for
PSV, —0.724 for PCR, and —0.407 for PCCR. These figures
highlight the dominant role of perceived social value in shap-
ing demand, while also illustrating the moderating effects of
perceived consumption risk and climate change risk. On av-
erage, individuals are least responsive to PCCR, with this ef-
fect being more pronounced for total food demand than for
animal products demand. This pattern reflects real-world dy-
namics, as climate change is more strongly associated with
meat consumption; that is, people are likely to reduce their
animal products demand more than their overall caloric in-
take.

As income increases beyond a threshold, socioeconomic
considerations wane and people become less bounded by
perceived accessibility, as described in Sect. 3. Therefore,
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Figure 5. Simulation results from the 100 000-member EMB ensemble for key explanatory variables in the Behavioural Change module,

with 67 % and 95 % confidence intervals.

in the latter half of the simulation, more people act upon
their moral and social motivations, giving more weight to
their personal norms and descriptive norm. In extreme con-
ditions, where GDP declines in the 95 % CI from inflation,
we observe that more weight is given to accessibility once
again as shown in Fig. 5d. Nevertheless, during this period
the balancing feedback from perceived risks from climate
change and overconsumption, particularly for animal prod-
ucts, is strengthened as conditions get progressively worse.
In turn, these loops can effectively counteract the reinforc-
ing processes related to descriptive norm and social value
perception, turning them from a vicious cycle to a virtu-
ous one from a mitigation perspective. The descriptive norm
process is adaptable, adjusting the current desired demand
upwards or downwards depending on the directionality of
changing social trends. Similarly, a sustained reduction in
consumption would reinforce lower assigned social value to
the consumption practice — albeit gradually, given the stick-
iness of culture. The net effect is the second nutrition tran-
sition (Vranken et al., 2014), where more people substitute
their animal products consumption and reduce their caloric
intake in response to heightened perceived threats as well as
changing social-cultural processes.
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Importantly, this second nutrition transition may not be
an enduring phenomenon since the balancing feedback pro-
cesses weaken over time. First, the perceived consumption
risk corrects itself as shown in Fig. 5f. The threat of overcon-
sumption alleviates as people reduce their consumption, par-
ticularly for animal products. Second, the desensitization and
gradual psychophysical adaptation in climate risk percep-
tion, as shown in Fig. 5g—i, create reinforcing processes that
actively work against the balancing effect of PCCR. These
processes push the reference conditions for what are consid-
ered “normal” in the evaluation process. Hence, we observe
PCCR (Fig. 5¢) reaches a maximum before gradually declin-
ing over time — especially due the quick adaptation in cli-
mate information and slowing frequency of extreme events
frequency. Therefore, towards the end of the simulation, the
net effect is a shift in dominance back to the reinforcing loops
that are part of descriptive and personal norms. As threat per-
ceptions wane, people are more sensitive to these processes
that not only make rising consumption relatively more com-
mon, but also more valued. In turn, we observe the reversal
in dietary behavioural change within the uncertainty range.

Downstream dietary behaviour at the per capita level prop-
agates upstream to determine total demand, which is also af-
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indicators in the climate system with confidence intervals.

fected by population changes. In general, a declining popu-
lation could result in a decline in total demand despite in-
dividual behavioural changes. The total vegetal products de-
mand (Fig. 4e) therefore declines in the latter half of the sim-
ulation even though per capita demand increases. However,
the reversal in diet shifts offsets the decline in population
for both animal products and vegetal products demand, lead-
ing to increasing total demand within the upper bound of the
EMB 95 % CI (see Fig. 4d and e). Animal products produc-
tion (Fig. 4g) responds to changes in demand and therefore
follows a similar development. Animal production then af-
fects the climate system through CH4 and N>O emissions
as well as land use changes for grazing. Crop production,
however, is not solely determined by vegetal products de-
mand; it also responds to other crop uses including bioenergy
and, importantly, animal feed to support intensified animal
products production. As a result, crop production (Fig. 4h)
does not decline despite decreasing vegetal products demand.
Crop production affects the climate system through land use
changes for cropland as well as N,O emissions from fertil-
izer use. Even with reversals in behavioural change within
the uncertainty range, we observe that baseline projections
for total demand and production are still lower in the EMB
compared to GDP-driven behaviour.

As mentioned, production dynamics have consequences
for climate projections, as depicted in Fig. 6. CHs and
N>O emissions are directly influenced by animal products
production and crop production; while land use transitions
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for food production affect CO, emissions (Friedlingstein
et al., 2025). After 2060, greenhouse gases emission rates
from Land Use and Agriculture (Fig. 6a—c) are projected
to be considerably lower in the EMB. In turn, we project a
slightly cooler climate baseline in the future, as shown in
Fig. 6d: EMB median STA of 3.16[2.07,4.83] °C in 2100
and 3.56[2.14,6.17] °C in 2150, compared to the projected
3.21[2.11,4.90] °C in 2100 and 3.67[2.22,6.31] °C in 2150
from the GDP-driven model. Similarly, we observe a slightly
lower EMB median SLR of 0.65[0.41,1.05]m in 2100 and
1.13[0.67,2.03] m in 2150, compared to the GDP-driven
0.66[0.41,1.06] m in 2100 and 1.16[0.68,2.07] m in 2150
(Fig. 6e). There is considerable overlap in the confidence
bounds for STA and SLR, as dietary behaviour only con-
tributes a fraction of total emissions. Other high-impact be-
haviours influencing energy demand are still modelled as
functions of GDP in FRIDA v2.1 (for more details, see
Schoenberg et al., 2025b). Including endogenous behavioural
change for these other sources of human behaviour could re-
sult in more significant differences in STA and SLR projec-
tions between the EMB and GDP-driven simulations.

6 Conclusions

In this paper, we have documented the conceptualization and
quantification of our endogenous behavioural change mod-
elling framework. This framework models dietary behaviour,
specifically daily average food demand and consump-
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tion, as a function of complex social-economic-cultural-
environmental feedback processes related to perceived acces-
sibility, descriptive norms, and personal norms, constrained
by accessibility and past behaviour. In doing so, we close one
human-climate feedback loop that captures the dynamic hu-
man behavioural response to changing climatic conditions,
addressing a current gap in most state-of-the-art IAMs.

To evaluate the performance of our endogenous modelling
approach, we compared the results of our baseline EMB
against the baseline produced by the more common GDP-
driven approach. Our findings indicate that while both ap-
proaches can acceptably reproduce historical data, our ap-
proach results in considerably lower future projections across
key human-climate system indicators. As explained in the
previous section, our endogenous framework captures how
individuals adapt to their changing social-ecological envi-
ronments such as improved socioeconomic conditions, shift-
ing norms, and changing risk perceptions. In response, peo-
ple may alter their dietary behaviours favourably from a cli-
mate mitigation perspective — even in the absence of tar-
geted policies for facilitating pro-environmental behavioural
change. We consequently observe relatively cooler future
baseline climate projections by endogenizing human be-
haviour. In contrast to our endogenous behavioural change
framework, GDP-driven models assume that human con-
sumption increases proportionally with income, largely ig-
noring the complex feedback dynamics internal to the human
system. Since most IAMs project rising real GDP over the
simulation horizon, models using the GDP-driven approach
may result in systematically inflated demand projections that
do not account for behavioural changes. Such inflated pro-
jections feed into the climate system and result in relatively
warmer climate futures and potentially overstating mitiga-
tion challenges. By demonstrating how complex behavioural
feedback can dampen future demand trajectories, our results
lend further support to calls for incorporating endogenous be-
havioural responses into climate modelling and IAMs (e.g.,
Beckage et al., 2020, 2022).

Recognizing this potential overestimation problem, oth-
ers have tweaked the GDP-driven model for more realistic
projections. For instance, Bijl et al. (2017, p. 48) state that
“Since real income can increase dramatically over long time
periods, decreasing income elasticities are an essential part
of our long-term food demand model.” Not only do they de-
crease the elasticities, but they also set a maximum intake
of 3500 kcal p~! d~!. While this formulation can reproduce
the inverted-u relationship between income and demand, it
does not provide a process-based explanation for this phe-
nomenon. Our framework explains this as part of the socioe-
conomic process, where certain food products become com-
modified and lose their symbolic significance as they become
more affordable. In turn, other sources of behavioural mo-
tivations become more salient determinants in dietary deci-
sions, allowing demand to be effectively moderated without
including arbitrary bounds.
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Using an uncertainty approach, our simulation results ac-
count for a range of plausible behaviours within the 95 %
confidence bounds. This allows for probabilistic scenario
analyses that cannot be achieved with the externally imposed
socioeconomic narratives used in the Shared Socioeconomic
Pathways (SSP) framework. Several process-based IAMs
(e.g., IMAGE, GCAM, MESSAGE-GLOBIOM, REMIND-
MAGgEPIE) use the SSPs to parameterize future scenarios in
model runs. While SSPs provide a useful framework for
consistency across climate models, such scenarios are non-
probabilistic and treat human behaviour as exogenous and
static, limiting the ability to capture human-climate feedback
dynamics (Beckage et al., 2022). Moreover, while IAMs
used for economic optimization (e.g., DICE, MIND, Re-
MIND) can be run probabilistically, these models do not
model human behaviour in a process-based manner. Rather,
behavioural outcomes are the result of optimization (typi-
cally for cost minimization or utility maximization), which
reflect the best possible outcomes achievable under the as-
sumption of full behavioural control. Consequently, these
models do not generate probabilistic scenarios for human be-
havioural choices or the associated climate outcomes. In con-
trast, our fully coupled endogenous modelling approach al-
lows us to explore a range of simulated probabilistic futures
within a process-based IAM framework without relying on
external scenarios nor optimization.

Beckage et al. (2022) contend that the increased input un-
certainty space from endogenizing human behaviour may not
necessarily increase output uncertainty since behavioural re-
sponses create balancing feedback. While we do not disagree
with this premise, our results suggest that this is only the
case if the balancing loops dominate the model behaviour.
Compared to the GDP-driven model, our endogenous frame-
work results in tighter confidence bounds since we account
for important balancing loops. However, we also observe an
expanding uncertainty space (e.g., see animal products de-
mand) towards the end of the simulation due to the shift in
dominance from balancing to reinforcing processes, as ex-
plained in Sect. 5. This highlights the need for sufficient
dynamic complexity in any representation of behavioural
processes to fully account for output uncertainty. Neverthe-
less, we agree that endogenizing human behaviour provides
a tighter constraint on the input uncertainty space (and pos-
sibly the output space) compared to exogenous imposed be-
havioural scenarios that typically cover a much wider input
space (Beckage et al., 2022).

Our uncertainty analysis further shows that while climate-
friendly behavioural change may occur in the future, this
shift may not endure. While the second nutrition transition
(cf. Vranken et al., 2014) occurs as more people become re-
sponsive to the downward pressures from personal and so-
cial norms, embedded reinforcing social-cultural processes
may facilitate a third unfavourable transition from the sys-
tem’s resistance. As emphasized, the strength of balancing
feedback loops weakens over time: reducing consumption al-
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leviates the risk of overconsumption, while desensitization
or adaptation reduces the perceived climate risk. In turn,
social-cultural processes could work to reinforce increasing
consumption trends once again. Such reversals in behaviour
change have not been reported in existing models, likely due
to their lower dynamic complexity. Beckage et al. (2018) rep-
resent the behavioural response as a single major balancing
loop driven by frequency of extreme events. Apart from ex-
ogenous variations in associated parameters, an increasing
frequency over the simulation horizon would always create
a strong downward pressure since people do not adapt to
worse conditions. In Eker et al. (2019), the endogenous be-
havioural processes only act on the fractional rate of meat-
eaters shifting to vegetarianism, while the fractional rate of
vegetarians becoming meat-eaters is dependent only on in-
come. Further, changes in the average composition of each
dietary type are externally imposed under different scenar-
ios. These structures restrict the model’s ability to capture
more complex behavioural shifts. In contrast, the increased
dynamic complexity in our framework creates more nonlin-
earities and allows for a wider range of plausible behaviours,
including runs where climate-friendly behavioural change re-
verses over time.

Our modelling framework is not without limitations. It is
primarily designed to be embedded in FRIDA and thus is
bounded by FRIDA’s level of aggregation and specificity, es-
pecially at the supply-side. For instance, modelling prices for
aggregate food (vegetal and animal) products was deemed
impractical at the global scale, thereby necessitating a sim-
plification to scarcity. Modelling relative price/scarcity was
also challenging without disaggregation of appropriate meat-
alternatives as well as the vegetal-products-demand satis-
ficing assumption. Consequently, we used the overall crop
supply-demand balance (including feed, biofuel etc.) in-
stead of only vegetal food products balance to approximate
scarcity of meat-alternatives. This ensures that we account
for newer sources of crop demand, including novel plant-
based meat-alternatives, that compete with traditional crop
farming (Newton and Blaustein-Rejto, 2021). Such simplifi-
cations for relative prices can be addressed in more disaggre-
gated models.

Similarly, FRIDA does not explicitly model the concept
of food waste as a separate process. As a result, waste is
included in both food production and demand figures. This
simplification reflects the current lack of consistent time-
series data on actual household demand and consumption,
which limits the ability to calibrate the model to waste-
adjusted consumption levels. Consequently, there is a dis-
crepancy between the consumption rate (which includes
waste) and target healthy reference level (which excludes
waste). This reference level is not scaled with a waste mul-
tiplier to avoid embedding waste as a normative compo-
nent of a healthy diet. This modelling choice ensures that
the benchmark remains waste-free and motivates the reduc-
tion of demand, whether through lower actual consumption
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or reduced waste. Future work could address this limitation
by explicitly modelling food waste as a distinct, endoge-
nously evolving quantity. That is, the behavioural feedback
processes would influence both actual consumption and food
waste separately, enabling a more nuanced representation of
dietary behaviours.

We have modelled the aggregate per capita demand, while
noting variation in behaviours among individuals (across
and within regions) around the average values. Heteroge-
nous socio-demographic factors and value orientations are,
instead, implicitly captured in the calibrated estimates of
weights and sensitivities given to endogenous factors or pro-
cesses. Further work is underway for policy analysis, includ-
ing varying these parameters to simulate scenarios with shift-
ing values and social identities over time. Future work could
also complement this framework by modelling endogenous
value shifts to influence such parameters. For instance, the
recent development in modelling lifestyle shifts (Pettifor et
al., 2023, 2024) could be a potential avenue. While psychol-
ogists warn that pro-environmental behavioural propensities
should not be used to infer behaviours that occur in in a dy-
namic context (Lange and Dewitte, 2019), lifestyle shifts can
be used to approximate shifts in values and social identities
at the population-level. In turn, these dynamics could en-
dogenously influence relevant sensitivity parameters in our
context-specific behavioural model.

Our endogenous behavioural change modelling can be fur-
ther adapted and applied to energy-related high-impact be-
haviours such as heating/cooling energy demand and trans-
portation energy demand in future versions of FRIDA. The
various energy demands in the present version are modelled
primarily as functions of GDP per capita. This has conse-
quences for future projections more broadly, and the simu-
lation results presented here. For instance, climate impacts
in terms of STA and SLR could be overestimated due to po-
tentially inflated energy demand projections. If we were to
fully endogenize energy demand, the lower simulated cli-
mate baseline would also influence behavioural responses in
dietary behaviour. Therefore, expanding the scope of the Be-
havioural Change module in FRIDA is necessary to more ro-
bustly assess climate impacts and demand-side mitigation.

Future research could also explore the applicability of our
framework to other models beyond FRIDA. For models op-
erating at the national or regional spatial resolutions, the
structures presented in our endogenous behavioural model
could be easily adapted and calibrated using appropriate
time-series data. In such cases, particular attention should
be given to the demand-supply dynamics that shape con-
sumer behaviour. Specifically, localized supply needs to en-
compass both domestic production and imports. For mod-
els that disaggregate food products (e.g., by crop and ani-
mal type), more extensive adaptation would be required. Be-
yond arraying the structures for each food category, addi-
tional components must be introduced to capture the matrix
of within- and across-type relative scarcity/accessibility and

Geosci. Model Dev., 18, 5997-6022, 2025
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diet substitution (e.g., beef to poultry vs. beef to soy). Despite
such structural modifications, we anticipate that the core be-
havioural feedback processes described in this paper would
remain applicable, offering a foundation for modelling di-
etary behaviours across diverse food system contexts.

Ultimately, by endogenizing behavioural feedbacks within
a dynamic modelling framework, we provide a pathway for
more robust and responsive representations of behavioural
change and human-climate interactions, addressing a critical
gap in IAMs and advancing the potential for demand-side
assessments.

Geosci. Model Dev., 18, 5997-6022, 2025
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Appendix A: Uncertain parameters
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Table A1l. Documentation of uncertain parameters with estimated values and ranges. Values rounded to nearest integer for reference values;

three significant figures for others.

Parameter Name in source code Unit Value Min Max  Notes

Land Use and Agriculture Module

D (0) direct_food_demand_per_person_per_day_1980 kcalp™ Ig-1 2481 2400 2560  Externally loaded

ﬂgdp] elasticity_of_food_demand_to_GDP_per_person dmnl 0.257 0.15 0.35  Externally loaded

D> (0) animal_product_demand_per_person_1980 Pcal Mp™ 1 yr— 1 0.148 0.138 0.158  Externally loaded

Bgdp, elasticity_of_animal_product_demand_to_GDP_ per_person  dmnl 0.494 0.4 0.6  Externally loaded

Angp time_to_change_crop_demand_components yr 6.71 5 8.42

Total Food Demand Module

DADD(0) average_daily_demand_per_capita_in_1980 kcal p_1 d-! 2466 2463 2470

ATcp time_to_adjust_consumption_pattern yr 1 1 1 Lower bound*

Bs sensitivity_of_demand_to_scarcity dmnl 0.512 0.023 1

Bi elasticity_of_demand_to_GDP dmnl 0.254 0.249 0.260

AT, time_to_adjust_desired_demand_from_accessibility yr 1.23 1 1.46

GDP, et reference_ GDP_per_person_for_socioeconomic_effect USD p_l yr_1 50000 45000 55000 FAO (2023a) data
growth_rate_of_socioeconomic_effect dmnl 4.65 2.68 6.62

v range_of_socioeconomic_effect dmnl 1 0.793 1.21

ATydc time_to_perceive_average_consumption yr 1.11 1 1.23

ATSTref time_horizon_for_short_term_perception yr 2.37 1 3.74

AT Tref time_horizon_for_long_term_perception yr 55.5 33.7 77.4

ATpsy time_to_adjust_value_perception yr 4.25 3 5.50

Uade sensitivity_of_social_value_perception dmnl 1.22 1.11 1.32

ATper time_to_observe_consequences yr 7.43 5.66 9.21

Bpsv sensitivity_of_personal_norm_to_social_value dmnl 0.936 0.872 1

Bpcr sensitivity_of_personal_norm_to_consumption_risk dmnl —0.798 —0.94 —0.65

ﬂpccr sensitivity_of_personal_norm_to_climate_risk dmnl —0.134 —-0.144 —-0.124

Animal Products Demand Module

DADD(0) average_daily_demand_per_capita_in_1980 kcalp_1 d-! 376 375 378

ATcp time_to_adjust_consumption_pattern yr 4.44 4.27 4.60

Bs sensitivity_of_demand_to_relative_scarcity dmnl 0.451 0.334 0.568

Bi elasticity_of_demand_to_GDP dmnl 0.349 0.340 0.358

AT, time_to_adjust_desired_demand_from_accessibility yr 1.03 1 1.05

90 ap(0) initial_share_of_demand_from_consumption_domain dmnl 0.179 0.178 0.179

GDP et reference_ GDP_per_person_for_socioeconomic_effect USD p_l yr_1 40000 35000 45000 FAO (2023b) data

k growth_rate_of_socioeconomic_effect dmnl 4.87 4.28 5.47

v range_of_socioeconomic_effect dmnl 1 0.963 1.04

ATydc time_to_perceive_average_consumption yr 2.86 1.87 3.84

ATSTref time_horizon_for_short_term_perception yr 5.53 1 10.1

AT Tref time_horizon_for_long_term_perception yr 55.5 44.7 66.2

ATpsy time_to_adjust_value_perception yr 4.39 3.37 5.40

Uade sensitivity_of_social_value_perception dmnl 1.42 1.35 1.48

ATper time_to_observe_consequences yr 25.0 21.1 29.0

Bpsv sensitivity_of_personal_norm_to_social_value dmnl 0.974 0.948 1

Bper sensitivity_of_personal_norm_to_consumption_risk dmnl —-0.724 —-0.749 —-0.699

ﬂpccr sensitivity_of_personal_norm_to_climate_risk dmnl —-0.407 —-0.425 —-0.389

Climate Risk Perception Module

ATpwe time_to_perceive_climate_extremes_exposure yr 4.96 3.80 6.13

ATrpwe additional_time_horizon_of_reference_ climate_extremes yr 51.3 26.3 76.3

ATpse time_to_perceive_SLR_flooding_exposure yr 3.59 1 6.17

PSEninref ~ minimum_reference_for_SLR_flooding_exposure Mp™ 1 yr 1 10 7.63 12.4

ATrpse additional_time_horizon_of_reference_SLR_flooding yr 48 41 55  Externally loaded

Bexp sensitivity_to_climatic_events_exposure dmnl 0.430 0.410 0.450

ATgta time_to_report_and_perceive_climate_information yr 6.84 4.82 8.85

ATygta additional_time_horizon_of_reference_sta yr 10.1 10 10.2

Beog sensitivity_to_climate_information dmnl 0.429 0.393 0.465

* The time constant was constrained to its lower bound of 1 year during calibration to match the model’s annual time unit and avoid numerical instability from sub-annual dynamics.

https://doi.org/10.5194/gmd-18-5997-2025

Geosci. Model Dev., 18, 5997-6022, 2025



6018

Code and data availability. The output data presented in this paper
as well as the codes used for reproducing the figures can be re-
trieved from the FRIDA Behavioral Change Module repository on
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