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Abstract. Global gridded crop models (GGCMs) are sim-
ulation tools designed for global, spatially explicit estima-
tion of crop productivity and associated externalities. Key
areas for their application are climate impact and adapta-
tion studies. As GGCMs are typically computationally costly
and require comprehensive data pre- and post-processing,
GGCM emulators are gaining increasing popularity. Ear-
lier emulators have typically been published pre-trained on
synthetic weather and management combinations. Here, we
present a novel computational pipeline CROp Model Em-
ulator Suite (CROMES) v1.0 that serves for flexibly train-
ing GGCM emulators on data commonly available from
GGCM simulations. Essentially, CROMES consists of mod-
ules to (1) process climate data from daily resolution netCDF
files to (sub-)growing season aggregates as climate features,
(2) combine various feature types (climate, soil, crop man-
agement), (3) train emulators using machine-learning algo-
rithms, and (4) produce predictions. Exemplary, we apply
CROMES to train emulators on simulations for rainfed maize
from the GGCM EPIC-IIASA and climate projections from a
single GCM to subsequently test their skill in predicting crop
yields for unseen climate projections from other GCMs. De-
pending on the training and target data, the regression statis-
tics between GGCM simulations and predictions across all
points in time and space are in the ranges R2

= 0.97 to 0.98,
slope= 0.99 to 1.01, and intercept=−0.06 to +0.06. The
RMSE ranges between 0.49 and 0.65 t ha−1. Spatially, pat-
terns are evident with lowest performance in (semi-)arid re-
gions where aggregation of weather data may result in higher

information loss while permanent crop growth limitations
may hamper evaluation statistics as well. The gain in com-
putational speed for predictions is at more than an order of
magnitude with time required to produce target features and
subsequent predictions at about 30min on common hardware.
We expect CROMES to be of utility in covering more com-
prehensively uncertainty in climate impact projections, eval-
uations of adaptation options, and spatio-temporal assess-
ments of crop productivity.

1 Introduction

Global gridded crop models (GGCMs) have become key
tools in large-scale agricultural climate impact and adapta-
tion assessments (Jägermeyr et al., 2021) and as a source
of crop yield estimates for land use and integrated assess-
ment models (Nelson et al., 2014). Yet, these combinations
of large-scale spatial data frameworks and plant growth mod-
els have limitations in the volume of scenarios they can ad-
dress due to computational demand or complex software and
data structures. At the same time, ever larger volumes of
bias-corrected climate projections become available as po-
tential forcings for GGCMs allowing in principle for com-
prehensive uncertainty assessment (Gao et al., 2023; Gebre-
chorkos et al., 2023; Lange and Büchner, 2021; Thrasher et
al., 2022). Also spatial resolutions of climate data are con-
stantly improving with first 1 km× 1 km resolution global
daily meteorological data available (Karger et al., 2023) but
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requiring vastly higher computational capacities compared to
the state-of-the-art 0.5°× 0.5° (approx. 50 km× 50 km near
the equator). This high computational demand of GGCMs
consequently limits the adoption of higher resolution climate
forcings or wider sets climate projections that would allow
to derive more robust and comprehensive climate impact es-
timates.

To allow for more comprehensive scenario analyses with-
out exacerbating computational costs, emulators mimicking
GGCMs have emerged as tools to produce reasonably ac-
curate predictions of GGCMs’ crop productivity estimates
at much lower computational requirements and with sparser
sets of aggregate input data. First developments in this field
were common linear models trained on opportunistic sam-
ples from GGCM climate impact simulations (Blanc, 2017;
Blanc and Sultan, 2015; Oyebamiji et al., 2015). Most re-
cent emulators have been based on structured training data
obtained from vast GGCM simulations for systematic per-
turbations of meteorologic reanalysis data combined with
location-specific polynomials (Franke et al., 2020a). These
have been employed extensively for comprehensive scenario
analyses (Franke et al., 2022; Müller et al., 2021; Zabel et al.,
2021) and analytic purposes (Müller et al., 2024).

However, emulators published thus far are subject to sev-
eral limitations. E.g., inter-annual yield variability can hardly
be reflected due to the use of annual or static seasonal climate
features and common regression models, and predictive per-
formance is typically still lacking robustness. Also, the fre-
quent use of individual algorithms or parameters per pixel
limits the flexibility of emulator applications across spatial
scales. Structured training data furthermore require compre-
hensive crop model simulations and dedicated experiments
(Franke et al., 2020b). This causes substantial overhead and
hampers timely updates of training data with new model ver-
sions and setups that are regularly applied in climate impact
studies. More complex machine-learning algorithms such as
boosting, regression trees, and neural networks in turn have
been shown to provide high flexibility in producing predic-
tions similar to those of crop models if combined with co-
variates at moderate temporal resolutions, albeit these meth-
ods have thus far only been tested for spatial downscaling
and evaluations of model training strategies (Folberth et al.,
2019; Sweet et al., 2023). Yet, their high predictive perfor-
mance and flexibility renders such setups promising for the
development of novel emulators.

Building on these recent developments, we present herein
a computational pipeline combining modules for fast climate
feature engineering tailored towards the crop growing season
and sub-seasons with machine-learning algorithms for the
training and application of GGCM emulators. In contrast to
providing pre-trained emulators, this pipeline presents a flex-
ible tool allowing for continuous updates based on specific
requirements of applications and new training data as these
become available. For the demonstration experiment herein,
we train emulators on a set of simulation outputs for the most

recent simulation round phase 3b of the Inter-Sectoral Im-
pact Model Intercomparison Project (ISIMIP) and the Global
Gridded Crop Model Intercomparison (GGCMI) initiative
(Jägermeyr et al., 2021). Our approach is based on the hy-
pothesis that by using a global set of simulations spanning
diverse agro-climatic and -environmental conditions, we can
train emulators with high enough flexibility to mimic GGCM
simulations for unseen climate projections from the same do-
main (here CMIP6). For practical reasons, we focus on em-
ulators for the crop model Environmental Policy Integrated
Climate (EPIC; Williams, 1990) that is used by the authors
in the global gridded implementation EPIC-IIASA (Balkovič
et al., 2013).

2 Methods

2.1 Study design and experiment setup

The design of CROMES and the setup for the present study
is shown in Fig. 1 with details provided in the subsequent
sections. First, GGCM simulations – using here the EPIC-
IIASA model and forcing data from ISIMIP3b – are per-
formed to generate a training sample (Fig. 1a). A climate
feature processing module generates features from climate
forcing datasets for various parts of the crop growing season.
These are combined with the GGCM crop yield estimates as
target variable and further features on soil, site characteris-
tics, and crop management to train machine-learning algo-
rithms as emulators (Fig. 1b). The same module produces
features for predictions (Fig. 1c) that serve as covariates for
the emulator, which eventually produces crop yield predic-
tions (Fig. 1d). The rapid generation of climate features is a
core element of CROMES as it is key for the computational
speed gain compared to GGCM simulations. These features
may also be used directly, e.g., for analyses of growing sea-
son climate.

The exemplary application of CROMES herein evaluates
in how far emulators that are trained on GGCM simulations
for a specific GCM covering the historical time period and
three projections along different representative concentration
pathways (RCPs; see Sect. 2.9) are skilled to predict crop
yields for climate scenarios from other GCMs. Essentially,
we perform GGCM simulations using climate forcings from
five GCMs, subsequently train emulators for each of these
GCMs individually, and benchmark crop yield predictions
for the other four GCMs against actual crop model simula-
tions.

While crop nutrient supply can in principle be added to
the features, we opt herein to evaluate only predictions for
simulations with sufficient nutrient supply to single out the
skill of the emulators to capture climate signals.
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Figure 1. Study design schematic. (a) Global gridded crop model simulations for a specific set of forcing data to generate a training sample for
emulators, (b) training of crop model emulators based on machine learning algorithms and the global GGCM training sample, (c) processing
of features from target forcings and predictions using emulators from (c), (d) storage and evaluation of predictions and/or optional further
use of climate features.

2.2 Technical design of the emulator pipeline

The code implementation of CROMES is closely aligned
with the study design (Sect. 2.1) and detailed in the subse-
quent sections. CROMES handles the processing of data, fea-
ture engineering, training of emulators, and emulator evalua-
tion in four steps:

1. conversion of netCDF climate data to binary files for
rapid read access

2. processing of soil, site, crop management, and climate
features

3. emulator training

4. emulator application

Implemented features are mostly generic. These include
among others growing season aggregates of key climate vari-
ables, soil texture, and crop growing season information.
More complex approaches are required for the estimation of
potential evapotranspiration (PET), which can be based on
various methods in crop models (Wartenburger et al., 2018).
Herein, we use the Penman-Monteith method that is widely
used within GGCMs (Jägermeyr et al., 2021) and has been
implemented in the EPIC model as described in (Stockle
et al., 1992). We use the CatBoost algorithm for emulator
training, a computationally highly efficient algorithm that
has been top-ranking in benchmarks (Prokhorenkova et al.,
2018) and tested in a wide range of applications (Hancock
and Khoshgoftaar, 2020).

2.3 Climate data pre-processing

Climate features are produced for an individual pixel as ag-
gregates over specific time periods (e.g. annual growing sea-
son; see Sect. 2.4). In this calculation the whole set of values
of each climatic variable needs to be made available to an
aggregation function, essentially for the estimation of PET.
Therefore, the original set of two-dimensional maps in the
netCDF files typically used to supply spatio-temporal climate
data has to be converted to a set of vectors, i.e., time series, of
individual map pixels for a defined land mask. This conver-
sion of maps to vectors is carried out in a netCDF to binary
file translation routine.

The conversion carried out once per climate data set sub-
stantially speeds up the subsequent climate feature engi-
neering process. Selecting all climatic values sequentially
for each individual map pixel is infeasible due to the large
size of the pixel set (here, the ISIMIP 3b cropland mask
with 65 797 pixels) and the large number of days (about
36 500 for a 100-year dataset). Together with the num-
ber of climatic variables (here six) this leads to about
66 000× 36 500× 6= 14× 109 selection operations from
individual files. As one selection (seek) operation on a state-
of-the-art solid-state drive can take more than 0.01 to 0.2 ms,
this would result in 14× 109

× 0.01/1000/3600/24= 2 to
40 d of processing, assuming that data is not loaded into com-
puter’s memory or cached. This bottleneck can be solved
in a straightforward manner, if there is sufficient memory
available on a user’s computer, but the memory consump-
tion would be close to 360× 720× 36 500× 6× (4 bytes/-
value)= 210 GB for loading all uncompressed netCDF files
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into memory. To substantially speed up climate feature pro-
cessing while avoiding large memory requirements, our im-
plementation carries out a data format conversion through a
dedicated routine that is extensively using a small portion of
RAM (less than 1 GB) by handling netCDF files individually
and producing intermediary binary files. These can subse-
quently be used for sequential data processing that avoids in-
tensive seek operations or extensive memory use. This allows
to (1) reduce running time down to few minutes, (2) avoid
dependence on high-end hardware, and (3) supports parallel
runs in a high-performance computing environment.

While netCDF files may vary in their configuration, the
routines presently implemented in CROMES expect netCDF
files compliant with data format conventions used within
ISIMIP phase 3b, which are based on NetCDF Climate and
Forecast (CF) Metadata Conventions CF-1.6 and a spatial
resolution of 0.5°× 0.5°.

2.4 Feature engineering

2.4.1 Summary of included features

Table 1 provides an overview of implemented climate fea-
tures. The first six rows (TMX to HUR) correspond to raw
climate input variables for the EPIC crop growth model that
are here used both directly and in the calculation of de-
rived climate features. The latter include growing degree
days (GDD; see Sect. 2.4.2), the number of hot degree days
(HDD), extreme degree days (EDD), numbers of wet and dry
days, and the actual length of the growing season or selected
key stages (see below). PET (see Sect. 2.4.3 for details) is
used directly and in the calculation of the climatic moisture
deficit (CMD) and days with CMD below zero (CMDlt0)
as drought indicators. Further outputs of the climate fea-
ture module are the individual growing season length (GSL)
and the maturity status of the crop at harvest (HUIeopv).
CO2trans has a globally uniform annual value.

Aggregations are performed (a) for the whole actual grow-
ing season (AGS) starting with germination, (b) for the first
quarter of the growing season during which the crop emerges
(AGSe), (c) for the second half of the growing season – i.e.,
the reproductive phase during which flowers are prone to wa-
ter stress (Williams et al., 1989) – (AGSr), and (d) for the
30 d prior to the growing season, during which soil water
available for the crop may accumulate (PGS). This break-
down into key growth stages – while also considering grow-
ing season totals – serves for improving the information con-
tent not only with respect to growth stage-specific crop sen-
sitivities to stresses but also with respect to synchronous or
asynchronous manifestation of plant growth limitations such
as drought and shading. We use the term actual growing sea-
son here to indicate that the climate feature module estimates
the crop growth duration for each individual season based on
growing degree day (GDD) accumulation as opposed to us-
ing a fixed calendar that would not account for earlier (later)

maturing of crops in warmer (cooler) years. The estimation
of the time periods is further elaborated in Sect. 2.4.2.

Table 2 shows the non-climatic, temporally static features,
essentially soil attributes and slope that impact soil hydrol-
ogy and root space (see Sect. 2.8). Two crop management
parameters are the crop’s pixel-specific length of vegetation
period (LVP) based on the input planting and harvest dates
and the potential heat unit (PHU) requirement.

2.4.2 Estimation of growing season length and
sub-seasons

The estimation of growing season length is based on GDD
accumulation as implemented in the EPIC model and most
other GGCMs (Jägermeyr et al., 2021; Müller et al., 2017).
Any adjustments can be made in the code or input parame-
terization that includes parameters for crop-specific base and
optimum temperatures.

Earlier crop model emulators and various analytical stud-
ies combining crop model simulations and climatic indica-
tors for climate impact estimation have utilized monthly or
annual climate features (Blanc, 2017; Folberth et al., 2019;
Franke et al., 2020a; Goulart et al., 2023; Sweet et al., 2023).
While annual features cannot be expected to capture more
than trends in climate, monthly features – typically ordered
from planting – at least capture some dynamics within the
growing season. Yet, neither of the two considers the effect
of earlier (later) crop maturity due to warmer (cooler) than
baseline average growing season temperatures. This is one
of the main climate impact drivers in crop models (Minoli et
al., 2019; Zabel et al., 2021). It determines for example the
amount of solar radiation the crop receives for biomass accu-
mulation and whether it is exposed to adverse weather occur-
ring later in the reported growing season. As in the majority
of crop models, the progression of crop development from
planting to maturity is in CROMES estimated based on the
heat unit (HU, syn. growing degree days (GDD)) accumula-
tion approach. That is, on each day i of the growing season
daily HU are calculated according to:

HUi =
Tmax, i + Tmin,i

2
− Tb, with HUi ≥ 0 (1)

where Tmax [°C] is daily maximum temperature, Tmin [°C] is
daily minimum temperature, and Tb [°C] is the crop-specific
base temperature for growth, here 8 °C for maize. The sum
of HU for recent historic average temperatures between re-
ported planting and harvest dates in a location is considered
a static cultivar definition termed potential heat units (PHU).
Based on input planting dates and PHU, the model estimates
the progression of plant phenological development, biomass
accumulation, and maturation for each individual growing
season. Harvest occurs dynamically after the PHU value is
reached (or at a defined cut-off, see below). To normalize
plant maturation across locations, a heat unit index (HUI) is
used, which is calculated as the cumulative fraction of re-
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Table 1. Overview of climate features by climate variable and temporal reference. Actual growing season (AGS) length is dynamically
estimated each season (see Sect. 2.4.2). {agg} in the bottom part refers to average (av) or sum (sum) over the respective period. An exemplary
feature descriptor would accordingly be TMXavAGS. HUIeopv as an indicator for crop maturity is only output for the whole growing season.
CO2trans has an annual value and is hence not aggregated.

Abbreviation Description

Agro-climatic features (VARs)

TMX Maximum temperature [°C]
TMN Minimum temperature [°C]
PRCP Total precipitation [mm]
RAD Solar radiation [MJ m−2]
WSD Wind speed [m s−1]
HUR Relative humidity [–]
GDD Growing degree days [°C]
HDD Hot degree days (Tav> 30 °C) [d]
EDD Extreme degree days (Tav> 1.5 crop-specific optimum temperature) [d]
PET Potential evapotranspiration [mm]
CMD Climatic moisture deficit (PET-PRCP) [mm]
CMDlt0 Days with CMD below zero [d]
WET Wet days (PRCP≥ 0.1 mm) [d]
DRY Dry days (PRCP< 0.1 mm) [d]
GSL Growing season length, i.e., days from planting to harvest [d]
HUIeopv Heat unit index (HUI) at the end of the period (only produced for AGS) [–]
CO2trans Transient atm. CO2 concentration [ppm]

Temporal aggregates and derivatives of agro-climatic features

VAR{agg}AGS Aggregate for the actual growing season (AGS)
VAR{agg}AGSr Aggregate for the reproductive phase, i.e., second half of the AGS
VAR{agg}AGSe Aggregate for the establishment phase, i.e., first quarter of the AGS
VAR{agg}PGS Aggregate for the pre-growing season, i.e., the 30 d prior to sowing

Table 2. Static soil, site, and crop management features considered in the present setup.

Feature Description Category

DEPTH Total soil depth [m] Soil
SAND Sand content [%] Soil
CLAY Clay content [%] Soil
PH pH [–] Soil
SB Sum of bases [cmol kg−1] Soil
CEC Cation exchange capacity [cmol kg−1] Soil
EC Electric conductivity [mmho cm−1] Soil
ROK Coarse fragment (rock) content [%] Soil
BD Bulk density [g cm−3] Soil
CARB Carbonate content [%] Soil
OC Organic carbon content [%] Soil
FC Soil water content at field capacity (at 33 kPa) [m m−1] Soil
WP Soil water content at wilting point (at 1500 kPa) [m m−1] Soil
PAW Total plant available water capacity [m3 m−3] Soil
SLP Hill slope [%] Site
PHU Potential heat units (syn. growing degree days) from planting to maturity [°C] Crop management
LVP Length of vegetation period from reported planting to harvest date [d] Crop management
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quired PHU reached on day i of the growing season as

HUIi =

i∑
k=1

HUk

PHU
(2)

The HUI at harvest serves as a feature (HUIeopv) herein to
inform whether the crop has reached maturity. Prior to emer-
gence of the crop, an additional amount of germination HU
(GMHU) is required for the seed to develop to a seedling,
here a GDD sum of 100 °C for maize.

Figure 2 provides an overview of growing season-
based climate feature aggregation (incl. pre-growing season
(PGS)). The climate feature module first estimates for each
growing season based on the input planting date, GMHU, and
PHU the germination and maturity dates. If the crop does not
mature due to too low growing season temperatures, a cut-off
is enforced 21 d after the reported harvest date. Subsequently,
climate features are calculated for the whole actual growing
season (AGS) and the critical growing season phases for crop
establishment (AGSe) and reproductive phase (AGSr). The
first occurs from HUI= 0 to HUI= 0.25, the second from
HUI= 0.5 to HUI= 1.0 or cut-off date. During the reproduc-
tive phase, the crop yield is most sensitive to drought. The
PGS is defined as 30d prior to planting, a period that may
inform on germination and early growth conditions such as
soil humidity.

2.4.3 Penman-Monteith PET estimation

There are numerous methods for estimating PET employed
in GGCMs (Jägermeyr et al., 2021; Liu et al., 2016; Warten-
burger et al., 2018) with varying degrees of complexity and
input data requirements. The most popular choice is Penman-
Monteith (Jägermeyr et al., 2021), which is also implemented
in the EPIC crop growth model based on (Stockle et al.,
1992). The same approach was followed herein for PET es-
timation in CROMES.

Penman-Monteith requires all raw climate variables (first
six rows in Table 1) as well as information on daily crop
height (CHT) and leaf area index (LAI), rendering its estima-
tion considerably complex. The underlying calculations are
therefore only provided in abbreviated form and the reader
is referred to the above reference and the code for further
details. In short, the climate feature module estimates daily
progression of CHT and LAI based on HUI and crop-specific
parameters, and passes these parameters, daily climate data,
and further coefficients (atm. CO2 concentration, elevation,
soil albedo, latitude) to the PET function. Whether or not
a crop is growing on a day determines the use of the main
equation which is

Eo =
δ (ho−G)+ 86.7AD (ea − ed)/AR

HV (δ+ γ )
(3)

if no crop is grown or if a crop grows

Eo =
δ (ho−G)+ 86.7AD (ea − ed)/AR

HV (δ+ γ (1+CR/AR))
(4)

where AD is the air density [g m−3], AR is the aerodynamic
resistance for heat and vapor transfer [s m−1], and CR is the
canopy resistance for vapor transfer [s m−1], HV is the latent
heat of vaporization [MJ kg−1], ea is saturation vapor pres-
sure [kPa], ed is actual vapor pressure [kPa], δ is the slope
of the saturation vapor pressure curve [kPa °C], G is soil
heat flux assumed zero in the model, ho is net solar radia-
tion [MJ m−2], and γ is the psychrometric constant [kPa °C].

2.5 Non-climatic features

Soil features (Table 2) include soil physical and chemical at-
tributes as commonly required by crop models and provided
in state-of-the-art data sources such as the one used herein
(see Sect. 2.9). Here, we used soil features stored after a spin-
up run of the crop model for full consistency with crop model
simulations. The first 11 rows of soil features (DEPTH to
OC) in Table 2 are raw values, the remainder has been es-
timated based on routines implemented in the EPIC model
(FC, WP, PAW). PHU have been derived as described in the
prior sections.

2.6 Emulator training and feature importance

All features, including the target variable crop yield for
model training, are eventually merged based on simulation
unit IDs or climate grid IDs (see Sect. 2.8). For the demon-
stration herein, we chose CatBoost, a high-performing algo-
rithm with GPU support that significantly speeds up the train-
ing phase (Prokhorenkova et al., 2018). Hyperparameter se-
lection was done using cross-validation (CV) and grid search
as implemented in the Python catboost package. This step
should be tailored to each specific training and prediction
setup. However, this would imply a high resource demand
with likely similar outcomes for the datasets used herein.
Therefore, we performed the procedure on only one climate
dataset, UKESM1-0-LL with ssp585 forcing (see Sect. 2.9).

Provided the abundant data and high dimensionality (60
features), only two hyperparameters were selected for grid-
search using 4-fold CV. These are depth of the trees (short
depth) in steps of [8, 11, 14] and the maximum number of
trees (short iterations) in steps of [400, 800, 1200, 1600]. The
default grid-search procedure is implemented in CatBoost as
follows: The dataset is split into 80 % training and 20 % test
data. For all possible combinations of parameters (points of
the grid), a model is fitted on the train dataset. Among the
models, the one best performing on the test dataset is selected
and sent to CV. Within the above defined grid, the first best
model parameters were (14, 1600) achieving a test RMSE
equal to 0.4446 t ha−1 (and test-RMSE-mean 0.4470 t ha−1

for 4-fold CV). The second-best model parameters were (14,
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Figure 2. Conceptual definition of the crop growing season and growing season-oriented climate feature subsets. Squared boxes indicate
individual days for periods that are universally pre-defined (with numbers) or flexible based on individual input growing season dates and
GDD accumulation (empty). PGS= pre-growing season, AGS= actual growing season, AGSe= actual growing season emergence phase
(1st quarter), AGSr= actual growing season reproductive phase (2nd half), cut-off= forced growing season cut-off if PHU are not reached
21d after reported harvest date, GDD= growing degree days (syn. heat units), PHU= potential heat units (i.e., GDD estimated for the
baseline period as part of cultivar definition). Colored bars in the lower part of the figure indicate the extent of the growing season subsets.
The lighter colored extensions at the end of AGS and AGSr indicate that the end of the growing season is either determined by reaching
GDD≥ 1.0 PHU or at the cut-off. The latter serves to avoid overly long growing seasons in cool years where a crop may not reach maturity
in autumn and the growing season would hence extend over winter.

1200), test RMSE= 0.4682 t ha−1, followed by (11, 1600)
with test RMSE= 0.4871 t ha−1. The experiments demon-
strate that there is no overfitting, and results should be close
to the lowest feasible generalization error for models fitted
using this dataset. Even if a further small increase in accu-
racy is possible, it may deteriorate performance in emulator
applications.

With fixed depth= 14 and iterations= 1600, the remain-
ing training parameters were left to default values. For fur-
ther emulator training, climate scenarios (i.e., historical and
three SSPs; Sect. 2.9) were pooled for each GCM sepa-
rately and emulators trained on the whole sample as the other
four GCMs not used in the training were subsequently used
as novel data for benchmarking (see subsequent sections).
This setup differs from the more common approach of train-
ing machine-learning models on historical data with exten-
sive CV and applying them on future scenarios (Richetti
et al., 2023; Sweet et al., 2023). Here, models generalize
over scenarios rather than time, and similar data distributions
and levels of correlation are expected. To support our as-
sumptions, we provide bootstrapped RMSEs with confidence
bounds that show the generalization ability of the model (see
Sect. 2.7).

CatBoost provides three approaches to estimate feature
importance: Prediction Values Change (PVC), Loss Function
Change, and Shapley Additive Explanations (SHAP). The
computational complexity of these approaches increases sub-
stantially in the same order. For example, computing SHAP
values with the Python package SHAP (Lundberg et al.,

2020) becomes computationally impractical for our datasets
and models without further subsampling at a rate of 0.0001
and lower. PVC in turn is readily available after the train-
ing procedure. We hence select herein PVC, which quantifies
the average level to which altering a feature value influences
the predicted value. PVC importance values are non-negative
and normalized so that their sum for all features equals 100.

2.7 Emulator evaluation metrics

In line with earlier studies on crop model emulator develop-
ment (Blanc, 2017; Franke et al., 2020a; Oyebamiji et al.,
2015), we use the root mean square error (RMSE) and lin-
ear regression statistics (Pearson’s correlation coefficient R2,
slope, and intercept) to evaluate emulator performance. The
first also corresponds to the metric for the loss function in
emulator training (see Sect. 2.6). To evaluate the robustness
of mean RMSE estimates across the whole sample, we esti-
mate 95 % confidence intervals (CI) bootstrapping 500 sub-
sets of 100 k samples each. We provide all metrics for two
sets of benchmark data:

1. We evaluate the performance on the training data itself
to show how well the model can fit these training data
(Sect. 3.1), which also serves as a reference for evalua-
tions on unseen target data.

2. The main objective of the performance evaluation, how-
ever, is the emulators’ skill in predicting crop yield sim-
ulation outputs for climate projections that have not
been used in emulator training (Sect. 3.2). Essentially,
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we train individual emulators for each of the five GCMs
used in this experiment (see Sect. 2.9) and then apply
each of these emulators to the remaining four GCMs
not used in each emulator’s training. This serves as a
vast empirical test of how well the emulators perform
on unseen climate features while staying within a com-
parable domain of climate projections.

Evaluations are performed across all individual locations
(simulation units) and years as well as for global and sub-
continental area-weighted aggregates. For spatial aggrega-
tion, crop yields are area-weighted based on the extent of
crop- and water management-specific harvested area in each
5 arcmin pixel. Harvested areas were sourced from the SPAM
2010 v2.0 dataset (International Food Policy Research Insti-
tute, 2020; Yu et al., 2020). Additional evaluations by climate
domains were performed using a dataset of major Koeppen-
Geiger climate regions (Beck et al., 2018).

Besides prediction performance, we also approximate the
computational time requirements for data pre-processing,
crop model simulations, feature processing, and emulator
predictions to provide an estimate of speed gain when us-
ing emulators. This is done by performing all processing and
simulations on a computational cluster with an Oracle ZS5
network storage system and computational nodes equipped
with Intel Xeon Gold 2.1 GHz CPUs. All processes are per-
formed on single cores to ensure comparability. An exception
is the emulator training, which is done on a GPU (Nvidia
RTX A6000) as it would require unreasonably more time on
a common CPU.

2.8 Global gridded crop model and simulation setup

EPIC-IIASA (Balkovič et al., 2014) is a GGCM based on
the field-scale process-based crop model Environmental Pol-
icy Integrated Climate (EPIC) v0810 (Izaurralde et al., 2012;
Williams et al., 1989). EPIC-IIASA has been applied ex-
tensively in global climate impact studies and has shown
good skill in reproducing both historic absolute yields under
business-as-usual management and inter-annual yield vari-
ability (Balkovič et al., 2013, 2018; Müller et al., 2017). Key
processes of the core model EPIC are available from the prior
references and summarized in (Folberth et al., 2016).

EPIC-IIASA is based on a 5 arcmin× 5 arcmin spatial grid
(equivalent to about 8.3 km× 8.3 km near the equator) for
soil characteristics and topography that are aggregated to ho-
mogenous response units based on classification of key land
surface characteristics (soil, slope, elevation). These are in-
tersected with a 30 arcmin× 30 arcmin climate grid (about
50 km× 50 km near the equator) and national administrative
boundaries to define simulation units for each of which the
crop model is eventually run (Skalský et al., 2008). Accord-
ingly, simulation units vary in size from 5 arcmin× 5 arcmin
to 30 arcmin× 30 arcmin depending on local heterogeneity.
Globally, this results in nearly 162 k simulation units within
66 k climate pixels. Out of these, around 151 k simulation

units are included here based on general suitability for crop
cultivation (i.e., soil present and sufficient temperature).

The setup and parameterization of the EPIC-IIASA
GGCM was kept the same as in ISIMIP3b (Jägermeyr et al.,
2021) except that we used here sufficient nitrogen (N) fer-
tilizer inputs to focus on climate signals. Following this ap-
proach, N is applied automatically by the model as required
by the crop to meet its demand for biomass accumulation.
The model’s application threshold parameter BFT0 was set
to 0.99, corresponding to N application if N stress limits crop
growth by more than 1 % compared to the potential, the max-
imum annual input FMX was set to 999 kg N ha−1 yr−1 to
ensure that no N stress occurs. We selected maize as a model
crop due to its nearly ubiquitous cultivation globally. All sim-
ulations assumed rainfed water supply only. The time period
for simulations and evaluation is 1980–2099, spanning the
historical climate baseline 1980–2014 and projections from
2015–2099. We skip the last year 2100 as outputs are re-
ported by the year of planting (Müller et al., 2017) and no
harvest takes place in the last simulation year if the crop is
planted in autumn and harvested the following spring.

2.9 Input data

The same raw data were used for both GGCM simulations
and emulator training and predictions. Several key input data
(soil attributes, growing season dates, climate data), have
been provided by the most recent phase 3b of ISIMIP and
GGCMI initiative as documented in Jägermeyr et al. (2021).
Soil data were originally derived from the Harmonized World
Soil Database (FAO et al., 2012) and have been processed
for crop land by ISIMIP and GGCMI (Volkholz and Müller,
2020). For the experiment herein, we used soil attributes
stored after a spin-up run of EPIC-IIASA, which had been
used in the crop model climate impact simulations as well.
Slope and elevation had earlier been derived from GTOPO30
(US Geological Survey, 2002).

Climate data were sourced from five global climate mod-
els GFDL-ESM4 (Dunne et al., 2020), IPSL-CM6A-LR
(Boucher et al., 2020), MPI-ESM1-2-HR (Gutjahr et al.,
2019), MRI-ESM2-0 (Yukimoto et al., 2019), and UKESM1-
0-LL (Sellar et al., 2019) that span a representative range of
equilibrium climate sensitivities (ECS) and transient climate
response (TCS). Thereby, MPI-ESM1-2-HR and GFDL-
ESM4 are at the low end, MRI-ESM2-0 is in the lower mid-
range, and IPSL-CM6A-LR and UKESM1-0-LL present the
high end of warming levels at the end of century. For each
GCM, we use outputs for the historical time period, as well
as the three RCPs 2.6, 7.0, and 8.5. In line with the source cli-
mate data combining identifiers for shared socio-economic
pathways (SSPs) and RCPs without separators, we refer to
the climate scenarios as ssp126 (SSP1 with RCP2.6), ssp370
(SSP3 with RCP7.0), and ssp585 (SSP5 with RCP8.5). Sim-
ulations were performed with transient annual atm. CO2 con-
centrations corresponding to those of the respective RCPs.
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3 Results

3.1 Training metrics

Individual emulators are trained on the pooled climate sce-
narios of each GCM and subsequently applied to each
climate scenario of the same GCM individually. Regres-
sion statistics for the training show a near perfect fit with
slope and intercept uniformly at 1.00 and −0.01 (except for
UKESM1-0-LL with ssp585 forcing at intercept= 0.00) and
R2 ranging between 0.982 and 0.986 (Table 3). The RMSE
varies between 0.41 and 0.49 t ha−1, apparently scaling with
absolute yields. These are highest on average during the his-
torical period and lowest under ssp585 (see also Fig. 4). This
is more so the case for the two GCMs with high ECS and
consequently higher levels of global warming, namely IPSL-
CM6A-LR and UKESM1-0-LL (see Sect. 2.9). The 95 %
confidence interval width for RMSE on the training data is
for all GCMs≤ 0.01 t ha−1 or ≤ 2 % of the mean RMSE (Ta-
ble A1 in Appendix A) indicating highly robust results.

3.2 Prediction performance

3.2.1 Global prediction performance

Applying the emulators to climate scenarios from GCMs
not seen during training results in only slightly worse re-
gression and RMSE statistics (see Table 4 for overview and
Fig. 3 for exemplary visualization). The R2 now ranges be-
tween 0.974 and 0.980, the slope between 0.99 and 1.01, and
the intercept between −0.05 and −0.01. The RMSE is be-
tween 0.49 and 0.62 t ha−1. For both latter metrics, larger
deviations from the training results occur for the historical
time period and in GCMs and scenarios with lower levels of
global warming. While the absolute difference is small, the
change in RMSE presents an increase by 20 % to 27 % and
indicates a slight overfitting of the emulators. The widths of
the 95 % confidence intervals are with uniformly≤ 0.3 t ha−1

(Table A1), corresponding to ≤ 5 % of the mean, as well
marginally higher than for the training data but still very low
in both absolute and relative terms.

Considering only simulation units with rainfed maize
harvested area> 100 ha slightly deteriorates the regression
statistics (Fig. 3b). Yet, this is at a lower number of samples
(n= 36× 106 compared to n= 127× 106 in Fig. 3a) and the
point density indicates a more pronounced concentration of
samples in the yield range 3 to 10 t ha−1 which may affect
the regression compared to the wider distribution towards the
origin if all pixels are included (Fig. 3a).

Finally, both panels show that predicted yields may in-
clude negative values, which occurs in this example for 0.8 %
of samples in the whole dataset (minimum−1.4 t ha−1; mean
−0.04 t ha−1) and 0.007 % when masking by harvested area
(minimum−0.7 t ha−1; mean−0.07 t ha−1). Emulator appli-
cations hence need to ensure that predictions are zeroed if

valid prediction ranges cannot be defined a priori as is the
case for the algorithm employed here.

Global area-weighted mean crop yields show equally a
high agreement both between emulator predictions and out-
puts from the crop model and among the different emulators
(Fig. 4). Mean correlation coefficients range between 0.879
and 0.994 with higher values in scenarios with higher lev-
els of warming, i.e. for “hotter” GCMs such as UKESM1-0-
LL or IPSL-CM6A-LR and the high concentration pathway
ssp585. The lowest values occur at the opposite end of the
spectrum (MPI-ESM1-2-HR and MRI-ESM2-0 with ssp126)
forcing. Notably, the yield trends may also have an impact
here as larger variance facilitates higher R2. The ranges of
R2 values among the emulators applied to the same scenarios
are marginal, indicating that the choice of the emulator has
little impact on this global metric. Values for RMSE do not
show this pattern, while there appears to be a trend towards
similar values for the same target GCM (c.f. IPSL-CM6A-
LR vs MRI-ESM2-0).

Noticeable deviations occur for specific periods and cli-
mate projections, such as the 2050s in ssp370 for IPSL-
CM6A-LR and MPI-ESM1-2-HR. In these two instances,
there is a high agreement among emulators but not with EPIC
simulations. From the 2080s towards the end of century, there
is a deviation in yield predictions from the emulator based
on MPI-ESM1-2-HR compared to the EPIC simulations for
UKESM1-0-LL with ssp585 forcing. In the first case, this
may indicate particular climate patterns in the target dataset.
In the latter, the high-end warming occurring for this sce-
nario may not be reflected in any of the other scenarios used
for emulator training.

3.2.2 Spatial patterns

Aggregating area-weighted crop yields and predictions to
geographic macro-regions – exemplary for UKESM1-0-LL
with ssp585 forcing – shows a similar pattern as the global
performance but with a poorer turnout for both R2 and
RMSE in regions that have predominantly dry climate, i.e.,
Northern Africa and to lesser extents Australia and Cen-
tral Asia with R2

= 0.713, 0.889, and 0.900, respectively
(Fig. 5). Further deviations may at least in part be due to the
selection of this high warming scenario.

Within individual simulation units mapped to
5 arcmin× 5 arcmin pixels, high R2 values dominate as
well (Fig. 6). These are mixed with very poor outcomes if
the whole land mask is considered (Fig. 6a) compared to
masking by relevant cultivation regions (Fig. 6b). In the
first case, the median R2 is 0.794, in the latter case 0.847.
Hotspots for poor outcomes are arid regions – especially
of the Sahel zone and West Asia – where permanently dry
conditions cause constantly low yields with little variability.
This also affects the outcomes of regression metrics.

These visual interpretations are supported by density plots
of R2 per Koeppen-Geiger region – major global climate do-
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Table 3. Regression statistics and RMSE for each emulator trained on all climate scenarios of a specific GCM and applied to each of the
source GCM’s climate scenarios. Units for intercept and RMSE are t ha−1.

GCM Climate scenario R2 Slope Intercept RMSE

GFDL-ESM4 historical 0.985 1.00 −0.01 0.48
IPSL-CM6A-LR historical 0.986 1.00 −0.01 0.47
MPI-ESM1-2-HR historical 0.985 1.00 −0.01 0.49
MRI-ESM2-0 historical 0.985 1.00 −0.01 0.48
UKESM1-0-LL historical 0.986 1.00 −0.01 0.48
GFDL-ESM4 ssp126 0.984 1.00 −0.01 0.47
IPSL-CM6A-LR ssp126 0.985 1.00 −0.01 0.45
MPI-ESM1-2-HR ssp126 0.984 1.00 −0.01 0.48
MRI-ESM2-0 ssp126 0.985 1.00 −0.01 0.46
UKESM1-0-LL ssp126 0.984 1.00 −0.01 0.45
GFDL-ESM4 ssp370 0.983 1.00 −0.01 0.44
IPSL-CM6A-LR ssp370 0.984 1.00 −0.01 0.43
MPI-ESM1-2-HR ssp370 0.983 1.00 −0.01 0.46
MRI-ESM2-0 ssp370 0.984 1.00 −0.01 0.44
UKESM1-0-LL ssp370 0.983 1.00 −0.01 0.42
GFDL-ESM4 ssp585 0.983 1.00 −0.01 0.44
IPSL-CM6A-LR ssp585 0.984 1.00 −0.01 0.42
MPI-ESM1-2-HR ssp585 0.983 1.00 −0.01 0.45
MRI-ESM2-0 ssp585 0.984 1.00 −0.01 0.44
UKESM1-0-LL ssp585 0.982 1.00 0.00 0.41

Figure 3. Comparison of exemplary global gridded crop yields for rainfed maize from EPIC-IIASA crop model simulations vs predictions
by an emulator that was trained on the GCM IPSL-CM6A-LR and applied to the GCM GFDL-ESM4 for RCP8.5 in both cases with (a) all
simulation units and (b) simulation units with > 100 ha maize harvested area.

mains – for the whole land (Fig. A1 in the Appendix) or pix-
els with maize harvested area> 100 ha (Fig. A2). The first
shows that a comparably high tail occurs in (semi-)arid cli-
mates and a flat distribution is found for polar climates. Both
present challenging environments for agriculture and in the
latter case have hardly harvested areas. Accordingly, when
removing pixels with marginal harvested areas, the distribu-
tions across all climates shift towards higher R2 values. The
higher performance in pixels with larger harvested areas is
reinforced by Fig. A3 displaying R2 densities within har-

vested area bins. The highest tail towards low values is again
found for pixels with areas< 10 ha, whereas pixels with very
large harvested areas (> 1000 ha) have hardly R2 values of
less than 0.5.

3.3 Feature importance

The importance of individual features shows overall good
agreement among the emulators trained on different GCMs
with slight variations (Table 5). While the top 10 fea-
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Table 4. Ranges of regression statistics and RMSEs for each emulator trained on a specific GCM and applied to all other GCMs and
climate scenario combinations in the demonstration example. Emulators based on the target GCM are excluded. E.g., the first row shows
results of predictions for GFDL-ESM4 with historical forcing from the emulators trained on the GCMs IPSL-CM6A-LR, MPI-ESM1-2-HR,
MRI-ESM2-0, and UKESM1-0-LL and all climate scenarios (see Methods Sect. 2.9). Units for intercept and RMSE are t ha−1.

GCM Climate scenario R2 Slope Intercept RMSE

GFDL-ESM4 historical 0.977–0.978 0.99–1.01 −0.05 0.59–0.60
IPSL-CM6A-LR historical 0.977–0.979 1.00–1.01 −0.04 0.58–0.61
MPI-ESM1-2-HR historical 0.976–0.978 1.00–1.01 −0.03 0.60–0.62
MRI-ESM2-0 historical 0.976–0.977 0.99–0.99 −0.03 0.59–0.61
UKESM1-0-LL historical 0.977–0.978 0.99–1.01 −0.05 0.58–0.61
GFDL-ESM4 ssp126 0.978–0.979 1.00–1.01 −0.05 0.54–0.55
IPSL-CM6A-LR ssp126 0.979–0.980 1.00–1.01 −0.03 0.52–0.54
MPI-ESM1-2-HR ssp126 0.977–0.979 1.00–1.01 −0.03 0.55–0.57
MRI-ESM2-0 ssp126 0.977–0.978 0.99–1.00 −0.04 0.55–0.56
UKESM1-0-LL ssp126 0.977–0.978 0.99–1.00 −0.03 0.52–0.53
GFDL-ESM4 ssp370 0.976–0.977 0.99–1.00 −0.03 0.52–0.53
IPSL-CM6A-LR ssp370 0.975–0.977 1.00–1.01 −0.03 0.51–0.53
MPI-ESM1-2-HR ssp370 0.977–0.978 1.00–1.01 −0.03 0.53–0.54
MRI-ESM2-0 ssp370 0.977–0.977 0.99–1.00 −0.03 0.52–0.53
UKESM1-0-LL ssp370 0.974–0.976 0.99–1.00 −0.04 0.49–0.50
GFDL-ESM4 ssp585 0.976–0.977 1.00–1.00 −0.02 0.52–0.52
IPSL-CM6A-LR ssp585 0.974–0.977 1.00–1.00 −0.03 0.50–0.53
MPI-ESM1-2-HR ssp585 0.976–0.977 1.00–1.01 −0.02 0.53–0.54
MRI-ESM2-0 ssp585 0.976–0.977 0.99–1.00 −0.01 0.52–0.53
UKESM1-0-LL ssp585 0.972–0.975 0.99–1.00 −0.05 0.49–0.52

tures ranked by median importance are quite consistent, the
agreement tends to decrease with decreasing importance of
the features. The uniformly most important feature is the
sum of shortwave solar radiation over the growing season
(RADsumAGS), a direct aggregate of the photosyntheti-
cally active energy received by the crop. This is followed
by the growing season precipitation sum (PRCPsumAGS).
CMDlt0sumAGS, the number of days with a climatic mois-
ture deficit, presents a drought indicator with similar ranking.
Already beyond these three top ranking features, the numeric
difference among prediction value change (PVC) outcomes
is less discernible and shows a transient decline.

Notably, most of the climate features present in the top
20 refer to growing season aggregates, followed by drought-
related features for the reproductive phase (PETsumAGSr,
CMDsumAGSr, PRCPsumAGSr, CMDlt0sumAGSr), during
which flowering and consequently yield formation is most
sensitive to water deficit. Only one feature refers to the pre-
growing season period (PGS), the average minimum daily
temperature (TMNavPGS), which is not straightforward to
interpret.

Non-climatic features include most importantly the crop’s
heat unit requirement (PHU), a spatially explicit cultivar con-
stant, the closely related length of vegetation period (LVP),
and the soil features PAW, PH, and DEPTH. While the first
and the last of these relate to soil water storage and therefore
modulate water deficit in interaction with weather, pH has

typically little impact in the crop model and may hence be
correlated with other features.

3.4 Computational performance

As time gain is a key advantage of emulators, we provide a
rough estimate of time required for key tasks within the mod-
elling and data processing chains of both approaches – EPIC
simulations and emulator training and predictions – to allow
for basic contextualization (Fig. 7), while actual performance
in individual applications will depend on the computational
infrastructure in place and its load. In the setup used herein,
both approaches require first a conversion of netCDF files to
binary files that provide substantially faster read access. This
takes about 0.5 h. Further production of daily weather files
for the EPIC model – individual text files for each pixel –
takes approx. 2 h. The largest time requirement occurs for the
EPIC simulation itself, which here takes 12 h but can vary on
the shared cluster between 6 and 18 h on a single core. The
crop model produces single output files for each simulation
unit from which the extraction of outputs to a compilation
file requires 1h. Once a climate dataset has been processed,
only the last two steps crop model run and post-processing
are required for each simulation.

Within the CROMES pipeline, generation of climate fea-
tures for one climate scenario for emulator training or predic-
tions requires about 0.25 h. Model training on a GPU using
the CatBoost algorithm requires 0.5 h and predictions, i.e.,
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Figure 4. Global annual area-weighted yields of rainfed maize from the GGCM EPIC or predicted by the emulators between the years 2015–
2099 for the five priority GCMs used in ISIMIP3b and three SSP-RCP combinations. Each panel shows predictions from four emulators
trained on each of the five GCMs except the one providing the target features.

the combination of climate and other features with subse-
quent evaluation of the trained algorithm on the feature set,
about 0.15 h. Once an emulator has been trained, again only
the last two steps are required, i.e., processing of climate fea-
tures for a target dataset and evaluation of the emulator over
the combined feature set.

In total, the emulator provides a speed improvement of at
least an order of magnitude, regardless of whether the whole
computational chain is considered or only the last two steps
producing the actual outputs.

4 Discussion

In principle, model emulators or meta-models present a trade
in higher speed for less accuracy. Our evaluation of the
CROMES pipeline for an exemplary application highlights
that a substantial speed gain is in fact feasible at a compa-
rably low cost in accuracy with most benchmark indicators
pointing to a near perfect fit. The lowest agreement between
predictions and crop yield simulations occurs in regions with
predominantly arid climate where the aggregation of daily
weather to climate features potentially fails to capture the
effects of timing and volume of precipitation events. These
can markedly affect crop yields as do interactions between
temperature, atmospheric moisture deficit, and water avail-
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Figure 5. Same as Fig. 4 but for 15 macro regions and target climate dataset UKESM1-0-LL with SSP585 forcing only.

Figure 6. R2 of regressions between simulated and predicted rainfed maize yields over 85 years per pixel (i.e., simulation unit) exemplary
shown for an emulator based on IPSL-CM6A-LR and applied to GFDL-ESM4 with SSP3-70 forcing for (a) all land mask pixels and
(b) pixels with > 100 ha harvested area.

https://doi.org/10.5194/gmd-18-5759-2025 Geosci. Model Dev., 18, 5759–5779, 2025



5772 C. Folberth et al.: CROMES v1.0

Table 5. Feature importance for the 20 overall top-ranking features out of 60 features measured as prediction value change (PVC; see
Sect. 2.6). Median importance is the median of feature importance estimated for each of five individual emulators based on each of the
GCMs.

Feature Median importance Range of importance Rank of median importance Range of rank

RADsumAGS 14.14 11.82–15.40 1 1–1
PRCPsumAGS 10.44 8.20–12.58 2 2–3
CMDlt0sumAGS 8.39 6.55–10.26 3 2–4
PHU 5.00 3.20–6.27 4 4–11
CMDsumAGS 4.91 3.26–5.24 5 4–10
TMXavAGS 4.38 3.82–7.05 6 3–8
PETsumAGSr 4.11 2.62–4.39 7 5–14
PAW 3.94 2.97–4.21 8 7–11
LVP 3.59 2.83–3.67 9 8–12
CMDsumAGSr 3.27 2.78–3.71 10 9–11
HURavAGS 3.10 2.48–3.91 11 8–13
GDDsumAGS 2.75 1.87–5.15 12 5–16
TMNavAGS 2.74 2.65–4.10 13 7–13
PRCPsumAGSr 2.31 1.32–3.33 14 10–19
CMDlt0sumAGSr 1.77 0.64–2.33 15 15–34
HDDsumAGS 1.64 1.49–2.84 16 13–18
PH 1.61 0.64–2.24 17 14–33
DEPTH 1.60 0.24–1.93 18 14–49
GSLsumAGSr 1.52 0.66–4.69 19 5–31
TMNavPGS 1.51 1.27–2.17 20 15–22

Figure 7. Time requirement for key tasks required to produce global
crop model simulations with EPIC or crop yield predictions with
CROMES. Some tasks only have to be performed once, essentially
the bottom three of the legend or those relating to CROMES emula-
tor training, depending on the specific purpose. The numbers shown
here are therefore primarily for illustrative purposes.

ability (Schauberger et al., 2017). Yet, rainfed agriculture is
typically of limited importance in such regions and the con-
stantly low crop yields pose a challenge to achieving a good
regression fit for the global emulator while the absolute er-
ror can be considered minor. Overall, the performance of an
emulator will need to be evaluated on an application case
basis and training routines may need to be adjusted for spe-
cific target regions or applications to obtain best results for
a specific context. For example, where farming in semi-arid
environments or other low-yielding regions is in the focus,
the selection of training samples should be tailored to such
regions to ensure that the algorithm is not geared towards a
mean response that covers a variety of climates where semi-
arid conditions present a particular niche. Vice versa, when
focusing on breadbasket failures, users may sample such typ-
ically high-yielding agro-climatic regions specifically. In the
demonstration case herein, that is tailored towards evalua-
tion for broader coverage of global climate projections, we
selected accordingly all pixels globally.

To the authors’ best knowledge, complex machine-
learning algorithms have not been applied prior to train em-
ulators for a GGCM using opportunistic training samples,
i.e. data that are readily available from earlier experiments.
The performance achieved herein is hence not straightfor-
ward to compare to that found in earlier studies. Most re-
cently, Sweet et al. (2023) evaluated CV strategies for train-
ing machine-learning algorithms to predict crop yields from
GGCMs. They reported a maximum R2 of 0.82 on the train-
ing set and far lower values around 0.4 on holdout data. How-
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ever, their application case covered only the historic period
and focused on holdout years and regions, which may be
more challenging to capture than multi-year and -location
climate change projections as herein. Yet, they also assumed
static growing season lengths, which does not reflect the con-
ceptualization of plant maturation typical in crop models and
loses information on the weather the crop is actually exposed
to (see also next paragraph). Rather than a CV, we performed
here a bootstrapping of emulator predictions to quantify 95 %
CIs for RMSE and found robust results for both our training
and application of emulators. Oyebamiji et al. (2015) devel-
oped a similar emulator approach as the one herein but using
various regression methods and with the objective of predict-
ing changes in decadal mean crop yields based on changes
in climate features over the four meteorological seasons. Ap-
plied to an older version of the GGCM LPJmL (Bondeau
et al., 2007), they found an agreement with R2

= 0.72 to
0.86 for unseen climate projections combining RCPs 4.5 and
8.5. Similarly, Blanc (2017) trained statistical emulators for
crop yield changes under climate change based on various
regression models for several GGCMs and samples from cli-
mate impact projections using monthly and meteorological
seasonal climate features. This resulted in an R2 of 0.43
to 0.78 for multi-year average yield changes depending on
the GGCM with R2 0.48 to 0.56 for an EPIC-based GGCM
GEPIC. Finally, Franke et al. (2020b) trained GGCM emu-
lators using pixel-specific polynomials for a range GGCMs
that had simulated a structured training sample with system-
atic changes in temperature, precipitation, CO2, and fertilizer
application. Applied to an exemplary climate change projec-
tion (HadGEM2-ES with RCP8.5) using annual shifters in
climate features this resulted in RMSE of 0.9 to 2.7 and 1.8
to 2.4 t ha−1 for two EPIC-based GGCMs compared to herein
R2
= 0.97 to 0.98 and RMSE= 0.50 to 0.66 on holdout data.

We expect that feature engineering is the key determi-
nant for the high accuracy of crop yield predictions achieved
herein, also compared to past research. As outlined above,
earlier studies developing emulators or similar hybrid crop
modelling tools employed fixed seasonal, monthly, or an-
nual aggregates of climate variables (Blanc, 2017; Folberth
et al., 2019; Franke et al., 2020a; Goulart et al., 2023; Oye-
bamiji et al., 2015; Sweet et al., 2023). These provide basic
information on the weather a crop is exposed to in a spe-
cific year but neglect that crop maturity is driven by temper-
atures, represented as GDD accumulation in the vast major-
ity of (global) crop models (Jägermeyr et al., 2021). In fact,
keeping the growing season length constant over time under
global warming is a common scenario for cultivar adaptation
in crop modelling studies (Franke et al., 2020b; Minoli et
al., 2019; Zabel et al., 2021). Following the concept of GDD
accumulation, CROMES dynamically estimates the actual
length of each growing season and its sub-phases after plant-
ing. This has earlier been found to be a key determinant of
crop yields in GGCMs, especially under high levels of global
warming. Essentially, crops mature earlier and have less time

for biomass accumulation but may simultaneously not be af-
fected by adverse weather events later in the year (Zabel et
al., 2021). A systematic comparison of different feature en-
gineering approaches, however, is beyond the scope of this
study and should be subject of a dedicated intercomparison
exercise as is common within the crop modelling community
for process-based types of models.

Computational speed is challenging to compare between
emulators and GGCMs (see Sect. 3.4) and even more so
among different studies. These may cover varying GGCMs
with highly diverse computational demands or use publicly
available training data that do not provide this information.
Herein, we estimate a speed gain of conservatively an or-
der of magnitude. Oyebamiji et al. (2015) estimate a speed
gain by a factor of 60 for their LPJmL emulator, yet with-
out further specifications of considered steps in the mod-
elling chain. Essentially, in both cases the time requirement
decreases from hours to minutes. Based on our results, the
largest gain in computational speed is achieved if an emulator
is applied for comprehensive scenario analyses, e.g., across
large sets of climate projections, which requires a large num-
ber of repeated runs of the same emulator.

5 Conclusions and outlook

We expect the crop model emulator pipeline presented herein
to bear great potential in various applications including com-
plex climate impact modelling clusters or comprehensive
scenario analyses across large climate ensembles and at high
spatial resolutions. For such applications computational effi-
ciency is a key advantage and the loss of information com-
pared to the gain in speed achieved herein indicates that out-
comes can be considered robust as long as predictors are part
of the training domain. Quantifying this validity domain re-
mains a prevailing issue in machine learning and will have to
be characterized on a case-by-case basis until robust methods
are developed. This will be an important subject for future re-
search. Meanwhile, compared to static emulators CROMES
allows for continuous updating of training data such as for
the next generation of CMIP7 climate projections, with new
GGCM versions, or for applications with very specific fea-
ture domains such as global cooling scenarios from geoengi-
neering or nuclear winter. Thereby, no tailored crop model
simulations are required for training as long as data from
existing experiments are within the application domain and
users of the emulator pipeline do not require specific exper-
tise in crop model setups and applications.

Beyond the crop model emulation, we expect CROMES to
be useful in two ways: (a) as the input data are quite generic,
CROMES can also be used to efficiently train machine learn-
ing models on observations to develop observation-based
machine-learning crop models; and (b) the climate features
as an intermediary product of the pipeline allow for compre-
hensive analyses of growing season climate itself.
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Appendix A

Figure A1. Density of R2 per pixel over 85 years for three SSPs (rows) and across five major Koeppen Geiger climate regions (columns).
A= tropical, B= (semi-)arid, C= temperate, D= cold, E= polar. Each panel shows 20 plots, applying each emulator trained on one of the
five GCMs to the four GCMs not used in its training.
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Figure A2. Same as Fig. A1 but showing only pixels with rainfed maize harvested area> 100 ha.

Figure A3. Density of R2 per pixel over 85 years for four bins of rainfed maize harvested areas (panels). Data are pooled from applying each
emulator trained on one of the five GCMs to the four GCMs not used in its training across all three SSPs.
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Table A1. Confidence intervals (CI) for RMSE [t ha−1] estimated through bootstrapping (500× 100 k samples) for each emulator based on
an individual GCM (columns with short GCM name) and applied to each target GCM (rows). Where training and target GCM are identical,
the CI corresponds to values shown in Table 3. Where GCMs differ, CIs refer to results shown in Table 4.

Target GCM Scenario GFDL IPSL MPI MRI UKESM1

GFDL-ESM4 historical 0.476–0.483 0.588–0.610 0.583–0.604 0.593–0.616 0.582–0.591
IPSL-CM6A-LR historical 0.588–0.616 0.466–0.473 0.577–0.587 0.588–0.599 0.593–0.623
MPI-ESM1-2-HR historical 0.597–0.624 0.593–0.603 0.486–0.493 0.602–0.613 0.606–0.636
MRI-ESM2-0 historical 0.593–0.621 0.592–0.603 0.590–0.600 0.471–0.478 0.599–0.626
UKESM1-0-LL historical 0.581–0.590 0.593–0.616 0.591–0.616 0.596–0.618 0.471–0.478
GFDL-ESM4 ssp126 0.465–0.474 0.538–0.548 0.534–0.544 0.544–0.559 0.537–0.546
IPSL-CM6A-LR ssp126 0.521–0.531 0.444–0.452 0.521–0.530 0.529–0.544 0.519–0.528
MPI-ESM1-2-HR ssp126 0.547–0.558 0.552–0.563 0.473–0.481 0.566–0.581 0.558–0.569
MRI-ESM2-0 ssp126 0.540–0.556 0.548–0.568 0.553–0.574 0.458–0.466 0.543–0.563
UKESM1-0-LL ssp126 0.515–0.525 0.512–0.522 0.521–0.531 0.521–0.533 0.443–0.450
GFDL-ESM4 ssp370 0.438–0.447 0.521–0.542 0.515–0.536 0.516–0.533 0.518–0.539
IPSL-CM6A-LR ssp370 0.517–0.527 0.427–0.434 0.511–0.520 0.527–0.538 0.505–0.514
MPI-ESM1-2-HR ssp370 0.526–0.537 0.529–0.538 0.454–0.462 0.536–0.548 0.529–0.538
MRI-ESM2-0 ssp370 0.516–0.527 0.523–0.533 0.524–0.533 0.439–0.446 0.517–0.527
UKESM1-0-LL ssp370 0.494–0.504 0.482–0.491 0.498–0.507 0.501–0.510 0.412–0.420
GFDL-ESM4 ssp585 0.439–0.446 0.517–0.528 0.512–0.522 0.520–0.529 0.515–0.526
IPSL-CM6A-LR ssp585 0.511–0.520 0.416–0.423 0.508–0.516 0.525–0.536 0.494–0.502
MPI-ESM1-2-HR ssp585 0.525–0.536 0.529–0.539 0.450–0.458 0.539–0.550 0.532–0.542
MRI-ESM2-0 ssp585 0.516–0.526 0.524–0.537 0.526–0.538 0.430–0.439 0.517–0.529
UKESM1-0-LL ssp585 0.504–0.513 0.484–0.493 0.512–0.521 0.508–0.518 0.408–0.415

Code availability. A frozen version of the code
required to reproduce the study is available at
https://doi.org/10.5281/zenodo.14901127 (Folberth et al., 2025a).

Data availability. Data derived from crop model simu-
lations, pre-processed features, and other data required
to reproduce the results presented herein are available at
https://doi.org/10.5281/zenodo.14894075 (Folberth et al., 2025b).
Raw data sources are provided in the repository and in the text.
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M., Moltchanova, E., and Scholtz, P.: GEO-BENE global
database for bio-physical modeling, GEOBENE project,
https://geo-bene.project-archive.iiasa.ac.at/files/Deliverables/
Geo-BeneGlbDb10(DataDescription).pdf (last access: 3
September 2025), 2008.

Stockle, C. O., Williams, J. R., Rosenberg, N. J., and Jones,
C. A.: A method for estimating the direct and climatic ef-
fects of rising atmospheric carbon dioxide on growth and
yield of crops: Part I – Modification of the EPIC model for
climate change analysis, Agricultural Systems, 38, 225–238,
https://doi.org/10.1016/0308-521X(92)90067-X, 1992.

Sweet, L., Müller, C., Anand, M., and Zscheischler, J.: Cross-
validation strategy impacts the performance and interpreta-
tion of machine learning models, Artificial Intelligence for
the Earth Systems, 1–35, https://doi.org/10.1175/AIES-D-23-
0026.1, 2023.

Thrasher, B., Wang, W., Michaelis, A., Melton, F., Lee, T., and Ne-
mani, R.: NASA Global Daily Downscaled Projections, CMIP6,
Sci. Data, 9, 262, https://doi.org/10.1038/s41597-022-01393-4,
2022.

US Geological Survey: GTOPO30 – 30 arc seconds
digital elevation model from US Geological Survey,
https://doi.org/10.5066/F7DF6PQS, 2002.

Volkholz, J. and Müller, C.: ISIMIP3 soil input data, ISIMIP Repos-
itory, https://doi.org/10.48364/ISIMIP.942125, 2020.

Wartenburger, R., Seneviratne, S. I., Hirschi, M., Chang, J., Ciais,
P., Deryng, D., Elliott, J., Folberth, C., Gosling, S. N., Gud-
mundsson, L., Henrot, A.-J., Hickler, T., Ito, A., Khabarov, N.,
Kim, H., Leng, G., Liu, J., Liu, X., Masaki, Y., Morfopou-
los, C., Müller, C., Schmied, H. M., Nishina, K., Orth, R.,
Pokhrel, Y., Pugh, T. A. M., Satoh, Y., Schaphoff, S., Schmid,
E., Sheffield, J., Stacke, T., Steinkamp, J., Tang, Q., Thiery,
W., Wada, Y., Wang, X., Weedon, G. P., Yang, H., and Zhou,
T.: Evapotranspiration simulations in ISIMIP2a-Evaluation of
spatio-temporal characteristics with a comprehensive ensemble
of independent datasets, Environmental Research Letters, 13,
https://doi.org/10.1088/1748-9326/aac4bb, 2018.

Williams, J. R.: The erosion-productivity impact calculator (EPIC)
model: a case history, Phil. Trans. R. Soc. Lond. B, 329, 421–
428, https://doi.org/10.1098/rstb.1990.0184, 1990.

Williams, J. R., Jones, C. A., Kiniry, J. R., and Spanel, D. A.: The
EPIC crop growth model, Transactions of the ASAE, 32, 497–
511, 1989.

Yu, Q., You, L., Wood-Sichra, U., Ru, Y., Joglekar, A. K.
B., Fritz, S., Xiong, W., Lu, M., Wu, W., and Yang, P.:
A cultivated planet in 2010 – Part 2: The global gridded
agricultural-production maps, Earth Syst. Sci. Data, 12, 3545–
3572, https://doi.org/10.5194/essd-12-3545-2020, 2020.

Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K.,
Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M.,
Yabu, S., Yoshimura, H., Shindo, E., Mizuta, R., Obata, A.,
Adachi, Y., and Ishii, M.: The Meteorological Research Insti-
tute Earth System Model Version 2.0, MRI-ESM2.0: Descrip-
tion and Basic Evaluation of the Physical Component, Journal
of the Meteorological Society of Japan. Ser. II, 97, 931–965,
https://doi.org/10.2151/jmsj.2019-051, 2019.

Zabel, F., Müller, C., Elliott, J., Minoli, S., Jägermeyr, J., Schnei-
der, J. M., Franke, J. A., Moyer, E., Dury, M., Francois,
L., Folberth, C., Liu, W., Pugh, T. A. M., Olin, S., Ra-
bin, S. S., Mauser, W., Hank, T., Ruane, A. C., and Asseng,
S.: Large potential for crop production adaptation depends
on available future varieties, Glob. Change Biol., gcb.15649,
https://doi.org/10.1111/gcb.15649, 2021.

https://doi.org/10.5194/gmd-18-5759-2025 Geosci. Model Dev., 18, 5759–5779, 2025

https://doi.org/10.1038/ncomms13931
https://doi.org/10.1029/2019MS001739
https://geo-bene.project-archive.iiasa.ac.at/files/Deliverables/Geo-BeneGlbDb10(DataDescription).pdf
https://geo-bene.project-archive.iiasa.ac.at/files/Deliverables/Geo-BeneGlbDb10(DataDescription).pdf
https://doi.org/10.1016/0308-521X(92)90067-X
https://doi.org/10.1175/AIES-D-23-0026.1
https://doi.org/10.1175/AIES-D-23-0026.1
https://doi.org/10.1038/s41597-022-01393-4
https://doi.org/10.5066/F7DF6PQS
https://doi.org/10.48364/ISIMIP.942125
https://doi.org/10.1088/1748-9326/aac4bb
https://doi.org/10.1098/rstb.1990.0184
https://doi.org/10.5194/essd-12-3545-2020
https://doi.org/10.2151/jmsj.2019-051
https://doi.org/10.1111/gcb.15649

	Abstract
	Introduction
	Methods
	Study design and experiment setup
	Technical design of the emulator pipeline
	Climate data pre-processing
	Feature engineering
	Summary of included features
	Estimation of growing season length and sub-seasons
	Penman-Monteith PET estimation

	Non-climatic features
	Emulator training and feature importance
	Emulator evaluation metrics
	Global gridded crop model and simulation setup
	Input data

	Results
	Training metrics
	Prediction performance
	Global prediction performance
	Spatial patterns

	Feature importance
	Computational performance

	Discussion
	Conclusions and outlook
	Appendix A
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

