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Abstract. Ocean biogeochemical models are essential for
advancing our understanding of oceanographic processes.
Here, we present the Offline Fennel model, a biogeochemi-
cal model that relies on previously computed physical fields,
within the Regional Ocean Modeling System (ROMS). We
evaluated the model performance against a fully coupled
physical-biogeochemical online application in the northern
Gulf of Mexico, a region with intense biogeochemical ac-
tivity, including rather frequent hypoxia events. By leverag-
ing physical hydrodynamic outputs, we ran the Offline Fen-
nel model using various time-step multiples from the cou-
pled configuration, significantly enhancing computational ef-
ficiency and reducing simulation computational time by up
to 87 %. The accuracy of the offline model was assessed
using three different mixing schemes: the generic length
scale (GLS), Large—-McWilliams—Doney (LMD), and Mel-
lor and Yamada 2.5 (MY25). The offline model achieved an
average skill score of 93 %, with minimal impact on perfor-
mance from the time-step choice. While the GLS configura-
tion yielded the highest accuracy, all three mixing schemes
performed well. Although some discrepancies appeared be-
tween offline and coupled simulation outputs, these were
smaller than those observed when using different mixing
schemes within the same model configuration. A significant

challenge identified was the simulation of ammonium (NHy),
which exhibited the largest discrepancies due to its rapid-
turnover timescale compared to other tracers. The promising
results achieved so far validate the Offline Fennel model’s
capability and efficiency, thus offering a powerful tool for re-
searchers aiming to conduct extensive biogeochemical simu-
lations without rerunning the hydrodynamic component, thus
significantly reducing computational demands.

1 Introduction

Ocean biogeochemical models are essential tools for advanc-
ing our understanding of oceanographic processes, their im-
pacts on marine ecosystems, and their contributions to cli-
mate change projections affecting ecosystem functionality
(Aumont et al., 2015; Ramirez-Romero et al., 2020; Fen-
nel et al., 2022). Over recent decades, these models have
proven effective in tracking changes in phytoplankton dy-
namics and nutrient distributions, offering mechanistic in-
sights into ecosystem variability and resilience (Rocha et al.,
2019). Additionally, their outputs have had significant impli-
cations for fisheries and marine policy, therefore aiding in the
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development of sustainable management practices (Tedesco
et al., 2016; Piroddi et al., 2017).

Despite their proven utility, long-term or high-resolution
simulations are often limited by the need for substantial com-
putational resources for coupled configurations, where hy-
drodynamic and biogeochemical processes are run simulta-
neously. Offline modeling decouples biogeochemical trac-
ers from the hydrodynamic simulation, thus offering a rather
practical alternative (Kim and Khangaonkar, 2012; Larsen
et al.,, 2017). In this approach, outputs from the hydrody-
namic model are used as forcing inputs for subsequent bio-
geochemical simulations, enabling larger computational time
steps (DTs) and, therefore, improving efficiency (Thyng et
al., 2021). This methodology leverages the slower temporal
scales of biogeochemical processes relative to physical dy-
namics while maintaining simulation quality (Larsen et al.,
2017).

An additional challenge in biogeochemical modeling lies
in the time-intensive task of fine-tuning biological param-
eters (Mattern et al., 2017; Pasquier et al., 2023). The of-
fline methodology facilitates more simulations and tests than
would typically be possible with fully coupled simulations,
as the hydrodynamic component does not need to be rerun
each time. This capability is particularly valuable for ad-
dressing challenges posed by climate change, allowing for
more extensive and exploratory simulations for changing en-
vironmental conditions.

Previous studies have explored offline modeling in the Re-
gional Ocean Modeling System (ROMS) framework (Grof3e
et al., 2019, 2020), demonstrating its potential for regional
and ecosystem-specific applications. In this study, we present
the development, implementation, and evaluation of an of-
fline biogeochemical model — hereinafter referred to as Of-
fline Fennel (Fennel et al., 2006, 2008) — within ROMS
(Shchepetkin and McWilliams, 2005; Warner et al., 2010).

Building upon the ROMS passive tracer offline code from
Thyng et al. (2021), we adapted the model to support biogeo-
chemical processes, incorporating new tracers and param-
eters critical to ecosystem modeling based on the original
Fennel model (Fennel et al., 2006, 2008, 2013; Laurent et
al., 2012; Yu et al., 2015a, b) (see Appendix A).

The Offline Fennel model was implemented in the north-
ern Gulf of Mexico (NGoM), a region known for intense bio-
geochemical activity and frequent hypoxia events (Rabalais
et al., 2002). The NGoM area has been extensively studied
using coupled hydrodynamic—biogeochemical implementa-
tions (Fennel et al., 2011, 2013; Laurent et al., 2012, 2017,
2018; Laurent and Fennel, 2014; Yu et al., 2015a, b; Fennel
and Laurent, 2018; Grofe et al., 2019). Model performance
was evaluated by comparing Offline Fennel outputs against
fully coupled simulations, with a focus on assessing the im-
pact of different mixing schemes and time-step (DT) config-
urations on accuracy and computational efficiency.

This work presents an efficient and accurate tool for bio-
geochemical modeling, offering enhanced computational ef-
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ficiency while maintaining simulation fidelity. It provides a
valuable resource for conducting extensive simulations and
advancing our understanding of complex marine processes.

2 Experimental setup
2.1 Model overview

ROMS is a hydrostatic, free-surface, terrain-following ocean
model that utilizes well-established physical and numerical
algorithms (Shchepetkin, 2003). It has been widely applied
to simulate various regions of the world ocean (e.g., https:
/lwww.myroms.org/index.php?page=papers, last access: De-
cember 2024). In particular, ROMS coupled configurations
have been extensively implemented in the NGoM (Fennel et
al., 2011, 2013; Laurent et al., 2012, 2017, 2018; Laurent and
Fennel, 2014; Yu et al., 2015a, b; Fennel and Laurent, 2018;
Grofle et al., 2019).

In our study we employed a coupled physical-
biogeochemical configuration of ROMS (version 904)
integrated into the Coupled Ocean—Atmosphere—Wave—
Sediment Transport (COAWST) framework (Shchepetkin
and McWilliams, 2005; Warner et al., 2010), alongside an
offline model implemented within the same version (Thyng
etal, 2021). Initially designed for passive tracer applications,
the offline model was integrated into ROMS version 904 by
Thyng et al. (2021). However, modifications were necessary
to adapt it for compatibility with the Fennel biogeochemi-
cal model, subsequently enabling accurate representations of
biogeochemical processes (Appendix A).

A key modification qualified the model to automatically
read and process active tracers, namely temperature and
salinity, which constitute a crucial feature for biogeochem-
ical simulations. Additionally, improvements were made to
fix the handling of climatology files for the bottom-depth
layer to ensure more accurate simulations. In the previous
model version, a time shift occurred when processing clima-
tology fields, leading to a bias that propagated from the bot-
tom toward the surface, affecting tracer concentrations. The
offline model was modified to prevent the simulation from
accessing subsequent time step values for sea surface height
and 3D momentum climatologies, thereby eliminating this
unintended artifact. Further changes included the incorpora-
tion of biological tracers, such as phosphate (POy), river car-
bon detritus, and river nitrogen detritus. The dissolved oxy-
gen (O;) computation method based on Wanninkhof (2014)
was also integrated (see Appendix A).

The version of the biogeochemical model used in this
study builds on the ROMS biogeochemical component de-
veloped by Fennel et al. (2006, 2008) and later expanded to
account for phosphate (Laurent et al., 2012), oxygen (Fennel
et al., 2013), and non-sinking river detritus (Yu et al., 2015b).
The current Fennel biogeochemical model includes 15 state
variables: chlorophyll (CHL), phytoplankton, zooplankton,
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nitrate (NO3), ammonium (NHy), POy, O,, dissolved inor-
ganic carbon (DIC), total alkalinity (TA), and three pools of
detrital organic matter (small, large, and river-derived, each
split into nitrogen and carbon pools). For further details on
the biogeochemical model and parameter values, see Laurent
et al. (2017).

2.2 Online model setup

The online (or coupled) hydrodynamic—biogeochemical
model was configured for the NGoM (28-30.5°N, 94.5-
88°W) and included 20 terrain-following vertical layers
(Fig. 1). The horizontal resolution varied from approximately
20 km in the southwestern corner to 1 km close to the Missis-
sippi River delta. The simulation was run for 1 year (Novem-
ber 2017 to November 2018) with a baroclinic time step of
60 s and a barotropic time step of 15s.

Atmospheric forcing included surface heat and freshwater
flux climatologies (da Silva et al., 1994a, b), together with
3 h winds from the National Centers for Environmental Pre-
diction (NCEP) North American Regional Reanalysis data
collection (Mesinger et al., 2006). The US Army Corps of
Engineers at Tarbert Landing and Simmesport estimates for
freshwater transports were used to prescribe daily freshwa-
ter fluxes from the Mississippi and Atchafalaya rivers, re-
spectively. Additional information about the hydrodynamic
model’s setup and validation can be found in Hetland and Di-
Marco (2008, 2012), Marta-Almeida et al. (2013), and Fen-
nel et al. (2016).

To evaluate the offline model performance, online simu-
lations were conducted using three different vertical mix-
ing schemes from ROMS: (i) the Large-McWilliams—
Doney (LMD) mixing scheme, also known as the K-profile
parameterization (Large et al., 1994); (ii) the Mellor and
Yamada 2.5 (MY25) scheme (Mellor and Yamada, 1982),
which features the “Level 2.5” closure with modifications by
Galperin et al. (1988), as detailed in Allen et al. (1995); and
(iii) the generic length scale (GLS) mixing scheme, devel-
oped by Umlauf and Burchard (2003), which is a versatile
two-equation turbulence closure scheme that can be adjusted
to replicate several traditional schemes, including MY25.
The GLS scheme was integrated into ROMS by Warner et
al. (2005). The GLS scheme in our simulations corresponds
to the k—& configuration (Warner et al., 2005), defined by
the exponent values “GLS_P”=3.0, “GLS_M”=1.5, and
“GLS_N”=-1.0.

Harmonic horizontal mixing of velocities and tracers
was applied along geopotential surfaces, together with the
“TS_MPDATA” advection scheme to minimize numerical
diffusion (Thyng et al., 2021). Grid-dependent diffusivity
and viscosity were also enabled via “DIFF_GRID” and
“VISC_GRID”. All configuration files, including exact pa-
rameters for each simulation, are available for full repro-
ducibility in a Zenodo repository (Crespin, 2025b).
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2.3 Biogeochemical configuration

For the biogeochemical implementation, we used the same
configuration for both online and offline simulations to en-
sure comparability. The state variables incorporated all Fen-
nel model tracers except those involved in carbon pools (e.g.,
total alkalinity).

The initial and boundary conditions for NO3, POy4, and O,
were derived from the National Oceanographic Data Cen-
ter (NODC) World Ocean Atlas, while all other variables
were assigned initial low positive values.

Nutrient sources for rivers were activated using monthly
estimates of nutrient fluxes from the US Geological Survey,
which provided the basis for river nutrient and organic matter
loads (Aulenbach et al., 2007).

2.4 Offline experiments

The offline simulations employed the same domain, vertical
layers, and horizontal resolutions as the online simulations,
ensuring consistency between all configurations. The key dif-
ference lies in the physical forcing: while online simulations
compute hydrodynamics and biogeochemical processes si-
multaneously, the offline model derives all physical forcing
conditions from the online outputs.

The physical surface forcing conditions for the offline bio-
geochemical model included solar shortwave radiation flux,
surface net heat flux, surface u-momentum stress, and sur-
face v-momentum stress, which were derived from the corre-
sponding online simulation outputs. The climatology forcing
incorporated variables such as free surface elevation (zeta), a
vertically integrated u-momentum component (ubar), a verti-
cally integrated v-momentum component (vbar), u# velocity,
v velocity, omega, temperature, and salinity, also retrieved
from the historical files of the online simulation outputs. Ap-
pendix B provides detailed guidance on configuring Offline
Fennel simulations.

Following the recommendation of Thyng et al. (2021), a 3-
hourly hydrodynamic input frequency was selected to run the
offline simulation for both the physical and the climatology
forcing files. In their Gulf of Mexico simulations, they esti-
mated an advection timescale of approximately 5.6 h, based
on a characteristic velocity of 0.5ms™! and length scale of
~ 10km. Our choice of a 3h interval thus falls well below
this threshold, providing at least one output every ~ 0.5 ad-
vection timescales (Thyng et al., 2021). This frequency is
therefore adequate to resolve key physical changes and en-
sure accurate offline interpolation of biogeochemical tracers.

A series of online (coupled) and offline (uncoupled) simu-
lations were conducted using three different vertical mixing
schemes: LMD, MY25, and GLS (see Sect. 2.2). All simula-
tions were stored as instantaneous snapshots (saved in “.his”
files from ROMS) and as time-averaged data (“.avg” files
from ROMS). The output frequency for both instantaneous
and averaged files was 3 h.

Geosci. Model Dev., 18, 5891-5912, 2025
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Figure 1. Model domain in the northern Gulf of Mexico. The color scale represents the model’s bathymetry (in meters) using a blue color
gradient. Red dots indicate the locations selected for vertical profile analyses (from left to right: Point 1, Point 2, and Point 3). The selection
criteria for these three points are presented in Sect. 2.4 of the main text. The Mississippi and Atchafalaya rivers, which are also incorporated

into the model, are shown in blue.

For the GLS and MY25 simulations, the offline model was
forced by additional vertical mixing parameters — namely
vertical salinity diffusion (AKs), a temperature vertical dif-
fusion coefficient (AKt), and a vertical viscosity coeffi-
cient (AKv) — all of which influence sub-grid-scale vertical
mixing. These fields are obtained from the online parent run
via the “AKXCLIMATOLOGY” CPP flag, which ingests the
3h climatologies of AKs, AKt, and AKv. In addition, the
“MIXCLIMATOLOGY” flag was used to import the generic
length scale (GLS) and turbulent kinetic energy (TKE) coef-
ficients from the online simulation.

In contrast, LMD simulations omit these climatology
flags, so the offline model recomputes its own AKs, AKt, and
AKYv internally by using the same turbulence-closure param-
eters defined in the online configuration. This ensures that
vertical diffusivity remains active under all schemes while
enabling a direct test of sensitivity to externally prescribed
versus internally computed mixing fields. This treatment also
mirrors the approach of Thyng et al. (2021) for the GLS and
MY?25 cases; for full implementation details of these flags,
refer to Thyng et al. (2021).

Offline simulations were run with varying multiples of the
online DT (x1, x3, x5, x10, and x15) to improve compu-
tational efficiency, until the results became unstable. Given
that the baroclinic DT of the online simulation was 60s,
these corresponded to offline baroclinic DTs of 60, 180, 300,
600, and 900s. A DT 15 times longer than the online time
step led to unstable writing of solutions. As such, while this
case was initially tested, it was excluded from analysis fig-
ures and tables to avoid misleading interpretations.

All skill assessments in this study compare the outputs of
the offline simulation to those of the online (coupled) simu-
lation that provided the physical forcing for the offline run.

Geosci. Model Dev., 18, 5891-5912, 2025

As such, the study reflects the uncoupled simulation’s accu-
racy with respect to the coupled simulation. Therefore, this is
an assessment on the offline model’s ability to reproduce the
coupled simulation results instead of an assessment on how
well the NGoM biogeochemistry is simulated by the models.

To assess the vertical accuracy in the offline simulation re-
sults, we selected three representative points in the NGoM
based on their distinct environmental and geographic char-
acteristics. The first point, located in the western part of
the study area and far from the coast (28.50°N, 93.00° W;
Point 1), was chosen to represent offshore conditions with
minimal direct riverine influence. The second point, near
the mouth of the Atchafalaya River (28.96°N, 90.10° W;
Point 2), captures the influence of a significant freshwater
and nutrient source, providing insights into river—plume dy-
namics. The third point is located further east, off the Missis-
sippi River mouth (28.86° N, 89.10° W; Point 3), and was se-
lected to represent a highly dynamic coastal environment in-
fluenced by one of the world’s largest river systems (Fig. 1).
These three points collectively offer a comprehensive view
of physical and biogeochemical gradients in the region, cap-
turing offshore, plume-affected, and coastal conditions.

All the time series presented in the Results section have
been upscaled to daily data to enhance the visibility of
changes and variability. This adjustment allows for a clearer
observation of trends and fluctuations over time.

Considering that we are comparing 3D time-varying
model results for multiple variables, the potential number of
plots grows rapidly, thus exceeding what could be reasonably
presented in a single paper. Therefore, we focus here on three
principal nutrients (NO3, NH4, PO4), CHL, and O3 to assess
the model performance, even though all variables described
in Sect. 2.3 were used in the model implementation.

https://doi.org/10.5194/gmd-18-5891-2025
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2.5 SKkill metrics

We evaluate the Offline Fennel model using two complemen-
tary, volume-weighted diagnostics: a skill score (SS) and the
root mean square error (RMSE). Both metrics account for
the true physical volume (V; ;) of each grid cell, thereby
avoiding biases due to varying horizontal areas or layer thick-
nesses.

Each cell volume (V;_; x) is computed as the product of the
horizontal ROMS grid spacings (Ax;, Ay;) and the vertical
thickness (Az; j x), which is calculated from the difference
in model layer depths (z,,) at each horizontal location (i, j).

SSs are a widely used metric for evaluating model perfor-
mances (Bogden et al., 1996; Hetland, 2006). To assess the
performance of our Offline Fennel model, we applied the fol-
lowing equation (Eq. 1), adapted from Thyng et al. (2021):

3 Vi jk X (C(t) — Cref(t))?
i, 7.k
SS=1- |2& , (1
Z Vi,j,k X Cref(t)2

i,j.k

where C(¢) and Cf(¢) are the concentrations of a tracer
at time ¢ in the compared and reference simulations, re-
spectively — typically representing offline (uncoupled) and
online (coupled) configurations. The sums are performed
over all spatial and vertical dimensions, and results are
volume-weighted. This yields a time series of SS values that
tracks the temporal evolution of model performance. A time-
mean SS can be computed by averaging over the simulation
period, providing a single, scalar measure of overall model
accuracy.

To complement the SS analysis, RMSE was equally em-
ployed as a metric to assess the accuracy of offline simu-
lations compared to online results (Eq. 2). RMSE provides
insight into the magnitude of errors by measuring the square
root of the average squared differences between offline and
online simulation results.

Z Vi,j,k x (C — Cref)2

i,j,k
> Vijk
ik

RMSE =

@

Here C and Cir are the time-averaged concentrations of a
tracer on the 3D grid for the offline and online simulations,
respectively. Because each grid cell’s contribution is propor-
tional to its volume, this RMSE reflects the true 3D error
structure.

Together, these volume-weighted SS and RMSE metrics
provide a robust evaluation of model performance, captur-
ing both relative and absolute discrepancies while avoiding
biases caused by unequal grid cell sizes.

https://doi.org/10.5194/gmd-18-5891-2025

3 Results

This section presents the evaluation of the Offline Fennel
model against fully coupled online configurations. The first
subsection provides an assessment of the model’s accuracy
using SS and RMSE, highlighting the agreement between
simulation outputs. Then, key biogeochemical outputs are
examined, including nutrients, CHL, and O, levels, to ex-
plore spatial and temporal variations between the simulation
methods. Finally, the computational efficiency of the offline
approach is analyzed, demonstrating its potential for reduc-
ing simulation runtime without compromising the quality of
the results.

In this study, we define the “surface layer” as the upper-
most layer of the model’s 20 vertical layers (see Sect. 2.2),
crucial for atmosphere—ocean interactions, primary produc-
tion, and gas exchange. The “bottom layer”, in direct contact
with the sea floor, is key for assessing the model’s response to
bathymetry. Since these layers are most susceptible to error
propagation, their evaluation is essential for validating model
performance.

3.1 Model performance evaluation

Here we evaluate the accuracy of offline simulations using
the three mixing schemes (GLS, LMD, and MY25) outlined
in Sect. 2.2, together with variable offline DTs, which are
multiples of the online DTs (x 1, x3, x5, and x 10). It should
be noted that the model configuration is identical in all cases,
with the mixing scheme varying in both the online and the
offline simulations, and the DT varying only in the offline
simulations.

To assess model performance, we first present a Taylor
diagram (Fig. 2) (Taylor, 2001) that illustrates the volume-
weighted and normalized statistics averaged across all bio-
geochemical variables. This diagram highlights strong agree-
ment between the offline simulations and the online parent
model. The offline configurations show higher standard devi-
ation values compared to the coupled reference (0.26 across
all vertical mixing schemes), exhibiting relative standard de-
viations slightly exceeding 1.

GLS and LMD demonstrate remarkably similar per-
formance, characterized by standard deviations ranging
from 1.107 to 1.123, low centered root mean square er-
ror (RMSE) values around 0.25, and high correlation coef-
ficients (r > 0.98). The MY25 scheme shows slightly higher
RMSE values (up to 0.29) and marginally lower correlation
coefficients, but these differences are minimal and do not
significantly detract from its overall performance. Further-
more, differences between DTs are negligible across all cases
(Fig. 2).

Table 1 summarizes the mean SSs computed using Eq. (1)
for key biogeochemical tracers. Across all mixing schemes,
the simulations demonstrate high accuracy, with minimal dif-
ferences between configurations. GLS slightly outperforms

Geosci. Model Dev., 18, 5891-5912, 2025
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Standard Deviation

Standard Deviation

Figure 2. Taylor diagram illustrating the comparison of standard de-
viations, centered root mean square differences (RMSDs), and cor-
relation coefficients across various offline experiments relative to
online reference data. Each point represents the performance met-
rics of different models: GLS metrics are indicated by the purple
circles, LMD by the cyan triangles, and MY25 by the red stars,
plotted across different timescales (DTs: x1, x3, x5, and x10).
The thick black semi-circle denotes the reference (Ref.) standard
deviation from the online experiments.

the others in some tracers, with scores above 95 % for NO3,
POy, and O3 and a mean SS of 92.92 % across all tracers.
CHL scores hover around 91 %, highlighting the scheme’s
ability to capture primary production dynamics effectively.
However, NH4 exhibits lower SSs, ranging from 83.21 % to
83.53 %.

The LMD scheme similarly produces robust results, par-
ticularly for O, PO4, and NO3 with SSs of 98.68 %,
96.00 %, and 95.44 %, respectively. Its mean SS is slightly
lower (92.79 %), reflecting solid tracer performance overall,
although NHy4 again shows the weakest accuracy, with SSs
between 82.53 % and 82.94 %.

Results for the MY25 scheme align closely with those
of GLS and LMD, yielding SSs of 96.12 % for NO3 and
96.86 % for PO4. The mean SS for MY25 is 92.86 %, under-
scoring its comparable performance. While NH4 again ex-
hibits lower SSs, the values still represent good model per-
formance, as they remain above 80 %. This suggests that al-
though NHy is more challenging compared to other tracers,
the model still provides a reliable approximation of its con-
centrations.

Overall, the analysis reveals that all three mixing
schemes (GLS, MY25, and LMD) yield comparable and ro-
bust results for key biogeochemical tracers, with GLS per-

Geosci. Model Dev., 18, 5891-5912, 2025

Table 1. Time-averaged skill scores (SSs) for key biogeochemi-
cal (BGC) tracers across different mixing schemes: generic length
scale (GLS), Large-McWilliams—Doney (LMD), and Mellor and
Yamada 2.5 (MY25). The SSs are expressed as percentages [%]
and reflect the model’s performance in simulating the following
BGC tracers: nitrate (NO3), ammonium (NHy), phosphate (POy),
chlorophyll (CHL), and oxygen (O3). The last row for each mixing
scheme displays the mean SSs for that scheme, providing an overall
assessment of model performance across all tracers. The columns
labeled x 1, x3, x5, and x 10 correspond to the time steps (DTs)
used in the offline simulations compared to the online simulations.

Mixing BGC x1 %3 x5 x 10

scheme tracer [%] [%] [%] [%]
(o)) 98.70 98.72 98.72 98.69
POy 96.08 96.10 96.11 96.08
GLS NO;3 95.62 95.65 95.67 95.67
CHL 90.88 90.99 90.94 90.37
NHy4 83.21 83.33 8342 83.53
Mean 9290 9296 9297 92.87
(0 98.68 98.69 98.68 98.62
POy 96.00 96.01 9599 9594
LMD NO3 9544 9545 9544 95.37
CHL 9123 9136 9127 90.49
NHy4 82.53 8273 82.85 8294
Mean 92.78 92.85 9285 92.67
(0)) 98.71 98.72 98.71 98.66
POy 96.20 96.21 96.21 96.16
MY?25 NOj3 95.50 9551 9551 9547

CHL 9139 9149 9139 90.57
NHy 8243 82.64 8278 82.92
Mean 9285 9292 9292 9276

forming slightly better in some metrics, followed closely by
MY25 and LMD.

Finally, variations in the offline DTs had minimal impact
on the model’s accuracy. This suggests that the choice of DT,
at least within the tested range, does not significantly influ-
ence simulation results, underscoring the robustness of the
Offline Fennel model.

The x5 DT configuration consistently yields the highest
accuracy across all mixing schemes, as illustrated in Fig. 3,
which shows the SS evolution over time for key biogeo-
chemical tracers. As expected, NO3, POy, and O, maintain
the highest accuracy throughout the entire simulation period,
with SSs ranging from 90 % to 99 %.

In contrast, NH4 and CHL exhibit lower accuracy com-
pared to other tracers. Notably, NH4 accuracy declines from
90 % in early spring to 70 % during the warmer months be-
tween April and October, with the LMD scheme showing the
sharpest drop, reaching as low as 61 % in September. Simi-
larly, CHL accuracy dips from 95 % to approximately 85 %
during April and May.

https://doi.org/10.5194/gmd-18-5891-2025
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Figure 3. Time series of volume-weighted skill scores (SSs) [%] for key biogeochemical tracers during the x5 time-step simulation. The
score is computed between offline and online runs using three mixing schemes: generic length scale (GLS), Mellor—Yamada 2.5 (MY25), and
Large-McWilliams—Doney (LMD). Panels display (a) dissolved oxygen (O,), (b) phosphate (POy), (c) nitrate (NO3), (d) chlorophyll (CHL),
and (e) ammonium (NHy). The green, blue, and coral lines represent the GLS, LMD, and MY25 simulations, respectively.

For NHy, the GLS scheme tends to perform slightly bet-
ter, with higher SS values across most DT configurations
(Figs. S1-S3 in the Supplement). For other tracers, differ-
ences among the schemes are minimal, and no consistent
ranking is evident.

To better illustrate spatial differences, we calculated the
RMSE across depth for key biogeochemical variables (Eq. 2)

https://doi.org/10.5194/gmd-18-5891-2025

in the NGoM, considering all three mixing schemes for the
offline x5 DT simulation to ensure consistency with other
figures (Fig. 4).

In relation to typical tracer concentrations in the study
area, O, systematically shows the lowest errors across the
domain, with only small and localized increases near the
coast. Similarly, CHL errors are generally low but increase

Geosci. Model Dev., 18, 5891-5912, 2025
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Figure 4. Mean root mean square error (RMSE) across depth (volume weighted) for key biogeochemical variables: dissolved oxygen (O5),
phosphate (POg4), nitrate (NO3), chlorophyll (CHL), and ammonium (NHy). The error is calculated between offline (x5 time-step) and
online simulations using different mixing schemes: (a) generic length scale (GLS), (b) Large-McWilliams—Doney (LMD), and (c¢) Mellor—
Yamada 2.5 (MY25). The color scales on the right indicate the magnitude of the error.

near coastal regions, particularly close to the Atchafalaya and
Mississippi river mouths (see Fig. 1). NO3z and PO, display
slightly higher errors near the coast and offshore, with some
current-related discrepancies to the south of the domain.

Finally, NHy4 presents the highest error levels when con-
sidering typical concentrations in the region, which range
from 0 to Smmolm~2 at the surface and can reach up to
20mmol m~3 at depth. Among the mixing schemes, GLS
shows somewhat lower errors for NHy, especially near the
coast (Fig. 4a), but overall, all three schemes display sim-
ilar behavior, particularly in offshore regions where errors
approach zero.

Crossing all the time series from each of the simulations
and applying the SS calculation to each pair allow us to gen-
erate the heatmap shown in Fig. 5. The figure illustrates that
simulations using the same mixing scheme exhibit the high-
est similarity, with SSs ranging between 95 % and 100 %. In
contrast, comparisons across different mixing schemes show
decreased SSs, dropping to 92 % in some cases between GLS
and MY25 simulations. Notably, comparisons between GLS
and MY25 and LMD and MY25 show only minor differ-
ences.

These results indicate that the choice of mixing scheme
has a more substantial impact on simulation accuracy than
the offline biogeochemical model configuration itself and its
chosen DT.

3.2 Comparison of biogeochemical outputs from offline
and online simulations

Here we present the performance of selected offline simu-
lations vs. online simulations. Given that multiple simula-
tions were conducted, we highlight key results that effec-
tively demonstrate the offline model performance across dif-
ferent mixing schemes. For consistency, all plots were gen-
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erated using 3-hourly “avg” output files from ROMS, which
were then daily averaged. When showcasing a single offline
configuration, we selected the GLS mixing scheme with a
x5 DT, which was arbitrarily chosen mainly to ensure uni-
formity across the analysis. The focus is, therefore, on as-
sessing the ability of the offline model to reproduce the on-
line model simulation results.

The main plots presented here focus on the surface layer,
which is the most dynamically variable region due to expo-
sure to the physical model forcing (e.g., shortwave solar ra-
diation, net heat flux, # and v momentum). This variability
increases the likelihood of discrepancies between the online
and offline simulations. Secondarily, the complementary fig-
ures analyze the bottom layer, which can also exhibit bias
due to its interaction with the bathymetry. Additionally, we
examine vertical profiles to ensure that the entire water col-
umn is accurately represented.

Figure 6a—d illustrate the time series of key biogeochem-
ical variables (O,, PO4, NO3, CHL, and NH,) for both the
online simulations and the offline simulations at the surface
layer with a DT x 5. The results show near-perfect alignment
between both simulations, with equal or nearly equal time
evolution and trends in most cases. Differences appear only
for NHy4, which is overestimated during the April-October
period, especially with the LMD scheme (Fig. 6b). Minor
differences are also observed in CHL concentrations during
the same period (Fig. 6d).

A similar behavior is observed when analyzing the time
series for the bottom layer (Fig. S4), with a very well re-
produced temporal evolution of key variables and practically
negligible differences. However, NH4 discrepancies become
more pronounced (Fig. S4b).

Figure 7 presents the averaged spatial differences in sur-
face layer concentrations. Discrepancies are generally small

https://doi.org/10.5194/gmd-18-5891-2025
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Figure 5. Heatmap illustrating volume-weighted skill scores (SSs) [%] for all simulation pairs across different mixing schemes and time
steps (DTs). The color scale ranges from blue (indicating lower SSs) to red (indicating higher SSs), with warmer colors representing SSs
closer to 100 %, reflecting greater similarity between simulations. Each label in the heatmap indicates the simulation type, mixing scheme,
and DT. For example, “ON GLS” refers to online simulations using the generic length scale (GLS) mixing scheme, while “OFF GLS x5”
corresponds to offline simulations using the GLS mixing scheme with a x5 DT. This labeling convention is consistently applied across all
mixing schemes, GLS, Large-McWilliams—Doney (LMD), and Mellor—Yamada 2.5 (MY25), and DTs (x 1, x3, x5, and x10), facilitating
easy comparison of model performance across different configurations. The heatmap highlights consistently higher SSs within simulations
that utilize the same mixing scheme, regardless of whether they are online or offline.

across all three schemes, with GLS showing slightly smaller
differences in some regions (Fig. 7a). Near-coastal areas
show an underestimation of O, PO4, and NOj, whereas
CHL and NH4 are overestimated in the coastal regions,
with accurate representation in the southern region. POg4
shows negligible overestimation (maximum difference of
+0.04 mmol m~3) in the southernmost region of the domain.

https://doi.org/10.5194/gmd-18-5891-2025

Despite these spatial differences, the error magnitudes re-
main within acceptable limits and align with typical concen-
trations of the key biogeochemical tracers in the NGoM (Fen-
nel et al., 2011; Fennel and Laurent, 2018).

When examining time-averaged vertical profiles of key
biogeochemical variables at various points within the domain

Geosci. Model Dev., 18, 5891-5912, 2025
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Figure 6. Area-averaged time series of biogeochemical variables at the surface layer for x5 time-step online and offline simulations using
different mixing schemes. Panels show (a) dissolved oxygen (Oj), (b) phosphate (POy), (¢) nitrate (NO3), (d) chlorophyll (CHL), and
(e) ammonium (NHy). Light and dark green, light and dark blue, and light and dark red represent online and offline simulations that used the
generic length scale (GLS), Mellor—Yamada 2.5 (MY25), and Large-McWilliams—Doney (LMD) mixing schemes, respectively.

(Fig. 1), differences between offline simulations with varying
DTs are either minimal or negligible (Fig. 8a—c).

For O,, the offline model demonstrates consistent accu-
racy across all three profiles at Points 1, 2, and 3, indicating
reliable performance throughout the full domain (Fig. 8a—c).
Regarding PO4 and NO3, the offline model also shows a very

Geosci. Model Dev., 18, 5891-5912, 2025

good match with online outputs, with only a slight underes-
timation at Point 1 (offshore) (Fig. 8a).

In terms of CHL, the offline model perfectly matches the
online model output at Points 2 and 3 (near the mouth of the
Atchafalaya and the Mississippi rivers, respectively) (Fig. 8b
and c). However, a slight overestimation is found within the
first 15m at Point 1 (offshore), where CHL concentrations

https://doi.org/10.5194/gmd-18-5891-2025
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Figure 7. Time-averaged spatial differences in concentrations of dissolved oxygen (O;), PO4 (phosphate), NO3 (nitrate), CHL (chlorophyll),
and NH4 (ammonium) at the surface layer between offline (x5 time-step) and online simulations using different mixing schemes. Rows
show biogeochemical tracers for (a) generic length scale (GLS) mixing, (b) Large-McWilliams—Doney (LMD) mixing, and (¢) Mellor—
Yamada 2.5 (MY25) mixing. The “cool-warm” color scales on the right illustrate the differences.
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Figure 9. Seasonal maps of chlorophyll (CHL) concentrations for generic length scale (GLS) mixing simulations using the x5 time step (DT).
Panel (a) displays the difference in concentrations between offline (x5 DT) and online simulations, as indicated by the cool-warm color
scale on the right. Panel (b) shows chlorophyll concentrations for the online simulation, while (¢) presents concentrations for the offline
simulation (x5 DT). Panels (b) and (c) share the same color scale from the cmocean package (“algae”) (Thyng et al., 2016). Seasonal des-
ignations are as follows: DJF (December—January—February, winter), MAM (March—April-May, spring), JJA (June—July—August, summer),

and SON (September—October—November, fall).

are low, so a small bias is expected. This becomes more pro-
nounced as the DT increases (Fig. 8a).

For NHy, it reproduces its vertical behavior almost per-
fectly at Point 3 (Fig. 8c), while overestimations are observed
at Points 1 and 2 (Fig. 8a and b, located off 1). This over-
estimation is more pronounced near the Atchafalaya River,
which is expected due to rivers exhibiting greater variability.
However, despite these overestimations, the overall vertical
patterns remain accurate.

Following the examination of biogeochemical tracers, we
now turn our attention to surface spatial differences in CHL
concentrations. This focus is particularly relevant, as it serves
as a critical indicator of primary productivity, which depends
on nutrient concentrations such as NO3, NHy, and POy.

Seasonal CHL concentration maps derived from the GLS
mixing simulations illustrate the differences across seasons.
Both the online GLS simulation and the corresponding of-
fline GLS simulation with a x5 DT exhibit virtually no
discernible differences, displaying identical seasonal spa-
tial patterns (Fig. 9a—c). The maximum overestimation is
4mgm~! during the summer (June—July—August; JJA) and
spring (March—April-May; MAM) seasons (Fig. 9a). These
are primarily concentrated near the mouths of rivers that flow
into the NGoM, indicating the influence of riverine inputs on
CHL concentrations.

Looking at the other mixing schemes in terms of seasonal
variations, the winter (December—January—February; DIJF)

Geosci. Model Dev., 18, 5891-5912, 2025

and fall (September—October—November; SON) seasons ex-
hibit minimal variation, but the three mixing schemes pro-
duce largely similar patterns (Fig. S5). While LMD appears
to show slightly more variability in fall, these differences are
modest (Fig. S5).

In spring, all three schemes show overestimated CHL con-
centrations, with values reaching up to 2mgm™ near the
coast. This overestimation peaks during summer, with dif-
ferences approaching 5mgm~>. Among the schemes, GLS
tends to yield slightly lower deviations in some locations, al-
though all schemes remain within a comparable range.

Differences in CHL concentrations in the bottom layer are
also observed, which correspond to rather small over- and
underestimations (Fig. S6). A consistent overestimation ap-
pears in the Atchafalaya Bay region and in the northeastern
part of the domain across all four seasons, with biases reach-
ing up to 1 mgm™3. The northwestern region of the domain
displays a combination of underestimations, particularly dur-
ing spring and fall, with differences of up to 0.5 mgm~3, and
slight overestimations in summer.

The offline model also shows strong overall performance
across all schemes when examining seasonal CHL differ-
ences in vertical profiles (Fig. 10). No scheme in particu-
lar outperforms the others. For instance, the GLS scheme
exhibits a slight overestimation during the fall at Point 1
(Fig. 10a) and in winter at Point 2 (Fig. 10b). Mean-
while, MY25 and LMD demonstrate comparable deviations

https://doi.org/10.5194/gmd-18-5891-2025



J. Crespin et al.: Offline Fennel: a high-performance and computationally efficient model within ROMS

5903

a
( ) DJF MAM
04 on. GLs 1 -
—— Off. GLS
--- On.LMD
109 __ o tvp 1
- --- On.MY25
. E o0 — offt mvas |
Point1 <
Q.
[7)
a
1.0 1.5 2.0 1 2
E /
Point2 ¢
Q.
[7)
: ¥ |
1l 1
2 4 6 5 10 0 10 20 0 5 10 15
(c)
01 /__’__———",.-— 7 — b = - T e -
o] - i I
... E -100 - 1 i
Point3 = | ‘
s ‘ |
& -150 4| 1 1 ;
\ ‘
-200 4 | 1| _ |
_250 1 i T T A ; T T T A T T 1 T T T T
0 2 4 0 5 10 15 0 10 20 0 5 10 15
CHL (mg m 3) CHL (mg m~3) CHL (mg m™3) CHL (mg m™3)

Figure 10. Seasonally averaged chlorophyll (CHL) concentration profiles for offline (x5 time step, solid line, Off.) and online simulations
(dashed line, On.) across different mixing schemes. Panels display data for (a) Point 1, located offshore in the western part of the study area;
(b) Point 2, situated near the mouth of the Atchafalaya River; and (c) Point 3, located near the mouth of the Mississippi River. Refer to Fig. 1
for specific point locations. The green, blue, and red lines represent the generic length scale (GLS), Large-McWilliams—Doney (LMD),
and Mellor—Yamada 2.5 (MY25) mixing schemes, respectively. Seasonal designations are as follows: DJF (December—January—February,
winter), MAM (March—April-May, spring), JJA (June—July—August, summer), and SON (September—October—-November, fall).

throughout the year (Fig. 10). Overall, the results indicate
that all schemes effectively reproduce vertical CHL patterns,
with only minor and spatially variable differences.

3.3 Computational efficiency analysis

Assessing the computational efficiency of the offline model
and the impact of DT increases on the results of the simu-
lation for each mixing scheme is of the utmost importance.
Variations in computational time across simulations using
the same cluster and node configuration are illustrated in

https://doi.org/10.5194/gmd-18-5891-2025

Fig. 11. The coupled online simulations, which integrate hy-
drodynamic and biogeochemical components, ranged from
4h 36 min for the LMD scheme to 5h 52 min for the MY25
scheme (Table S1 in the Supplement). Once the offline model
was implemented using the same DT as the online configu-
ration, simulation time decreased by 39 % for MY25, 33 %
for GLS, and 25 % for LMD. Further time reductions were
achieved by increasing the DT: x3 reduced the simulation
time by 65 % on average, x5 by 75 %, and x 10 by 87 %.
Figure 12 presents time series of the biogeochemical trac-
ers in the surface layer, comparing results from simulations

Geosci. Model Dev., 18, 5891-5912, 2025
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Figure 11. Computing time (hh:mm) for online and offline simulations across each configuration, considering the three mixing schemes.
The color coding corresponds to the mixing schemes: green for the generic length scale (GLS), blue for Large-McWilliams—Doney (LMD),
and red for Mellor—Yamada 2.5 (MY25). The label “ONLINE” refers to the coupled simulation, while the labels “OFF (x1)”, “OFF (x3)”,
“OFF (x5)”, and “OFF (x10)” indicate the respective offline simulations with the time step multiples used.

using different DTs in the GLS mixing scheme configura-
tion. During the first 5 months of the simulations, the offline—
online differences exhibit higher variability, likely due to the
model’s spin-up period (shaded in blue). In this period, all
DT simulations (x 1, x3, x5, and x 10) produce nearly iden-
tical results across variables, particularly for O, and CHL.

Then, two distinct transitions can be identified: the first,
in pink shading, occurs around the middle of the fifth month
(April), and the second occurs around the ninth month (Au-
gust). At the first transition, the bias variability stabilizes and
becomes more consistent over time, marking the apparent
end of the spin-up period. The second transition, in green
shading, is characterized by reduced differences for NO3,
NH4, PO4, and O, alongside a noticeable increase in the
difference for CHL (Fig. 12).

A peculiar artifact appears within the yellow-shaded re-
gion of the plot, where errors in PO4 unexpectedly diverge at
DT x 10 before converging with O; values. This divergence
may represent a computational issue or the model’s response
to external forcing.

Regarding the effect of varying DT values, there is no
consistent correlation between increasing DT and higher er-
ror magnitude. Instead, the extent of the differences appears
to be variable dependent and influenced by the simulation
phase. After the spin-up period, differences between simula-
tions propagate differently across tracers, especially for nu-
trients such as PO4 and NOs.

In the bottom layer (Fig. S7), a similar pattern emerges.
However, in this case, the offline—online differences consis-
tently increase with larger DT values. Despite these varia-
tions, the magnitude of differences in both surface and bot-
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tom layers remains within acceptable error margins for all
variables.

We note that the four periods highlighted in Figs. 12
and S7 represent one possible interpretation of the observed
temporal variability, based on apparent shifts in similarity
across cases. These divisions may reflect transient behav-
iors such as spin-up dynamics or offline initialization effects;
however, they could also be shaped by seasonal variability in
the external forcings. Further investigation would be required
to disentangle these factors.

Evaluating the effect of different DT values on vertical
profiles of key biogeochemical tracers reveals that discrep-
ancies between the results are minimal across all variables,
with varying patterns across different profiles (Fig. 13). At
Point 3, discrepancies between the results are almost negli-
gible across all variables, indicating that there are basically
no differences between the DTs. This suggests a high level
of consistency in the model outputs at this location. This is
of particular relevance since it is located near the Mississippi
River mouth (Fig. 1).

At Point 1, differences are slight and primarily localized in
the upper meters of the water column. For all tracers the vari-
ations are minor, indicating that the choice of DT has a neg-
ligible impact on the results at this point. In contrast, Point 2
exhibits more dynamic behavior, with noticeable discrepan-
cies both near the surface and at the bottom layers. Here, the
impacts of the DT vary depending on the variable being ex-
amined.

Overall, despite localized variations, the findings from
Sect. 3.2 highlight that the computational efficiency gains
from using larger DTs come at practically no cost to model
accuracy. The differences between results for different DTs
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Figure 12. Differences in simulation results at the surface layer across time steps (DTs) used in simulations with the generic length
scale (GLS) mixing scheme. Panels show the following variables: (a) dissolved oxygen (O3), (b) phosphate (POy), (c) nitrate (NO3),
(d) chlorophyll (CHL), and (e¢) ammonium (NHy). The blue, orange, green, and red lines represent offline simulations with DT multi-
ples of x1, x3, x5, and x10, respectively. The blue-shaded area indicates the spin-up period where all simulations show high variability
but converge to similar values. The pink-shaded region marks the stabilization phase, with variables showing reduced variability and the
emergence of differences between DT simulations. The yellow-shaded region highlights a potential computational artifact or response to
forcing, characterized by divergence in PO4 and convergence in O;. The green-shaded region suggests seasonal dynamics, with a distinct

change in behavior for the simulated variables.

are minimal, reinforcing the robustness and reliability of the
simulations across all examined variables.

4 Discussion and conclusions

In this study, we introduce and evaluate the Offline Fennel
model, developed as an alternative to fully coupled physical—

https://doi.org/10.5194/gmd-18-5891-2025

biogeochemical models. This model was tested in the NGoM
against online (coupled) simulations using multiple mixing
schemes — GLS, LMD, and MY25 — to assess its performance
in simulating key biogeochemical tracers such as NO3, NHy,
PO4, CHL, and O,. The goal of this comparison is to de-
termine whether the offline biogeochemical model can ac-
curately replicate the results of coupled simulations within
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Figure 13. Time-averaged vertical differences between offline and online simulations for the generic length scale (GLS) configuration, based
on the time steps (DTs) used. Panels display data for (a) Point 1, located offshore in the western part of the study area; (b) Point 2, near the
mouth of the Atchafalaya River; and (c¢) Point 3, near the mouth of the Mississippi River. Refer to Fig. 1 for specific point locations. The
blue, orange, green, and red lines represent offline simulations with DT multiples of x1, x3, x5, and x 10, respectively, as shown in the

legend in the upper-right plot.

ROMS while offering substantial computational efficiency
gains.

Our comparison reveals that the Offline Fennel model de-
livers high accuracy in reproducing the key biogeochemical
tracers, with an average SS of 93 % across all simulations.
This demonstrates the model’s strong ability to match the
online coupled configuration, particularly in terms of time
series, spatial patterns, and vertical profiles. While the Of-
fline Fennel model closely replicates the performance of the
coupled system for most variables, some slight discrepan-
cies were observed, particularly for NHs. These discrepan-
cies, while small, were located near coastal and river mouth
regions (Atchafalaya and Mississippi rivers), areas that are
inherently more challenging to model due to complex river-
induced nutrient dynamics and mixing in shallow waters
(Laurent et al., 2017). In addition, NHy is a short-lived tracer
(Klawonn et al., 2019) that undergoes rapid transformations
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such as nitrification (oxidation of NH4 to NO3), and organic
matter reaching the sediment is instantaneously remineral-
ized, accounting for the loss of fixed nitrogen through den-
itrification (Fennel et al., 2013). This fast turnover makes
NHy particularly sensitive to the temporal resolution of of-
fline forcing fields, especially in coastal and riverine regions
characterized by strong biogeochemical gradients (Yu et al.,
2015a; Laurent et al., 2017). However, this is not necessarily
a limitation of the offline model but rather reflects the inher-
ent difficulty in simulating highly dynamic environments and
rapidly cycling tracers. In contrast, other tracers such as NO3
and CHL, while also involved in dynamic processes (Fennel
and Laurent, 2018), generally exhibit smoother spatiotempo-
ral variability and are less sensitive to short-term fluctuations.

The inclusion of near-coastal points closer to river mouths,
such as Points 2 and 3 (Fig. 1), was intentional, as these lo-
cations represent areas with significant challenges for model
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validation. The fact that the Offline Fennel model performs
well even in these difficult regions further emphasizes the ro-
bustness of the model for more general applications.

Despite these minor discrepancies, the model demon-
strates strong performance, with O, showing particularly
robust results, which is particularly notable given its im-
portance in the NGoM ecosystem (Rabalais et al., 2002)
and globally. This suggests that the Offline Fennel model is
highly capable of reproducing both the spatial distribution
and the temporal evolution of biogeochemical tracers with
minimal error.

The computational efficiency of the Offline Fennel model
is one of its most significant advantages. By increasing the
time step by a factor of 10, we were able to reduce computa-
tional time from an average of 5h and 15 min to just 30 min,
which represents an 87 % reduction in computational time.
This drastic improvement is crucial for long-term simula-
tions and large-scale applications, where running fully cou-
pled models would be computationally limiting. The reduced
computational time also opens the door for scenarios where
multiple model runs are needed, such as sensitivity analyses,
parameter tuning, or data assimilation approaches (Fennel et
al., 2022), without the necessity of rerunning the hydrody-
namic component each time. This feature greatly accelerates
the simulation process and allows for broader exploration of
different biogeochemical conditions at a fraction of the com-
putational cost.

Furthermore, we observed that increasing the DT had
practically no impact on the model results, which is highly
relevant. While increasing the DT significantly reduces com-
putational time, the discrepancies between simulations using
different DTs were minimal. This finding further highlights
the efficiency of the Offline Fennel model, as it allows for
a substantial reduction in computational time without com-
promising model accuracy. This demonstrates that increasing
the DT can be a viable strategy for accelerating simulations,
particularly in large-scale or long-term studies, without in-
troducing significant errors.

When comparing the three mixing schemes (GLS, LMD,
and MY25), the GLS scheme consistently provided the
best performance in terms of accuracy. The MY25 scheme
showed similar results but was slightly less accurate com-
pared to GLS. The LMD scheme showed the lowest perfor-
mance overall. These differences are likely due to the fact
that the GLS scheme, by design, is better at capturing small-
scale turbulence and mixing processes, which are critical for
accurate biogeochemical simulation in the NGoM. Although
both the MY25 and the GLS simulations incorporated addi-
tional coefficients (“AK”, “gls”, “tke”), the performance for
MY25 was not as robust as for GLS. These results suggest
that while incorporating additional coefficients can improve
model accuracy, they are not necessarily a critical factor for
this study. The relatively small differences between the three
mixing schemes further highlight the robustness of the Of-
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fline Fennel model, which was able to handle a variety of
mixing configurations without a significant loss of accuracy.

Although the Offline Fennel model demonstrated strong
overall performance, some limitations remain. Testing ad-
ditional tracer schemes or refining the model configuration
for the NGoM could potentially address these small discrep-
ancies. Furthermore, extending the model’s application to
other regions could offer further validation and highlight any
region-specific limitations, though this is something to ex-
plore in future work. However, overall, the model has proven
to be an effective tool for biogeochemical simulations in the
NGoM.

In addition, a potential avenue for future study would be
to repeat the 1-year simulation in back-to-back cycles to bet-
ter determine whether early-period variability reflects model
spin-up effects or is fully driven by external forcing. Such an
approach would help isolate transient initialization behaviors
from recurring seasonal signals.

A particularly intriguing aspect of the results is the lack of
growing error over time in the Offline Fennel model simula-
tions, as typically observed in other studies, like data assimi-
lation schemes (Berry and Harlim, 2017). This may partly re-
flect the relatively short simulation period (1 year), the model
domain, and the stabilizing influence of boundary conditions
such as prescribed riverine fluxes. However, it also suggests
that biological variability remains well constrained by the
physical state and that the simplification of feedback mecha-
nisms in the offline framework does not result in significant
error accumulation (Béal et al., 2010). Further investigation
is needed to explore this phenomenon more thoroughly and
assess whether this stability persists across different configu-
rations and longer time frames.

Finally, discrepancies between the offline and online sim-
ulations were smaller than those typically observed between
different mixing schemes within the same application. This
suggests that the choice of mixing scheme has a more sig-
nificant impact on model accuracy than the distinction be-
tween offline and coupled configurations. Therefore, the of-
fline model offers substantial benefits in terms of computa-
tional efficiency without compromising its ability to repre-
sent biogeochemical processes accurately.

Although the focus of this work is on the performance of
the offline biogeochemical configuration, it is worth noting
that different mixing schemes (GLS, MY25, LMD) lead to
notable differences in the predicted distributions of biogeo-
chemical variables (e.g., Fig. 6). These differences highlight
the sensitivity of biogeochemical tracer simulations to physi-
cal mixing processes, especially in coastal and shelf regions.
A systematic evaluation of the biogeochemical impacts of
turbulence parameterizations would be an important direc-
tion for future research.

An important consideration when using offline biogeo-
chemical models is the temporal resolution of the hydro-
dynamic archive used to force tracer transport (Thyng et
al, 2021). In our study, all offline simulations were forced
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with 3-hourly velocity, temperature, salinity, and other phys-
ical fields extracted from the online model. This relatively
fine sampling helps retain much of the variability relevant to
tracer advection and diffusion. Since all simulations use the
same archived fields, the differences observed between the
DT cases are not due to changes in the input currents them-
selves, which are identical, but rather the internal numerical
treatment of tracer advection within the offline model.

Nevertheless, it is important to note that the hydrody-
namic sampling rate used to force the offline model may
limit the ability of Offline Fennel to accurately reproduce
biogeochemical tracer fields, particularly in dynamically ac-
tive regions where currents fluctuate significantly on tidal or
sub-daily timescales. While this was not a dominant source
of error in our study area, the effect could become more
pronounced in highly physically variable regions, such as
strongly tidally or wind-driven coastal environments. In such
cases, the loss of high-frequency momentum variability be-
tween archive snapshots could degrade the fidelity of biogeo-
chemical tracer simulations. This highlights the importance
of choosing an appropriate archive sampling rate when con-
figuring offline models, particularly for regions with ener-
getic sub-daily dynamics.

In conclusion, the Offline Fennel model offers a promis-
ing alternative to coupled simulations, particularly in settings
where computational resources are limited or when large-
scale, long-term simulations are needed. The model accu-
rately represents key biogeochemical processes, such as nu-
trient cycling, primary production, and oxygen dynamics in
the NGoM, and its ability to drastically reduce computational
time while maintaining high accuracy offers significant ad-
vantages for future applications. Furthermore, the model’s
autonomy from hydrodynamic processes also minimizes de-
pendencies, providing flexibility in conducting extensive pa-
rameter tuning and sensitivity testing. While there are minor
areas for improvement, the Offline Fennel model stands as a
valuable tool for researchers working with ROMS hydrody-
namic outputs or new ROMS configurations. While the re-
sults are specific to our model setup and the dynamics of the
NGoM, they provide valuable insights for researchers with
similar configurations and offer general guidelines for fur-
ther applications.

Appendix A: Explanation of code changes

This section describes the modifications made to the main of-
fline code of Thyng et al. (2021) (https://github.com/kthyng/
COAWST-ROMS-OIL/tree/master/ROMS, last access: May
2024) to enable the offline biogeochemical model, namely
Offline Fennel, to work properly by acquiring the required
forced variables and to add new tracers and parameters.
The most significant change compared to the previous ver-
sion is the addition and operability of the following biologi-
cal tracers: phosphate (POy), river carbon detritus (RDeC),
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and river nitrogen detritus (RDeN). The following reposi-
tory contains the modifications made to the original code
of Thyng et al. (2021): https://github.com/jcrespinesteve/
OfflineFennel (last access: August 2025).

The new tracers and their respective equations have been
incorporated into the “fennel.h” file. The offline model now
includes phosphate (enabled via the PO4 C-preprocessing
option) and river detritus computations for both nitrogen and
carbon (enabled via the RIVER_DON option). It is impor-
tant to note that river inputs, such as freshwater discharge
and associated biogeochemical tracers, are prescribed in the
model rather than dynamically simulated. However, when
RIVER_DON is activated, the model performs additional in-
ternal computations to represent the transformation of non-
sinking dissolved organic matter from river sources (Yu et al.,
2015b). A similar approach is applied when POy is activated:
phosphate is not simply added as a biogeochemical tracer but
is instead integrated into the model’s biogeochemical cycles
through additional terms and modified equations following
the Fennel model version of Laurent et al. (2017), ensuring
consistency with the rest of the nutrient dynamics. In addi-
tion, another oxygen computation, RW1_OXYGEN_SC, has
been added to the file. When this C-processing option is acti-
vated, the biogeochemical model uses the air—sea flux param-
eterization of Wanninkhof (2014) to calculate oxygen values.

The new tracers and their respective equations have been
incorporated into the “fennel.h” file. The offline model now
includes phosphate (enabled via the PO4 C-preprocessing
option) and the capability to handle riverine dissolved or-
ganic nitrogen and carbon (enabled via the RIVER_DON
option). It is important to note that river inputs — such as
freshwater discharge and associated biogeochemical tracers
— are prescribed in the model rather than dynamically simu-
lated. However, when RIVER_DON is activated, the model
performs additional internal computations to represent the
transformation of non-sinking dissolved organic matter from
river sources. For instance, the prescribed remineralization
rate (RDeRRN) is used to modify the concentration of river-
ine DON and convert it into ammonium within the model.
This functionality was adapted from Thyng et al. (2021) and
integrated into the offline model. Additionally, a new oxygen
computation scheme (RW1_OXYGEN_SC) has been added.
When this option is activated, the biogeochemical model
uses the air—sea gas exchange parameterization from Wan-
ninkhof (2014) to calculate oxygen fluxes.

Metadata indices for the new variables are now included in
the “fennel_var.h” file. The “fennel_def.h” file incorporates
new input parameters to calculate the following tracers: the
phytophosphate : nitrogen ratio (“R_P2N”), the inverse half
saturation for phytoplankton phosphate uptake (“K_PO4”),
and the remineralization rate for nitrogen and carbon river
detritus (“RDeRRN” and “RDeRRC”). Such new input pa-
rameters are likewise defined in the “fennel_inp.h”, “fen-
nel_mod.h”, and “fennel_wrt.h” files, so the new parameters
are read, allocated, and written out in the offline simulations.
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To facilitate the configuration process for offline sim-
ulations, some changes have also been made in the
“globaldefs.F” module. Now, when OFFLINE and OF-
FLINE_BIOLOGY are defined in the header file, ATCLI-
MATOLOGY is automatically activated to process and al-
locate the active tracers of the simulation, which are temper-
ature and salinity. Moreover, the “checkvars.F” file was also
revised to activate the acquisition of the active tracers dur-
ing offline simulations. Specifically, this file now ensures that
when the OFFLINE and ATCLIMATOLOGY options are de-
fined, the model correctly identifies and retrieves the active
tracers. This is indispensable for the Offline Fennel model,
as temperature is used for light limitation to compute phyto-
plankton growth, and salinity is needed to calculate oxygen
saturation.

In the “checkdefs.F” file, new settings for verifying C-
processing options have been incorporated. These settings in-
clude the addition of PO4 dynamics (POy), the river detritus
equation (RIVER_DON), and the inclusion of river biology
point sources (RIVER_BIOLOGY).

Finally, the “set_data.F” file was modified to prevent the
model from accessing subsequent time step values of sea sur-
face height and 3D momentum climatologies. This adjust-
ment was necessary to eliminate a shift that occurred when
processing climatology fields in the bottom layers, which had
previously propagated a bias toward the surface when calcu-
lating biogeochemical tracer concentrations.

Appendix B: Offline Fennel guide

To conduct offline biogeochemical simulations using Of-
fline Fennel, users have to run a specific version of
COAWST/ROMS available at https://github.com/kthyng/
COAWST-ROMS-OIL (last access: May 2024). Require-
ments and considerations for setting up biogeochemical of-
fline simulations in ROMS using Offline Fennel are provided
below.

B1 Climatology and forcing files

Input the hydrodynamic model outputs as the climatology
forcing (“CLMNAME”) of the model. The variables needed
for the climatology files, with the ROMS-required dimen-
sions between brackets, are the following:

— free-surface (“zeta”) (time, eta_rho, xi_rho);

— vertically integrated #-momentum component (“ubar”)
(time, eta_u, Xi_u);

— vertically integrated v-momentum component (“vbar’)
(time, eta_v, Xi_v);

— u-momentum component (“u”) (time, s_rho, eta_u,
Xi_u);
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— v-momentum component (“v”) (time, s_rho, eta_v,
Xi_v);

— S-coordinate vertical momentum component (“omega’”)
(time, s_w, eta_rho, xi_rho);

— temperature (time, s_rho, eta_rho, xi_rho);

— salinity (time, s_rho, eta_rho, xi_rho);

— solar shortwave radiation (“swrad”) (time, eta_rho,
xi_rho);

— surface net heat flux (“shflux”) (time, eta_rho, xi_rho);

— AKyv, AKt, and Aks (optional) (depending on mixing
scheme) (time, s_w, eta_rho, xi_rho);

— Tke (optional) (depending on mixing scheme) (time,
s_w, eta_rho, xi_rho);

— GLS (optional) (depending on mixing scheme) (time,
s_w, eta_rho, xi_rho).

For the offline forcing file (FRCNAME), with the ROMS-
required dimensions between brackets, the variables needed
for the climatology files are the following:

— solar shortwave radiation (“swrad”) (time, eta_rho,
xi_rho) (warning: Offline Fennel is very sensitive to this
variable)

— surface net heat flux (“shflux”) (time, eta_rho, xi_rho)
— surface u-momentum stress (“sustr’) (time, eta_u, xi_u)

— surface v-momentum stress (“svstr”) (time, eta_v, Xi_v).
B2 Header file

— Define OFFLINE and OFFLINE_BIOLOGY flags to
conduct offline biogeochemical simulations.

— Do not define BULK_FLUXES, SOLAR_SOURCE,
and DIURNAL_SRFLUX flags, since all forcings come
from the hydrodynamic model outputs to be introduced
in the climatology and forcing files.

— Define ATCLIMATOLOGY to process and allocate ac-
tive tracers (7 and S). This is fundamental for phyto-
plankton growth and oxygen computation in the biogeo-
chemical model.

— Define OCLIMATOLOGY to process the variable
“omega” provided in the climatology forcing file.

— For best accuracy, use the same tracer advection scheme
as in the physical run. Use TS_MPDATA for the best
tracer advection results (Thyng et al., 2021).

— Use OUT_DOUBLE and PERFECT_RESTART for the
best results.

— Define MIX_CLIMATOLOGY to use Tke and GLS and
AKXCLIMATOLOGY for akt, aks, and akv.
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B3 Configuration file

— A multiplier of the hydrodynamic time step is a good
option for the offline simulation time step DT. The
present study found that a DT equal to 1, 3, 5, and
10 times the physical DT provided good results. How-
ever, some testing for the implementation setup is rec-
ommended. (Warning: note also that the offline time
step must be proportional to the hydrodynamic output
frequency and that it cannot be larger than the latter.)

— Close all boundaries for the physics, since all data come
from the hydrodynamic model outputs and an open
boundary would modify the hydrodynamics.

— Turn on “LsshCLM”, “Lm2CLM”, “Lm3CLM”, and
“LtracerCLM” to process the climatology forcing file.

- Do not activate climatology nudging
(“LnudgeM2CLM”, “LnudgeM3CLM”, “Lnud-
geTCLM”), since the physical output must be entirely
forced.

— Do not activate tracers for sources (“LtracerSrc”), since
this has already been computed in the physical simula-
tion.

— Turn on the momentum for sources/sinks if river nu-
trients (RIVER_BIOLOGY) are to be added. This will
not modify the hydrodynamics of the model, as it will
only impact the biology and nutrients of the model. If
“LuvSrc” or “LwSrc” is not activated, no nutrients will
come out from the river points.

— A specific varinfo.dat file (available here at
https://github.com/kthyng/COAWST-ROMS-OIL/
blob/master/ROMS/External/varinfo-offline.dat,  last
access: 14 April 2023) must be used for offline simula-
tions, as it has been modified to include the additional
variables for the offline model. The latter adjustment
enables the offline input of the physical result to be
input as climatology without undergoing file processing
to rename variable attributes.

Code and data availability. The current version of the Offline Fen-
nel model is available from the project website: https://github.com/
jerespinesteve/OfflineFennel under the MIT license. The exact ver-
sion of the model used to produce the results presented in this paper
is archived on Zenodo (https://doi.org/10.5281/zenodo.14916223,
Crespin, 2025a). Additionally, the input data and scripts used
to run the model for all the simulations discussed in this
paper, along with the processed outputs, are also available
(https://doi.org/10.5281/zenodo.14930138, Crespin, 2025b).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-5891-2025-supplement.
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