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Abstract. Binary forecasts of hydroclimatic extremes play
a critical part in disaster prevention and risk management.
While the recent WeatherBench 2 provides a versatile frame-
work for verifying deterministic and ensemble forecasts of
continuous variables, this paper presents an extension to bi-
nary forecasts of the occurrence versus non-occurrence of
hydroclimatic extremes. Specifically, 17 verification met-
rics of the accuracy and discrimination of binary fore-
casts are employed and scorecards are generated to show-
case the predictive performance. A case study is devised
for binary forecasts of wet and warm extremes obtained
from both deterministic and ensemble forecasts generated
by three data-driven models, i.e., Pangu-Weather, GraphCast
and FuXi, and two numerical weather prediction products,
i.e., the high-resolution forecasting (HRES) and ensemble
forecasting (ENS) of the Integrated Forecast System (IFS) of
the European Centre for Medium-Range Weather Forecasts
(ECMWEF). The results show that the receiver operating char-
acteristic skill score (ROCSS) serves as a suitable metric due
to its relative insensitivity to the rarity of hydroclimatic ex-
tremes. For wet extremes, the GraphCast tends to outperform
the IFS HRES when using the total precipitation of ERAS re-
analysis data as the ground truth. For warm extremes, Pangu-
Weather, GraphCast and FuXi tend to be more skillful than
the IFS HRES within 3 d lead time but become less skillful
as lead time increases. In the meantime, the IFS ENS tends
to provide skillful forecasts of both wet and warm extremes
at different lead times and at the global scale. Through di-
agnostic plots of forecast time series at selected grid cells,
it is observed that at longer lead times, forecasts generated
by data-driven models tend to be smoother and less skillful
compared to those generated by physical models. Overall, the
extension of WeatherBench 2 facilitates more comprehensive

comparisons of hydroclimatic forecasts and provides useful
information for forecast applications.

1 Introduction

Accurate numerical weather prediction (NWP) is of great im-
portance to the economy and society (Bi et al., 2023; Lam et
al., 2023; Bauer et al., 2015). Conventionally, physical NWP
models formulate the governing equations of coupled phys-
ical processes in the land, ocean and atmosphere and there-
fore predict weather conditions in the near future based on
predetermined initial meteorological fields (Lam et al., 2023;
Bauer et al., 2015). Due to advances in remote sensing, data
assimilation and computational infrastructure, physical NWP
models have witnessed steady improvements and been ex-
tensively employed in operational forecasting (Bauer et al.,
2020). For example, the European Centre for Medium-range
Weather Forecast (ECMWF) operates the Integrated Forecast
System (IFS), which has implemented a remarkable resolu-
tion upgrade and methodology for high-resolution forecast-
ing (HRES) and ensemble forecasting (ENS) at a horizon-
tal resolution of 0.1° since January 2016 (Balsamo et al.,
2023).

Data-driven NWP models have recently gained increasing
popularity in hydroclimatic forecasting (Ben Bouallegue et
al., 2024; Rasp et al., 2024; de Burgh-Day and Leeuwen-
burg, 2023; Xu et al.,, 2024a). Early models, such as the
UNet-architecture-based cubed sphere projection (Weyn et
al., 2020) and deep-Resnet-architecture-based models (Clare
et al., 2021; Rasp and Thuerey, 2021), featured moderate
spatio-temporal resolution and forecast skill. Recent deep
learning models, such as the graph neural network (Keisler,
2022) and FourCastNet (Pathak et al., 2022), began to match
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operational NWP models in resolution and skills. Pangu-
Weather (Bi et al., 2023) and GraphCast (Lam et al., 2023)
even outperformed the HRES in terms of some deterministic
metrics. The neural general circulation model (NeuralGCM),
which integrates data-driven and physical modules, is con-
sidered to be the first hybrid model to obtain competitive or
better scores than the HERS (Kochkov et al., 2024). GenCast
generates global ensemble forecasts that are comparative or
even more skillful than the ENS (Price et al., 2025).

There is a growing demand to verify the capability of
physical and data-driven models in generating skillful hy-
droclimatic forecasts (Olivetti and Messori, 2024a; Zhong et
al., 2024; Ben Bouallegue et al., 2024). In response to the
need of a unified benchmark, WeatherBench has been es-
tablished to host a common dataset of forecasts and obser-
vations and utilizes popular evaluation metrics for forecast
comparisons (Rasp et al., 2020). Owing to rapid advances in
data-driven NWP models, WeatherBench 2 has been devel-
oped to support global medium-range forecast verification
(Rasp et al., 2024). By following the established practices
of the World Meteorological Organization (WMO), Weath-
erBench 2 pays attention to both deterministic and ensem-
ble forecasts of continuous variables generated by physical
and data-driven NWP models (Jin et al., 2024). Forecast ver-
ification is performed by an open-source Python code and
publicly available, cloud-optimized ground truth and base-
line datasets (Jin et al., 2024; Olivetti and Messori, 2024b;
Rasp et al., 2024).

Besides deterministic and ensemble forecasts of continu-
ous variables, there is a demand for binary forecasts, i.e., cat-
egorical forecasts of binary events, in disaster prevention and
risk management (Ben Bouallegue et al., 2024; Larraondo
et al., 2020). Operational applications usually pay attention
to the occurrence versus non-occurrence of certain hydro-
climatic extremes instead of their precise magnitude (Lar-
raondo et al., 2020; Rasp et al., 2020). Binary forecasts meet
this demand by emphasizing the ability to capture hydrocli-
matic extremes, ensuring that models are not rewarded for
merely minimizing average errors and generating unrealisti-
cally smooth forecasts (Ferro and Stephenson, 2011; Rasp
et al., 2020). Therefore, this paper aims to extend Weath-
erBench 2 to binary forecasts. The objectives are (1) to ac-
count for verification metrics for binary forecasts derived
from global precipitation and temperature forecasts, (2) to
present scorecards to showcase the predictive performance
with wet and warm extremes, and (3) to examine the sensi-
tivity of different metrics to predefined thresholds of hydro-
climatic extremes. As is shown in the methods and results,
the extension facilitates an effective intercomparison among
binary forecasts of hydroclimatic extremes generated by both
data-driven and physically based models.
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2 Forecasts and metrics in WeatherBench 2
2.1 Forecast datasets

WeatherBench 2 presents a benchmark for verifying and
comparing the performance of data-driven and physical
NWP models (Rasp et al., 2024). On its website (https://
weatherbench?2.readthedocs.io, last access: 20 August 2025),
there is a database containing past forecasts in the year 2020:

1. The HRES generated by the ECMWEF’s IFS is widely
regarded as one of the best global deterministic weather
forecasts (Rasp et al., 2024). It offers 10d forecasts at
a horizontal resolution of 0.1° with 137 vertical levels
(Balsamo et al., 2023). In WeatherBench 2, the HRES
is primarily used as the baseline for comparing the per-
formance of data-driven models.

2. The ENS generated by the IFS’s ensemble version
is widely known as one of the best global ensemble
weather forecasts. It consists of 1 control member and
50 perturbed members (Balsamo et al., 2023). In Weath-
erBench 2, the ENS also serves as an important base-
line, with a mean value of the 50 members, i.e., ENS
Mean, being extensively used (Rasp et al., 2024).

3. The 10d global forecasts generated by Pangu-Weather
consist of 5 upper-air variables at 13 vertical levels and
4 surface variables at the horizontal resolution of 0.25°
(Bi et al., 2023). Pangu-Weather is based on the vision
transformer architecture and hierarchical temporal ag-
gregation. Four time steps, i.e., 1, 3, 6 and 24 h, are
chained autoregressively to generate forecasts at any
lead time based on the current atmospheric states. It is
noted that two sets of Pangu-Weather forecasts, which
are respectively based on the ERAS and HRES initial-
izations, are generated (Rasp et al., 2024).

4. The 10d forecasts generated by GraphCast include
6 upper-air variables at a maximum of 37 vertical lev-
els and 5 surface variables at a horizontal resolution of
0.25° (Lam et al., 2023). The GraphCast is based on
the architecture of the graph neural network. It runs au-
toregressively to forecast atmospheric states for the next
time step based on states from the previous two time
steps at a temporal resolution of 6h. Similarly, there
are two sets of GraphCast forecasts generated from the
ERAS and HRES initializations (Rasp et al., 2024).

5. The 15d global forecasts generated by FuXi consist of
5 upper-air variables at 13 vertical levels and 5 sur-
face variables at a horizontal resolution of 0.25° (Chen
et al., 2023). FuXi is an autoregressively cascading
model based on U-Transformer architecture. It consists
of three sub-models fine-tuned for forecasting 0-5, 5-
10 and 10-15d ahead at a temporal resolution of 6h.
Atmospheric states are forecasted based on states from
the previous two time steps.
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2.2 Verification metrics

In total, WeatherBench 2 takes into consideration six met-
rics for deterministic forecasts and six metrics for ensemble
forecasts, as shown in Table 1. The ERAS reanalysis data are
used as the ground truth for verifying the data-driven models.
For the sake of fair comparison with the data-driven models,
the initial conditions of the IFS HRES are used as the ground
truth for the verification of IFS forecasts (Lam et al., 2023).
As precipitation is not available for the IFS HRES’s initial
conditions, the total precipitation of ERAS reanalysis data
is used as the ground truth data for all models. Following
the initial version of WeatherBench 2, the verification is con-
ducted for forecasts initialized at 00:00 and 12:00 UTC for
the period from 1 January to 31 December 2020. All fore-
casts, baseline data and ground truth data are resampled to
a horizontal resolution of 1.5°, which is used as the stan-
dard resolution for forecast verification by the WMO and
ECMWEF (Rasp et al., 2024).

3 Verification of binary hydroclimatic forecasts
3.1 Conversion to binary forecasts

Binary forecasts of the occurrence versus non-occurrence of
target events can be generated from deterministic and en-
semble forecasts of continuous variables by using predefined
thresholds of hydroclimatic events (Ben Bouallegue et al.,
2024). In operational applications, binary forecasts of ex-
treme precipitation events and heat waves can respectively be
derived from precipitation and temperature forecasts (Huang
and Zhao, 2022; Lang et al., 2014; Zhao et al., 2022; Slater
et al., 2023). As for the precipitation, the 90th percentile of
the 24 h accumulation of total precipitation (TP24h) is con-
sidered to be the threshold, above which TP24h is considered
to be the wet extreme (North et al., 2013; Xiong et al., 2024).
As to temperature, the 90th percentile of the 24 h maximum
of 2m temperature (T2M24h) is set as the threshold, above
which T2M?24h is categorized as the warm extreme (Xiong
et al., 2024; Zhao et al., 2024). It is noted that the thresholds
in each grid cell are separately calculated (Olivetti and Mes-
sori, 2024b). Given the predefined threshold ¢, deterministic
forecasts are converted into either O or 1:

1(fn>q)={(1)’ In=d M

otherwise

where f, represents the nth deterministic forecast. In the
meantime, ensemble forecasts are converted into forecast
probabilities using Weibull’s plotting position (Makkonen,
2006):

1 (fn,m > Q)

1
M+1

M=

Ph= ; @)
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where f, » is the mth member of the nth ensemble forecast,
and M is the number of ensemble members.

The contingency table plays a key part in the verification
of binary forecasts of hydroclimatic events (Larraondo et al.,
2020). As shown in Table 2, there are four parts of the con-
tingency table, i.e., true positives (a), false positives (b), false
negatives (c) and true negatives (d). Specifically, the true pos-
itives indicate that target occurrences are successfully fore-
casted; the false positives indicate non-occurrences incor-
rectly forecasted as occurrences; the false negatives indicate
target occurrences incorrectly forecasted as non-occurrences;
the true negatives indicate non-occurrences that are correctly
forecasted as non-occurrences. The proportion of the ob-
served occurrences to the total number of occurrences and
non-occurrences is the base rate ((a +c)/N), with lower
values often corresponding to events that are more extreme
(Ferro and Stephenson, 2011).

3.2 Verification metrics for binary forecasts

Given the challenges posed by varying hydroclimatic ex-
tremes and imbalanced samples, in total 17 metrics are uti-
lized to examine the performance of binary forecasts (Jol-
liffe and Stephenson, 2012; North et al., 2013). Notably,
there are eight base-rate-dependent metrics and nine base-
rate-independent metrics. On the one hand, the base-rate-
dependent metrics facilitate insights into the performance
in relation to varying frequency of extreme events (Jolliffe
and Stephenson, 2012). On the other hand, the base-rate-
independent metrics are applicable for comparing forecasts
across different climate regions or time periods, in which
the frequency of extreme events differs substantially (Ferro
and Stephenson, 2011; Jacox et al., 2022). Their equations,
ranges and optimal values are presented in Table 3.

The eight base-rate-dependent metrics in Table 3 are in-
fluenced by the underlying distribution of observed occur-
rences and non-occurrences (Jolliffe and Stephenson, 2012).
The accuracy is calculated as the ratio between the num-
ber of true positives and the total number of occurrences
and non- occurrences (Finley, 1884). The success ratio (SR)
measures the number of true positives divided by the num-
ber of forecasted occurrences (Lagadec et al., 2016). The
critical success index (CSI) is the number of true positives
divided by the total number of forecasted and observed oc-
currences (Chakraborty et al., 2023; Gilbert, 1884; Donald-
son et al., 1975). The Gilbert skill score (GSS) evaluates
the fraction of true positives over the observed and fore-
casted occurrences after adjusting for the random true posi-
tives (Chen et al., 2018; Coelho et al., 2022). The Heidke skill
score (HSS) measures the accuracy relative to that of the ran-
dom forecasts (Gomis-Cebolla et al., 2023). The extreme de-
pendency score (EDS) (Stephenson et al., 2008) and the sym-
metric extreme dependency score (SEDS) (Orozco Lopez et
al., 2010) can measure the general performance of binary
forecasts for rare events. The potential relative economic
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Table 1. Verification metrics for deterministic and ensemble forecasts of continuous variables in WeatherBench 2.

Forecast Metric [min, max] Optimal
value

Deterministic ~ Root mean square error (RMSE) [0, 4+ 00) 0
Mean square error [0, +00) 0
Mean absolute error [0, +00) 0
Bias (—00, +00) 0
Anomaly correlation coefficient [—1,1] 1
Stable equitable error in probability space (SEEPS) [0, 1] 0

Ensemble Continuous ranked probability score (CRPS) [0, +00) 0
Ranked probability score (RPS) [0, +00) 0
Spread-skill ratio [0, 1] 1
Energy score [0, +00) 0
Brier score (BS) [0, 1] 0
Ignorance score [0, +00) 0

Table 2. Contingency table for binary forecasts.
Observed occurrences Observed non-occurrences Total

N N
I(fn>qlon>q), ifM=1 Y I(fu>qlon=<q),ifM=1
Forecasted a= ";1 b= n;l atb
occurrences Y I(pf, > plon>q).iftM=>2 Y I(pf, > plon<q).ifM=>2
n=1 n=1
N ) N '
I(fn<qlon>q), ifM=1 I(fn<qlon<q),iftM=1
Forecasted c= ";1 d= n;l ctd
non-occurrences > I(ps, <plon>q), ifM>2 > I(ps, <plon<q), iM=2
n=1 n=1
Total a+c b+d a+b+c+d=N

Where M =1 and M > 2 respectively represent deterministic and ensemble forecasts; N is the number of pairs of observations and forecasts for verification; o, represents the
nth observation; p denotes the probability thresholds above which the occurrences are forecasted to occur for ensemble forecasts; /() denotes the indicator function.

value (REV) quantifies the potential value of a forecast over
a range of different probability thresholds (p) to make a de-
cision (Richardson, 2006, 2000; Wilks, 2001). It compares
the saved expense using the forecasts instead of climatology
relative to the saved expense using the perfect forecast (Price
et al., 2025).

The nine base-rate-independent metrics in Table 3 are
valuable for rare events due to their stability with respect
to the variation in the proportion of observed occurrences
(Ferro and Stephenson, 2011). The hit rate and false alarm
rate respectively quantify the proportion of true positives
in observed occurrences and the proportion of false posi-
tives in observed non-occurrences (Swets, 1986b). The speci-
ficity measures the percentage of true negatives to observed
non-occurrences (Agrawal et al., 2023). The odds ratio skill
score (ORSS) examines the improvement over the random
forecasts, emphasizing the balance between positive and neg-
ative samples (Stephenson, 2000). Peirce’s skill score (PSS)
has a similar formulation to HSS but does not depend on oc-
currence frequency (Chakraborty et al., 2023). For determin-
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istic forecasts, the PSS equals the maximum value of REV
when the cost—loss ratio equals the base rate (Richardson,
2006). The extremal dependence index (EDI) and the sym-
metric extremal dependence index (SEDI) are designed to
be nondegenerate to measure the predictive performance for
rare events (Ferro and Stephenson, 2011). The receiver op-
erating characteristic (ROC) examines the discrimination be-
tween true positives and false positives, quantified by the area
under the ROC curve (AUC) (Swets, 1986b). The ROC skill
score (ROCSS) compares the discriminative ability over ran-
dom forecasts.

Among the 17 metrics, the ROCSS is base-rate-
independent and suitable for both deterministic and proba-
bilistic forecasts of binary events. By contrast, the other met-
rics need some predefined probability thresholds to convert
probabilistic forecasts into deterministic forecasts. There-
fore, the ROCSS is selected as the primary verification met-
ric in the analysis. For probabilistic forecasts, the ROCSS is
calculated by considering the hit rates and false alarm rates
for all possible thresholds of probability (Huang and Zhao,

https://doi.org/10.5194/gmd-18-5781-2025



T. Zhao et al.: An extension of WeatherBench 2 to binary hydroclimatic forecasts

Table 3. Verification metrics for binary forecasts.
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Metric Equation [min, Optimal Reference
max| value

Base-rate-dependent metrics
Accuracy (ACC), proportion ACC = “ﬁd [0, 1] 1 Finley (1884)
correct
Success ratio (SR), precision SR = a‘lw [0, 1] 1 Lagadec et al. (2016)
Critical success index (CSI), CSI= a_‘_”T_H [0, 1] 1 Donaldson et al.
threat score, Gilbert score (1975), Gilbert (1884)
Gilbert skill score (GSS), GSS = 4 g, = (4tDHeto [~1/3,1] 1 Gilbert (1884),
equitable threat score Schaefer (1990)
Heidke skill score (HSS), HSS = % dy = td)etd) [—1,1] 1 Gomis-Cebolla et al.
Cohen’s Kappa (2023), Heidke (1926)
](Eé(lt)rggne dependence score EDS = % [—1,1] 1 fzr(i)r(r)lg)agd G}lllelli

, Stephenson et

al. (2008)
Symmetric extreme SEDS = % [-1,1] 1 Orozco Lépez et al.
dependence score (SEDS) (2010)
max . o R
Potential relative economic REV=0<p<lI mlrr:fi‘rl];;‘j:c }r}[E”(;ri)cf);rC] [0, 1] 1 Richardson (2006,
value (REV) ’ 2000), Wilks (2001)
Base-rate-independent metrics
Hit rate (H), sensitivity, recall, —H = a“? [0, 1] 1 Swets (1986b)
probability of detection
False alarm rate (F), F= ﬁ [0, 1] 0 Donaldson et al. (1975)
probability of false detection
Specificity, true negative rate TNR = ﬁ [0, 1] 1 Agrawal et al. (2023)
(TNR)
Odds ratio skill score (ORSS), ~ ORSS = 44-0¢ [-1, 1] 1 Stephenson (2000)
Yule’s Q
Peirce’s skill score (PSS), PSS = % =H-F [—1,1] 1 Peirce (1884)
Hanssen and Kuipers
discriminant
Extremal dependence index EDI = % [—1,1] 1 Ferro and Stephenson
(EDI) (2011)
Symmetric e.xtremal SEDI = ig g;iggﬂgg}: Zg;igg: g [—1,1] 1 Ferro and Stephenson
dependence index (SEDI) (2011)
1

Area under receiver operating AUC = f HdF [0, 1] 1 Swets (1986b)
characteristic (ROC) curve 0

(AUC)

ROC skill score (ROCSS)

ROCSS =2(AUC —0.5)

(-1, 1]

1

Swets (1986a)

The variables a, b, ¢ and d respectively denote the number of true positives, false positives, false negatives and true negatives, with the equations shown in Table 2; N is
the number of pairs of observations and forecasts; p denotes the probability thresholds above which the occurrences are forecasted to occur for ensemble forecasts;
r represents the cost—loss ratio for calculating the relative economic value; all calculation equations of other variables can be found in this table.
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2022). It is noted that higher ROCSS values indicate better
forecast skill.

3.3 Forecast verification

Considering data availability and forecast settings, the veri-
fication focuses on eight sets of forecasts: IFS’s HRES, ENS
and ENS Mean; operational forecasts from Pangu-Weather
and GraphCast; and hindcasts from Pangu-Weather, Graph-
Cast and FuXi. The ground truth, spatial resolution, initial
forecast time and verification period are selected by follow-
ing WeatherBench 2. A set of predefined thresholds rang-
ing from the 80th to 99th percentiles of the ground truth
data in 2020 are considered for sensitivity analysis (Olivetti
and Messori, 2024b; North et al., 2013). For comparison
in individual grid cells, the 17 metrics are computed one
by one. Furthermore, the 17 metrics are calculated using
the area-weighting method for the regions predetermined by
the ECMWF’s scorecards, as shown in Table 4 (Rasp et al.,
2024).

Considering that hydroclimatic observations are subject
to heteroscedasticity and autocorrelation due to spatial and
temporal clustering of hydroclimatic extremes (Olivetti and
Messori, 2024b), the cluster-robust standard errors are used
to correct the paired ¢ test (Liang and Zeger, 1986; Shen et
al., 1987). Specifically, the corrected two-sided paired ¢ test
is performed at a significance level of 0.05 to assess the dif-
ferences in the performance between data-driven models and
IFS HRES (Olivetti and Messori, 2024b). For comparison in
individual grid cells, the same paired ¢ test is performed with
a p value that is corrected for multiple testing using global
false-discovery rates at a significance level of 0.1 (Benjamini
and Hochberg, 1995; Olivetti and Messori, 2024b). This set-
ting corresponds to a significance level of 0.05 for spatially
correlated hydroclimatic extremes (Wilks, 2016).

4 Results
4.1 Predictive performance across the globe

Scorecards of the globally area-weighted ROCSS relative to
the IFS HRES baseline are shown in Fig. 1. As expected,
forecasts become less skillful as lead time increases from
1 to 10d. This outcome is in general due to the accumula-
tion of forecast errors over time caused by the autoregressive
architecture of these models (Olivetti and Messori, 2024b;
Bonavita, 2024). For wet extremes, the IFS ENS, IFS ENS
Mean, GraphCast (operational) and GraphCast tend to out-
perform the IFS HRES. At lead times of 3 and 10d, the
ROCSS is respectively 0.59 and 0.16 for the IFS HRES, 0.90
and 0.55 for the IFS ENS, 0.61 and 0.17 for the IFS ENS
Mean, 0.65 and 0.20 for GraphCast (operational), 0.61 and
0.16 for GraphCast, and 0.54 and 0.08 for FuXi. For warm
extremes, GraphCast and FuXi tend to be more skillful than
the IFS HRES within 3 d lead time. As lead time increases,

Geosci. Model Dev., 18, 5781-5799, 2025

data-driven forecasts are generally less skillful than the IFS
HRES. This result is not surprising since the over-smoothing
is observed to be more prominent among data-driven models
than physical models (Bonavita, 2024; Lam et al., 2023). It
is highlighted that the IFS ENS is remarkably more skillful
than the IFS HRES at lead times from 1 to 10d. At lead times
of 3 and 10 d, the ROCSS is respectively 0.68 and 0.42 for the
IFS HRES, 0.92 and 0.86 for the IFS ENS, 0.62 and 0.32 for
the IFS ENS Mean, 0.63 and 0.29 for Pangu-Weather, 0.68
and 0.39 for GraphCast, and 0.68 and 0.32 for FuXi.

Scorecards of the area-weighted ROCSS for wet extremes
relative to the IFS HRES baseline are illustrated by region in
Fig. 2. Overall, the IFS ENS stands out across different re-
gions and lead times. The operational version of GraphCast
tends to be better than the IFS HRES across different regions.
The raw version of GraphCast tends to be better than the IFS
HRES except for in the Northern Hemisphere (extra-tropics),
the tropics, the extra-tropics, North America and the North
Atlantic. In Europe, at lead times of 3 and 10d, the ROCSS
is respectively 0.73 and 0.19 for the IFS HRES, 0.96 and 0.64
for the IFS ENS, 0.76 and 0.23 for GraphCast (operational),
0.77 and 0.22 for GraphCast, and 0.69 and 0.11 for FuXi. In
the meantime, the FuXi tends to outperform the IFS HRES in
the Southern Hemisphere (extra-tropics), tropics, North At-
lantic and AusNZ at lead time less than 3 d. Except for the
Arctic and Antarctic, the IFS ENS Mean tends to be better
than the IFS HRES. GraphCast (operational) is comparable
to the IFS ENS Mean and marginally better in the polar re-
gions. In the Antarctic region, the ROCSS is 0.63 and 0.06
for the IFS HRES, 0.59 and 0.01 for the IFS ENS Mean, and
0.66 and 0.06 for GraphCast (operational) at lead times of 3
and 10d.

Scorecards of the regionally area-weighted ROCSS for
warm extremes relative to the IFS HRES baseline are show-
cased in Fig. 3. Pangu-Weather, GraphCast and FuXi tend
to outperform the IFS HRES within 3 d lead time except for
in the Arctic and Antarctic. These results are consistent with
the results of a previous study on forecast accuracy of the
magnitude for warm extremes (Olivetti and Messori, 2024b).
In North America, the North Atlantic, the North Pacific, East
Asia and AusNZ, GraphCast and FuXi tend to outperform the
IFS HRES at longer lead times even up to 10d. The ROCSS
in the North Atlantic is respectively 0.39, 0.58 and 0.49 for
the IFS HRES, GraphCast and FuXi at a 10d lead time. On
the other hand, the performances of all data-driven forecasts
tend to be worse than that of the IFS HRES in the Arctic and
Antarctic. In Europe, the ROCSS is respectively 0.78, 0.71,
0.76 and 0.75 for the IFS HRES, Pangu-Weather, GraphCast
and FuXi at a 5 d lead time. As averaging the ensemble mem-
bers can filter unpredictable features to get smoother fore-
casts, it is not surprising that the IFS ENS Mean does not
always perform as well as the IFS HRES and IFS ENS for
warm extremes (Ben Bouallegue et al., 2024).

https://doi.org/10.5194/gmd-18-5781-2025
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Table 4. Regions that are included in the ECMWEF’s scorecards.

Region Range Region Range

Northern Hemisphere (extra-tropics) latitude > 20° Europe 35° < latitude < 75°, —12.5° <longitude < 42.5°
Southern Hemisphere (extra-tropics) latitude < —20° North America  25° <latitude < 60°, —120° < longitude < —75°
Tropics —20° <latitude <20° North Atlantic =~ 25° <latitude < 60°, —70° < longitude < —20°
Extra-tropics [latitude| > 20° North Pacific 25° < latitude < 60°, 145° < longitude < —130°
Arctic latitude > 60° East Asia 25° < latitude < 60°, 102.5° < longitude < 150°
Antarctic latitude < —60° AusNZ —45° <latitude < —12.5°, 120° < longitude < 175°

AusNZ: Australia and New Zealand.
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Figure 1. Globally area-weighted ROCSS for wet and warm extremes. “Oper.” denotes the operational version. The red and blue borders
indicate significantly different performances compared to the IFS HRES at the significance level of 0.05.

4.2 Predictive performance of wet extremes

The differences in the ROCSS for wet extremes in compari-
son to the IFS HRES baseline are illustrated in Fig. 4. Over-
all, the IFS ENS tends to outperform the IFS HRES in most
grid cells across the globe. Except for northern Africa and
the Arabian Peninsula, GraphCast’s operational forecasts are
comparable to or more skillful than the IFS HRES. Graph-
Cast is not as skillful as the IFS HRES in more grid cells,
such as northern Africa, central Australia and central Asia.
FuXi tends to be less skillful than the IFS HRES in most grid
cells, such as northern Africa, the Atlantic and the Pacific.
As the lead time increases, the IFS ENS and GraphCast (op-
erational) are observed to outperform the IFS HRES, while
GraphCast and FuXi underperform. These results are con-
sistent with the results of Figs. 1 and 2. In northern Africa,
forecasts of the three data-driven models tend to be less skill-
ful than the IFS HRES and IFS ENS. As GraphCast and
FuXi exhibit no hits and so many false positives for many
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or even almost all of the grid cells in this region, the ROCSS
is nearly —1 so that their forecasts tend to be worse than the
IFS HRES in the Northern Hemisphere (extra-tropics) and
tropics.

The time series for 24 h accumulation of total precipitation
from different forecasts initialized at 00:00 UTC are shown
for three grid cells in Fig. 5. The grid cells A, B and C are
selected respectively due to the better, close and worse per-
formance of data-driven models relative to the IFS HRES.
Overall, data-driven models can capture the temporal dynam-
ics of precipitation, but their forecasts are smoother than the
IFS HRES (Zhong et al., 2024; Xu et al., 2024b). For grid
cells A and B, the five sets of forecasts have nearly an equal
number of true negatives; the IFS HRESs show more true
positives but more false negatives; GraphCast is more capa-
ble of capturing the wet extremes but tends to produce more
false positives; and the IFS ENS Mean and FuXi tend to un-
derestimate the wet extremes, resulting in more false neg-
atives but fewer false positives. For grid cell C, located in

Geosci. Model Dev., 18, 5781-5799, 2025
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Northern Hemisphere  Southern Hemisphere Tropics Extra-Tropics

IFS HRES 0.72 0.59 0.44 0.31 0.19 0.75 0.63 0.48 0.34 0.17 0.67 0.55 0.43 0.34 0.23 0.77 0.63 0.46 0.31 0.16
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Figure 2. Regionally area-weighted ROCSS of different forecasts for wet extremes. The red and blue borders indicate significantly different
performance compared to the IFS HRES at the significance level of 0.05.
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Northern Hemisphere  Southern Hemisphere Tropics Extra-Tropics
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Figure 3. As for Fig. 2, but for warm extremes.

northern Africa, GraphCast and FuXi tend to overestimate IFS HRES, 0.80 and 0.53 for the IFS ENS, 0.31 and 0.21 for
the low precipitation and underestimate the high precipita- the operational GraphCast, —0.94 and —0.96 for GraphCast,
tion, leading to zero numbers of true negatives for FuXi and and —1.00 and —1.00 for FuXi.

zero numbers of false negatives for both. At lead times of 3

and 10d, the ROCSS is respectively 0.48 and 0.09 for the
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Figure 4. Differences between IFS ENS, GraphCast (operational), GraphCast and FuXi in ROCSS and the IFS HRES for wet extremes in
each grid cell. The gray color indicates grids with no statistically significant differences at the significance level of 0.1.

4.3 Predictive performance of warm extremes

The differences in ROCSS for warm extremes in compari-
son to the IFS HRES baseline are illustrated in Fig. 6. The
IFS ENS tends to outperform the IFS HRES, especially in
low-latitude regions. As the lead time increases, the IFS ENS
tends to be more skillful than the IFS HRES. The ROCSS of
Pangu-Weather, GraphCast and FuXi is similar to that of the
IFS HRES but is lower in most grids of the Pacific, Atlantic
and Arctic. GraphCast tends to outperform the IFS HRES
in the North Atlantic near the Gulf of Mexico. The spatial
patterns of the differences in ROCSS are consistent with the
results of Fig. 3. As the lead time increases to 10d, the area
where Pangu-Weather, GraphCast and FuXi are more skillful
than the IFS HRES decreases. On the other hand, even for a
lead time of 10d, GraphCast and FuXi continue to outper-
form the IFS HRES in some regions of the North Atlantic.
The different performances of global weather forecasts in
different regions emphasize the necessity to verify and cal-

Geosci. Model Dev., 18, 5781-5799, 2025

ibrate hydroclimatic forecasts before operational application
(Ben Bouallegue et al., 2024; Huang et al., 2022).

The time series for the 24 h maximum of 2 m temperature
from different forecasts initialized at 00:00 UTC are shown
for three grid cells in Fig. 7. The grid cells D, E and F are
also selected respectively due to the better, close and worse
performance of data-driven models relative to the IFS HRES.
Overall, Pangu-Weather, GraphCast and FuXi exhibit similar
temperature dynamics over time to those of the IFS HRES.
For grid cell D, Pangu-Weather, GraphCast and FuXi tend
to outperform the IFS HRES. Pangu-Weather tends to un-
derestimate the temperature, leading to fewer true positives
and more false negatives. GraphCast and FuXi show more
true positives. For grid cell E, these models show a nearly
equal number of true positives and true negatives, resulting
in similar ROCSS. For grid cell F, the data-driven models
tend to be less accurate than the IFS HRES. Pangu-Weather,
GraphCast and FuXi tend to underestimate the temperature,
leading to more false negatives and fewer true positives. As
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Figure 5. Time series plots of TP24h forecasts initialized at 00:00 UTC for the IFS HRES, IFS ENS, IFS ENS Mean, GraphCast and FuXi
over three selected grid cells, i.e., A (44°N, 94°E), B (54° N, 1.5° W) and C (23.5°N, 20°E).
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Figure 6. Differences between IFS ENS, Pangu-Weather, GraphCast and FuXi in ROCSS and the IFS HRES for warm extremes in each grid
cell. The gray color indicates grids with no statistically significant differences at the significance level of 0.1.

the lead time increases from 3 to 10d, the ROCSS reduces
from 0.48 to 0.28 for Pangu-Weather, from 0.51 to 0.22 for
GraphCast and from 0.54 to 0.17 for FuXi. By contrast, the
IFS HRES and IFS ENS change less. The ROCSS decreases
from 0.76 to 0.56 for the IFS HRES and from 0.95 to 0.86
for the IFS ENS.

4.4 Sensitivity to predefined thresholds

The globally area-weighted performance under different pre-
defined thresholds is illustrated for 5d lead time in Fig. 8.
The ROCSS is base-rate-independent and simultaneously
suitable for deterministic and probabilistic forecasts of bi-
nary events. It is noted that the REV needs predefined cost—
loss ratios to calculate the potential values of forecasts, while
the cost—loss ratios may be different for hydroclimatic ex-
tremes with different threshold percentiles. In the meantime,
the SEDI is also applicable to extreme events because of its
base-rate independence and nondegenerate limit (North et

Geosci. Model Dev., 18, 5781-5799, 2025

al., 2013; Jolliffe and Stephenson, 2012; Brodie et al., 2024).
The base-rate-independent metrics change little as the pre-
defined thresholds increase from the 80th to the 99th per-
centile. Specifically, as for forecasting wet extremes at a 5d
lead time, the scores of GraphCast decrease from 0.74 to 0.56
for SEDI and from 0.43 to 0.23 for ROCSS as the thresholds
increase from the 80th to the 99th percentile. By contrast,
the scores of GraphCast increase from 0.81 to 0.98 for 1-BS,
from 0.87 to 0.95 for ORSS and from 0.51 to 0.52 for SEDS.
These metrics are not suitable for hydroclimatic extremes be-
cause they contradict the notion that rarer events are often
more difficult to predict (Ferro and Stephenson, 2011).

The globally area-weighted ROCSS under different prede-
fined thresholds and lead times is shown in Fig. 9. Overall,
the ROCSS decreases for all eight sets of forecasts as the
predefined thresholds increase from the 80th to the 99th per-
centile. The IFS ENS tends to perform better in forecasting
wet extremes and warm extremes. Among the available data-
driven models, GraphCast (operational) tends to be more
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Figure 7. Time series plots of T2M24h forecasts initialized at 00:00 UTC for the IFS HRES, IFS ENS, Pangu-Weather, GraphCast and FuXi
over three selected grid cells, i.e., D (20°N, 75° W), E (39°N, 70° W) and F (15° S, 10°E).
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Figure 8. Globally area-weighted performance in forecasting wet extremes and warm extremes with different threshold percentiles at 5d
lead time. The REV is calculated with a fixed cost—loss ratio of 0.2 only for purposes of illustration.

skillful for wet extremes; for warm extremes, FuXi tends to
be more skillful at lead times less than 5d, and GraphCast
tends to be better at lead times more than 5 d. Specifically, as
for forecasting wet extremes at a 5d lead time, the ROCSS
decreases from 0.46 to 0.24 for IFS HRES, from 0.80 to
0.77 for IFS ENS and from 0.53 to 0.26 for GraphCast (op-
erational). As for forecasting warm extremes at a 5d lead
time, the ROCSS decreases from 0.69 to 0.41 for IFS HRES,
from 0.93 to 0.83 for IFS ENS and from 0.70 to 0.29 for
GraphCast. When the lead time is longer than 3 d, GraphCast,
GraphCast (operational) and FuXi tend to be more skillful
than Pangu-Weather and Pangu-Weather (operational) in pre-
dicting warm extremes (Olivetti and Messori, 2024b).

5 Discussion

5.1 Implications for forecaster’s dilemma

Binary hydroclimatic forecasts provide useful information
for disaster prevention and risk mitigation (Ben Bouallegue

et al., 2024; Merz et al., 2020). Verification metrics for de-
terministic and ensemble forecasts of continuous variables,

Geosci. Model Dev., 18, 5781-5799, 2025

such as the RMSE and the CRPS, in general focus on
the overall predictive performance across a range of events
(Huang and Zhao, 2022; Rasp et al., 2024). They tend to
reward models that minimize average errors and unrealis-
tically smooth forecasts, leading to limited guidance when
forecasting hydroclimatic extremes (Ferro and Stephenson,
2011; Rasp et al., 2020). By contrast, verification metrics of
binary forecasts provide valuable additional information by
emphasizing the ability to discriminate certain hydroclimatic
extremes that do not directly relate to average errors (Lar-
raondo et al., 2020). In this paper, the results show that for
warm extremes, Pangu-Weather, GraphCast and FuXi tend
to be more skillful than the IFS HRES within 3 d lead time
but become less skillful as lead time increases. The verifi-
cation of binary hydroclimatic forecasts seems to be more
stringent for data-driven models since the observed lead time
in which there exists outperformance of data-driven models
tends to be shorter than that for continuous forecasts (Lam et
al., 2023; Bi et al., 2023; Chen et al., 2023). In the Supple-
ment, the results across global grid cells in terms of the HSS
and SEDI also support this result.
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Figure 9. Globally area-weighted ROCSS for wet extremes and warm extremes with different threshold percentiles.

The climate system is high-dimensional and complex so
that there will not be a single verification metric to deter-
mine all essential characteristics of a good forecast (Rasp et
al., 2024; Jolliffe and Stephenson, 2012). While verification
metrics of binary forecasts emphasize discrimination, they
are unable to reflect other attributes to quantify the forecast
quality, such as reliability, resolution and uncertainty (Mur-
phy, 1993). Although GraphCast is more capable of captur-
ing the wet extremes, it tends to produce more false positives.
This result implies the “forecaster’s dilemma”; i.e., condi-
tioning on outcomes is incompatible with the theoretical as-
sumptions of established forecast evaluation methods (Lerch
et al., 2017). From this perspective, a combination of mul-
tiple verification metrics and diagnostic plots is in demand
(Larraondo et al., 2020; Huang and Zhao, 2022). As shown
in Figs. S1 and S4 in the Supplement, the values of BS for
FuXi are better than those for the HRES at a lead time of
10d, which is different to the results for ROCSS in Fig. 4.
Considering that the BS tends to reflect the average perfor-
mance and is influenced by the unbalanced number of occur-
rences and non-occurrences, better values of a single metric
do not mean more useful forecasts (Rasp et al., 2024). Over-
all, the process of forecast verification needs to be guided by
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the demand of operational applications (Ben Bouallegue and
the AIFS team, 2024; Rasp et al., 2024).

5.2 Use of ground truth data

High-resolution forecasts are essential for accurately captur-
ing multi-scale processes of hydroclimatic extremes (Liu et
al., 2024a; Charlton-Perez et al., 2024; Xu et al., 2025). It is
noted that hydroclimatic forecasts of coarse spatial resolution
tend to miss the required small-scale variability, such as the
intensity and structure of typhoons (Ben Bouallegue et al.,
2024; Selz and Craig, 2023). Also, they may miss extreme
values and the underlying evolution processes due to the mis-
match between forecast time step and event time (Pasche et
al., 2025). Therefore, there exists a demand to enhance the
spatial and temporal resolution of data-driven models (Xu et
al., 2024b; Zhong et al., 2024). It is noted that diffusion mod-
els have recently been shown to be effective for kilometer-
scale atmospheric downscaling (Mardani et al., 2025). In ad-
dition, hybrid models that utilize global forecasts from data-
driven models to drive high-resolution regional models, such
as the Weather Research and Forecasting (WRF) model, can
improve the forecast accuracy and resolution for extreme pre-
cipitation and tropical cyclones (Liu et al., 2024b; Xu et al.,
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2024b, 2025). Given that the metrics listed in Table 3 are suit-
able to different spatial and temporal scales, WeatherBench 2
is capable of evaluating for high-resolution forecast data.

Part of the forecast skill of data-driven models for wet
extremes can stem from the unfair setting of ground truth
data (Rasp et al., 2024; Lam et al., 2023). As for Weath-
erBench 2, it is worthwhile to note that the verification of
precipitation using ERAS reanalysis data as ground truth
data is a compromised setting and should be considered as
a placeholder for more accurate precipitation data (Rasp et
al., 2024). While this comparison is not fair to the IFS mod-
els, the results indicate that using data-driven models to fore-
cast global medium-range precipitation is promising. In ad-
dition, the verification is limited to the wet and warm ex-
tremes occurring in 2020 due to current data availability. The
short verification period can only provide limited informa-
tion about the model performance and sensitive results to
the climate variability (Olivetti and Messori, 2024b). With
the availability of more data on hydroclimatic forecasts and
baseline ground truth observations, binary forecasts of hy-
droclimatic extremes deserve more in-depth verification. In
the meantime, the different roles that the operational IFS
analysis and ERAS reanalysis data play in the initial con-
ditions to generate forecasts also deserve further verification
(Ben Bouallegue et al., 2024; Liu et al., 2024a; Xu et al.,
2024b).

6 Conclusions

This paper presents an extension of WeatherBench 2 to bi-
nary hydroclimatic forecasts by utilizing 17 verification met-
rics. Specifically, the TP24h and T2M24h are calculated from
the available forecasts and ground truth in WeatherBench 2,
and the 90th percentiles of the ground truth data in 2020
are set as the predefined thresholds above which the wet
and warm extremes are respectively detected. Through a case
study of binary forecasts generated by three data-driven mod-
els and two physical models, the results show that for wet ex-
tremes, the GraphCast and its operational version tend to out-
perform the IFS HRES when the total precipitation of ERAS
reanalysis data is used as the ground truth. Their globally
area-weighted ROCSS is 0.46, 0.50 and 0.43 at a 5d lead
time respectively. For warm extremes, GraphCast and FuXi
tend to be more skillful than the IFS HRES within 3d lead
time, while they can be less skillful as the lead time increases.
At lead times of 3 and 10d, the ROCSS is 0.68 and 0.42 for
the IFS HRES, 0.92 and 0.86 for IFS ENS, 0.63 and 0.29 for
Pangu-Weather, 0.68 and 0.39 for GraphCast and 0.68 and
0.32 for FuXi. When the predefined thresholds of wet ex-
tremes increase from the 80th to 99th percentile, the ROCSS
decreases from 0.46 to 0.24 for IFS HRES, from 0.80 to 0.77
for IFS ENS and from 0.53 to 0.26 for GraphCast (opera-
tional) at a 5d lead time. The extension of WeatherBench 2
to binary forecasts facilitates more comprehensive compar-
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isons of hydroclimatic forecasts and provides useful infor-
mation for forecast applications.

Code and data availability. The raw data, i.e., forecasts
and ground truth data, used in this paper are downloaded
from WeatherBench 2 and are archived on Zenodo under
https://doi.org/10.5281/zenodo.15066828 (Li and Zhao, 2025a)
and under https://doi.org/10.5281/zenodo.15066898 (Li and Zhao,
2025b).

The code and scripts used for the analysis and plots are archived
on Zenodo under https://doi.org/10.5281/zenodo.15067282 (Li and
Zhao, 2025c¢). All the analysis results are archived on Zenodo under
https://doi.org/10.5281/zenodo.15067178 (Li and Zhao, 2025d).

The code and scripts have been made a push request to contribute
to the successor of WeatherBench 2, i.e., WeatherBench-X.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-5781-2025-supplement.
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