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Abstract. The proportionality between global mean temper-
ature and cumulative emissions of CO2 predicted in Earth
system models (ESMs) is the foundation of carbon budget-
ing frameworks. Deviations from this behavior could impact
estimates of required net-zero timings and negative emis-
sions requirements to meet the Paris Agreement climate tar-
gets. However, existing ESM diagnostic experiments do not

allow for direct estimation of these deviations as a func-
tion of defined emissions pathways. Here, we perform a set
of climate model diagnostic experiments for the assessment
of transient climate response to cumulative CO2 emissions
(TCRE), the Zero Emissions Commitment (ZEC), and cli-
mate reversibility metrics in an emissions-driven framework.
The emissions-driven experiments provide consistent inde-
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pendent variables simplifying simulation, analysis and inter-
pretation, with emissions rates more comparable to recent
levels than existing protocols using model-specific compat-
ible emissions from the CMIP DECK 1pctCO2 experiment,
where emissions rates tend to increase during the experiment,
such that at the time of CO2 doubling in year 70, emissions
are much greater than present-day values. A base experi-
ment, “esm-flat10”, has constant emissions of CO2 of 10 GtC
per year (near-present-day values), and initial results show
that the TCRE estimated in this experiment is about 0.1 K
less than that obtained using 1pctCO2. A subset of ESMs
exhibit land carbon sinks that saturate during this experi-
ment. A branch experiment, esm-flat10-zec, illustrates that
both positive and negative ZEC effects are less pronounced
under esm-flat10 than under 1pctCO2 – the magnitude of
ZEC50 in ESMs is, on average, reduced by 30 % compared
with 1pctCO2 branch experiments. A final experiment, esm-
flat10-cdr, assesses climate reversibility under negative emis-
sions, where we find that peak warming may occur before
or after net zero and that the asymmetry in temperature at a
given level of cumulative emissions between the positive and
negative emissions phases is well described by ZEC in most
models. Further, we find that existing probabilistic simple
climate model (SCM) ensembles tend to overestimate tem-
perature reversibility compared with ESMs, highlighting the
need for additional constraints. We propose a set of climate
diagnostic indicators to quantify various aspects of climate
reversibility. These experiments were suggested as potential
candidates in CMIP7 and have since been adopted as “fast
track” simulations.

1 Introduction

The concept of proportionality of global mean temperatures
to cumulative carbon dioxide emissions is central to carbon
budgeting frameworks and net-zero commitments (Rogelj et
al., 2019b). The relationship has its origins in the recognition
of a robust linear relationship in Earth system model simula-
tions (Allen et al., 2009; Matthews et al., 2009; Zickfeld et
al., 2009) and observations (Gillett et al., 2013) between the
global mean temperature change and the cumulative amount
of CO2 released into the atmosphere, the slope of which we
refer to as the transient climate response to cumulative emis-
sions (TCRE) – the change in global mean temperature per
trillion tonnes of carbon emitted into the atmosphere. TCRE
offers a powerful, simplified lens for climate policy appli-
cations, allowing policymakers to directly equate emission
budgets to projected warming levels (Lamboll et al., 2023;
Rogelj et al., 2019b) and to gauge the relative impact of dif-
ferent emissions trajectories over time (MacDougall, 2015).

For a simulation in which temperature changes are driven
by CO2 alone,

TCRE=
1T (t)

Iem(t)
, (1)

where 1T (t) and Iem(t) are the temperature change and
cumulative emissions at time t , respectively. For climate
models, TCRE is generally calculated using results from a
concentration-driven simulation 1pctCO2, where CO2 con-
centrations are prescribed and ramped up exponentially at
a rate of 1 % per year. In assessments (IPCC, 2023c), the
TCRE is nominally computed in year 70, when concentra-
tions have approximately doubled:

TCRE1pctCO2 =
1T (70)

Iem(70)
=

(
1T (70)

Iatmos(70)

)(
Iatmos(70)

Iem(70)

)
,

where Iatmos(70) is the additional carbon in the atmosphere
and 1T (70) is the transient climate response (TCR, in prac-
tice calculated as the average over years 60–80). Iatmos(70)

Iem(70)
is

the cumulative airborne fraction, the proportion of cumula-
tive emissions which remain in the atmosphere.

In order to constrain compatible carbon emissions budgets
for certain warming levels, historical human-induced warm-
ing must be calculated, along with some additional correc-
tions (Rogelj et al., 2019b). Firstly, the temperature impact
of present and future non-CO2 emissions must be incorpo-
rated, either by assuming a ratio of future CO2 and non-CO2
emissions (Damon Matthews et al., 2021; Leach et al., 2018;
Millar and Friedlingstein, 2018), by subtracting an estimate
of non-CO2 warming (Lamboll et al., 2023), or by defining
a TCRE based on cumulative CO2- forcing-equivalent emis-
sions (Jenkins et al., 2021).

Secondly, any potential further carbon-induced warming
after net zero has been achieved introduces additional uncer-
tainty in remaining carbon budgets calculated using TCRE
(Nicholls et al., 2020). This behavior has been characterized
by the Zero Emissions Commitment (ZEC) (IPCC, 2023c;
Lamboll et al., 2023). Definitions of ZEC are, to date, primar-
ily informed by the ZECMIP CMIP6 experiment (Jones et
al., 2019), which is based on an abrupt cessation of emissions
branching from the 1pctCO2 experiment when 1000 PgC
of CO2 emissions have been diagnosed, where the notation
ZECn corresponds to the warming n years after the cessation
of emissions (MacDougall et al., 2020). ZEC50 and ZEC90
are thus the temperature change 50 and 90 years after the ces-
sation of emissions, respectively. This experiment was per-
formed by a coordinated set of Earth system models and in-
termediate complexity models, which led to the finding that
ZEC had the potential to be either positive or negative (Mac-
Dougall et al., 2020) with a best estimate near zero.

ZECMIP experiments were designed this way to ensure
consistency of ZEC and TCRE at the same point, but they
do, however, have a number of limitations. Firstly, 1pctCO2
is a prescribed concentration trajectory for atmospheric CO2,
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and compatible emissions are computed as a residual term,
such that each climate model has a different emissions trajec-
tory. This poses two issues for using the run as a basis for the
assessment of ZEC. Firstly, each model follows its own path-
way of (implied) emissions in such experiments, obfuscating
the relationship between model and ZEC response. Secondly,
the compatible emissions profile in 1pctCO2 grows through-
out the experiment, with the burden of cumulative emissions
weighted towards the end of the experiment (Sanderson et
al., 2024 and Fig. 6), whereas contemporary emissions are
closer to flat (since about 2012).

Alternative frameworks have been proposed to provide a
less scenario-dependent formulation for ZEC. Consideration
of linear pulse-response models of the climate shows that cu-
mulative emissions proportionality is an expected first-order
response but that second-order terms allow for further tem-
perature changes after emissions have ceased (Avakumović,
2024; Jenkins et al., 2022). This second-order behavior can
be approximated by the rate of adjustment to zero emis-
sions, or RAZE, which defines the fractional change in CO2-
induced warming after CO2 emissions cease (Jenkins et al.,
2022). In this approximation (valid for decadal timescales
following net zero), RAZE can be related to ZEC for a given
scenario as

ZECH = Iem(t = tnet-zero)(TCRE)(RAZE)(H),

where ZECH is the warming H years after net zero and
Iem(t = tnet zero) is the cumulative emissions at the time of
net zero. In this framing, a linear estimate of the warming
rate after net zero, if emissions are held at net zero, is given
by Iem(t = tnet zero)(TCRE)(RAZE).

In addition, no experiment within prior CMIP efforts
has been designed to robustly understand the degree of
asymmetry in the climate response to positive followed by
negative CO2 emissions. The compatible emissions from
the 1pctCO2-cdr concentration reversal experiment used in
CDRMIP (Asaadi et al., 2024) are both asymmetric in time,
between the positive and negative emissions periods, and
have a large discontinuity of roughly 50 Pg C yr−1 (Koven
et al., 2023) at the point of reversal from increasing to de-
creasing CO2 concentrations. Secondly, the lagged effects of
the positive emission phase can complicate assessment of the
response to negative emissions (Chimuka et al., 2023; Koven
et al., 2023; Zickfeld et al., 2016).

These confounding effects inhibit a clear diagnosis of
whether and how the general climate response to negative
emissions differs from the climate response to positive emis-
sions (MacDougall, 2019). An idealized CMIP experiment
that allows for a continuous transition from positive to neg-
ative emissions, and one that is symmetric in time (so that
any asymmetries that arise are driven by the coupled carbon–
climate response itself), improves on this status quo (though
the separation of lagged effects remains a challenge).

Here, we propose a compact set of experiments uniquely
designed to cleanly assess carbon–climate dynamics relevant
for mitigation. Our objectives are 3-fold:

– Re-assess the transient climate response to cumula-
tive CO2 emissions: assess the response of temperature
change and land/ocean carbon dynamics as a function of
cumulative emissions, which are the independent vari-
able of the experiment.

– Assess the Zero Emissions Commitment across models
on multiple timescales: systematically measure the un-
realized warming that continues after all CO2 emissions
have been halted (again, in an experiment where emis-
sions are the independent variable), through assessment
of ZEC after 50, 90, 100 and 200 years.

– Explore climate reversibility potential: assess the im-
pacts of global-scale carbon removals, assessing the
hysteresis in the relationship between climate and cu-
mulative CO2 emissions.

Regional and component responses require further study
beyond the scope of the globally aggregated analysis pre-
sented here. Studies in preparation will consider in detail the
commitment and reversibility of ocean heat uptake, regional
climatology and land carbon dynamics.

2 Flat10MIP experiment design

Sanderson et al. (2024) proposed four new experiments
(Fig. 1) that would form part of a standard diagnostic suite for
carbon-emissions-driven behavior in multi-model compari-
son activities such as CMIP. These experiments assess be-
havior under sustained constant carbon emissions, immedi-
ate cessation of emissions and climate reversibility under an
idealized continuous climate restoration pathway where all
emissions are removed by the end of the simulation (Fig. 1).
Here, flat10MIP simulates three of the four experiments pro-
posed in (Sanderson et al., 2024) using CMIP6 generation
models, as a pilot study in preparation for CMIP7. Below, we
briefly describe the experiments as conducted in flat10MIP
and recommendations for a protocol in CMIP7 and beyond.

2.1 Experiments in flat10MIP

2.1.1 esm-flat10

The esm-flat10 experiment would serve as an emissions-
driven experiment to diagnose the transient climate response
to cumulative CO2 emissions (TCRE), which is the warm-
ing from pre-industrial levels observed after the emission
of 1000 PgC in a transient scenario. The esm-flat10 experi-
ment would branch from a stable esm-piControl simulation,
with a constant annual prescribed anthropogenic flux of car-
bon of 10 PgC yr−1 into the atmosphere, with globally ho-
mogenous emissions. In esm-flat10, the 1000 PgC threshold
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Figure 1. Experiment design. (a) and (b) show annual and cumulative carbon emissions as a function of time for the four experiments.
(c) shows global mean surface temperature derived from cumulative emissions, assuming a perfectly linear TCRE relationship, with expected
temperature evolution assuming cumulative emissions proportionality using the IPCC AR6 WGI best TCRE estimate (solid line, 1.65 °C per
1000 PgC) and likely range (shaded area, 1.0–2.3 °C per 1000 PgC) (IPCC, 2023b).

would occur in year 100 – such that TCRE could be esti-
mated as the time average between global mean warming in
years 90–110, sampling over internal variability in this pe-
riod. As such, we refer to TCRE derived from esm-flat10 and
1pctCO2 as T100 yr and T1000 PgC, respectively. The protocol
for esm-flat10 is to continue emissions at 10 PgC yr−1 for the
duration of the experiment. In this ensemble, 150 years were
considered to allow the simulation to reach 2× pre-industrial
CO2 concentrations in most cases (allowing for a wide range
of plausible land and ocean carbon uptake). However, for fu-
ture experiments in CMIP7 and beyond, a 300-year or longer
esm-flat10 would be useful to explore potential nonlinearities
in response to higher cumulative emission levels, which have
been observed in some models (Schwinger et al., 2022).

2.1.2 esm-flat10-zec

The esm-flat10-zec experiment serves as an emissions-driven
experiment to diagnose ZEC, which is the additional warm-
ing seen a certain number of years after the abrupt cessation
of emissions. The esm-flat10-zec experiment would branch
from year 100 of the esm-flat10 experiment, with an imme-
diate cessation of emissions, and the system is then left to
evolve for 220 years. ZEC50 is calculated as the average
temperature change relative to that when emissions cease,
averaged over a 21-year period, 50 years after the cessation
of emissions (i.e., years 140–160). ZEC90 is similarly cal-
culated using years 180–200. For CMIP7 and beyond, we
recommend 300 years for esm-flat10-zec to allow for longer
timescale comparisons with esm-flat10-cdr.

2.1.3 esm-flat10-cdr

The esm-flat10-cdr experiment serves as an emissions-driven
experiment to diagnose the response of the climate sys-
tem to reducing, and ultimately reaching, net-negative emis-
sions and will provide a measure of climate reversibility
when all cumulative anthropogenic emissions are removed
(i.e., all cumulative emissions and removals sum to zero)

at the end of the experiment. The esm-flat10-cdr experi-
ment would branch from year 100 of the esm-flat10 exper-
iment, with a linear ramp down of emissions (from a starting
point of 10 PgC yr−1) of −0.2 PgC yr−1 – such that net-zero
emissions are achieved in year 150 and a negative flux of
−10 PgC yr−1 is achieved in year 200. This negative emis-
sion flux of −10 PgC yr−1 would then be held constant from
years 200–300, such that, by year 300, cumulative emissions
from the start of the simulation would be zero. A 20-year ex-
tension follows, keeping the emissions at zero. For CMIP7
and beyond, we recommend 300 years for esm-flat10-cdr to
allow for better evaluation of system dynamics after the ter-
mination of negative emissions.

2.1.4 esm-flat10-nz

We propose a final experiment for CMIP7 and beyond (not
conducted here, but noted for its relevance), i.e., esm-flat10-
nz (Sanderson et al., 2024), which branches from esm-flat10-
cdr in year 150 at the point at which the simulation reaches
net-zero CO2 emissions, keeping emissions at zero there-
after. Such an experiment would provide a proxy for warm-
ing commitment after a gradual semi-idealized emission re-
duction to net zero and would provide additional information
on ZEC. We recommend that such an experiment should run
ideally for 250 years to allow for comparison of long-term
dynamics with esm-flat10-zec and esm-flat10-cdr. Such an
experiment could help differentiate the response of the sys-
tem to negative emissions in esm-flat10-cdr from the delayed
response to positive emissions and would provide a counter-
point to the abrupt emissions termination seen in esm-flat10-
zec – providing an idealized scenario that might provide a
more policy-relevant estimate of ZEC dynamics, reaching net
zero after a period emissions reduction.

The esm-flat10-cdr experiment allows for a number of
simple idealized diagnostics that are relevant to the net-zero
transition and the response of the system to net-negative
emissions (Fig. 2). Like ZEC, each of these metrics is a mea-
sure of the path dependence of the temperature to the cu-
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Table 1. Experiment design for emissions-driven diagnostic runs, detailing the branch point, length and configuration of the experiments
as conducted in flat10MIP (present study). The CMIP7 recommended protocol includes run lengths and experiments suggested for future
multi-model comparisons, including esm-flat10-nz, which is not conducted in this study.

Experiment Branches from Years (this paper) Years (CMIP7
recommended
protocol)

CO2 emissions Diagnostic
metrics

esm-flat10 esm-piControl 150 years (from year 0
to year 149)

300 years 10 PgC yr−1 constant
emissions, globally
homogenous flux

TCRE

esm-flat10-zec esm-flat10
(branch at start
of year 100 of
esm-flat10)

220 years (from year
100 to year 319)

300 years (from
year 100 to year
399)

Constant 0 PgC yr−1 ZEC50
ZEC90
ZEC100
ZEC200

esm-flat10-cdr esm-flat10
(branch at start
of year 100 of
esm-flat10)

220 years (from year
100 to year 319)

300 years (from
year 100 to year
399)

– Linearly declining emissions
by 2 PgC/decade from
10 PgC yr−1 (year 100) to
−10 PgC yr−1 (year 200)
– Constant −10 PgC yr−1

(years 200–299)
– Zero emissions for years
300–319

TNZ
TR1000
TR0
tPW

esm-flat10-nz∗ esm-flat10-cdr
(branch in year
150)

– 250 years (from
year 150 to year
399)

0 PgC yr−1 constant

mulative emissions relationship and thus would have a value
of exactly 0 if global temperature response exactly followed
TCRE proportionality. They include the following.

– Temperature difference at net zero (TNZ): this mea-
sures the error associated with assuming cumulative
emissions proportionality to predict temperatures at net
zero. esm-flat10-cdr reaches net-zero emissions in year
150, with cumulative emissions of 1250 PgC (calculated
from year 1; see Fig. 1). TNZ is calculated as a 21-year
average around year 150 in esm-flat10-cdr (i.e., 50 years
after branching from esm-flat10) minus the expected
temperature at net zero using cumulative emissions pro-
portionality (Tref, which is 1.25 times the esm-flat10-
derived TCRE; see Fig. 2).

– Temperature asymmetry under CO2 removal at
1000 PgC (TR1000): this measures the asymmetry in
warming during positive and negative emissions at the
same net cumulative emissions. It is calculated as a 21-
year average around year 200 in esm-flat10-cdr minus a
21-year average around year 100 in esm-flat10. TR1000
would be a measure of hysteresis in global mean tem-
perature when cumulative emissions return to 1000PgC
on the downward branch minus the warming at the
same cumulative emissions level under esm-flat10. This
could be calculated using a combination of the esm-
flat10 and esm-flat10-cdr experiments for a cumulative

carbon emissions total of 1000 PgC. esm-flat10-cdr
reaches 1000 PgC cumulative emissions in year 200
on the downward branch (see Fig. 1). esm-flat10 itself
reaches 1000 PgC in year 100.

– Temperature asymmetry under CO2 removal at 0 PgC
(TR0): this is a measure of carbon–climate reversibil-
ity when all previously-emitted carbon has been re-
moved from the atmosphere. It is calculated as the av-
erage of years 301–320 in esm-flat10-cdr minus mean
global temperatures in esm-piControl. TR0 is a mea-
sure of hysteresis in the global mean temperature when
cumulative emissions return to zero after a period of
negative emissions. This is calculated using a combi-
nation of the esm-piControl and esm-flat10-cdr exper-
iments. esm-flat10-cdr reaches zero cumulative emis-
sions in year 300 on the downward branch (see Fig. 1).

– Time to peak warming (tPW): this is a measure of the
difference in timing between net zero and peak warm-
ing. It is calculated as the time difference between the
peak value of 20-year smoothed global mean temper-
atures and the point that net zero is achieved in esm-
flat10-cdr (year 150). This metric has a clear policy-
relevant translation as the expected time it will take for
the climate system to achieve maximum CO2-driven
global warming after (or before) reaching net-zero
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Figure 2. Schematic of metrics derived from the esm-flat10-cdr ex-
periment to quantify different aspects of temperature reversibility
under a continuous transition from positive to negative emissions.
Dashed lines correspond to temperature trajectories for a hypothet-
ical case where temperatures do not perfectly follow cumulative
CO2 emissions. GMST denotes global mean surface temperature.

emissions under a smooth positive-to-negative emis-
sions transition.

2.2 Models used in flat10MIP

This ensemble provides a broad range of climate model
structures and components to evaluate emissions-driven cli-
mate reversibility. We include eight CMIP6 generation Earth
system models (ESMs), one CMIP3 generation model, one
intermediate complexity model and the three simple climate
model (SCM) ensembles used in the AR6 IPCC assessment
(Forster et al., 2023). The ESMs and SCMs participating in
this study are listed in Table 2 and more fully described in the
Appendix. Each Earth system model has completed one en-
semble member of each of the MIP experiments (esm-flat10,
esm-flat10-cdr and esm-flat10-zec) – with supporting exist-
ing experiments from CMIP6 (C4MIP, ZECMIP and CDR-
MIP). We note that metrics from Earth system models, un-
like SCMs, are subject to uncertainty arising from internal
variability. We would encourage centers to perform at least
three members of these experiments in CMIP7 to provide
better sampling and estimation of the role of initial condi-
tion uncertainty. For each SCM, approximately 1000 sim-
ulations are completed with simple climate model versions
spanning a range of climate responses consistent with as-
sessed climate uncertainty (using a combination of obser-
vational constraints, IPCC-assessed ranges and ESM data to
constrain the parameter space of the simple climate models
(IPCC, 2023d)).

In this study, we summarize the global mean characteris-
tics of the simulations used to conduct the experiments, while

additional dedicated domain-specific studies will assess re-
gional aspects of transient-emissions-driven response and re-
versibility.

3 Results

Figure 3 illustrates the global temperature response for the
three simulations requested in flat10MIP. Throughout this
section, we refer by default to T100 yr – the warming, in units
K, after 1000 PgC of cumulative emissions (which in esm-
flat10 occurs in year 100). T100 yr is numerically equivalent
to TCRE (units K/1000 PgC) but allows proper considera-
tion of the arithmetic sum with ZECn, also in units K. Sum-
mary metrics, as defined above for each model, are detailed
in Table 2. Figure 3a shows that the range of T100 yr seen in
the ESM ensembles (1.1–2.4 K) is broadly captured by the
SCM ensembles considered in this study, though MAGICC
shows a greater upper bound in T100 yr (10th–90th percentile
of 1.1–2.7 K) relative to FaIR or CICERO-SCM (10th–90th
percentiles of 1.1–2.1 and 1.2–2.1 K, respectively). However,
we see differences in the ZEC50, ZEC90 and reversibility
distributions. The ESM ZEC90 distribution is best captured
by FaIR (ZEC90 range of −0.1 to +0.2 K), whereas MAG-
ICC and CICERO-SCM simulate more negative values (−0.2
to+0.1 K and−0.3 to−0.1 K, respectively). We also see that
two of the three SCM ensembles (MAGICC and CICERO-
SCM) tend to simulate a stronger temperature decline under
negative emissions than seen in any of the ESMs, although
the FaIR ensemble is broadly consistent. The intermediate
complexity model, UVic-ESM, lies within the ESM distribu-
tion for both T100 yr and ZEC90.

3.1 Earth system model responses

Figure 4 illustrates the ESM results in more detail, show-
ing the evolution of a number of climate indicators. In esm-
flat10, emissions are constant at 10 PgC yr−1 – and thus tem-
perature change from pre-industrial to year 100 is a mea-
sure of the transient response to cumulative CO2 emissions.
Figure 4a illustrates the range of transient response in the
context of the assessed TCRE range in IPCC AR6 (1.0 to
2.3 K (1000 PgC)−1) (IPCC, 2023a). The models considered
in the present MIP largely span this range, with values of
TCRE (as calculated from 1pctCO2) from 1.2 to 2.6 K (Ta-
ble 2). The model land sink evolution varies during the ex-
tended esm-flat10 simulations, with some models showing a
saturation of the land sink (HadCM3, UVic, ACCESS) and
others showing continued land uptake throughout the exper-
iment (CESM, NorESM, GFDL, CNRM).

Figure 4b shows how temperatures evolve in esm-flat10-
zec – showing that temperatures remain (approximately) sta-
ble following the cessation of emissions, even though at-
mospheric carbon dioxide concentrations decline. Different
models show a diversity of evolution of land and ocean car-
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Figure 3. Summary results for global mean surface temperature (GMST) response in the trial flat10MIP. Colored lines indicate temperature
change from (a) pre-industrial levels to (b, c) T100 yr (the average temperature in years 91–110 in esm-flat10) in each of the participating
ESMs. Shaded regions refer to the simple climate models’ probabilistic distribution ranging from the 10th to 90th percentiles. This distribu-
tion is shown as violin plots for the last time step of each scenario, where the shading shows the full range of results and the vertical line
indicates the 10th–90th percentiles, with the median in the center. A 20-year moving average is applied to all time series.

bon sinks – with some models (e.g., MPI, GFDL, GISS)
initially absorbing land carbon for the first 20–50 years of
the zero-emissions phase before losing carbon on longer
timescales, while the land sink in other models (UVic, GISS,
HadCM3, UKESM) stabilize the land sink after emissions
cessation. Ocean uptake is more consistent across the ensem-
ble, with all models simulating a continued uptake of carbon
in the ocean during the zero-emissions phase.

The global mean results for esm-flat10-cdr are summa-
rized in Fig. 4c, showing that peak warming can occur ei-
ther before or after net zero (but most models peak be-
fore), as seen in similar experiments (Koven et al., 2023) and
ZECMIP experiments (Jenkins et al., 2022). By the end of
the simulation, some models remain warmer than the pre-
industrial period (CESM, CNRM, ACCESS, UVic), while
some are cooler (GISS, MPI, NorESM, GFDL). All models
are in agreement that peak CO2 concentrations occur before
net zero, and all models predict that the ocean carbon sink
peaks after net zero. All models predict that the cumulative
ocean carbon sink will decline but stay positive. However,
models disagree on the timing of the peak land sink relative
to net zero. GFDL, CESM, NorESM, GISS, MPI and CNRM
show the cumulative land carbon sink peaking after net zero,
whereas HadCM3, UVic and ACCESS show the cumulative
land carbon sink peaking before net zero. At zero cumula-
tive emissions in year 300, models range from the cumulative
land sink being near-zero to being a slight net source of car-
bon over the 300-year period (model range: −50 to 0 PgC),
while all models agree that the cumulative ocean sink is a net
sink (model range: 120–220 PgC).

Figure 5 shows how the rate of carbon emission alloca-
tion to the atmosphere, land and ocean evolves as a func-
tion of time in the different experiments. In esm-flat10, we
observe a transition from an initially high airborne fraction

towards increasing allocation to land and ocean pools, with
the airborne fraction in year 100 ranging between 0.45 and
0.55 across models. This variation arises from inter-model
differences in the representation of land and ocean carbon
uptake processes. For example, some models exhibit sus-
tained terrestrial uptake (e.g., CESM2, NorESM2), while
others (e.g., ACCESS, UKESM) show land sink saturation
or reversal, likely reflecting the interplay between CO2 fer-
tilization (Arora et al., 2020), nutrient availability (Goll et al.,
2012) and warming-induced soil carbon losses (MacDougall
et al., 2020; Wieder et al., 2013). Declining land uptake in
some models may also reflect increasing hydrological stress
or climatic constraints on productivity (Fisher et al., 2019).
During the esm-flat10-zec experiment, atmospheric CO2 de-
clines following cessation of emissions, but models diverge
in whether this drawdown is primarily balanced by land
(e.g., GFDL, CNRM) or ocean (e.g., GISS, ACCESS) up-
take. These differences reflect the distinct timescales and sen-
sitivities of the carbon pools: the land sink responds quickly
to emissions cessation but may decay as CO2 fertilization ef-
fects diminish and heterotrophic respiration increases (Jones
et al., 2013), while the ocean continues to absorb carbon due
to its longer equilibration timescales and sustained pCO2 dis-
equilibrium (Schwinger and Tjiputra, 2018; Tjiputra et al.,
2013) and the model-specific representation of deep ocean
ventilation and carbon transport (Séférian et al., 2024). The
resulting diversity in sink partitioning highlights key model-
dependent feedbacks in the terrestrial biosphere and ocean
circulation, which modulate the climate system’s reversibil-
ity following net zero.

https://doi.org/10.5194/gmd-18-5699-2025 Geosci. Model Dev., 18, 5699–5724, 2025
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Figure 4. ESM results. Columns represent global indicators from ESM simulations running esm-flat10 (left), esm-flat10-zec (center) and
esm-flat10-cdr (right). Panels (a)–(c) show changes in GMST, with the black dashed line and gray shading denoting the central estimate and
range derived from cumulative emissions, assuming a linear TCRE relationship as given in AR6 (TCRE= 1.65 K, likely range of 1.0–2.3 K)
for reference. Panels (d)–(f) illustrate changes in atmospheric CO2 concentrations as a function of time. Panels (g)–(i) show cumulative
carbon absorption by the land surface. Panels (j)–(l) show cumulative absorption of carbon by the ocean over time. The circles for the esm-
flat10-cdr experiments indicate the maximum of each time series. A 20-year moving average is applied for the GMST time series (bold line);
the faint line shows the original data.

3.2 Global response indicators in flat10 and other
experiments

3.2.1 Transient climate response to positive emissions

Figure 6 and Table 2 illustrate the global trajectories and
summary indicators of the ESMs that participated in the ex-
periment set in both esm-flat10 and 1pctCO2 (drawing on
results from Arora et al., 2020). Figure 6a shows that this
compatible emissions time series is time-varying and model-
dependent – with typical behavior showing compatible emis-

sions growing from ∼ 10 PgC yr−1 at the start of the exper-
iment to between 16 and 22 PgC yr−1 at the time at which
cumulative emissions reach 1000 PgC. As such, compatible
cumulative emissions are weighted towards the end of the
experiment – the mean result exceeds 500 PgC in year 39
and 1000 PgC in year 65 (Fig. 6b). Compatible emissions in
1pctCO2 are also significantly greater than current anthro-
pogenic emissions (11.1± 0.8 PgC yr−1 in 2023) (Friedling-
stein et al., 2023).

Figure 7 compares distributions of T100 yr and ZEC com-
puted using the 1pctCO2 and esm-flat10 approaches. We see,

Geosci. Model Dev., 18, 5699–5724, 2025 https://doi.org/10.5194/gmd-18-5699-2025
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5708 B. M. Sanderson et al.: flat10MIP

Figure 5. Evolution of carbon sinks in ESMs in flat10MIP. [Light blue/dark blue/green] shading shows the [airborne fraction/ocean frac-
tion/land fraction] of emissions in each year as a function of time. Gains for each domain are shown in solid colors, while losses are shown in
light dotted colors. The left-hand column shows the fractions for esm-flat10, where emissions total 10 PgC yr−1. The central column shows
results for esm-flat10-zec, where emissions are zero and atmospheric loss is compensated by gains in the land and ocean. The right-hand
column shows esm-flat10-cdr, where removals are balanced by losses from each of the pools.

Geosci. Model Dev., 18, 5699–5724, 2025 https://doi.org/10.5194/gmd-18-5699-2025
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Figure 6. Comparative ESM results for TCRE calculation using 1pctCO2 and esm-flat10, showing (a), (b) compatible [annual, cumulative]
emissions in 1pctCO2 compared with the constant 10 PgC yr−1 flux in esm-flat10. Annual total anthropogenic carbon emissions in 2023
are shown for context. (c, d) show temperature evolution in [1pctCO2, esm-flat10]. Colored lines show global model output from available
ESMs with a 21-year moving average applied. (e, f) show airborne fraction in [1pctCO2, esm-flat10]. Circles show results at the time when
cumulative emissions reach 1000 PgC. Shaded region in (d) illustrates the range of warming according to the IPCC AR6-assessed likely
range of TCRE.

on average, a slight offset such that TCRE estimates in the
ESMs have a value that is an average of 0.12 K greater in
1pctCO2 relative to esm-flat10 (see Table 1, Fig. 7). This is
consistent with Krasting et al. (2014), who found that TCRE
estimated at high emissions rates was greater than that esti-
mated using present-day emissions rates and attributed the
difference to a greater disequilibrium between land/atmo-
sphere and ocean response states when emissions rates are
very high. Similarly, distributions in the simple climate mod-
els MAGICC and CICERO-SCM show that T1000 PgC from
1pctCO2 is on average about 0.1 K greater than T100 yr from
esm-flat10. The third simple climate model, FaIR, shows
comparable values of T1000 PgC and T100 yr (Fig. 7). Given that

probabilistic calibration is performed independently for each
SCM, it is not easy to attribute these differences to structural
differences between the models or to choices of probabilistic
parameter calibration strategy. Figure 8a shows correlations
between T1000 PgC and T100 yr – re-enforcing the small aver-
age offset between the two approaches - though the gradient
of the best fit line is near-unity.

3.2.2 Zero Emissions Commitment

For ZEC, however, we see greater differences between the
concentration-driven approach and the emissions-driven ap-
proach than for TCRE (Figs. 7, 8, 9). In the SCM ensembles,

https://doi.org/10.5194/gmd-18-5699-2025 Geosci. Model Dev., 18, 5699–5724, 2025
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Figure 7. (a) A comparison of T100 yr [flat10] and T1000 PgC [1pctCO2], T100 yr+ZEC50 [flat10-zec]/T1000 PgC+ZEC50 [1pctCO2] (small
transparent points) and T100 yr+Z EC90 [flat10-zec]/T1000 PgC+ZEC90 [1pctCO2] (large transparent points) for ESMs participating in
flat10MIP (red) and ZECMIP (blue, where available). The final point is the multi-model mean for cases where there exist complete runs
for both ZECMIP and flat10MIP [ACCESS, CESM2, NorESM, MPI-ESM and CNRM-ESM2]. (b) For SCMs, violin plots showing distri-
butions of T100 yr, T100 yr+ZEC50 and T100 yr+ZEC90 for esm-flat10 (left) and 1pctCO2 (right).

ZEC50 and ZEC90 are on the order of 25 % smaller if mea-
sured using the flat10-zec protocol relative to the ZECMIP
protocol (this is true irrespective of whether ZEC is positive
or negative, Fig. 8c, d). This is consistent with MacDougall et
al. (2020), who found smaller ZEC in experiments with lower
emission rates up to the point of net zero, proposing that
both warming and carbon cycle responses are closer to equi-
librium. We also note that one SCM, CICERO-SCM, shows
more consistently negative values of both ZEC50 and ZEC90
when quantified via flat10MIP than by ZECMIP (Fig. 8c, d).
ESMs are also consistent with the relationship of ∼ 25 %
smaller absolute magnitudes in ZEC50 and ZEC90, albeit
with larger scatter. Some models (NorESM, CESM2, MPI,
CNRM) in the ZECMIP experiment suggest an apparent
short-term warming pulse following the cessation of emis-
sions, which is less pronounced in the esm-flat10-zec exper-
iment (Fig. 9) – but additional ensemble members are re-
quired to properly quantify this behavior. In the MPI model,

this is consistent with findings that TCRE was higher us-
ing the ZECMIP protocol compared to flat10MIP (Fig. 1d
in Winkler et al., 2024).

It is also evident that total warming measured from
pre-industrial levels 100 years after emissions cease (i.e.,
T100 yr+ZEC90 from esm-flat10 and T1000 PgC+ZEC90 from
1pctCO2) is more consistent between the ZECMIP and
flat10MIP protocols (Fig. 8b) than either TCRE or ZEC90
independently – indicating that total warming following a pe-
riod of emissions followed by cessation is path-independent
in the models considered here. However, we continue to
see in the mean values of the SCM distributions (Fig. 7b)
for MAGICC and CICERO-SCM that T1000 PgC+ZEC90
is ∼ 0.1 K greater in esm-flat10-zec than in esm-1pct-brch-
1000PgC. FaIR is again consistent between the two ap-
proaches, with only a 0.01 K difference between the mean
values. For the ESMs (Fig. 7a), we note that the multi-model
mean T1000 PgC+ZEC90 is 0.05 K greater for esm-1pct-brch-

Geosci. Model Dev., 18, 5699–5724, 2025 https://doi.org/10.5194/gmd-18-5699-2025
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Figure 8. Comparison metrics assessed using the flat10MIP methodology and 1pctCO2-based experiments. ESM summary metrics are
T100 yr, ZEC50 and ZEC90 for esm-flat10 and T1000 PgC and ZEC50 and ZEC90 for 1pctCO2. Filled shapes illustrate values assessed from
ESMs, and pale dots illustrate members of the simple climate model ensembles for (FaIR, MAGICC, CICERO-SCM) in (orange, blue,
purple). Straight lines show the least-squares best fits for the ESMs (black) and SCMs.

1000PgC than T100 yr+ZEC90 for esm-flat10-zec (whereas
the mean T1000 PgC is 0.12 K greater than T100 yr).

Our results in general suggest that the weighting of com-
patible emissions towards the end of the simulation in
1pctCO2, as well as the shorter total time period over which
emissions occur in 1pctCO2 (∼ 70 vs 100 years), has an
impact on both the estimate of TCRE and the transient re-
sponse following cessation of emissions. We tend to see
slightly greater estimated values of TCRE in 1pctCO2, with
most models exhibiting short-term continued warming fol-
lowed by cooling in the decades following cessation of emis-
sions. In contrast, the behavior in esm-flat10-zec exhibits
slightly less warming during the positive emissions phase
and less adjustment afterwards, resulting in lower values for
TCRE and smaller magnitudes (either positive or negative)
of ZEC50 and ZEC90. The finding that ZEC50/90 from esm-
flat10 is lower than ZECMIP estimates is consistent with the
findings of Jenkins et al. (2022), who found that ZEC is mod-
ulated by “average cumulative emissions over the period”, a
metric that is different under the two experimental designs.

3.2.3 Climate reversibility experiments

The global mean results for esm-flat10-cdr are shown in
Fig. 4. The temperature response at year 300 (when cumu-
lative emissions return to zero) shows a range of −0.7 to
+0.5 K, indicating notable deviations from cumulative emis-

sions proportionality with residual warming or cooling de-
pending on the model. Figure 10 illustrates global-scale hys-
teresis in the ESM results, showing the change in global
mean surface temperature as a function of cumulative emis-
sions. Though all models broadly indicate proportionality be-
tween temperature and cumulative emissions, there are some
notable deviations. Many models indicate some hysteresis,
either positive (ACCESS) or negative (GFDL, NorESM,
MPI-ESM), between the upward and downward branches
of the simulation, and some (CESM2, GFDL, CNRM) ap-
pear to show a change in temperature/cumulative emissions
response during the course of the downward branch. Over-
lain as dotted lines on each panel of Fig. 10 is a null hy-
pothesis, informed only by TCRE and ZEC90 from the esm-
flat10 and esm-flat10-zec experiments, that temperatures in
the net-negative emissions period of esm-flat10-cdr might be
explained as a combination of the TCRE · Iem+ZEC terms
(Koven et al., 2022, 2023). This framework explains some,
but not all, of the hysteresis observed; in particular, some of
the models (e.g., GFDL, UKESM) show a larger hysteresis
than predicted by ZEC90, and the TCRE+ZEC framework
does not predict the deviations late in the downward branch
for those models that have such dynamics. Alternative frame-
works such as RAZE (Jenkins et al., 2022) explain other key
features – such as the expectation in a symmetrical exper-
iment such as esm-flat10-cdr that half of the ZEC is man-
ifested at the time of net zero. A unifying explanation for
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Figure 9. Global mean temperature change evolution for ESMs participating in flat10MIP (bold colors), in the context of 1pctCO2 (gray)
and ZECMIP, where comparable simulations with the same model version are available (faded colors). Red lines show the positive emissions
period (10 PgC yr−1 for flat10 (solid red) and 1pctCO2-compatible emissions for ZECMIP), and blue/gray lines show the zero-emissions
period for esm-flat10-zec and esm-1pct-brch-1000PgC, respectively. Horizontal dashed lines show [T100 yr,T1000 PgC] as estimated from
[esm-flat10 (red), 1pctCO2 (gray)].

these frameworks that is accurate both during the net-zero
transition and at timescales significantly before and after re-
mains absent from the literature to date.

Figure 11 indicates the ESM ensemble distribution of tem-
perature evolution in the esm-flat10-cdr, normalized by ex-
pected warming from TCRE. The figure shows that TCRE
proportionality is consistent between models in the ensem-
ble, with a relatively small spread during the constant pos-
itive emissions phase of the experiment. As the emissions
rate reduces and becomes negative, additional spread but no
systematic direction of asymmetry is seen relative to expec-
tations from TCRE alone – and this spread remains constant
throughout the negative emissions phase. We can categorize
this uncertainty as approximately±10 % of TCRE, which re-
mains broadly constant over time during the negative phase.

Figure 12 shows how additional climate indicators vary
with cumulative emissions. Atmospheric carbon dioxide lev-
els are consistently lower on the downward branch, but cu-
mulative land carbon sink hysteresis varies by model – with
some models showing significantly larger cumulative land
carbon sinks on the downward branch (e.g NorESM), while
other models (e.g., GISS, HadCM3LC) show cumulative
sinks proportional to cumulative emissions on both the up-
ward and downward branches. Similarly, all models show a
hysteresis in cumulative ocean sink strength with cumulative
emissions, with between 100 and 200 PgC remaining in the
ocean in year 300 of esm-flat10-cdr.

We identify a number of new metrics (TNZ, TR1000,
TR0 and tPW; Fig. 2, Table 2), which are aimed at captur-
ing aspects of climate reversibility and commitment from the
flat10-cdr experiment. As noted above, each of these mea-
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Figure 10. Global mean temperature relationship with cumulative emissions for the ESMs. A 21-year moving average is applied for the
GMST time series. Arrows show the direction of time, with [red, yellow, blue] lines showing [constant positive, ramp down, constant
negative] phases of the experiment. Black dashed and dotted lines show TCRE · cumulative emissions (Iem) and TCRE · cumulative emis-
sions+ZEC90 for each model, using TCRE and ZEC90 values as calculated from esm-flat10 and esm-flat10-zec.

sures a distinct aspect of potential deviation from perfect
TCRE proportionality and thus, like ZEC, would have a value
of exactly 0 if temperatures were exactly proportional to the
cumulative emissions.

Two of these metrics measure the hysteresis around the
net-zero transition: tPW is the time offset of peak warming
relative to net zero, whereas TNZ is the difference in realized
temperature at net zero relative to what one would predict
through TCRE proportionality. Figure 13 shows how these
metrics relate to each other and to TCRE and ZEC. With the
exception of TCRE, all metrics show a positive correlation
with all other metrics, particularly for SCMs. ESMs show
greater scatter across a number of the pairwise relationships
than the SCMs, reflecting a greater diversity of potential dy-
namics arising from their high complexity than are being
captured in the more parsimonious relationships represented
by the SCMs. For example, in each of the SCM ensembles,
tPW and TNZ are highly and consistently related, but a num-

ber of ESMs (CNRM, GISS, CESM, UKESM) lie outside of
the SCM distributions such that we see peak warming signif-
icantly before net zero with greater warming than one would
expect from cumulative emissions proportionality (contours
in Fig. 13 indicate 90 % of the ensemble distribution; for
tPW vs TNZ, the ESM results lie outside of the 99th per-
centile (not shown)). Similar differences are seen in the rela-
tionship between tPW and ZEC50, with two ESMs showing
peak warming occurring particularly early. This hints at be-
havior in the ESMs that might not be represented in the cur-
rent generation of SCM parameter ensembles. This could po-
tentially be due to an absence of ZEC or reversibility-related
metrics used in the calibration pipelines. Alternatively, this
could potentially be due to a number of different processes,
e.g., ocean circulation processes such as AMOC weakening,
which are not represented in current SCMs (Schwinger et al.,
2022), but larger ESM initial condition ensembles are neces-
sary to have confidence in the ESM metrics in the presence of
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Figure 11. Global mean temperature relationship with cumulative
emissions for the ESM distribution in esm-flat10-cdr, normalized
by TCRE as estimated from esm-flat10. A 21-year moving average
is applied for the GMST time series. Arrows show the direction of
time, with [red, blue] lines showing multi-model mean [positive,
negative] emissions phases of the experiment. [Red, blue] shaded
regions indicate the [10th, 90th] percentiles of the ESM ensem-
ble temperature distribution at a given cumulative emissions level.
Black dashed line shows the normalized relationship between cu-
mulative emissions and warming.

internal variability. This discrepancy could potentially be re-
lated to studies that have found inconsistencies between the
temporal dynamics of the ocean heat and carbon uptake in
ESM and SCM ensembles (Séférian et al., 2024) and would
benefit from further investigation.

Another pattern that emerges in Fig. 13 is the greater cor-
relation captured in the short-term metrics (ZEC50, TR1000)
than in the longest-term metric (TR0) that shows greater
scatter with the ZEC and other reversibility metrics. This
high correlation (e.g., between ZEC50 and TR1000 and
between ZEC100 and TR1000) has an important implica-
tion: most of the uncertainty present in the reversibility of
GMST (although not necessarily regionally or in other met-
rics; Schleussner et al., 2024) under an idealized overshoot
scenario will also be present under zero emissions at the same
level of cumulative emissions that avoids the overshoot.

4 Summary and conclusions

The finding of a near-linear relationship between cumulative
carbon emissions and global mean temperature (Allen et al.,
2009; Matthews et al., 2009) enabled recent climate policy
to link desired limits for warming to an allowable budget of

remaining carbon emissions. The years following have seen
regular efforts to quantify remaining carbon budgets for the
Paris Agreement goals (Lamboll et al., 2023), with scenarios
built on this premise (Rogelj et al., 2019a), and refinement
in the treatment of how to incorporate non-CO2 emissions
into this framework (Cain et al., 2019; Jenkins et al., 2018;
Mengis and Matthews, 2020).

Further, an increased understanding has emerged that the
TCRE relationship is an approximation, owing to fortuitous
cancellation of terms in heat and carbon uptake in many mod-
els, but this cancellation is not perfect, and a Zero Emissions
Commitment (ZEC; Palazzo Corner et al., 2023) may result
in residual carbon-induced warming (or cooling) even if car-
bon emissions are held at net zero. This ZEC effect may
cause peak temperatures to be seen before or after net zero
(Koven et al., 2023). Building confidence in this timing is
important; if peak temperatures occur after net zero, this may
create climate adaptation challenges that might not otherwise
be planned for if simple TCRE proportionality is used to pre-
dict warming outcomes.

Operational methods of quantifying TCRE and ZEC to
date have utilized existing default Earth system model diag-
nostic experiments that have focused on the response of the
Earth system to a prescribed concentration pathway – gen-
erally an exponential increase of 1 % per year – as an ide-
alized proxy for climate change induced by carbon dioxide.
It is then possible to calculate compatible CO2 emissions,
specific to a given model, to frame the output of these exper-
iments in terms of emissions (Jones et al., 2016; Liddicoat et
al., 2021) and calculate TCRE, with branched zero-emission
experiments to calculate ZEC (Jones et al., 2019).

Although these experiments have been highly useful in
helping to quantify TCRE and ZEC efficiently using mostly
pre-existing simulations, the use of a concentration-driven
diagnostic run has limitations (Gregory et al., 2015; Mac-
Dougall, 2019) – emissions are specific to a given model and
are highly weighted towards the end of the experiment, when
emissions rates greatly exceed present-day or projected lev-
els. As such, given that experiments to measure ZEC seek
fundamentally to measure subtle, second-order effects, there
is an argument for new diagnostic experiments that cleanly
measure TCRE, ZEC and climate reversibility using repro-
ducible and cleanly interpretable benchmarks.

In this study, we have demonstrated the utility of a new
set of idealized experiments that can be applied with both
complex and simple Earth system models. This “flat10”
framework is based upon a small number of variants around
a simple core experiment, where emissions are fixed at
10 PgC yr−1 for 100 years, a rate that approximates cur-
rent anthropogenic carbon emissions and conveniently to-
tals 1000 PgC after 100 years of simulation, with the tem-
perature in year 100 thus providing a direct assessment of
TCRE. Branch experiments from this point can measure the
Zero Emissions Commitment (with emissions set to zero in
year 100) and climate reversibility (with an idealized net-
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Figure 12. Climate indicators as a function of cumulative emissions for the ESMs. A 21-year moving average is applied for all time series.

zero and net-negative emissions pathway in which cumu-
lative emissions reach zero by the end of the experiment).
Along with these experiments, we propose diagnostic mea-
sures that serve to measure different aspects of non-TCRE
behavior and how they relate to the likely outcomes of real-
world net-zero and net-negative emissions proposals. These
experiments complement a similar experimental design be-
ing developed and run by the Tipping Point Modeling Inter-
comparison Project, or TIPMIP (Winkelmann et al., 2025).
TIPMIP experiments also follow a prescribed constant CO2
emission pathway, but the emissions are tailored for each
model to result in a common warming rate of 2 °C per cen-
tury. As such, the goal of TIPMIP is to examine the behav-
ior of ESMs at common levels of global warming, while the
goal of the flat10MIP experiments is to examine the behav-
ior of ESMs under common external forcing. Furthermore,
for future experiments using the TIPMIP protocol, the flat
emissions pathway in esm-flat10 will likely provide a more
accurate TCRE estimate for calibrating the emissions rate re-
quired for constant warming rates.

These experiments form part of the “fast track” recom-
mendation for CMIP7, through which the climate change re-
search community will gain a greater understanding of ZEC
and reversibility behavior in the next generation of climate
models. Here, to illustrate the potential for these simulations
to diagnose a broad suite of climate response metrics, we
demonstrate the results of the flat10MIP experiments for a
subset of CMIP6-generation models and the simple climate
models used in the IPCC 6th Assessment Report. We find,
as expected, that TCRE is first-order consistent whether cal-
culated using the 1pctCO2 simulations or using esm-flat10
simulations – but also that the values of ZEC estimated with
1pctCO2 tend to be greater than for esm-flat10-zec, indicat-
ing that the weighting of emissions towards the latter part of
the 1pctCO2 experiment may increase transient warming or

cooling trends, potentially driving a larger ZEC than would
be seen in a realistic emissions scenario.

We also find a large diversity of ESM behavior in the cli-
mate reversibility experiment esm-flat10-cdr, including that
peak warming can occur before or after net-zero emissions
and is not necessarily predictable from a combination of
TCRE and ZEC (consistent with existing studies; Asaadi et
al., 2024) with a range of carbon sink evolutions in differ-
ent ESMs, in both the positive and negative emissions phases
of the experiment. Models strongly disagree on the timing
and amplitude of peak land carbon uptake, some showing
peak uptake decades before and others decades after the net-
zero transition. In addition to the difference in carbon cy-
cle representations, the diverse transient carbon sinks behav-
ior can also be attributed to the difference in ESMs’ pre-
industrial states or initial conditions (Tjiputra et al., 2025).
There is also evidence of state changes during the negative
emissions phase, with some models showing a change in the
rate of cooling per unit carbon removed – potentially indicat-
ing dynamical changes in ocean circulation that might impact
carbon–climate dynamics.

However, in this study, our scope for understanding this
diversity is limited: we present the experimental design for
CMIP7 plus global-scale results from ESMs and SCMs that
are now available to the community. A detailed explana-
tion of the process will be presented in follow-up studies
considering land and ocean dynamical processes from the
flat10MIP ensemble, where we hope for wide community en-
gagement.

We argue that emissions-driven diagnostic experiments are
the cleanest method for diagnosing the response to climate
forcers on a range of relevant timescales. In the future, we
would imagine these experiments becoming elements of a
wider set of idealized, yet policy-relevant emission-driven
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Figure 13. Matrix of relationships between metrics quantified here. Shown are pairwise plots between the following metrics: TCRE (T100yr
for flat10 and T1000PgC for 1pctCO2), ZEC50, ZEC90, ZEC100, tPW, TNZ, TR1000 and TR0. SCM ensembles are shown as contours at the
10th percentile of the joint distribution for each pairwise comparison (such that 90 % of points lie within the contours, with FaIR, MAGICC
and CICERO-SCM in orange, green and blue, respectively). ESMs are shown as individual points. Diagonal panels show histograms (SCMs)
and discrete values (ESMs) for each of the metrics diagnosed here.

experiments that can efficiently categorize either a simple or
complex climate model’s response to climate forcers.

In the present study, this has been limited to a specific tra-
jectory of carbon emissions that has been chosen pragmati-
cally to minimize computational burden. Future understand-
ing would be increased by adding to this archive, in terms
of both larger initial condition ensembles to improve con-
fidence in ZEC and reversibility metrics and perturbed pa-
rameter ensembles in ESMs to understand conditionalities

on model calibration choices, including longer simulations
to understand longer timescales of commitment.

Despite these caveats, the present effort has indicated
that some models exhibit nonlinear and threshold behav-
ior. Further experiments would be required to fully docu-
ment the conditions under which such transitions occur. As
such, future CMIP activities might consider a range of flat-n-
type experiments spanning warming levels and decarboniza-
tion rates to categorize the response of the carbon–climate
dynamics to different types of overshoot pathways. Also,
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as ESMs increasingly seek to represent the response to a
range of activities (land use change, methane and nitrous ox-
ide emissions, among others), it will become necessary to
cleanly categorize the response to each of these in a repro-
ducible fashion – creating a necessity for well-crafted exper-
iments to cleanly represent model responses to non-fossil-
CO2 forcers. A shift towards emissions-driven modeling is
essential to produce relevant climate simulations for increas-
ingly specific emissions pathways referred to in climate pol-
icy, and this requires a new generation of emissions-driven
diagnostic experiments.

Appendix A: Participating models

A1 Earth system models

The flat10MIP experiments are included in the recommended
CMIP7 “fast track” – a subset of experiments highlighted for
particular relevance as input for climate change assessments.
In preparation for this recommendation, a trial model inter-
comparison conducted the esm-flat10 experiment set for a
collection of eight Earth system models from the CMIP6 en-
semble (Eyring et al., 2016) and one intermediate complexity
model.

– ACCESS-ESM1-5 (Ziehn et al., 2020). Atmosphere:
UM7.3 (Walters et al., 2019) at 1.875°× 1.25° resolu-
tion

Ocean: MOM5 (Griffies, 2012) at 1°× 1° resolution

Land: CABLE2.4 (Kowalczyk et al., 2013)

ACCESS-ESM1-5 features a coupled carbon–nitrogen–
phosphorus cycle in the land component (CABLE2.4),
with an ocean provided by the GFDL MOM5 model.

– CESM2 (Danabasoglu et al., 2020).

Atmosphere: CAM6 (Bogenschutz et al., 2018) at 1°
resolution

Ocean: POP2 (Smith et al., 2010) at 1°× 1° resolution

Land: CLM5 (Lawrence et al., 2019)

CESM2 includes updated aerosol–cloud interactions
in CAM6, while CLM5 provides new parameteriza-
tions for carbon and nitrogen interactions in terrestrial
ecosystems, and POP2 emphasizes ocean–ice dynam-
ics.

– GFDL-ESM4 (Dunne et al., 2020).

Atmosphere: AM4.1 (Horowitz et al., 2020) at 1°× 1°
resolution

Ocean: MOM6 (Adcroft et al., 2019)

Land: LM4.1 (Shevliakova et al., 2024)

GFDL-ESM4 uses MOM6 for advanced representa-
tions of ocean circulation and biogeochemical pro-
cesses, with AM4.1 providing a fully coupled aerosol

and cloud interaction system. LM4.1 emphasizes nutri-
ent constraints on land carbon cycles.

– GISS-E2-1-G (Kelley et al., 2020).

Atmosphere: ModelE (Schmidt et al., 2014) at 2°× 2.5°
resolution (Kelley et al., 2020)

Ocean: GISS Ocean v1 at 1°× 1° resolution

Land: The vegetation model is the Ent Terrestrial Bio-
sphere Model (Kim et al., 2015) with a prescribed leaf
area index and a prescribed interannual variation of land
use and land cover (LULC) change; interactive with the
carbon cycle (Ito et al., 2020)

Ocean carbon: NASA Ocean Biogeochemical Model
(GISS version NOBMg, Romanou et al., 2013; Ito et
al., 2020; Lerner et al., 2021)

– HadCM3LC-Bris.

Atmosphere: HadAM3 (Pope et al., 2000), 3.75°× 2.5°
resolution, 19 vertical levels

Ocean: HadCM3L (Cox et al., 2000), 3.75°× 2.5° res-
olution, 20 vertical levels

Land: MOSES-2 (Essery et al., 2003), with dynamic
vegetation and nine plant functional types (Cox, 2001)

Ocean BGC: HadOCC (Palmer and Totterdell, 2001)
marine biogeochemistry with NPZD biology model

HadCM3LC-Bris is based on the HadCM3 climate
model (Gordon et al., 2000), adapted for use with an
interactive carbon cycle by adopting lower ocean res-
olution (Cox et al., 2000) and subsequently modified
slightly for use on Bristol HPC (Valdes et al., 2017).

– NorESM2-LM (Seland et al., 2020).

Atmosphere: CAM6 (Bogenschutz et al., 2018) at
2°× 2° resolution (with modifications)

Ocean: BLOM-iHAMOCC (Tjiputra et al., 2020)

Land: CLM5 (Lawrence et al., 2019)

NorESM2-LM shares land and some atmosphere el-
ements with CESM2 but modifies CAM6 to include
updated aerosol and cloud microphysical schemes and
uses the isopycnal-coordinate BLOM for ocean pro-
cesses, which improves deep ocean mixing simulations.

– MPI-ESM1-2-LR (Mauritsen et al., 2019; MPI, 2024).

Atmosphere: ECHAM6.3 at 1.875°× 1.875° resolution

Ocean: MPIOM (Jungclaus et al., 2013) at 1.5°× 1.5°
resolution

Land: JSBACH3 (Reick et al., 2021)

MPI-ESM1-2-LR utilizes ECHAM6.3, featuring up-
dates in atmospheric chemistry processes, while
MPIOM improves ocean heat transport. JSBACH3 inte-
grates biogeophysical and biogeochemical interactions.
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– CNRM-ESM2-1 (Séférian et al., 2019).

Atmosphere: ARPEGE-Climat version 6 (Roehrig et al.,
2020) at 1.4°× 1.4° resolution

Ocean: NEMO (Madec et al., 2017) version 3.6 at
1°× 1° resolution

Land: ISBA (Decharme et al., 2019)

CNRM-ESM2-1 features NEMO 3.6, which includes
advanced parameterizations of ocean mixing, and
ARPEGE-Climat for atmospheric dynamics, with up-
dates in stratospheric processes and land–atmosphere
coupling through ISBA.

– UKESM1 (Sellar et al., 2019).

Atmosphere: HadGEM3-GA7.1 (Walters et al., 2019) at
1.875°× 1.25° resolution

Ocean: NEMO3.6 (Madec et al., 2017) at 1°× 1° reso-
lution

Land: JULES (Best et al., 2011)

UKESM1 includes JULES, which features dy-
namic vegetation and coupled nitrogen cycles, along
with HadGEM3-GA7.1, which provides improved
stratosphere–troposphere interactions and cloud–
aerosol physics relative to previous versions.

A2 Intermediate-complexity models

– UVic ESCM 2.10 (Mengis et al., 2020).

Atmosphere: 2D energy moisture balance model with
3.6°× 1.8° resolution (Fanning and Weaver, 1996)

Ocean: MOM2 3.6°× 1.8° (Pacanowski et al., 1998)
with thermodynamic-dynamic sea ice model (Bitz et al.,
2001)

Land: Dynamic vegetation with five plant functional
types (Meissner et al., 2003), 14 layers of soil, per-
mafrost (MacDougall and Knutti, 2016) and no N, P
cycle

Ocean: NPZD model with two nutrients (N, P) and the
Fe limitation scheme (Keller et al., 2012).

A3 Simple climate models

We also include simulations from three simple climate mod-
els that provided climate assessments in the IPCC AR6 WG3
assessment (IPCC, 2023c).

– MAGICC6 (Meinshausen et al., 2011).

MAGICC6 is a reduced-complexity model that uses
simplified representations of global carbon cycles and
radiative forcing, allowing for rapid simulation of
emissions-driven climate pathways.

– FaIR (Smith et al., 2018).

FaIR uses simplified equations to model temperature re-
sponses and radiative forcing – using pulse-response as-
sumptions to model carbon and thermal responses to
climate forcers, with flexible configurations that allow
it to mimic the behavior of more complex models in
emissions-driven scenarios.

– CICERO-SCM (Sandstad et al., 2024).

CICERO-SCM is a reduced-complexity model that fo-
cuses on simplified representations of carbon cycle and
climate feedbacks but with extensively developed short-
lived climate forcer parameterizations. It emphasizes
flexibility in handling uncertainties in emissions scenar-
ios and climate sensitivity. Calibration and run-scripts
for Flat10MIP are archived here (Sanderson and Sand-
stad, 2024).

Code and data availability. All code to reproduce
plots in this study is permanently available at
https://doi.org/10.5281/zenodo.15267556 (Sanderson et al.,
2025). All data to reproduce this study are included at
https://doi.org/10.5281/zenodo.15267556 (Sanderson et al.,
2025).
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