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Abstract. Global hydrological models (GHMs) improve our
understanding of water flows and storage on the continents
and have undergone significant advancements in process
representation over the past four decades. However, as re-
search questions and GHMs become increasingly complex,
maintaining and enhancing existing model codes efficiently
has become challenging. Issues such as non-modular de-
sign, inconsistent variable naming, insufficient documenta-
tion, lack of automated software testing suites, and container-
ization hinder the sustainability of GHM research software
as well as the reproducibility of study results obtained with
the help of GHMs. Although some GHMs have been repro-
grammed to address these challenges, existing literature fo-
cuses on evaluating the quality of model output rather than
the quality of the reprogrammed software. To address this
research gap and guide other researchers who wish to im-
plement their existing models as sustainable research soft-
ware, we describe how the most recent version of the GHM
WaterGAP was reprogrammed. The success of reprogram-
ming is assessed based on various software sustainability
criteria and the FAIR4RS principles — findability, accessi-
bility, interoperability, and reusability — since the primary
goal was to improve software sustainability and research re-
producibility, rather than model output quality. Following an
agile project management approach, WaterGAP was rewrit-
ten from scratch in Python with a modular Model-View-
Controller architecture. Due to the switch from C/C + + in
the legacy code to Python, execution time doubled. Our eval-
uation indicates that the reprogramming substantially im-
proved the software’s usability, maintainability, and extensi-

bility, making the reprogrammed WaterGAP software much
more sustainable than its predecessor. The reprogrammed
WaterGAP software can be easily understood, applied, and
enhanced by novice and experienced modellers and is suited
for collaborative code development across diverse teams and
locations, fostering the establishment of a community GHM.
We outline four lessons learned from the reprogramming pro-
cess concerning the sustainability-runtime trade-off, the ap-
plicability of the agile approach, software design patterns,
variable naming, external documentation, and automation.

1 Introduction

Over the past four decades, global hydrological models
(GHMs) have made remarkable progress in process represen-
tation, such as the incorporation of artificial reservoirs and
the differentiation of groundwater and surface water use (Tel-
teu et al., 2021). While the most widely used spatial resolu-
tion of GHMs is still 30 arcmin (0.5°), the demand for more
spatially resolved information has led to GHMs running at
Sarcmin (Eisner, 2016; Florke et al., 2018; Sutanudjaja et
al., 2018), 3 arcmin (Choulga et al., 2024) or even 30 arcsec
(Hoch et al., 2023). Still, further progress is required to im-
prove GHMs, e.g., to better represent human-environment in-
teractions and reduce model uncertainties by improved inte-
gration of model output observations (Burt and McDonnell,
2015; Doll et al., 2024).

As research questions and, thus, GHMs become more
complex, maintaining and further developing an existing
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model code in an efficient manner becomes increasingly
challenging. Similar to other research software, GHMs are
developed by scientists with limited software development
training, time, and funding, and thus lack the software qual-
ity that is required for sustainable research software (Dol et
al., 2023). A recent assessment of the software sustainabil-
ity of global impact models, including nine GHMs, revealed
limited accessibility, low adoption of containerized solutions,
non-modular design, suboptimal comment density (defined
as the number of lines of comment per total lines of code),
and the absence of software testing (Nyenah et al., 2024). In
addition, poor software quality also hinders the reproducibil-
ity of computational research (Do6ll et al., 2023; Reinecke et
al., 2022).

While there are various definitions of sustainable research
software (e.g., Anzt et al., 2021; Katz, 2022; Venters et al.,
2018), the definition by Anzt et al. (2021) provides clear and
measurable qualities that are suitable for evaluating the sus-
tainability of complex research software such as a GHM.
Anzt et al. (2021) define sustainable research software as
software that (1) is maintainable, extensible, and flexible,
i.e., adapts to user requirements, (2) has a defined software
architecture, (3) is testable thus ensuring software compo-
nents function as intended through practices like unit test-
ing, (4) has comprehensive in-code and external documenta-
tion, and (5) is freely accessible, i.e., licensed as open source
with a digital object identifier (DOI) for proper attribution.
In the following, the term “research software” includes the
algorithms, source code files, computational workflows, and
executables developed during the research process or for a
research objective (Barker et al., 2022).

The sustainability of GHMs and the reproducibility of
GHM-based research could be significantly enhanced by re-
programming GHMs using modern best practices (Nyenah
et al., 2024). These include adopting an open-source license,
containerization, implementing a modular architecture, se-
lecting informative variable names, and improving both the
density of comments within the code and external documen-
tation (refers to manuals, guides, tutorials, and any materials
that provide information about your software to users and de-
velopers) (Nyenah et al., 2024). Additionally, applying FAIR
(Findable, Accessible, Interoperable, and Reusable) princi-
ples for research software (FAIR4RS) improves research
software reusability, reproducibility, as well as transparency
(Barker et al., 2022; Wilkinson et al., 2016). For instance,
the eWaterCycle (Hut et al., 2022) platform has taken initial
steps toward implementing FAIR principles for hydrological
models, enabling other researchers to use these models with-
out significant support from the original authors.

Efforts to improve comprehension, usage, maintenance,
extension, and collaborative development have led to the re-
programming of several models, including the global land
surface model CLASSIC (Melton et al., 2020) and GHMs
such as HydroPy (Stacke and Hagemann, 2021) and PCR-
GLOBWRB (Sutanudjaja et al., 2018). However, the publica-
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tions on these reprogrammed software focus on evaluating
the performance of the model output and lack a detailed ac-
count of the reprogramming process and an evaluation of the
success of the reprogramming effort.

To address this research gap and support the reprogram-
ming of other legacy software, this paper provides a detailed
account of the reprogramming process of GHM WaterGAP
(Doll et al., 2003; Miiller Schmied et al., 2024) and the char-
acteristics of the new software. Reprogramming aimed to en-
hance the software’s sustainability for long-term research use
by a broad community and to increase the reproducibility of
the computational research performed with this model. The
success of the reprogramming was assessed by comparing
the legacy code to the reprogrammed version according to
numerous specific sustainability criteria and FAIR4RS prin-
ciples. It is important to note that our goal in reprogramming
WaterGAP was not to improve the model output; the repro-
grammed software was to result in the same model output
as the latest WaterGAP version 2.2e (Miiller Schmied et al.,
2024).

The paper is structured as follows: Sect. 2 introduces the
WaterGAP model and the legacy software. Sustainability cri-
teria for research software and methods relevant to this study
are presented in Sect. 3. After describing the reprogram-
ming process in Sect. 4, we present the architecture and
new features of the reprogrammed software in Sect. 5. In
Sect. 6, we evaluate the new WaterGAP software against se-
lected sustainability criteria and the FAIR4RS principles and
share lessons learned for others undertaking similar efforts
(Sect. 7). Our conclusions follow in Sect. 8.

2 The WaterGAP model
2.1 Model description

WaterGAP is a global-scale water resources and use sim-
ulation model that has been developed since 1996 (Miiller
Schmied et al., 2024). Covering all land areas of the globe
except Antarctica, it has been widely used in studies of
water scarcity, drought, and ecologically relevant stream-
flow characteristics, considering the impacts of human water
use, reservoirs, and climate change (Miiller Schmied et al.,
2021) as well as inter-basin transfers (Florke et al., 2018).
Model results have contributed to various reports by the In-
tergovernmental Panel on Climate Change (IPCC) (Jiménez
Cisneros et al., 2014) and the State of Global Water Re-
sources Report by the World Meteorological Organization
(WMO) (WMO, 2024). WaterGAP is also a key participant
in the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP) where the focus is on both model evaluation (and
or improvement) and the impact assessment of anthropogenic
changes such as human water use or climate change (Frieler
and Vega, 2019; Heinicke et al., 2024; Warszawski et al.,
2014). WaterGAP output is utilized in diverse research fields,
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e.g., life-cycle assessment (Boulay et al., 2015; Schomberg et
al., 2021) or freshwater ecology (Datry et al., 2021; Domisch
et al., 2017; Schneider et al., 2017). Furthermore, simulated
water storage anomalies were used by geodesists to evaluate
GRACE (Gravity Recovery and Climate Experiment) satel-
lite observations of Earth’s dynamic gravity field (Kusche et
al., 2009; Schmidt et al., 2006), and streamflow estimates
were used to analyze thermal and hydropower production
(van Vliet et al., 2016; Wan et al., 2022).

WaterGAP exists as two main model families distin-
guished by their spatial resolutions. WaterGAP 2 operates
at a 30 arcmin resolution, with the latest version being 2.2e
(Miiller Schmied et al., 2024), while WaterGAP 3 uses a finer
5 arcmin resolution (Florke et al., 2018). WaterGAP 2 and 3
also differ with respect to some algorithms and input data.
WaterGAP consists of five sectoral water use models for ir-
rigation, livestock, domestic, manufacturing, and cooling of
thermal power plants. These water use models are interlinked
through the Groundwater Surface Water Use (GWSWUSE),
which computes potential net abstractions from groundwa-
ter and surface water based on the output of the water use
models. These net abstractions are an input to the Water-
GAP Global Hydrology Model (WGHM) (Miiller Schmied
et al., 2021, 2024). All models combined are referred to as
the WaterGAP model. WGHM computes both vertical water
balance, encompassing the canopy, snow, and soil compo-
nents, and lateral water balance, which includes groundwater,
lakes, artificial reservoirs, wetlands, and rivers. The basin-
specific calibration of WGHM distinguishes WaterGAP from
other global hydrological models (Miiller Schmied et al.,
2021). It aims at reducing the bias of simulated streamflow
by using a simple method (see Sect. 5.2 of Miiller Schmied
et al., 2024) to match the long-term mean annual observed
streamflow at 1509 basin outlets, covering 55 % of the global
drainage area (excluding Antarctica and Greenland). This pa-
per only concerns the reprogramming of the GWSWUSE and
WGHM models operating at the 30 arcmin resolution. The
reprogrammed code, however, is flexible enough to also run
at higher spatial resolutions if the appropriate inputs are sup-
plied and processes specially tailored to the 30 arcmin reso-
lutions are adapted (e.g., the snow processing routine and the
water usage distribution to neighbouring cells).

2.2 Characteristics of the legacy software

The legacy software of WaterGAP was primarily written in C
and C++ by PhD students and postdoctoral researchers with
diverse programming backgrounds. The software is hosted
on a private GitHub repository under the GNU Lesser Gen-
eral Public License (LGPL v3.0). The available model doc-
umentation includes two model description papers (Miiller
Schmied et al., 2021, 2024), as well as a number of docu-
ments not available to the public. The latest WGHM version
(WaterGAP 2.2¢) is archived on Zenodo (https://zenodo.org/
records/10026943, last access: 28 August 2025). However,
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this version is limited to review only and cannot be executed
by external users. The source code of the latest WGHM ver-
sion contains 25204 lines of code across 85 files. The link-
ing model GWSWUSE contains 3550 lines of code across 14
files.

In addition to lacking comprehensive and easily accessible
external documentation, the sustainability of the legacy soft-
ware is constrained by several software characteristics. The
software has a limited modular structure, consisting of a col-
lection of “script-like” files, with some having up to 6000 to-
tal lines of code (Nyenah et al., 2024). The WGHM code has
a non-optimal comment density (approximately 25 %) com-
pared to the recommended 30 %—60 % (Nyenah et al., 2024).
This makes the model code challenging to read and maintain.
In addition, the WaterGAP software uses the non-standard
binary file format called UNF for input and output data in-
stead of the now widely used NetCDF format. Climate forc-
ing data, for example, must first be converted to UNF before
use. This introduces additional complexity, potentially cre-
ating barriers and susceptibility to errors for external users
unfamiliar with the format or conversion tools. No unit tests
(verifying that individual code components work correctly)
exist to check if algorithms produce outputs within accept-
able ranges. Furthermore, WaterGAP does not utilize con-
tainerization technology, which makes the reproduction of
research results more difficult.

3 Methods

3.1 Software evaluation against sustainability criteria
and the principles of findability, accessibility,
interoperability, and reusability for research
software

We assessed research software sustainability using nine in-
dicators from Nyenah et al. (2024; their Table 1), including
five indicators of best practices in software engineering and
four indicators of source code quality. Table 1 describes each
indicator, its rationale, and how we evaluated both the legacy
and reprogrammed models against it.

For the FAIR4RS principles (Barker et al., 2022), we eval-
uated only the reprogrammed model against the eleven core
principles. For findability (F), we verified whether the soft-
ware is assigned a globally unique and persistent identifier
(F1) and described with rich metadata (F2). We aimed at
ensuring that the metadata included the software identifier
(F3) and was searchable and indexable (F4). Regarding ac-
cessibility (A), we checked whether the software is retriev-
able via a standardized protocol (A1) and the metadata re-
main accessible even if the software were to become un-
available (A2). To evaluate interoperability (I), we examined
whether the software reads, writes, and exchanges data fol-
lowing domain-relevant standards (I1) and includes quali-
fied references to other objects (I2). For reusability (R), we
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Table 1. Sustainability indicators used for the assessment of the legacy and reprogrammed research software.

No. Indicators

Description

Best practices in software engineering

1 External Effective use and ease of software maintainability rely on clear and extensive external documentation
documentation (Nyenah et al., 2024; Wilson et al., 2014). We evaluate the availability and extensiveness of external
documentation by analyzing the following components: installation guide, tutorials, user guide,
reference guide (in-depth descriptions of the model processes and the governing equations), glossary,
contributor guide, and frequently asked questions (FAQs).
2 Version control and Version control facilitates change tracking and supports collaboration (Wilson et al., 2014). We
automation evaluate the use of version control considering the choice between public and private repositories,
which significantly affects the repository’s transparency and accessibility. We also checked the
automation practices, focusing on automated testing, linting, and documentation to ensure consistent
quality and maintainability.
3 Use of an open-source We determine the presence of open-source licenses by reviewing license files within repositories and
license comparing them with licenses approved by the Open Source Initiative (OSI)
(https://opensource.org/licenses, last access: 28 August 2025) (Nyenah et al., 2024).
4 Number of active This indicates the capacity for ongoing software development and maintenance (Nyenah et al., 2024).
developers We measured this by counting individuals who made commits to the codebase of the legacy and the
reprogrammed code within the past two years (2023-2024).
5 Containerization Containerization packages software with its full runtime environment, ensuring consistent execution

across different systems (Niist et al., 2020). This helps overcome reproducibility issues caused by
variations in operating systems or dependencies. We simply check whether a containerization solution
is provided.

Source code quality

6 Public availability of
an (automated) testing

We adopted the approach proposed by Nyenah et al. (2024), in using the public availability of an
(automated) testing suite as a proxy for the ability to test software functionality. While test coverage is

suite the ideal metric, current coverage tools do not support Python functions with Numba decorators, which
compile Python functions into machine code for performance (GitHub issues, 2025; Lam et al., 2015;
Stack Overflow, 2025).
7 Compliance with Coding standards are industry best practices that guide software development for consistency and

coding standards

quality (Wang et al., 2008). To assess compliance, we used CLion static analysis for the legacy
C/C++ code, which flags issues (including errors, typos, and warnings) based on the C/C++ Core
Guidelines but does not provide a score to interpret results. A higher issue count generally indicates
lower reliability or maintainability. For the reprogrammed code, we used Pylint to check compliance
with PEP-8 conventions. Pylint assigns a score up to 10 for perfect compliance, with no lower bound
(Molnar et al., 2020; Nyenah et al., 2024).

8 Comment density

We compute comment density as the ratio of the number of lines of comments to the total lines of code
(TLOC). TLOC refers to the sum of source lines of code (SLOC) and comment lines. SLOC, in turn,
represents the non-blank, non-comment lines within a source file. We regard a comment density of

30 % to 60 % as optimal (Arafat and Riehle, 2009; He, 2019; Nyenah et al., 2024).

9 Modularity

We evaluate the modularity of the software by the TLOC per file metric, with an ideal range of 10 to
1000 TLOC per file (Nyenah et al., 2024). This metric reflects the organization of source codes into
manageable modules, each focusing on a specific functionality. Modules within this range are typically
easier to read, modify, and reuse.
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checked whether the software is given a clear and accessible
license (R1), includes qualified references to other software
(R2), and meets community standards (R3).

3.2 Differences between the outputs of the
reprogrammed and legacy software

To verify that the reprogrammed software computes the same
model output as the legacy software unless an algorithm was
changed to improve the computation, we compared the glob-
ally averaged water balance components and the global maps
of renewable water resources, i.e., the long-term differences
between precipitation and actual evapotranspiration in the
30 arcmin grid cells (Miiller Schmied et al., 2021). Both were
calculated using the WGHM output of the legacy and the re-
programmed software. It is important to note that WGHM
output also reflects the difference in GWSWUSE output as
the potential net abstractions computed by GWSWUSE are
incorporated into WGHM. The model setup for calculat-
ing the water balance components was “anthropogenic” (i.e.,
considering human water use and artificial reservoir manage-
ment), with a 5-year spin-up and the simulation period 1901—
2019. The water balance analysis focuses on key water bal-
ance components and the long-term average volume balance
error for five distinct periods: 1961-1990, 1971-2000, 1981-
2010, 1991-2019, and 2001-2019. Results for the legacy
code are provided in Table 4 of Miiller Schmied et al. (2024).
Renewable water resources were calculated over the pe-
riod 1981-2010 by running the model in the naturalized
mode, i.e., without considering human water use and reser-
voir operations, as detailed in Sects. 4.7.3 and 7.2.1 of Miiller
Schmied et al. (2021). It is worth noting that the total wa-
ter resources value can be negative if the evapotranspiration
value in a cell is greater than the precipitation value, due
to inflow from upstream cells. Output differences for many
other model output variables were checked during the repro-
gramming process but are omitted here for clarity.

4 The reprogramming process

The reprogramming process for WaterGAP was enabled by
a grant that financed one full-time PhD and a student assis-
tant over three years, in the framework of the ReWaterGAP
project. Figure 1 shows the timeline of the reprogramming
process, emphasizing the important stages from the project
proposal to the release of the reprogrammed software. It also
presents the agile project management method we applied in
the reprogramming process. Section 4.1 to 4.6 provide fur-
ther details on how these tasks were implemented and man-
aged throughout the project.

4.1 Project planning and setup

After the writing and approval of the project proposal, a pre-
liminary meeting was held in November 2021 among six se-
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nior developers. These are late-stage PhDs, PostDocs, and
Professors with extensive expertise in the WaterGAP model
and are also actively involved in developing and maintain-
ing the software. The goal of the meeting was to draft the
software requirement specification document (see software
specification document in the Supplement) (Fig. 1), which
outlined the technical and functional goals of the project
(see Sect. 4.4). This was followed by a kickoff meeting to
launch the project officially and a project briefing to align the
product owners and development team (see Sect. 4.2) on the
project’s purpose (comprehensively transforming the GHM
WaterGAP into sustainable research software) (Fig. 1). As
part of the planning and setup phase, a GitHub repository
was established for version control, and a software documen-
tation webpage was created.

4.2 Agile project management

An agile methodology was adopted for software develop-
ment, dividing the work into iterative sprints (Hema et al.,
2020) (Fig. 1). The project spanned 31 sprints, 27 of which
were focused on code development (see Sect. 4.5), with the
remainder allocated for reading project materials. Each sprint
lasted approximately one month, except for one instance in
2023 when a sprint was extended to two months due to task
complexity (Fig. 1). We adopted an agile process inspired by
the well-known SCRUM method (Hema et al., 2020), which
was tailored to the available resources.

The agile team was comprised of two product owners
(the two professors leading the WaterGAP model develop-
ment, Petra D61l and Martina Florke), three developers (PhD
student Emmanuel Nyenah reprogramming WGHM, Master
student Lasse Nissen reprogramming GWSWUSE, and stu-
dent assistant Leon Miihlenbruch writing the external doc-
umentation), and the software development advisor (Robert
Reinecke). The software development advisor guides the de-
velopers on best practices, architecture, and code quality to
ensure robust and sustainable software. At the beginning of
each sprint, the agile team met to review past progress, with
presentation and discussion of completed tasks, and review
selected or newly defined user stories (software functional-
ity from the user perspective) which served together with the
uncompleted tasks as the basis for the sprint backlog for the
next sprint (Fig. 1). User stories were selected from a com-
prehensive list of user stories and features (product backlog)
outlined in the software requirement specification document,
which the senior developers wrote before the project started.
These user stories were assigned sprint points based on esti-
mated difficulty and time required. A selection of user stories
with a combined total of 10 sprint points was then selected
to form a sprint backlog. Progress during each sprint was
monitored through weekly meetings between the PhD stu-
dent and the software development advisor, which provided
an opportunity to address challenges encountered during the
sprint (e.g., improving runtime of snow module). The agile
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Figure 1. Timeline and agile project management setup for reprogramming of WaterGAP in the ReWaterGAP project.

process allowed the team to maintain steady progress toward
the project goals and adapt to new requirements and chal-
lenges.

4.3 Tracking programming effort and progress

The use of agile project management facilitated the track-
ing of progress on user stories implementation and the cor-
responding effort (working hours) during code development.
While the reprogramming of GWSWUSE was not included
in the initial reprogramming scope, it was later included
without the setup of user stories. As a result, progress track-
ing and effort measurement are only limited to the repro-
gramming of WHGM (see Excel file in the Supplement). 24
major user stories for the WGHM were implemented across
27 sprints and organized into three main phases, the pro-
gramming of the vertical water balance, the lateral water bal-
ance and the calibration routine (Fig. 2). The vertical wa-
ter balance phase involved implementing key WGHM algo-
rithms such as net radiation, Priestley-Taylor evapotranspira-
tion (PET), and processes related to canopy, snow, and soil.
A total of 14 user stories were completed over five sprints,
requiring 872 working hours (Fig. 2). The lateral water bal-
ance phase focused on the implementation of groundwater,
lake, and wetland algorithms, among many others. In total,
eight user stories were completed during 18 sprints, requir-
ing 1800 working hours. A substantial portion of this ef-
fort (816 working hours across seven sprints) was dedicated
to developing the surface and groundwater abstraction algo-
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rithm (see Sect. 5). The Calibration phase focused on assess-
ing the global water balance and implementing the calibra-
tion scheme. This phase was completed within seven sprints,
requiring 608 working hours.

4.4 Software requirement specification

The software requirement specification document outlines
the intended purpose, features, and functionality of the soft-
ware, providing guidance for the development process (see
software specification document in the Supplement). Key el-
ements of the document are described below.

Software architecture and programming language: The se-
lected architectural framework is the Model-View-Controller
pattern, which organizes software components into coher-
ent and modular structures with well-defined functionalities
(Guaman et al., 2021). In this architecture, the Model com-
ponent manages the core logic, encompassing hydrological
equations and assumptions, and manages data for computed
results. The Controller component controls the data flow into
the Model and facilitates user interactions (e.g., by a con-
figuration file). The View component presents outputs in
various formats tailored to user needs, such as saving out-
put in NetCDF format. Section 5 shows a detailed Model-
View-Controller diagram of WGHM, illustrating the class,
function, and package interactions. The reprogrammed soft-
ware is written in Python, chosen for its readability, exten-
sive community support, and a rich ecosystem of libraries
(Oliphant, 2007). The Python ecosystem includes packages

https://doi.org/10.5194/gmd-18-5635-2025
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(b)

Phase User stories

Vertical water balance  Create configuration module
Create climate forcing and static data handling module

Update configuration module to run different climate change
scenarios as input

Implement net radiation algorithm

Implement potential evapotranspiration (Priestley-Taylor)
algorithm

Implement canopy algorithm
Implement snow algorithm

Implement soil algorithm

Remaining Working Hours

Unit testing
Code quality check (bugs, code format, variable names, units)
Peer code review

Read through ISIMIP quality control tool as a benchmark for the
spatial testing tool

Improve runtime of snow module algorithm

NetCDF output chunking for large runs

Lateral water balance  Implement groundwater algorithm

Implement local lakes and wetlands algorithm

Implement global lakes and wetlands and river algorithm
Develop a daily snapshot restart feature

ReWaterGAP-ISIMIP QA tool integration and peer code review
Implement surface and groundwater abstraction algorithm
Improve ReWaterGAP runtime, unit testing

Water use balance assessment

Calibration Global water balance assessment

Implement Calibration scheme, unit testing , code review

Figure 2. Cumulative plot of remaining user stories and corresponding working hours over 27 sprints (a), and a table of 24 major user stories
(b, see Excel file in the Supplement), grouped by their corresponding phases: vertical water balance, lateral water balance, and calibration.

such as Xarray for handling NetCDF files and NumPy for ef-
ficient array computations, as well as tools that enable paral-
lel computing (Harris et al., 2020; Hoyer and Hamman, 2017,
Virtanen et al., 2020).

Flexible spatial resolution and restart at prescribed ini-
tial state: The new software should allow flexible changes in
spatial resolution (30 or 5 arcmin). The software should be
programmed in such a way that model states, such as stor-
ages and parameters, can be saved to disk. A new model run
can then be started from this prescribed initial state. This
feature has applications for near-real-time monitoring, en-
semble forecasts, and data assimilation (e.g., with Parallel
Data Assimilation Framework (PDAF)) (Miiller Schmied et
al., 2024).

Data formats and user interfaces: The reprogrammed soft-
ware should have a configuration file in JSON format, while
climate forcing and model outputs are stored in NetCDF for-
mat. Using the NetCDF format avoids the need for conver-
sion tools, making the software easier to use and reducing
complications. Users interact with the new software through
a command-line interface (CLI) and a configuration file that
can be used to change the model inputs and outputs.

User stories: The software requirement specification doc-
ument also outlines what the software should do from the
user’s perspective, known as the user story (Curcio et al.,
2018; Dimitrijevi¢ et al., 2015). The use of user stories en-
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sures that the needs and expectations of users are met. An ex-
ample user story is “As a user, I want the canopy storage and
related fluxes to be functionally implemented, based on the
model’s description paper of WaterGAP2.2d and 2.2e.”. The
requirement specification document includes multiple user
stories that capture various functional and non-functional re-
quirements. Functional requirements specify what the soft-
ware should accomplish (e.g., compute canopy algorithm)
(Curcio et al., 2018), while non-functional requirements are
quality constraints such as correctness, reusability, and main-
tainability that the software must meet (Curcio et al., 2018;
Muhammad et al., 2023).

4.5 Best practices for code development

The following best practices were implemented during the
code development process in order to ensure software sus-
tainability.

Meaningful and consistent variable names. A critical as-
pect of the code development process was the establishment
of consistent variable names. This was achieved through col-
laboration between developers, product owners, and the soft-
ware development advisor. The resulting variable names are
descriptive, logical, and uniform across the entire code, sig-
nificantly enhancing readability and facilitating future main-
tenance. Examples of variable names can be found on the
ReWaterGAP project documentation (Nyenah, 2025¢).
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Version control and automation. The project uses Git for
version control, with GitHub as the platform for hosting the
codebase. The source code of the reprogrammed software is
open source and licensed under LGPL v3.0. Throughout the
development process, bugs identified in the codes through
peer code reviews were tracked using GitHub’s issue tracking
tool, which facilitates transparent tracking of progress and
resolution. GitHub Actions were implemented to automate
documentation updates, linting, and testing processes. This
automation ensures that documentation remains current and
maintains code quality through automated quality checks and
testing prior to commits, significantly reducing the likelihood
of errors in the main codebase.

In-code documentation. Both inline comments and doc-
strings were used for in-code documentation. Algorithms
within the source code were carefully documented with in-
line comments, explaining the steps and assumptions under-
lying key processes. Docstrings, on the other hand, are struc-
tured comments at the function, class, and module levels that
provide a general description of the code’s purpose, param-
eters, and return values (Wiggins et al., 2023). They offer
a quick reference for developers interacting with the code
and can be extracted by documentation generation tools like
Sphinx to create external documentation. The in-code docu-
mentation was done with the aim of making the code compre-
hensible for new developers and easy to maintain over time.

External documentation. In addition to in-code documen-
tation, a comprehensive web-based documentation (Nyenah,
2025¢) was generated using GitHub Actions, which facili-
tates the creation of automated workflows, and the Sphinx
library (Sphinx Project, 2025), which is designed for cre-
ating well-structured documentation. The automated work-
flow is set up through a YAML script that utilizes Sphinx
library to automate the documentation process. A key fea-
ture of Sphinx is its ability to extract docstrings from classes
and functions, enabling developers to expand on these doc-
strings with additional content such as figures, equations, un-
derlying assumptions, and explanations of solution methods
(both analytical and numerical). The Sphinx-generated doc-
umentation for the reprogrammed software includes an in-
stallation guide, tutorials, a user guide, a reference guide, a
contributor’s guide, frequently asked questions (FAQs), and
a glossary. This web-based documentation is automatically
updated in tandem with source code modifications, ensuring
that the documentation consistently reflects the current state
of the software. Automation for external documentation is
currently only available for WGHM and that of GWSWUSE
will be added later.

Logging. A logging system was added to the project to
help with error handling and debugging. Errors and warnings
are recorded in a log file, making it easier to troubleshoot is-
sues. The logging system can be adjusted to different user
needs, controlling the amount of detail saved. Additionally,
the reprogrammed software can be run in debug mode, show-
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ing detailed information on the screen and in the log file. This
helps users easily spot and fix problems during use.

Specialized library. Given the computationally intensive
nature of WGHM software, minimizing its run time was cru-
cial. To achieve this, the Numba library was used. Numba is a
Just-in-Time (JIT) compiler for Python that can significantly
enhance performance by converting Python functions into
machine code at runtime (Lam et al., 2015). Numba operates
using function decorators defined as wrapper functions that
inform Numba regarding the specific functions that should
be compiled into machine code (Lam et al., 2015).

Containerized solution for WGHM. A Dockerfile follow-
ing best practices for writing Dockerfile (Niist et al., 2020)
is available to create a containerized environment for run-
ning WGHM. This Dockerfile sets up a Python environment
with the required packages and clones the source code of
the reprogrammed software during the build of a Docker im-
age (executable file). Once the image is built, it can be run
(the running instance of the image is known as a container;
Niist et al., 2020). A simple tutorial on running the WGHM
Docker container can be found on the ReWaterGAP project
documentation (Nyenah, 2025c¢).

4.6 Quality assurance

Automated unit testing. Unit testing is a software develop-
ment process in which individual pieces of code (units) are
tested to ensure they function as expected (Pajankar, 2022).
If the code is changed at a later stage, e.g., as new features
are added, the automated execution of the test reduces the
likelihood that something is “broken” without the developers
noticing it. Furthermore, tests can help to develop new soft-
ware features according to a specification, also called test-
driven development, in which tests are written before im-
plementing the software component (George and Williams,
2004). The code to test a function is called a unit test or test
case, while a collection of test cases forms a test suite. Unit
testing was conducted for the reprogrammed WGHM and
GWSWUSE components using the Python unittest frame-
work (Pajankar, 2022; Python, 2025). An example of unit
tests written for the canopy storage module (Nyenah, 2025¢)
contains

1. a setup function (lines 25-44) that generates randomly
plausible input data for testing and stores plausible min-
imum and maximum daily benchmark values (Miiller
Schmied et al., 2021),

2. afirst unit test (lines 47—76) which runs the canopy stor-
age module for one day and compares this result against
the benchmark, and

3. a second unit test (lines 79-120) to verify whether the
canopy storage module raises an error message when it
encounters negative precipitation values in a grid cell.
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The complete suite of tests for the reprogrammed WGHM
software and that of the reprogrammed GWSWUSE are pub-
licly available on GitHub (Nissen, 2025b; Nyenah, 2025d).
To automate the execution of test suites, a GitHub Actions
workflow has been created using a YAML script. An exam-
ple script is found on Github (Nyenah, 2025b). Automation
for testing is currently only available for WGHM, while au-
tomated testing of GWSWUSE will be added later. To ensure
the testing of model functionality, new tests must be added to
the existing test suites whenever new process algorithms are
introduced. Expanding on existing tests, for example, to test
additional edge cases, is the first task we recommend when
onboarding new developers into an existing project.

Peer code review. To enhance code quality, three
hackathon-style peer code review sessions were organized.
During these events, eight WaterGAP developers examined
the WGHM codebase, executed the software, and actively
sought out bugs. These sessions also evaluated the clarity of
external documentation, ensuring that it was comprehensi-
ble and user-friendly. In addition, several weekly meetings
involving developers and the software development advisor
were dedicated to code reviews.

Linting. To maintain consistency and readability across the
code, the reprogrammed software code was checked against
PEP-8 conventions, which define the style guidelines for
Python code (van Rossum et al., 2001). The Python library
Pylint was employed to assess the code for potential bugs
and deviations from these conventions. Linting is also auto-
mated and an example script is available on GitHub (Nyenah,
2025a). Automation for linting for is currently only available
for WGHM.

Comparison of legacy and reprogrammed software output.
We verified that the reprogrammed software produces similar
outputs to the legacy software, as demonstrated in the global
water balance and analysis of renewable water resources (see
Appendix).

5 Architecture and new features of the reprogrammed
software

Software architecture defines how different components of
the software interact with each other (McConnell, 2004).
When components are designed to be modular, they form
a coherent structure with well-defined functionality. This
makes it easier to extend, modify, and test individual compo-
nents. As a result, good architecture helps improve software
quality and long-term maintainability.

In Fig. 3, the Model-View-Controller (MVC) architectural
pattern for the reprogrammed WGHM software is shown in
its low-level implementation. (Gamma et al., 1994; Guaman
etal., 2021). The run_watergap module coordinates the entire
model workflow. It manages process initialization and daily
time-stepping to perform computations. The Controller pack-
age is responsible for handling configuration-related tasks.
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The Config_handler() function processes information from
configuration files, which includes paths to input data such
as climate forcing and static datasets, as well as runtime set-
tings like the simulation period and the type of run (e.g., nat-
uralized or anthropogenic). This information is passed into
classes such as ClimateForcing and StaticData, which read
the specified input files and prepare the data for use in the
model. For instance, the ClimateForcing class accesses and
processes precipitation and temperature data, while Static-
Data processes data for land cover and other static variables.

The Model package implements all hydrological processes
organized into vertical and lateral water balance components.
In the reprogrammed WGHM, each storage compartment is
designed as a separate Python module. The VerticalWater-
Balance class coordinates hydrological processes such as the
calculation of net radiation and potential evapotranspiration
(PET) using the Priestley-Taylor algorithm (although other
PET schemes can be easily incorporated), canopy, snow, and
the soil water balance. The class uses its calculate() function
to manage these computations and obtain the resulting stor-
ages and fluxes through the ger_storages_and_fluxes() func-
tion. Also, the LateralWaterBalance class addresses horizon-
tal water movements via calculate() function which further
calls the river_routing() function. This involves the simu-
lation of storage compartments like groundwater, lakes and
wetlands, reservoir-regulated water bodies, and rivers. It sim-
ilarly retrieves all associated storages and fluxes through its
get_storages_and_fluxes() functions. Model parameters in
NetCDF format are also processed here. The NetCDF for-
mat not only facilitates easy visualization of parameter dis-
tribution but also enables convenient parameter modification
using libraries like Xarray (Hoyer and Hamman, 2017).

The View package processes the outputs generated by the
Model. It extracts storages and fluxes through the get_ stor-
ages_and_fluxes() functions of the VerticalWaterBalance and
LateralWaterBalance classes. Outputs are then converted to
base units and saved as NetCDF files. NetCDFs are en-
riched with metadata, which comply with ISIMIP conven-
tions (ISIMIP, 2025).

As anew feature in the reprogrammed WGHM, we revised
the algorithm governing surface water demand satisfaction
and its impact on return flows to groundwater. The legacy
code lacked sufficient in-code and external documentation to
enable code comprehension. After discussing the underlying
conceptual model with the product owners, we developed an
improved and consistent algorithm. For more details about
the new abstraction algorithm, readers can refer to WGHM
model documentation (Nyenah, 2025¢).

The reprogrammed GWSWSUE component follows a
similar MVC architecture (see Fig. S1 in the Supplement).
The source code is available on GitHub (Nissen, 2025a).
As part of the reprogramming process, several new features
were added to the GWSWUSE. The reprogrammed software
includes the modification of model equations to enable the
calculation and write-out of potential sectoral net abstrac-
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controller model

Config_handler() VerticalWaterBalance

calculate()
get_storages_and_fluxes()

ClimateForcing StaticData

open_mfdataset()
self.land_cover
self.humid_arid

open_mfdataset()
self.precipitation
self.temperature

LateralWaterBalance

calculate()
river_routing()
get_storages_and_fluxes()

run_watergap.py

I,i

| river_routing()
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calculate_net_radiation()

priestley_taylor_pet()**

net_radiation : float

Net radiation accordingto |

Mdiller Schmied et al.,
2016., Unit: [W m~2]

potential_evap : float
Potential evapotranspiration
based on Priestly-Taylor
algorithm, Unit: [mm/day]

canopy_water_balance()

canopy_storage : float
Updated daily canopy
storage, Unit: [mm]

soil_water_balance()

surface_runoff : float
Surface runoff from land,
Unit: [mm/d]

snow_water_balance()

; snow_melt :float

Snow melt, Unit: [mm/d]

save_netcdf_parallel()

groundwater_discharge : float
Updated daily groundwater
discharge, Unit: [km?3/d]

storage : float
Updated daily surface
waterbody storage, Unit: [km?]

4
view
CreateandWriteVariables groundwater_balance() lake_wetland_water_balance() reservior_regulated_lake_water_balance() river_water_balance()
base_units() streamflow : float

gwr_reservior : float
Groundwater recharge from reservoir
and or regulated lake , Unit: [km3/d]

Daily streamflow,
Unit: [km?3/d]

** Other potential evapotranspiration algorithm can be used

Figure 3. Model-View—Controller (MVC) architectural pattern of the reprogrammed WGHM software at the package, class, and function
levels. The Controller package manages the configuration and input data (e.g., climate time series and static data), the Model package
contains core hydrological processes, and the View package handles the saving and presentation of model outputs in NetCDF format. Classes

are represented with capitalized names, and functions are denoted by lower-case names ending with parentheses.

tions from groundwater and surface water, and the sectoral
return flows to groundwater and surface water, while the
legacy GWSWUSE code only provided total net abstractions
from groundwater and surface water. Moreover, additional
optional model settings were added in the reprogrammed
GWSWUSE that enable an improved and updated modelling
of irrigation water use, including both water abstractions and
consumptive use (i.e. abstracted water that evapotranspirates
during use; Miiller Schmied et al., 2021).

Most importantly, the reprogrammed GWSWUSE can
now optionally handle the input of a new variant of the irriga-
tion water use model GIM (Miiller Schmied et al., 2021) that
uses an updated dataset of the time series of area equipped
for irrigation (AEI) in each grid cell to compute the con-
sumptive irrigation water use on the AEIL It then imple-
ments recent information on country values of area actually
irrigated (AAI) and AEI available from AQUASTAT (https:
/Iwww.fao.org/aquastat/, last access: 28 August 2025) for the
time period 1964-2020 to compute consumptive irrigation
water use on the AAI since 1901. While the old gridded AEI
dataset covered the period from 1900 to 2005 (Siebert et al.,
2015), the new gridded data incorporates new data for 2000
to 2015 (Mehta et al., 2024). Consumptive irrigation water
use on AAI in the period 1901-2015 is computed by mul-
tiplying the gridded output of GIM by the country-specific
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ratio of AAI-to-AEI, while results for the period 2016-2020
are computed in reprogrammed GWSWUSE by multiplying
the AAI-to-AEI ratio for 2015 by the ratio of AAI in the spe-
cific year to the AAI in 2015. Irrigation after 2020 is han-
dled in the new GWSWUSE like 2020. (Miiller Schmied et
al., 2021). Another newly included option is an alternative
computation of irrigation water abstractions from groundwa-
ter. Instead of a globally valid water use efficiency of 0.7,
the user can select that the water use efficiency for irrigation
with groundwater is not less than the country-specific water
use efficiency for irrigation with surface water. For more de-
tails on these new features and the overall functionality of
the new GWSWUSE software, please refer to the external
documentation (Nyenah, 2025c) and Fig. S2.

6 Evaluation against sustainability criteria and the
principles of findability, accessibility,
interoperability, and reusability for research
software

The reprogrammed WGHM and GWSWUSE software
demonstrate significant improvements in software engineer-
ing practices and source code quality compared to the legacy
software. They include a more comprehensive external doc-
umentation, which was absent in the legacy software (Ta-
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ble 2). 46 out of 64 participants of a user survey on the
reprogrammed WGHM agreed (with 32 out of 64 strongly
agreeing) that the provided external documentation clearly
explained the code (Fig. S7). While the legacy and repro-
grammed software use GitHub for version control, the latter
is publicly accessible and includes automation (currently for
WGHM) for documentation, testing, and linting (Table 2).
The reprogrammed software provides containerization (cur-
rently for WGHM), which was unavailable for the legacy
software (Table 2). Regarding active development over the
past two years, both the reprogrammed and legacy WGHM
software have seen ongoing development, with three active
developers working on the reprogrammed version and four
developers maintaining the legacy version. Research projects
continue to rely on the legacy WGHM codebase; thus, de-
velopment activities are expected to continue until a smooth
transition to the reprogrammed software is achieved. In con-
trast, no active development has occurred for the legacy
GWSWUSE model in the past two years.

Regarding source code quality, the reprogrammed WGHM
includes a publicly available automated testing suite, which
ensures components of the software function as intended (Ta-
ble 2). The reprogrammed software programs comply with
Python PEP-8 coding standards, with a Pylint score of 9.40
(out of 10) for WGHM and 9.65 for GWSWUSE. In con-
trast, the legacy software contains several warnings, typos,
and errors when evaluated against C/C+-+ Core guidelines,
leading to potential issues like poor code readability and dif-
ficulty in maintenance (Table 2). Comment density has im-
proved for WGHM from 21 % in the legacy software to 47 %
in the reprogrammed software, improving readability and en-
abling easier maintenance (Table 2, Fig. S3a). This aligns
with the user survey evaluating the reprogrammed WGHM’s
Priestley-Taylor PET code snippet, which indicated high lev-
els of code readability and modifiability (see Sect. S2 in the
Supplement). However, the comment density in GWSWUSE
decreased from 50 % to 26 %, even though it was sufficient
for code comprehension. This decline is partly because de-
velopers in the legacy version of GWSWUSE recorded file
history in the headers, which increased the number of com-
ment lines. Based on the modularity metric, the legacy soft-
ware programs include several files that exceed the recom-
mended range of 10—-1000 TLOC per file (see Fig. S3b). The
reprogrammed software has a modular structure, keeping
TLOC per file within the recommended limits (see Fig. S3b).

The reprogrammed software aligns with the eleven main
FAIR4RS principles. It has a versioned DOI from Zenodo
(FAIR4RS principle F1, Barker et al., 2022), along with
rich metadata such as web-based documentation (F2) that
includes the DOI (F3). Metadata is searchable and index-
able (e.g., via a search engine) (F4). The software can be
downloaded from both the GitHub repository and Zenodo
(Al), and the metadata will remain accessible even if the
software becomes unavailable on Zenodo (A2). The soft-
ware uses data types (NetCDF) for input, output, and data
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exchange that are widely used in the global hydrological and
impact model community (I1). The software includes qual-
ified references to other objects (e.g., climate forcing data)
(I2). It is published under a Lesser General Public License
v3.0 (R1). The code also includes qualified references to
other software, such as various Python libraries (e.g., Xar-
ray, Numpy, Numba) (R2), and the software meets domain-
relevant community standards (e.g., variable naming conven-
tion from ISIMIP) (R3).

7 Lesson learned

When reprogramming WaterGAP, we made four key obser-
vations that we hope can guide others in their efforts to im-
prove the sustainability of their research software.

7.1 Software sustainability and runtime trade-off

A more sustainable software may have negative runtime con-
sequences in the short term. Considering sustainable research
software indicators and the FAIR4RS principles in the repro-
gramming of the legacy code has enhanced the software qual-
ity, extensibility, reproducibility, and long-term sustainability
of WaterGAP. Unfortunately, the transition from C/C++ in
the legacy software to Python, an interpreted language, has
approximately doubled the WGHM runtime. This is to be
expected as numerical computations in Python can be 3-10
times slower compared to C/C++ (Cai et al., 2005). The av-
erage runtime for a standard run on an AMD EPYC 7543
processor with 3.7 GHz is about 7-8 min per simulated year
for the reprogrammed software, compared to 3—4 min for the
legacy software. Considering that this may lead to critical
runtime-related constraints for model calibration and ensem-
ble methods, such as those used for sensitivity analysis and
ensemble forecasts, is the choice of Python justifiable?

To reach this runtime, we already utilized the optimiza-
tion library Numba, which compiles parts of the Python code.
Python is generally slower in terms of runtime performance
compared to C/C++ since it uses interpretation instead of
compilation (Cai et al., 2005). Compiled code is translated
into machine code by a compiler before execution, result-
ing in a standalone executable file that can be run directly
by the processor. On the other hand, interpreted code is exe-
cuted line by line by an interpreter during runtime, meaning
the code must be interpreted every time it is run. Compiled
code generally executes faster but often requires a separate
compilation step and may be less portable. In contrast, in-
terpreted code is typically more portable but executes more
slowly. The pure Python implementation of the GHM Hy-
droPy model is three times slower than the version with a
routing scheme written in Fortran (Stacke and Hagemann,
2021).

However, Python generally produces more readable, less
error-prone, and more maintainable code than C++, pri-
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Table 2. Sustainability indicators for the legacy and reprogrammed WGHM Software.

No. Indicator Legacy WGHM & GWSWUSE Reprogrammed WGHM & GWSWUSE
Best practice in software engineering
1 External documentation No Yes
2 Version control and automation  Yes, GitHub (private), Yes, GitHub (public),
No automations available Automation for documentation, testing,
and linting (currently for WGHM)
3 Open-source license LGPLv3 LGPLv3
4 Number of active developers WGHM =4, GWSWUSE =0 WGHM =3, GWSWUSE =1
5 Containerization No Yes (currently for WHGM)

Source code quality

6 Public availability of an No
automated testing suite

Yes (currently only for WGHM)

7 Compliance with coding Several code violations: WGHM (~ 280 Yes, WGHM Pylint score = 9.40/10,
standards warnings, ~ 3600 typos, 140 errors), GWSWUSE Pylint score =9.65/10
GWSWUSE (~ 70 warnings, ~ 860 typos,
5 errors)
8 Comment density WGHM =21 %, GWSWUSE =50 % WGHM =47 %, GWSWUSE =26 %
9 Modularity No Yes

marily due to its simpler syntax, dynamic typing, automatic
memory management, and higher-level abstractions (Bal-
reira et al., 2023; Johnson, 2025; Prechelt, 2000). These fea-
tures reduce the likelihood of errors and allow developers
to express complex ideas more concisely. Python’s extensive
standard library and ecosystem further enhance maintainabil-
ity by reducing the need for custom code. In contrast, C++’s
more complex syntax and manual memory management can
lead to more errors and harder-to-maintain code. Most scien-
tists lack the necessary skills to produce high-quality C++
code and are unlikely to follow any best practices (Reinecke
et al., 2022). We believe that the benefits of Python regarding
code quality outweigh the runtime increase. The switch from
C/C++ to Python makes it easier for scientists, particularly
those with restricted programming experience, to understand,
modify, extend, and maintain a complex model. Slow code
can always be made fast with better hardware, but hardware
cannot fix bad code and unsustainable software.

7.2 Agile process benefits in academic settings

Agile principles offer significant benefits in academic soft-
ware development. The agile development process, along
with the use of user stories, was essential to our reprogram-
ming effort, enabling iterative improvements through contin-
uous feedback. Specifically, Agile supports flexibility in in-
corporating evolving research questions and enables effec-
tive progress tracking. For example, tracking progress al-
lowed us to monitor the number of user stories completed
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within each sprint, the time invested, and the remaining tasks
to be tackled in the upcoming sprint. Such tracking helped
us assess whether we were on track to complete the over-
all project within the required timeframe. Tools such as task
boards and backlogs provide transparency and help man-
age workflows efficiently. This is particularly important in
academic settings where timelines are often constrained and
team composition can change frequently.

Agile’s emphasis on regular communication helps align
the efforts of diverse contributors, including students, re-
searchers, and supervisors (the “project owners”), ensur-
ing everyone stays informed and coordinated throughout
the project. User stories helped ensure that the software
features matched the scientific requirements of WaterGAP.
Through sprint reviews and retrospective meetings (see
Fig. 1), we collaboratively reviewed various user stories to
assess whether changes in conceptualization and hence al-
gorithms are needed. For example, we revised the algorithm
governing surface water demand satisfaction due to the lim-
ited documentation available. During these meetings, we also
discuss efficient technical solutions for some user stories,
such as improving the runtime of the snow module and en-
hancing the overall runtime of the WGHM software. These
discussions not only enabled conceptual alignment but also
allowed us to find efficient technical solutions, incorporating
input from product owners and the software development ad-
visor. Despite these advantages, we faced several challenges.
Estimating the time needed to complete user stories proved
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difficult, and coordinating an agile process with only a few
developers in an academic setting was somewhat challeng-
ing. Nevertheless, we recommend this approach for other re-
programming projects, as it supports timely and user-focused
development and helps the team stay updated on progress.

7.3 Code architecture and design practices

Following best practices in software design to develop a soft-
ware architecture is pivotal for sustainable software. Defining
software architecture and its modular design is an iterative
process that benefits greatly from the input of software ex-
perts. Architectural decisions play a critical role in determin-
ing how easily a model can be extended or modified without
affecting other software components. For example, imple-
menting each storage compartment as an independent Python
module enabled targeted test development and comprehen-
sive testing before integration. Guidance on software design
patterns can be found, for example, in Gamma et al. (1994).
A modular design also leads to improved readability, as sin-
gle components of a project (e.g., code files) are more con-
cise in their purpose.

Furthermore, good software engineering practice can fur-
ther improve readability and maintainability, such as estab-
lishing meaningful and consistent variable names, which is
also an iterative process that requires collaborative effort
among developers and domain experts. For large projects, it
is common for different developers to use various names for
the same underlying concept, which can lead to confusion
and subtle bugs if only one instance of a variable is updated
(McConnell, 2004). For example, suppose a variable is re-
ferred to as both “storage_canopy” and “canopy_storage” in
different parts of the code. In that case, an update to one vari-
able may not automatically propagate to the other, resulting
in inconsistencies in model output. Importantly, naming con-
ventions need to be documented and enforced through the
product owners and the active development team to guide
future model development and reduce the risk of errors asso-
ciated with ambiguous or inconsistent variable names.

7.4 Documentation and automation during
development

Documentation and process automation during software de-
velopment lead to more sustainable software. Without suf-
ficient documentation, it is challenging to comprehend the
underlying concepts of algorithms and to modify, extend, or
utilize the resulting software. An example is highlighted in
Sect. 5, where we revised the algorithm governing surface
water demand satisfaction and its impact on return flows to
groundwater. The legacy code lacked sufficient in-code and
external documentation, making it hard to understand and to
re-implement. As a result, we developed an improved and
consistent algorithm, accompanied by in-depth documenta-
tion. Throughout the project, we did not copy old documen-
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tation from the previous model; instead, we wrote it from
scratch, keeping in mind the sustainability of the new soft-
ware. We strongly recommend writing model documentation
alongside code development rather than leaving it until the
end. This approach helps capture critical assumptions, such
as those embedded in algorithms, while they are still fresh
in the developers’ minds. Peer review of documentation im-
proves its quality and clarity.

Manually updating documentation, running tests, and lint-
ing can be time-consuming, especially for large software
projects. Developers may even forget to perform these tasks
after modifying or extending the software, which can lead to
buggy or broken code. Automating documentation genera-
tion reduces manual effort and helps keep the documentation
up to date. Similarly, automating linting and testing ensures
that the code functions correctly without the need for con-
stant manual checks.

Automation is key to efficient development and high soft-
ware quality, and we strongly recommend adopting this prac-
tice.

8 Conclusion

This study details how the legacy software of the state-of-
the-art global hydrological model, WaterGAP, was repro-
grammed to create a sustainable research software that can
be efficiently applied and enhanced within the original de-
veloper group and a broader research community. The repro-
grammed software has undergone extensive quality control,
improving its reliability and the transparency of model as-
sumptions. A new modular structure, combined with the use
of the Python programming language, has significantly en-
hanced readability, modifiability, and extensibility. In addi-
tion to the improved software quality, comprehensive docu-
mentation, containerization, and the use of standardized in-
put and output formats make it more accessible to users with
different levels of expertise. The open-source nature of the
software also facilitates comparison of algorithms, consis-
tency checks, and error detection, ultimately supporting the
advancement of hydrological sciences. Ultimately, the repro-
grammed WaterGAP software is expected to facilitate scien-
tific studies that are more reproducible than those conducted
with the legacy software.

With the reprogrammed WaterGAP software, interested
researchers can now be taught at conferences or summer
schools about how to apply and improve the software, thus
expanding the WaterGAP community and advancing global
hydrological modelling. Moreover, the reprogrammed soft-
ware, with its improved modularity, can serve as a teaching
tool for Bachelor’s and Master’s students, helping them learn
how to write and modify algorithms or incorporate new data,
thereby enhancing their understanding of the global hydro-
logical cycle.
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Appendix A: Differences between the outputs of the
reprogrammed and legacy software

Globally aggregated water balance components (km3 yr—')
are shown for the reprogrammed version and the legacy code
in Table Al. As expected, the output of both WGHM ver-
sions is very similar. The most notable changes are in the
actual net abstraction from surface water and groundwater,
which can be attributed to the implementation of a consistent
water abstraction algorithm in WGHM and small variations
in the outputs of the reprogrammed GWSWUSE compared
to the legacy version. Additionally, the use of a new min-
imization algorithm for parameter calibration, the “Powell
method” from SciPy (Virtanen et al., 2020), has contributed
to the overall variations in the water balance components (see
Fig. S4 for the variations in calibrated parameters contribut-
ing to variation in water balance components).

Table Al. Global-scale (excluding Antarctica and Greenland) water balance components (km? yr_l) for the reprogrammed and legacy
WaterGAP global hydrological models, driven by the climate forcing data from gswp3-w5e5. Long-term average volume balance error is
calculated as the difference between component 1 and the sum of components 2, 3, and 8. Values without parentheses correspond to the
reprogrammed WGHM, while values in parentheses refer to the legacy WGHM.

No. Component 1961-1990  1971-2000  1981-2010  1991-2019  2001-2019
1 Precipitation 110637 111279 111350 111574 111655
(110637) (111279) (111 350) (111574) (111 655)

2 Actual evapotranspiration 71404 71839 71904 72091 72158
(71325) (71755) (71 816) (71998) (72063)

3 Streamflow into oceans 39222 39454 39506 39584 39614
(39295) (39530) (39584) (39 666) (39697)

4 Inflow into inland sinks 774 793 794 840 845
(776) (794) (795) (841) (846)
5 Actual consumptive water use 909 1055 1203 1316 1379
(904) (1049) (1195) (1307) (1369)

6 Actual net abstraction from surface water 1000 1140 1282 1386 1435
(1036) (1186) (1338) (1448) (1501)
7 Actual net abstraction from groundwater —91 —85 -79 -70 -56
(—132) (—137) (—143) (—141) (—132)

8 Change in total water storage 11 —14 —-59 —102 —117
17) (—6) (—49) (—91) (—105)
9 Long-term average volume balance error 0.09 0.10 0.11 0.10 0.10
(—0.46) (—0.34) (—0.20) (—0.08) (=0.07)
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Figure Al. Total renewable water resources [mmyr_l] for the
period 1981-2010 computed by the reprogrammed WaterGAP
model (a), percent differences of computed total renewable water
resources between the reprogrammed and legacy WaterGAP model
for the period 1981-2010. Positive values in (b) indicate that the
legacy WGHM estimates higher renewable water resources than the
reprogrammed WGHM.

The differences between the grid cell values of renew-
able water resources between the reprogrammed software
(Fig. Ala) and the legacy software are small. For 98 % of
the global land area, the difference remains within £10 %
(Fig. A1b). More specifically, 72.3 % of the global land area
has renewable water resources that differ within 1 % while
25.7 % of the global land area falls within the range of £1 %
and £10 % (Fig. A1b). Only 0.09 % of the global land area
shows relative difference exceeding =100 %. The differences
between the legacy and reprogrammed versions for renew-
able water resources are only due to variations in calibration
parameters

Code and data availability. The reprogrammed WGHM
model source code as well as Docker file can be found at
https://github.com/HydrologyFrankfurt/ReWaterGAP (last
access: 28 August 2025). An archived release of the re-
programmed WGHM is also made available on Zenodo
(https://doi.org/10.5281/zenodo.14988011, Nyenah et al., 2025a).
The source code of the new GWSWUSE is available on GitHub
(https://github.com/HydrologyFrankfurt/ReGWSWUSE.git,
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last access: 28 August 2025) as well as Zenodo
(https://doi.org/10.5281/zenodo.14988011, Nyenah et al., 2025a).
External documentation for both source codes can be accessed via
(https://hydrologyfrankfurt.github.io/ReWaterGAP/, last access: 28
August 2025). The Python scripts utilized for analysis are available
on Zenodo (https://doi.org/10.5281/zenodo.14988257) (Nyenah et
al., 2025b).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-5635-2025-supplement.
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