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Abstract. The accelerated pseudo-transient (APT) method
is a matrix-free approach used to solve partial differential
equations (PDEs), characterized by its reliance on local op-
erations, which makes it highly suitable for parallelization.
With the advent of the memory-wall phenomenon around
2005, where memory access speed overtook floating-point
operations as the bottleneck in high-performance comput-
ing, the APT method has gained prominence as a power-
ful tool for tackling various PDEs in geosciences. Recent
advancements have demonstrated the APT method’s com-
putational efficiency, particularly when applied to quasi-
static nonlinear problems using Graphical Processing Units
(GPUs). This study presents a comprehensive analysis of
the APT method, focusing on its application to quasi-static
elastic, viscoelastic, and coupled hydromechanical problems,
specifically those governed by quasi-static Biot poroelastic
equations, across 1D, 2D, and 3D domains. We systemati-
cally investigate the optimal numerical parameters required
to achieve rapid convergence, offering valuable insights into
the method’s applicability and efficiency for a range of phys-
ical models. Our findings are validated against analytical so-
lutions, underscoring the robustness and accuracy of the APT
method in both homogeneous and heterogeneous media. We
explore the influence of boundary conditions, nonlinearities,
and coupling on the optimal convergence parameters, high-
lighting the method’s adaptability in addressing complex and
realistic scenarios. To demonstrate the flexibility of the APT
method, we apply it to the nonlinear mechanical problem of
strain localization using a poro-elasto-viscoplastic rheolog-
ical model, achieving extremely high resolutions – 100002

in 2D and 5123 in 3D – that, to our knowledge, have not
been previously explored for such models. Our study con-

tributes significantly to the field by providing a robust frame-
work for the effective implementation of the APT method in
solving challenging geophysical problems. Importantly, the
results presented in this paper are fully reproducible, with
MATLAB code, symbolic Maple scripts, and CUDA C codes
made available in a permanent repository.

1 Introduction

The accelerated pseudo-transient (APT) method represents
a powerful tool in computational science, combining effi-
ciency, scalability, ease of implementation, and a strong the-
oretical foundation rooted in wave physics. The main idea of
the APT method is that instead of solving the original partial
differential equation (PDE), a modified PDE with added in-
ertial terms and attenuation is solved in an iterative fashion
until the inertial terms vanish. In other words, the solution
of the original PDE is an attractor of the transient PDE with
inertia.

The accelerated pseudo-transient (APT) method is de-
signed to iteratively solve a modified version of the orig-
inal partial differential equation (PDE) by introducing in-
ertial and relaxation terms. This modified PDE is repeat-
edly solved until the added pseudo-physical terms vanish,
providing an accurate approximation of the solution to the
original equation. The APT method becomes increasingly
efficient when implemented with exclusively spatially lo-
cal operations, eliminating the need to access global storage
for evolving fields. Unlike the conjugate gradient method,
which requires two global scalar products per iteration, the
APT method advances without global memory operations,
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enhancing computational performance by utilizing fast cache
memory. This method is versatile, applicable to both linear
and nonlinear equations, and distinguishes itself with sev-
eral key attributes. (i) APT is a matrix-free method, enabling
the solution of large-scale 3D problems without the over-
head of matrix storage. (ii) Leveraging only local operations,
APT naturally lends itself to parallelization, making it well-
suited for modern computing architectures. (iii) Its structure
facilitates efficient implementation on Graphical Processing
Units (GPUs), capitalizing on their ability to handle paral-
lel tasks efficiently. (iv) The APT method aligns closely with
the physics of wave phenomena, offering a robust theoretical
framework for rigorous understanding and application.

One of the first pseudo-transient (PT) iterative methods
to solve elliptic PDEs was presented by Richardson (1911).
An improved PT method for elliptic problems, which can
be referred to as the accelerated pseudo-transient (APT)
method, was proposed in the 1950s by Frankel (1950) and
further investigated by Riley (1954) and Young (1972). The
pseudo-transient method is also known as a dynamic relax-
ation (DR) method that was used by Otter (1965) and Otter
et al. (1966). Interestingly, the APT method was also applied
in other branches of science, e.g., in areas related to opti-
mization problems (Polyak, 1964). In geosciences, the APT
method was introduced as the Fast Lagrangian Analysis of
Continua (FLAC) algorithm by Cundall (1976), and it was
applied to solve nonlinear problems and instabilities (Poli-
akov et al., 1993a, 1994). The APT method was recently ap-
plied to model large 3D geophysical problems: coupled two-
phase flow physics represented by solitary porosity waves
(Räss et al., 2019), reaction-driven porosity waves (Omlin
et al., 2017), and thermomechanical ice deformation (Räss
et al., 2020). The APT method was applied to model focused
fluid flow by Wang et al. (2022). Furthermore, Wang et al.
(2022) investigated the physics-based principles underlying
the APT method. A compaction-driven fluid flow and plas-
ticity within porous media were investigated numerically by
Alkhimenkov et al. (2024a). A numerical approach based on
GPUs to model the strain localization in 2D and 3D of a
(visco)-hypoelastic–perfectly plastic medium was developed
by Alkhimenkov et al. (2024b).

The efficiency of the APT method strongly depends on the
choice of the numerical parameters. For simple equations,
such parameters can be derived analytically. This was done
for elliptic equations by analyzing a damped wave equation
(DWE) (Cox and Zuazua, 1994), since the solution of ellip-
tic equations is an attractor of DWE. In optimization prob-
lems the APT method is also known as a PDE accelera-
tion framework (Calder and Yezzi, 2019; Benyamin et al.,
2020). A comprehensive study that provides the optimal val-
ues of numerical parameters of the APT method for various
problems is provided by Räss et al. (2022). Such problems
include diffusion–reaction equations, transient diffusion, in-
compressible viscous shear-driven Couette flow, and the in-
compressible viscous and viscoelastic Stokes equation. Re-

markably, the APT method can be applied to other classes of
problems that are described in the present paper.

The present study provides a comprehensive study of the
application of the APT method to compressible quasi-static
elastic and viscoelastic equations and to coupled hydrome-
chanical problems represented by the quasi-static Biot poroe-
lastic equations.

The novelties of this paper are summarized as follows.

1. A set of optimal parameters tailored for compressible
quasi-static elastic and viscoelastic equations is pre-
sented.

2. Validation against analytical solutions is conducted to
verify the accuracy of the APT solutions of quasi-static
elasticity equations.

3. A new set of optimal parameters specifically designed
for coupled hydromechanical problems, represented by
the quasi-static Biot poroelastic equations, is intro-
duced.

4. Applications of the APT method are presented for
ultrahigh-resolution simulations of 100002 in 2D and
5123 in 3D for poro-elasto-plastic equations.

2 Mathematical formulation: quasi-static elasticity
equations

2.1 General form

Consider a domain V in a three-dimensional Euclidean space
E3 bounded by a regular surface ∂V . The equilibrium equa-
tion (conservation of linear momentum under the conditions
of equilibrium and neglecting body forces) is (Landau and
Lifshitz, 1959; Nemat-Nasser and Hori, 2013)

∇ · σ = 0, (1)

where σ is stress tensor, · is the dot product, ∇ is the del
operator, and ∇· is the divergence operator. The del oper-
ator, ∇, is a vectorial differential operator, denoted by Li
and Wang (2008) and Nemat-Nasser and Hori (2013) as
∇ ≡ ∂iei ≡ ∂ei/∂xi , where ei represents the base vectors
and xi represents the coordinates. The stress tensor σ can
be decomposed into pressure (minus the mean stress), p, and
the deviatoric stress tensor, τ , such that σ =−pI2+τ ,where
I2 is the second-order identity tensor. In a rate formulation,
the constitutive equation (the stress rate–velocity relation) is

∂σ (v)

∂t
= C :

∂ε

∂t
, (2)

∂ε

∂t
=

1
2

(
∇⊗ v+ (∇⊗ v)T

)
, (3)

where C is the fourth rank stiffness tensor (with components
Cijkl), “:” is the double-dot product, ⊗ is the tensor product,
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the superscript T denotes transpose, ∂ε/∂t is the strain rate
tensor, and v is the velocity field. For the elasticity problems,
we consider two different tasks: (i) loading and unloading of
an elastic body and (ii) calculation of effective elastic prop-
erties.

2.2 1D elasticity equations

For simplicity, we consider 1D elasticity equations. We con-
sider the following system of equations:{

∂σxx
∂t
= (K + 4

3G)
∂vx
∂x

0= ∂σxx
∂x
,

(4)

where σxx is the component of the stress tensor, vx is the
velocity, K is the bulk modulus, and G is the shear modulus.
Note that the system in Eq. (4) is a 1D version of the full
system of elasticity in Eqs. (1)–(3).

2.2.1 Problem statement

The system in Eqs. (1)–(3) can be applied to solve many
problems in solid mechanics. Particularly, as an example in
this study, we use these equations to solve two applied prob-
lems: (i) loading and unloading of an elastic body and (ii)
calculation of effective elastic properties.

For the analysis of loading and unloading processes in
an elastic body, the system in Eq. (4) is discretized with a
physical time step 1t , which is intrinsically linked to spe-
cific strain increments. The loading and unloading process
is simulated through a series of time increments, cumula-
tively spanning the total time of interest. This total time cor-
responds to the overall strain accumulation within the elastic
body. In contrast, when computing effective elastic proper-
ties (task ii), the system in Eq. (4) is utilized with a single
loading increment, characterized by a physical time step 1t .
This solitary increment corresponds to a single strain loading
step. Subsequently, the stress and strain fields are spatially
averaged across the model domain. The division of these av-
eraged quantities yields the effective elastic moduli.

2.3 The pseudo-transient method

The pseudo-transient (PT) method is used to solve the system
in Eq. (4) (Frankel, 1950; Räss et al., 2022). The pseudo-
transient method is matrix-free and builds on a transient
physics analogy to establish a stationary solution. The main
idea is that the solution of a quasi-static equation (stationary
process), usually described by an elliptic PDE, is represented
by an attractor of a transient process described by parabolic
or hyperbolic PDEs. Simply put, the equations are written in
their residual form, and pseudo-time derivatives are added to
the left-hand side. The solution is achieved once the pseudo-
time derivatives attenuate to a certain precision (e.g., 10−12).
An overview of the first simplified versions of the PT and
APT methods is given in Appendix A.

2.3.1 The accelerated pseudo-transient method:
modern version

Here we report a modern version of the APT method. The so-
lution of the quasi-static elasticity equations can be achieved
in two steps. (i) Inertial terms are added into the constitutive
relations. (ii) Inertial terms are responsible for wave propa-
gation in pseudo-physical time and space (i.e., hyperbolic),
and viscous terms (treated as a Maxwell rheology) are the
physical quantities. The quasi-static elasticity in Eq. (4) can
then be rewritten with the pseudo-time t̃ ,{

1
H̃

∂σxx
∂t̃
+

1
H
σxx−σ̂xx
1t

=
∂vx
∂x

ρ̃ ∂vx
∂t̃
=

∂σxx
∂x
,

(5)

where σ̂xx is the stress field at the previous physical time
step and C1111 = H̃ ≡H =K+

4
3 G is the P-wave modulus.

For example, the system (Eq. 5) can be solved for the case of
elastic loading and unloading where the stress σ̂xx is nonzero
from the previous physical time step.

For the analysis of the system in Eq. (5) we can omit
σ̂ since the stress σ̂ does not change inside the loop over
pseudo-time t̃ :{

1
H̃

∂σxx
∂t̃
+

1
H
σxx
1t
=

∂vx
∂x

ρ̃ ∂vx
∂t̃
=

∂σxx
∂x
.

(6)

In the system in Eq. (5) (or Eq. 6), ρ̃ is a to-be-determined
numerical parameter. For the analysis of the optimal numeri-
cal parameters, the systems in Eqs. (5) and (6) are equivalent
to each other since the quantity σ̂xx is constant during the
iterations over the pseudo-time t̃ .

The APT version of the expression in Eq. (5) (or Eq. 6),
where the stress tenor is decomposed into the pressure and
deviatoric stress tensor, is provided in Appendix B, and a
discrete version of the system in Eq. (6) is provided in Ap-
pendix C. A MATLAB routine to solve the system in Eq. (6)
is presented in Appendix D.

The system in Eq. (6) is hyperbolic and corresponds to
a wave propagation in a dissipative medium. The numeri-
cal parameters in the system (Eq. 6) determine the attenu-
ation of propagating waves. Our target is to solve elasticity
equations that are quasi-static. Therefore, the goal is to find
optimal values of the numerical parameters that correspond
to the fastest attenuation of propagating waves. More pre-
cisely, once the pseudo-time derivatives (∂σxx/∂t̃ , ∂vx/∂t̃)
in the system (Eq. 6) disappear, the resulting solution of
the quasi-static equations is found. In other words, the so-
lution to quasi-static equations in an attractor of the system
in Eq. (6) at large “pseudo”-timescales. For a particular (op-
timal) choice of the numerical parameters, the attractor solu-
tion can be achieved faster than by using nonoptimal values
of the numerical parameters. In the best scenario, the num-
ber of iterations nI needed to converge to the target solution
is nI ∼ nx , more precisely nI = k nx , where usually k is in
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a range of k ∈ [5;50] (the lower and upper bounds provided
must be considered an approximation). In other words, the
wave travels several times throughout the whole domain be-
fore the corresponding updates of the time derivatives attenu-
ate to a desired precision. If nonoptimal parameters are used,
the solution may not converge for a long computational time.

Let us describe some basic features of the system in
Eq. (6). The “numerical” primary or P-wave velocity can be
defined as

Ṽp =

√
H̃

ρ̃
. (7)

The Courant–Friedrichs–Lewy (CFL) condition for the sys-
tem in Eq. (6) suggests that (Alkhimenkov et al., 2021a)

1̃t ≤
1x

Ṽp
or 1̃t =

C̃1x

Ṽp
, (8)

where C̃ ≤ 1. Note that the system in Eq. (6) is identical to
the damped linear wave equation and the CFL condition (Eq.
8) is just a lower bound (Alkhimenkov et al., 2021a). It is im-
portant to mention that we do not need to know the optimal
values of all the numerical parameters separately. Instead, the
following combinations are needed for the numerical imple-
mentation of the APT algorithm: H̃ 1̃t and 1̃t/ρ̃.

Let us analyze the system in Eq. (6). First, we perform a
dispersion analysis. A solution of traveling waves in dissipa-
tive media can be written as

F (̃t,x)= exp

[
(γ Ṽp t̃ +π ωx i)

Lx

]
, (9)

where γ is the amplitude, ω = 2π f is the angular frequency
(f is the frequency), i is the imaginary unit, and in our de-
scription exp[·] ≡ e(·). The amplification matrix F of this
system is a 2× 2 matrix (Hirsch, 1988; Alkhimenkov et al.,
2021a):

F =

[
γ1x
Lx

−3i π 1x
7 St

−71x St π
3L2

x

1x (St+γ )
Lx

]
, (10)

where the dimensionless parameter, the Strouhal number, St,
is expressed as

St =
Lx

Ṽp1t
. (11)

The discriminant D of the matrix (Eq. 10) is

D =
(
γ 2
+ Stγ +π2

)(1x
Lx

)2

. (12)

Setting D = 0 and solving for γ , we get two roots:

γ1 =−
St
2
+

√
−4π2+ St2

2
, (13)

γ2 =−
St
2
−

√
−4π2+ St2

2
. (14)

The real parts of the roots (γ1 and γ2) control the exponential
decay rate of the solution (Räss et al., 2022); therefore, we
are interested in the minimum of these values. This minimum
reaches its value when the discriminant is zero:

−4π2
+ St2 = 0. (15)

The resulting solution for St has two roots: 2π and −2π .
Taking the positive root we get

St = Stopt = 2π, (16)

which is the optimal value of the numerical parameter St that
corresponds to the fastest attenuation of propagating waves.

There is only one numerical parameter that controls the
dissipation and convergence to the target solution of the
quasi-static equations: the Strouhal number, St, which is a
purely numerical parameter in our analysis and can be cho-
sen to be arbitrary. For St� 1 the system in Eq. (6) behaves
as purely hyperbolic without the stiff source term; in other
words, propagating waves do not attenuate (especially when
St→ 0). In contrast, for St� 1 the system in Eq. (6) behaves
as hyperbolic with the stiff source term that dominates; there-
fore, the system in Eq. (6) behaves as a diffusion process and
attenuates very slowly. The optimal choice of the Strouhal
number, St, is between these two limits: St = Stopt = 2π as
shown by the expression in Eq. (16).

Let us do some transformations with the expression in
Eq. (11). Our goal is to separate the numerical combination
1̃t/ρ̃ on the left-hand side and the other variables on the
right-hand side,

1=
Lx

St Ṽp1t
⇐⇒ 1=

Lx
√
ρ̃

St
√

H̃ 1t

√
ρ̃1̃t
√
ρ̃1̃t
⇐⇒

1̃t

ρ̃

=
Lx1̃t

St
√

H̃
√
ρ̃ 1t

Ṽp

Ṽp
, (17)

and continue with

1̃t

ρ̃
=
Ṽp 1̃t Lx

St H̃ 1t
. (18)

By using the expression in Eq. (8), we determine that
Ṽp 1̃t = C̃1x; therefore, Eq. (18) can be rewritten as

1̃t

ρ̃
=
C̃1x Lx

St H̃ 1t
. (19)

In the expression in Eq. (19), all the parameters on the right-
hand side are known; thus 1̃t/ρ̃ can be evaluated. Now let us
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create an expression for the second numerical combination,
H̃ 1̃t . For that we employ the following transformations:

1=
Ṽ 2

p 1̃t
2

Ṽ 2
p 1̃t

2
⇐⇒

Ṽ 2
p ρ̃ 1̃t

2

H̃ 1̃t2
⇐⇒ H̃ 1̃t

= (Ṽp 1̃t)
2
(
1̃t

ρ̃

)−1

. (20)

Note that Ṽp 1̃t and 1̃t/ρ̃ are already defined above; there-
fore, it is straightforward to calculate H̃ 1̃t . Therefore, the
system of equations in Eq. (5) (or Eq. 6) or its discrete ver-
sion (Eq. C1) can be solved.

2.4 Problem statement: validation of the numerical
parameters

To validate the numerical parameters, the following experi-
ment is performed: in the numerical solver, we set all bound-
ary conditions to zero and initialize the system with a sinu-
soidal wave. The numerical solution is then run over pseudo-
time until it converges to a specified precision (i.e., 10−12).
Simultaneously, the same equation is solved using the an-
alytical method (amplification matrix) to achieve the same
precision (i.e., 10−12). The results are then compared as a
function of St. Ideally, the results should be identical or very
close, which would validate the choice of numerical parame-
ters and the applied numerical scheme. For the numerical so-
lution, we use a classical conservative staggered space–time
grid discretization (Virieux, 1986), which is equivalent to a
finite-volume approach (Dormy and Tarantola, 1995). More
details on the present discretization can be found in Alkhi-
menkov et al. (2021b, a).

2.5 Applications of the APT method

To demonstrate the effectiveness and robustness of the APT
method, we provide several applications, including the calcu-
lation of the convergence rate, the determination of effective
elastic properties in homogeneous and heterogeneous media,
and comparisons against analytical solutions.

2.5.1 Numerical experiment 1: convergence rate in a
homogeneous medium

Figure 1 shows the numerical and analytical results for the
system in Eq. (6) (see explanation in Sect. 2.4). The numer-
ical results correspond to the solution with different St num-
bers until the update of the pseudo-time derivatives becomes
less than 10−9. The analytical result corresponds to the an-
alytical solution of the dispersion relations as a function of
St. It can be seen that the analytical and numerical results are
in excellent agreement (Fig. 1), which validates the proposed
approach.

2.5.2 Numerical experiment 2: effective properties of a
homogeneous medium

Let us consider a 1D numerical domain with Lx = 1, which
is discretized into nx = 1000 grid cells. The material parame-
ters areK =G= 1 and1t = 1. For this experiment, velocity
boundary conditions are applied by prescribing vx(n= 1)=
1 and vx(n= nx)= 0, where n is a grid cell number in a 1D
domain (vx(n= 1)= 1 means the velocity vx = 1 at the first
grid cell (n= 1), which corresponds to the left corner of the
1D domain Lx). All other parameters and initial conditions
are set to zero.

Figure 1b shows the velocity field (panel a) and the ampli-
tudes of the stress field. Since the medium is homogeneous,
the effective elastic parameters can be calculated exactly:
H ∗an =K + 4/3G= 7/3. Numerically, the effective elastic
parameters are calculated from the discrete values for the
APT method:

H ∗num =

∑nx
i=1[σxx]i∑nx

i=1[∂ux/∂x]i
, (21)

where ux = vx1t . After 5nx iterations in pseudo-time we
can report the accuracy (in residuals) as dvx = 10−13. This
result corresponds to the difference between the numerical
value for H ∗ and the analytical value for H ∗an = 7/3 via
(H ∗an−H

∗
num)/H

∗
an× 100% to as 10−12 %.

2.5.3 Numerical experiment 3: convergence rate in a
heterogeneous medium

Let us again consider a 1D numerical domain with Lx = 1,
which is discretized into nx = 1000 grid cells. The boundary
conditions are the same as in the previous section (numerical
experiment 2). Now, we consider a heterogeneous medium
in 1D represented by layers of different elastic properties.
There are 10 layers with the properties K1 =G1 = 1 and
K2 =G2 = 0.05. Figure 2 shows numerical results for the
system in Eq. (6). The numerical results correspond to the
solution as a function of St until the update of the pseudo-
time derivatives becomes within the range 10−9. It can be
seen that the optimal value of St that is valid in a homoge-
neous medium is not valid here for a heterogeneous medium.
Instead, a special scaling is needed of St with a parameter A
which is defined below.

2.5.4 Numerical experiment 4: effective properties of a
heterogeneous medium

We perform the numerical experiment considering the damp-
ing scheme in Eq. (6) as a function of St. By running a set of
numerical simulations with different optimal parameters, we
found that the following re-scaling of Stopt via parameter A
provides the best fast convergence rate:

Sthopt = A · Stopt, (22)
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Figure 1. (a) Convergence rate in a homogeneous elastic medium: numerical and analytical results as a function of the dimensionless
parameter St. (b) Numerical results of the APT method for velocity and stress fields in the homogeneous medium for the damping scheme (Eq.
5). The upper panel corresponds to the velocity field, and the lower panel shows the stress field.

Figure 2. (a) Numerical results: convergence rate in a heterogeneous medium as a function of St. (b) Numerical results for velocity and stress
fields in a layered (heterogeneous) medium. The upper panel corresponds to variations of the bulk modulus K (the same as variations in the
shear modulus G). The lower panel shows the spatial derivative of the velocity field.

where A is a minimum of the elastic moduli of the softest
material divided by volume fraction of the weakest phase φ,

A=min(K2,G2)/φ. (23)

Figure 2 shows the distribution of elastic moduli (panel
a), the velocity field, and the spatial derivative of the ve-
locity field. After 5nx iterations in pseudo-time, we report
the following accuracy (in residuals): dvx = 10−7. This re-
sult corresponds to the difference between the numerical
value for H ∗ and the analytical value for H ∗an = 0.42(42) via

(H ∗an−H
∗
num)/H

∗
an× 100% to 2× 10−3 % for the damping

scheme represented by Eq. (6).

3 Mathematical formulation: viscoelasticity

Now, let us consider viscoelastic equations. The general form
is the following:

1
K
∂p
∂t
=−∇ · v

1
2G

∂τ
∂t
+

τ
2µs
= ε− 1

3 (∇ · v)I2

0=∇ · (−pI2+ τ ),

(24)
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where µs is the shear viscosity of the solid material, p is the
pressure, and τ is the deviatoric stress tensor (σ =−pI2+τ .
The system in Eq. (24) can be rewritten for the calculation of
effective viscoelastic properties in 1D as

1
K
∂p
∂t
=−

∂vx
∂x

1
2G

∂τxx
∂t
+

τxx
2µs
=

(
∂vx
∂x
−

1
3
∂vx
∂x

)
0= ∂(−p+τxx )

∂x
,

. (25)

3.1 APT scheme for viscoelastic equations

The advantage of this naive APT scheme is that there are
minimal modifications to the original formulation of the APT
method for elasticity equations presented in the previous sec-
tions. The system in Eq. (25) can be rewritten as APT scheme
2:

1
K̃

∂p

∂t̃
+

1
K
p−p̂
1t
=−

∂vx
∂x

1
2G̃

∂τxx
∂t̃
+

1
2G

τxx−τ̂xx
1t
+

τxx
2µs
=

(
∂vx
∂x
−

1
3
∂vx
∂x

)
ρ̃ ∂vx
∂t̃
=−

∂σxx
∂x
,

(26)

where

1̃t

ρ̃
=
Ṽp 1̃t Lx

StH ve , (27)

and H̃ ve is defined as

H ve
=

(
(K1t +

4
3
Gve)

)−1

, (28)

where

Gve
=

(
1
µs
+

1
G1t

)−1

(29)

is the apparent “viscoelastic” shear modulus. Let us mod-
ify the scheme (Eq. 26) by re-arranging terms and omitting
quantities that are constant during the iterations over t̃ :

1
K̃

∂p

∂t̃
+

1
K

p
1t
=−

∂vx
∂x

1
2G̃

∂τxx
∂t̃
+
τxx
2

(
1

G1t
+

1
µs

)
=

(
∂vx
∂x
−

1
3
∂vx
∂x

)
ρ̃ ∂vx
∂t̃
=−

∂σxx
∂x
.

(30)

Further simplifications leads to the following system:
1
K̃

∂p

∂t̃
+

1
K

p
1t
=−

∂vx
∂x

1
2G̃

∂τxx
∂t̃
+
τxx
2

1
Gve =

(
∂vx
∂x
−

1
3
∂vx
∂x

)
ρ̃ ∂vx
∂t̃
=−

∂σxx
∂x

. (31)

Note that (e.g., assuming Gve
=G) the present system in

Eq. (31) becomes identical to the system in Eq. (B4) (or 6),
which corresponds to the elasticity equations. Therefore, all
the analyses presented for elasticity equations in the previ-
ous sections can be applied to the viscoelastic equations. If
K =Gve

= 1, then

Stopt = 2π, (32)

Figure 3. Convergence rate in a homogeneous viscoelastic medium:
numerical and analytical results as a function of the dimensionless
parameter St.

which is the same value as in the case of the elasticity equa-
tions. It can be seen that the analytical and numerical results
are in excellent agreement (Fig. 3), which validates the pro-
posed approach.

4 Mathematical formulation: coupled
hydromechanics–quasi-static poroelasticity

The first-order velocity–stress system of Biot’s equations in
1D can be written as (Biot, 1962)(
∂p
∂t
∂pf
∂t

)
=−Ku

(
1 B

B B
α

)( ∂vs
x

∂x
∂qD
x

∂x

)
, (33)

∂τ xx

∂t
= 2Gu

(
∂vx

∂x
−

1
3
∂vx

∂x

)
, (34)

and(
0
0

)
=

(
∂(−p+τxx )

∂x
ηf
k
qD
x +

∂pf
∂x

)
. (35)

The list of symbols is given in Table 1. From the general
principles of thermodynamics, the matrices of coefficients in
the expression in Eq. (33) must be positive-definite. For sim-
plicity, the expressions in Eqs. (33) and (34) can be com-
bined, leading to(
∂σ xx
∂t

−
∂pf
∂t

)
=

(
Ku+

4
3Gu KuB

KuB
KuB
α

)( ∂vs
x

∂x
∂qD
x

∂x

)
, (36)

where σ xx =−p+ τ xx . For an isotropic material saturated
with a single fluid, in which the solid frame consists of a
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Table 1. List of symbols.

Symbol Meaning

σ s,σ f solid and fluid stress
σ = (1−φ)σ s

+φσ f, total stress
ps,pf solid and fluid pressure
p = (1−φ)ps+φpf, total pressure
τxx total deviatoric stress
vs,vf solid and fluid velocity
qD

= φ(vf
− vs), Darcy velocity

ρs,ρf solid and fluid density
ρt = (1−φ)ρs+φρf, total density
Ks,Kf elastic solid and fluid bulk modulus
Gs,Gd =Gu elastic solid, drained and undrained

shear modulus
Kd,Ku elastic drained and undrained bulk

modulus
ηf fluid shear viscosity
k medium permeability
φ medium porosity
α Biot–Willis coefficient
B Skempton coefficient

single isotropic mineral, the Biot–Willis coefficient is

α = 1−
Kd

Ks
, (37)

and the Skempton coefficient, B, is

B =
1/Kd− 1/Ks

1/Kd− 1/Ks+φ(1/Kf− 1/Ks)
. (38)

Other useful parameters include the undrained bulk modulus,
Ku,

Ku =Kd(1−αB)−1
≡Kd+α

2M, (39)

and the fluid storage coefficient, M ,

M =KuB/α. (40)

Equation (39) is known as Gassmann’s equation for fluid-
saturated bulk modulus (Gassmann, 1951; Alkhimenkov,
2023).

4.1 APT method for the quasi-static Biot poroelastic
equations

Let us write the APT method for the quasi-static Biot poroe-
lastic equations expressed as Eqs. (33)–(35):( 1
K̃1

∂p

∂t̃
1
K̃2

∂pf
∂t̃

)
+

1
Ku

(
p−p̂
1t

pf−p̂f
1t

)
=−

(
1 B

B B
α

)( ∂vs

∂x
∂qD

∂x

)
, (41)

where p̂ and p̂f are the total and fluid pressures at the pre-
vious physical time step, K̃1 =Ku. For the total deviatoric

stress the corresponding equation is

1
2G̃1

∂τ xx

∂t̃
+

1
2Gu

τ xx − τ̂ xx

1t
=

(
∂vx

∂x
−

1
3
∂vx

∂x

)
, (42)

where τ̂ xx is the total stress deviator at the previous physical
time step and G̃1 =Gu . The system in Eq. (35) is rewritten
as(
ρ̃t 0
0 ρ̃a

)( ∂vs
i

∂t̃

−
∂qD
i

∂t̃

)
=

(
∂(−p+τxx )

∂x
ηf
k
qD
i +

∂pf
∂x

)
, (43)

where ρ̃t and ρ̃a are to-be-determined numerical parameters.
A discrete form of the system in Eqs. (41)–(43) is presented
in Appendix F. In summary, we need the following combi-
nations of the numerical parameters to effectively solve the
system in Eqs. (41)–(43): K̃11̃t , K̃21̃t , G̃u1̃t , 1̃t/ρ̃t, and
1̃t/ρ̃a. A dispersion analysis of Eqs. (41)–(43) leads to the
system of five equations. Without the loss of generality, we
analyze the APT method of the expressions in Eqs. (36) and
(35), which corresponds to the system of four equations in
the dispersion analysis.

The numerical primary or P-wave velocity of the system
in Eqs. (41)–(43) varies as a function of I2, which is a nondi-
mensional parameter:

I2 =
ηf

k
ρ̃aτ
∗, (44)

where τ ∗ is a characteristic time. The physical meaning of I2
is the following: I2 controls the behavior of Biot’s slow wave;
if I2 >>> 1 the slow wave behaves as a propagating wave,
and if I2 <<< 1 the slow wave behaves as a diffusive mode.
For details on the nondimensional analysis of these equations
we refer to Alkhimenkov et al. (2021b). The CFL condition
for the system in Eqs. (41)–(43) suggests that (Alkhimenkov
et al., 2021a)

1̃t ≤
1x

Ṽ HF
p

or 1̃t =
C̃1x

Ṽ HF
p

, (45)

where Ṽ HF
p is the numerical P-wave velocity at high frequen-

cies and C̃ ≤ 1. Note that Ṽ HF
p > Ṽ LF

p , where the latter is the
numerical P-wave velocity at low frequencies. Since the ex-
act expression for Ṽ HF

p is cumbersome, we can modify the
CFL condition in Eq. (45) as

1̃t =
C̃1x

Ṽ LF
p

, (46)

where

Ṽ LF
p =

√
K̃1+

4
3G̃1

ρ̃
=

√
Ku+

4
3Gu

ρ̃
=

√
Hu

ρ̃
, (47)

whereHu =Ku+
4
3Gu is the undrained P-wave modulus. The

reason for setting K̃1 =Ku and G̃1 =G is simplicity; since
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the fourth-order equation has only two degrees of freedom
for the APT method’s parameter choices, a different choice
of these parameters would simply re-scale the two final opti-
mal parameters.

4.1.1 The choice of the numerical parameters

The analysis here is similar to that for a single-phase
medium. From the stability analysis (Eq. 46), we determine
that

Ṽ LF
p 1̃t = C̃1x. (48)

Let us introduce a dimensionless parameter, the Strouhal
number (St), which is expressed as

St =
Lx

Ṽ LF
p 1t

. (49)

By analogy with the expression in Eq. (17), we write the for-
mula for the first numerical combination:

1̃t

ρ̃t
=
Ṽ LF

p 1̃t Lx

StHu1t
. (50)

The second numerical combination is

G̃11̃t =
(Ṽ LF

p 1̃t)2

(r + 4
3 )

(
1̃t

ρ̃t

)−1

, (51)

where r =Ku/Gu. Note that Ṽ LF
p 1̃t and 1̃t/ρ̃t are already

defined above; therefore, it is straightforward to calculate
G̃11̃t . Calculation of K̃11̃t is also straightforward: K̃1 1̃t =

r G̃1 1̃t . The next numerical combination K̃21̃t is

K̃21̃t = (Ṽ
LF
p 1̃t)2

(
Ṽ LF

p 1̃t Lx

StKu B/α1t

)−1

. (52)

For the last combination 1̃t/ρ̃a, we explore the discrete sys-
tem of equations and find that

1̃t

ρ̃a
=
1̃t

ρ̃t

ηf

k
. (53)

Now, the system in Eqs. (41)–(43) can be solved.
In order to find the optimal values of St, we perform the

same dispersion analysis as for a single-phase medium. A
solution of traveling waves in dissipative media is

F (̃t,x)= exp

[
(γ Ṽ LF

p t̃ +π ωx i)

Lx

]
. (54)

A dispersion analysis of the system in Eqs. (36) and (35)
leads to a 4× 4 amplification matrix. The discriminant of
this matrix has four roots. The optimal value of St that cor-
responds to the fastest attenuation of propagating waves de-
pends on the parameter I2. Let us consider two end-member
scenarios for values of I2, which are explored in the next sec-
tion.

4.1.2 Approximation: reduced-order equations

To find the optimal values of optimal parameters for the sys-
tem in Eqs. (41)–(43) a solution of the fifth-order (or fourth-
order) polynomial is required. However, if we neglect the
coupling in the stress–strain relation, we arrive at a fourth-
order (consider only the fourth-order polynomial for simplic-
ity) polynomial where the roots can be easily separated: two
roots are the same as for single-phase elastic media and the
other two roots are more complicated and belong to Darcy’s
law.

Lets us assume a particular value of coupling parameters:
B = 0, B/α, and I2 as variables (1x = 1). The discriminant
D of the matrix amplification matrix that corresponds to the
expressions in Eqs. (36) and (35) is (see also the Maple file):

D =
3

7St+ 3I2
[((7St)/3+ I2)γ

2

+ (7/3St2+ I2StB/α+ I2)γ +B/αSt((πB/α)2+ I2)]

× (π2
+ Stγ + γ 2). (55)

Setting D = 0 and solving for γ , we get four roots. Two of
them correspond to the term (π2

+Stγ+γ 2) and are the same
as for single-phase media:

γ1 =−
St
2
+

√
−4π2+ St2

2
, (56)

γ2 =−
St
2
−

√
−4π2+ St2

2
. (57)

We are interested when the discriminant is zero: −4π2
+

St2 = 0. The resulting solution for St has two roots: 2π and
−2π . Taking the positive root we get

St = Stopt = 2π, (58)

which is the optimal value of the numerical parameter St
that corresponds to the fastest attenuation of propagating
waves for I2 >>> 1. For I2 <<< 1 the corresponding roots
are cumbersome (while have an explicit formulation: Stopt =

4.11); therefore, we refer an interested reader to the Maple
script.

4.2 APT method: general case

Lets us assume a particular value of coupling parameters:
B = 5/8 and α = 0.5 (which corresponds to B/α = 5/4),
and we will vary I2 from low to high values.

4.2.1 APT method for I2 >>> 1

Figure 4a shows the numerical and analytical results for the
system in Eqs. (41)–(43) for I2 = 1000 (see explanation in
Sect. 2.4). The numerical results correspond to the solution
with different St numbers until the update of the pseudo-time
derivatives becomes less than 10−11. The analytical result
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corresponds to the analytical solution of the dispersion re-
lations as a function of St. It can be seen that the analytical
and numerical results are in excellent agreement (Fig. 4a),
which validates the proposed approach. Here Stopt is

St = Stopt ≈ 2π. (59)

4.2.2 APT method for I2 <<< 1

Figure 4b shows the numerical and analytical results for the
system in Eqs. (41)–(43) for I2 = 0.001 (see explanation in
Sect. 2.4). The numerical results correspond to the solution
with different St numbers until the update of the pseudo-time
derivatives (i.e., residual) becomes less than 10−10. The an-
alytical result corresponds to the analytical solution of the
dispersion relations as a function of St. It can be seen that
the analytical and numerical results are in good agreement
(Fig. 4b), which validates the proposed approach. Here Stopt
is

St = Stopt ≈ 3.94. (60)

Figure 5 shows the analytical results for the system in
Eqs. (41)–(43) as a function of the dimensionless parame-
ter St and I2 (by varying ηf/k only). Note that the optimal
value of St depends on the values I2, B, and B/α.

In summary, for practical purposes there is no need to al-
ways solve a fourth-order (or fifth-order) polynomial for each
set of input parameters of the quasi-static Biot poroelastic
equations. In some cases, an average of two parameters can
be taken:

St = Stopt ≈ (2π + 3.94)/2≈ 5.11. (61)

4.2.3 2D numerical simulations: poroelasticity

The accuracy of the proposed Stopt is illustrated numerically
in 2D (Fig. 6a–b). It can be seen that the results presented
here for 1D need some calibration to be applied to 2D simu-
lations. Note that the numerical parameters are sensitive to
boundary and initial conditions, which is explored below.
Therefore, some tests must be performed for each numeri-
cal setup.

5 Applications: strain localization in
poro-elasto-plastic media

The purpose of this section is to demonstrate the applicabil-
ity of the APT method for ultrahigh-resolution simulations
with heterogeneous initial conditions. We address the non-
linear mechanical problem of strain localization in both 2D
and 3D contexts, employing an elasto-viscoplastic rheolog-
ical model. This model is grounded in a hypoelastic-based
constitutive framework that accommodates the simulation of

large strains. The modeling process follows the formulation
of incremental constitutive equations, ensuring the objectiv-
ity of the rate fields. In this study, we utilize the Jaumann–
Zaremba rate to manage the time-dependent fields.

5.1 Implementation using Graphical Processing Units
(GPUs)

The initial code prototyping was conducted on a laptop
equipped with a 13th Gen Intel Core i9-13900HX CPU
(64 GB RAM) and an NVIDIA GeForce RTX 4090 (16 GB)
laptop GPU. For large-scale 3D simulations, the computa-
tions were carried out on an NVIDIA DGX-1-like node, fea-
turing 4 NVIDIA Ampere A100 GPUs (each with 80 GB of
memory) and an AMD EPYC 7742 server processor with
512 GB of RAM.

5.2 Plasticity implementation

The plasticity model adheres to a consistent poro-elasto-
viscoplastic framework, with the yield function defined as

F(τ,pe)=
√
J2−Ape−Bc− η

vpλ̇, (62)

where ηvp represents the viscosity of the damper, and pe =

p−pf is the effective pressure. The yield function specified
by Eq. (62) is rate-dependent (Duretz et al., 2019). The plas-
tic potential Q is expressed as

Q(τ,pe)=
√
J2−Cpe. (63)

Here, the constants A, B, and C are defined as A= sin(φ),
B = cos(φ), and C = sin(ψ), where φ denotes the internal
friction angle, and ψ ≤ φ is the dilation angle (with ψ = 0
for simplicity in this case).

In the numerical solver, plasticity is implemented through
the following steps: (1) compute the components of the trial
deviatoric stresses τ trial

ij . (2) Using these components, calcu-
late the trial second invariant of the deviatoric stresses, J trial

2 .
(3) Evaluate F trial using the expression

F trial
=

√
J trial

2 − (Ape+Bc). (64)

When the material remains in the plastic regime, the compo-
nents of the trial deviatoric stresses, τ trial

ij , are re-scaled ac-
cording to

τ new
ij = τ

trial
ij

(
1−

F trial1tGu
√
J2(1tGu+ ηvp)

)
, (65)

This re-scaling procedure occurs within the pseudo-transient
iteration loop, and the process repeats until the components
of the updated trial deviatoric stresses, τ new

ij , satisfy the con-
dition F trial

= 0, and no further re-scaling is needed. This
approach is equivalent to the standard formulation involv-
ing the plastic multiplier. An interested reader may refer to
Alkhimenkov et al. (2024a, b) for more details on the imple-
mentation of plasticity.
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Figure 4. (a) Convergence rate in a homogeneous poroelastic medium for I2 = 1000: numerical and analytical results as a function of the
dimensionless parameter St. (b) Convergence rate in a homogeneous poroelastic medium for I2 = 0.001: numerical and analytical results as
a function of the dimensionless parameter St.

Figure 5. Convergence rate in a homogeneous poroelastic medium as a two-dimensional plot: analytical results as a function of the dimen-
sionless parameters St and I2. In panel (a) the two white circles correspond to the values of St obtained via expressions in Eqs. (59) and
(60). (a) B = 5/8, B/α = 5/4. (b) B = 1/10, B/α = 2/10.

5.3 2D results: ultrahigh-resolution simulations

Let us consider a 2D numerical domain with Lx = Ly = 1.
In this set of simulations, pure shear kinematics are im-
posed at the boundaries of the domain, corresponding to
compression along the x axis and extension along the y axis.
The model is initialized with pre-stresses of τ xx = 0.0180,
τ yy =−0.0180, and τ xy = 0, while the fluid pressure pf is
set to zero, and the cohesion c is defined as 0.0101. The total
pressure in the background material is p = 0.018, with a cir-
cular anomaly located at the center of the model where the
pressure is reduced to p = 0.005 (Fig. 7). The radius of this
anomaly is 1/8 of the domain size. The simulation is per-

formed over 14 loading increments. The poroelastic proper-
ties of the background material are α = 0.2958, B = 0.0833,
Gd = 1,Kd = 1, and ηf/k = 10−2. The porosity, or fluid vol-
ume fraction, is φ = 0.3, and the internal friction angle is
ϕ = 30°.

Figure 8 shows the results of the 2D simulation with an
ultrahigh resolution of N = 102392 grid cells. The finite
thickness of the shear bands confirms that the simulation
is mesh-independent as has been shown by Alkhimenkov
et al. (2024b). The zoomed-in panels reveal extremely de-
tailed features of the strain localization pattern. The simula-
tion time takes about a few hours.
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Figure 6. Convergence rate in a homogeneous poroelastic medium for different I2: numerical result as a function of the dimensionless
parameter St. (a) I2 = 100. (b) I2 = 0.01.

Figure 7. Geometry of the 2D simulation domain: a circular pres-
sure anomaly is located at the center of the model. The resolution is
N = 102392 grid cells.

5.4 3D results: ultrahigh-resolution simulations

Let us consider a 3D numerical domain with Lx = Ly =

Lz = 1. We present 3D results showcasing the spontaneous
formation of shear bands under pure shear deformation, ini-
tiated by a spherical pressure anomaly (Fig. 9a–b). These 3D
simulations further validate the versatility of the APT ap-
proach (Fig. 9c–d), demonstrating its robustness in predict-
ing poro-elasto-plastic deformation and capturing brittle fail-
ure.

The boundary conditions are defined by compression
along the x axis, a slight (1 %) compression along the y
axis, and extension along the z axis. The model is initialized
with pre-stresses of τ xx =−0.0098, τ yy =−9.8× 10−05,
and τ zz = 0.0098, while the shear stress components (τ xy ,

τ xz, and τ yz) are set to zero. The fluid pressure pf is zero, co-
hesion c is 0.0101, and the ratio ηf/k is set at 100. The total
pressure in the background material is p = 0, with a spherical
anomaly located at the center of the model where the pres-
sure is increased to p = 0.005. The radius of this anomaly
is 1/8 of the domain size. The poroelastic properties of the
background material are α = 0.2958, B = 0.0833, Gd = 1,
Kd = 1, and ηf/k = 102. The porosity is φ = 0.3, and the in-
ternal friction angle is ϕ = 30°. The simulation is conducted
over 15 loading increments.

6 Discussion

In this section, we analyze the implications of the numeri-
cal results presented in the previous sections and establish
connections with relevant works in the field. We explore the
behavior of the numerical parameters, such as the Strouhal
number (St), and their optimal values for different physical
models including elastic, viscoelastic, and poroelastic media.
Additionally, we assess the influence of dimensionality, ini-
tial and boundary conditions, and nonlinearities such as plas-
ticity on the convergence and accuracy of the simulations.
This analysis serves as a foundation for further extending
these methods to more complex and realistic scenarios.

6.1 Incompressible equations: a connection with the
work by Räss et al. (2022)

Räss et al. (2022) performed a comprehensive analysis of the
APT method for various problems. However, the work by
Räss et al. (2022) was mainly restricted to single-phase me-
dia and to incompressible equations. Here we provide con-
nections of the present work to the analysis presented by Räss
et al. (2022).
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Figure 8. 2D simulation results: snapshots of total pressure. Panel (a) shows the full model, while panels (b) and (c) present zoomed-in
views of the full model. The resolution is N = 102392 grid cells.

In the present paper we deal with compressible elastic, vis-
coelastic, or poroelastic equations. As a result, the only nu-
merical parameter that has to be identified is the Strouhal
number, St, which is expressed as

St =
fLx

Ṽp
=

Lx

Ṽp1t
, (66)

where f is the frequency. However, in the incompress-
ible scenario (K→+∞), an additional numerical parame-
ter shows up: r = K̃/G̃ (which in the compressible case is
defined as r = K̃/G̃≡K/G). Räss et al. (2022) discovered
that for some specific tasks, the value of r should also be
explored as well as the optimal value of St (or, equivalently,

Re in their notation). As a result, Räss et al. (2022) reported
the optimal values of pairs – r and Re for each set of equa-
tions. A connection between the numerical Reynolds number
Re (Räss et al., 2022) and the Strouhal number St is provided
below.

For the incompressible viscous Stokes equation, Räss et al.
(2022) define the numerical Reynolds number, Re, as

Re=
ρ̃V S

p Lx

µs
, (67)
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Figure 9. Geometry of the 3D simulation domain: a spherical pressure anomaly is located at the center. Panel (a) corresponds to a 3D view,
and panel (b) corresponds to a slice in the y–z plane. Lower panels: 3D simulation results with snapshots of total pressure. Panel (c) shows
the 3D view of total pressure. Panel (d) shows the y–z slice of the full 3D model. The resolution is N = 5123 grid cells.

Figure 10. Numerical results in 3D (panels a, b, and c): convergence in an elastic medium as a function of St. The parameter εerr corresponds
to the error magnitude of the APT scheme. Simulations in panels (a), (b), and (c) are identical except for the different boundary conditions.
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where V S
p is the characteristic velocity scale for the incom-

pressible Stokes equations,

V S
p =

√
K̃ + 2G̃
ρ̃

, (68)

and µs is the shear viscosity. Quantities K̃ , G̃, and ρ̃ are the
numerical parameters. Note that in the case of incompress-
ible viscoelastic Stokes equations, the quantity µs is replaced
by µve:

µve
=

(
1

G1t
+

1
µs

)−1

. (69)

As a result, for the incompressible viscoelastic Stokes equa-
tions, the numerical Reynolds number, Re, is defined as

Re=
ρ̃V S

p Lx

µve . (70)

In the present paper, from Eq. (27) for viscoelastic media,
we can infer the Strouhal number:

St =
ρ̃ ṼpLx

H̃ ve
. (71)

Note the full similarity between the definitions of Re
(Eq. 70) and the Strouhal number (Eq. 71). Indeed, µve

≡

H ve if we neglect the physical bulk modulusK (we keep only
the shear modulus G), and V S

p is the characteristic numeri-
cal velocity which has the same meaning as Ṽp for a specific
problem. Therefore, all the results presented by Räss et al.
(2022) for incompressible equations can be extrapolated for
compressible ones by using the results of the present paper.

6.2 Two- and three-dimensional simulations

As can be seen form the present study, the optimal values
are similar for elastic, viscoelastic, and poroelastic problems
but depend on some physical input parameters. We report the
optimal values for St considering elasticity equations. The re-
sults can also be applied to viscoelastic and poroelastic prob-
lems by modifying the expressions for Stopt.

Numerical tests considering elasticity equations show that
the provided values for Stopt remain valid in 1D, 2D, and 3D.
However, in 2D,

St = St2D
opt ≈ 2π

√
2, (72)

and, in 3D,

St = St3D
opt ≈ 2π

√
3. (73)

Note that in 3D, the value of St3D
opt can be higher and depends

on the initial and boundary conditions, the medium’s hetero-
geneities, and the physics involved. A typical number of iter-
ations over the pseudo-time depends on the problem size (in

grid cells), the convergence rate, and the desired precision.
Form our experiments, a typical 3D heterogeneous model re-
quires from 5×nx to 20×nx (nx is the number of grid cells in
the x dimension) iterations over the pseudo-time to achieve
the quasi-static solution.

6.3 Influence of boundary conditions in 3D: elastic and
elasto-plastic models

Let us consider a 3D numerical domain with Lx = Ly =

Lz = 1. Figure 10 presents 3D numerical results for the elas-
tic medium. The numerical outcomes are analyzed as a func-
tion of St. The total number of iterations over the pseudo-
time is 1000, with a grid resolution of N = 1273 cells. The
results indicate that the optimal value of St is close to St =
2π
√

3, which is typically valid for homogeneous media and
appears to be valid here as well, despite different boundary
conditions applied.

Figure 11 presents 3D numerical results for the elasto-
plastic medium (for a detailed formulation, see Alkhimenkov
et al., 2024b). The numerical outcomes are analyzed as a
function of St. These simulations correspond to the loading
scale where plastic flow is activated. The results indicate that
the optimal value of St is similar to St = 2π

√
3 in the sim-

ulations where plasticity is not activated (i.e., purely elas-
tic). This suggests that the presence of plasticity, which in-
troduces significant nonlinearity, does not notably affect the
choice of optimal convergence parameters in this specific 3D
case.

6.4 Influence of initial conditions in 3D: elastic model

We consider a 3D numerical domain with Lx = Ly = Lz =
1. Figure 12 presents 3D numerical results for the elastic
medium. Different panels correspond to identical simulations
but with different initial conditions. The numerical outcomes
are analyzed as a function of St. The total number of itera-
tions over the pseudo-time is 1000, with a grid resolution of
N = 1273 cells. The results indicate that the optimal value of
St is slightly different from St = 2π

√
3. We attribute it to dif-

ferent initial conditions applied which are the combinations
of cos and sin functions across x, y, and z axes.

6.5 General applicability: influence of initial and
boundary conditions, nonlinearities, and coupling

This study demonstrates that in homogeneous media with
specific initial and boundary conditions, the optimal values
of key numerical parameters, such as Stopt, can be accu-
rately predicted across 1D, 2D, and 3D domains. This ac-
curacy holds particularly true in the context of coupled sys-
tems of equations, as exemplified by the poroelastic models
presented here. However, when dealing with more complex
and realistic scenarios, special considerations are required to
maintain this accuracy.
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Figure 11. Numerical results in 3D (panels b and c): convergence in an elasto-plastic medium as a function of St. The parameter εerr

corresponds to the error magnitude of the APT scheme. Simulations in panels (a) and (b) are identical except for the different partitioning of
pure shear boundary conditions.

Figure 12. Numerical results in 3D (panels a, b, and c): convergence in an elastic medium as a function of St. The parameter εerr corresponds
to the error magnitude of the APT scheme. Simulations in panels (a), (b), and (c) are identical except for the different initial conditions.
Panel (a) corresponds to initial conditions of cos function on the x, y, and z axes. Panel (b) corresponds to initial conditions of cos function
on the x and y axes and sin function on the z axis. Panel (c) corresponds to initial conditions of sin function on the x, y, and z axes.

Our numerical experiments highlight that factors such as
initial conditions, medium heterogeneities, and the presence
of coupling and nonlinearities (e.g., plasticity) can influ-
ence the optimal values of numerical parameters. For in-
stance, while in homogeneous and idealized conditions, the
choice of Stopt may remain relatively stable, introducing a
different initial condition necessitates a slight reassessment
of these parameters. The study of strain localization (i.e.,
elasto-plastic rheology) in 3D models has shown that the
presence of plasticity, which introduces strong nonlineari-

ties, can slightly modify the convergence characteristics. The
sensitivity of Stopt to boundary conditions was only minor in
the 3D simulations. This suggests that our approach can pro-
vide a strong starting point for selecting numerical parame-
ters. In practical applications, where media may be hetero-
geneous and boundary and initial conditions complex, this
study provides a framework for estimating Stopt. However,
to ensure the accuracy and efficiency of simulations, it is rec-
ommended to conduct additional test simulations. These tests
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are necessary to fine-tune the parameters based on the spe-
cific characteristics of the model.

7 Conclusions

In this study, we performed a comprehensive analysis of
the accelerated pseudo-transient (APT) method for solving
elastic, viscoelastic, and coupled hydromechanical problems,
specifically those governed by quasi-static Biot poroelastic
equations in 1D, 2D, and 3D domains. We identified the op-
timal numerical parameters for rapid convergence in elastic,
viscoelastic, and poroelastic simulations, offering insights
into the efficiency of the APT method across various spatial
dimensions.

Our results demonstrated the method’s effectiveness in
handling complex coupled systems and its robustness in both
homogeneous and heterogeneous media. By comparing nu-
merical results with analytical solutions for elastic equations,
we validated the accuracy and reliability of the APT method.

We explored the impact of initial and boundary condi-
tions, nonlinearities, and coupling on optimal numerical pa-
rameters, emphasizing the importance of adaptability in real-
world applications. While the APT method provides a strong
framework for selecting numerical parameters, further refine-
ment is often needed for practical applications.

To illustrate the APT method’s flexibility, we addressed
strain localization in 2D and 3D contexts using a poro-elasto-
viscoplastic model, employing high resolutions (10 0002 in
2D and 5123 in 3D), which has not been extensively ex-
plored before. This model, based on a hypoelastic constitu-
tive framework, accommodates large strain simulations. All
results are reproducible, and we have made the MATLAB
code, Maple scripts, and CUDA C codes publicly available
in a permanent repository.

Appendix A: First PT and APT methods

A1 The Richardson method for elliptic equations

Let us write the simplest version of the relaxation method to
solve an elliptic equation of quasi-static elasticity:{
σxx = (K +

4
3G)

∂ux
∂x

0= ∂σxx
∂x
−µ ∂ux

∂t̃
,

(A1)

where ux is the displacement, t̃ is a pseudo-time, and µ is
a damping parameter. The system in Eq. (A1) represents a
diffusive-type physical behavior in pseudo-time. The system
is solved once the term ∂ux/∂t̃ converges to zero with a cer-
tain precision (e.g., 10−12). The convergence of this type of
equation is ∼ n2

x , where nx is the number of grid cells in the
x direction. Such a convergence rate makes this method im-
practical for large 3D problems; therefore, this method is not

analyzed here. An interested reader can find more details in
Frankel (1950).

A2 The accelerated pseudo-transient method: initial
damping scheme

Now, let us consider a more advanced version of the pseudo-
transient which we will call the accelerated pseudo-transient
method (APT):
σxx = (K +

4
3G)

∂ux
∂x

ρ̃ ∂vx
∂t̃
=

∂σxx
∂x
−µvx

∂ux
∂t
= vx,

(A2)

where µ and ρ̃ are the damping parameters, and t is the phys-
ical time which is linked to a loading increment. The system
(Eq. A2) is solved once the terms ∂vx/∂t̃ and µvx converge
to zero with a certain precision (e.g., 10−12). The advantage
of this system in Eq. (A2) over Eq. (A1) is that now the
system in Eq. (A2) describes propagating waves in pseudo-
physical space and pseudo-time (i.e., hyperbolic), and there-
fore the convergence rate is ∼ nx (compared to ∼ n2

x in the
Richardson method for the elliptic equation, Eq. A1). An in-
terested reader is referred to Poliakov et al. (1993b, a) for
more details regarding this damping scheme.

Appendix B: Quasi-static elasticity equations

Let us decompose the stress tenor into the pressure and devi-
atoric stress tensor:

σxx =−p+ τxx . (B1)

Now, the system in Eq. (4) can be rewritten as
∂p
∂t
=−K ∂vx

∂x
∂τxx
∂t
= 2G

(
∂vx
∂x
−

1
3
∂vx
∂x

)
0= ∂(−p+τxx )

∂x
.

(B2)

The quasi-static elasticity in Eq. (B2) can then be rewritten
with the pseudo-time t̃ ,

1
K̃

∂p

∂t̃
+

1
K
p−p̂
1t
=−

∂vx
∂x

1
2G̃

∂τxx
∂t̃
+

1
2G

τxx−τ̂xx
1t
=

(
∂vx
∂x
−

1
3
∂vx
∂x

)
ρ̃ ∂vx
∂t̃
=−

∂σxx
∂x
,

(B3)

where p̂ is the pressure field at the previous physical time
step and τ̂xx in the deviatoric stress at the previous physical
time step.

The system in Eq. (B3) can be simplified:
1
K̃

∂p

∂t̃
+

1
K

p
1t
=−

∂vx
∂x

1
2G̃

∂τxx
∂t̃
+

1
2G

τxx
1t
=

(
∂vx
∂x
−

1
3
∂vx
∂x

)
ρ̃ ∂vx
∂t̃
=−

∂(−p+τxx )
∂x

.

(B4)
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H̃ = K̃ + 4
3G̃=K +

4
3G, K̃ =K , and G̃=G. The optimal

value of St is the same as for the system in Eq. (5) (or Eq. 6):

St = Stopt = 2π, (B5)

which corresponds to the fastest attenuation of propagating
waves. The stress tenor in decomposed into the pressure and
deviatoric stress tensor; therefore, the following expressions
are also provided:

G̃1̃t = (Ṽp 1̃t)
2
(
1̃t

ρ̃

)−1(
KG+

4
3

)−1

, (B6)

where KG =K/G, and

K̃1̃t =KG G̃1̃t. (B7)

Appendix C: Discretization: quasi-static elasticity
equations

Let us write the discrete form of the system (Eq. 6). We use a
classical conservative staggered space–time grid discretiza-
tion (Virieux, 1986) which is equivalent to a finite-volume
approach (Dormy and Tarantola, 1995). More details on the
present discretization can be found in Alkhimenkov et al.
(2021b, a). Let us consider a physical domain Lx that is dis-
cretized into grid cells such that Lx = nx1x. The physical
time t is also discretized as 1t (1̃t is the pseudo-time). The
resulting discrete form of the system (Eq. 6) is 1

H̃

[σxx ]
l+1/2
i −[σxx ]

l−1/2
i

1̃t
+

1
H

[σxx ]
l+1/2
i

1t
=
[vx ]

l
i+1/2−[vx ]

l
i−1/2

1x

ρ̃
[vx ]

l+1
i+1/2−[vx ]

l
i+1/2

1̃t
=
[σxx ]

l+1/2
i+1 −[σxx ]

l+1/2
i

1x
.

(C1)

The discrete form of the system (Eq. B3) can be written as

1
K̃

p
l+1/2
i −p

l−1/2
i

1̃t
+

1
K

p
l+1/2
i −p̂

l+1/2
i

1t
=−

[vx ]
l
i+1/2−[vx ]

l
i−1/2

1x

1
2G̃
[τxx ]

l+1/2
i −[τxx ]

l−1/2
i

1̃t
+

1
2G
[τxx ]

l+1/2
i −[τ̂xx ]

l+1/2
i

1t
= . . .

=

(
[vx ]

l
i+1/2−[vx ]

l
i−1/2

1x
−

1
3
[vx ]

l
i+1/2−[vx ]

l
i−1/2

1x

)
ρ̃
[vx ]

l+1
i+1/2−[vx ]

l
i+1/2

1̃t
=−

(−(p
l+1/2
i+1 −p

l+1/2
i )+[τxx ]

l+1/2
i+1 −[τxx ]

l+1/2
i )

1x
.

(C2)
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Appendix D: MATLAB code

Listing D1. MATLAB code for time loop computations.
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Appendix E: Discretization: viscoelasticity

The discrete form of the system (Eq. 26) can be written as



1
K̃

p
l+1/2
i −p

l−1/2
i

1̃t
+

1
K

p
l+1/2
i

1t
=−

[vx ]
l
i+1/2−[vx ]

l
i−1/2

1x

1
2G̃
[τxx ]

l+1/2
i −[τxx ]

l−1/2
i

1̃t
+

1
2G
[τxx ]

l+1/2
i −[τ̂xx ]

l+1/2
i

1t
+
[τxx ]

l+1/2
i

2µs
= . . .

=

(
[vx ]

l
i+1/2−[vx ]

l
i−1/2

1x
−

1
3
[vx ]

l
i+1/2−[vx ]

l
i−1/2

1x

)
ρ̃
[vx ]

l+1
i+1/2−[vx ]

l
i+1/2

1̃t
=−

(−(p
l+1/2
i+1 −p

l+1/2
i )+[τxx ]

l+1/2
i+1 −[τxx ]

l+1/2
i )

1x
.

(E1)

Appendix F: Discretization: quasi-static Biot poroelastic
equations

The discrete form of the system in Eqs. (41)–(43) can be writ-
ten as

1
K̃1

[p]
l+1/2
i −[p]

l−1/2
i

1̃t
+

1
Ku

[p]
l+1/2
i −[p̂]

l+1/2
i

1t

=−
[vx ]

l
i+1/2−[vx ]

l
i−1/2

1x
−B

[qD
x ]
l
i+1/2−[q

D
x ]
l
i−1/2

1x

1
K̃2

[pf]
l+1/2
i −[pf]

l−1/2
i

1̃t
+

1
Ku

[pf]
l+1/2
i −[p̂f]

l+1/2
i

1t

=−B
[vx ]

l
i+1/2−[vx ]

l
i−1/2

1x
−

B
α

[qD
x ]
l
i+1/2−[q

D
x ]
l
i−1/2

1x

, (F1)


1

2G̃
[τ xx ]

l+1/2
i −[τ xx ]

l−1/2
i

1̃t
+

1
2Gu

[τ xx ]
l+1/2
i

1t

=

(
[vx ]

l
i+1/2−[vx ]

l
i−1/2

1x
−

1
3
[vx ]

l
i+1/2−[vx ]

l
i−1/2

1x

)
, (F2)



ρ̃t
[vx ]

l+1
i+1/2−[vx ]

l
i+1/2

1̃t

=−
(−([p]

l+1/2
i+1 −[p]

l+1/2
i )+[τ xx ]

l+1/2
i+1 −[τ xx ]

l+1/2
i )

1x

ρ̃a
[qD
x ]
l+1
i+1/2−[q

D
x ]
l
i+1/2

1̃t
=−[qD

x ]
l
i+1/2

−

k
ηf
([pf]

l+1/2
i+1 −[pf]

l+1/2
i )

1x

. (F3)
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