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Abstract. Satellite observations of sea surface temperature
(SST) are essential for accurate weather forecasting and cli-
mate modeling. However, these data often suffer from incom-
plete coverage due to cloud obstruction and limited satellite
swath width, which requires development of dense recon-
struction algorithms. The current state of the art struggles to
accurately recover high-frequency variability, particularly in
SST gradients in ocean fronts, eddies, and filaments, which
are crucial for downstream processing and predictive tasks.
To address this challenge, we propose a novel two-stage
method CRITER (Coarse Reconstruction with ITerative Re-
finement Network), which consists of two stages. First, it re-
constructs low-frequency SST components utilizing a Vision
Transformer-based model, leveraging global spatio-temporal
correlations in the available observations. Second, a UNet
type of network iteratively refines the estimate by recovering
high-frequency details. Extensive analysis on datasets from
the Mediterranean, Adriatic, and Atlantic seas demonstrates
CRITER’s superior performance over the current state of the
art. Specifically, CRITER achieves up to 44 % lower recon-
struction errors of the missing values and over 80 % lower
reconstruction errors of the observed values compared to the
state of the art.

1 Introduction

Infrared satellite sea surface temperature (SST) data are crit-
ical for ocean modeling, climate monitoring, fisheries man-
agement, and marine ecology (O’Carroll et al., 2019). On
the one hand, the SST is a key boundary condition for atmo-
spheric models extending from classical numerical weather
prediction (Senatore et al., 2020; Chelton, 2005) to extreme
storms (Ricchi et al., 2023) and climate variability (Garcia-
Soto et al., 2021). In the ocean realm, continuous description
of SST is vital for analyses of mesoscale (Bishop et al., 2017)
and submesoscale baroclinic processes like fronts and eddies
but also for implementations of atmosphere–ocean couplings
through turbulent heat fluxes (Strajnar et al., 2019; Ličer
et al., 2016). Furthermore, vertical temperature profiles are
a critical driver of heat, carbon, and nutrient exchange be-
tween the surface and the deep ocean and thus for a wide
plethora of biogeochemical processes (Mogen et al., 2022)
in the ocean surface boundary layer which depend on the
temperatures above the pycnocline. Last but not least, SST
is a key parameter for the detection, mapping, and analysis
of marine heatwaves (Hobday et al., 2016), and reconstructed
satellite fields are imperative for determining the regional ex-
tent and intensity of such extreme events (Pastor and Khoda-
yar, 2023; Darmaraki et al., 2019), which can have enormous
impacts on aquaculture, fisheries, and other aspects of econ-
omy (Gómez-Gras et al., 2021; Garrabou et al., 2022).
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Such downstream applications therefore often require
complete, dense SST fields but cloud cover and sparse satel-
lite coverage invariably lead to gappy and sparse data in both
space and time. Reconstruction of gaps in the observations
is therefore essential for a continuous description of ocean
temperature fields and for many daily operational processes.
These can be categorized into two groups: (i) extensions of
the optimal interpolation (OI) scheme (Taburet et al., 2019;
Ubelmann et al., 2021), and (ii) data-driven approaches.
The latter includes methods based on empirical orthogonal
functions (EOFs), such as DINEOF (Alvera-Azcárate et al.,
2005), and, more recently, end-to-end deep learning tech-
niques. Notable deep learning methods include DINCAE1
(Barth et al., 2020), dADRSR (Buongiorno Nardelli et al.,
2022; Fanelli et al., 2024), TS-RBFNN (Young et al., 2024),
DINCAE2 (Barth et al., 2022), 4DVarNet (Fablet et al.,
2021), 4DVarNet-SSH (Beauchamp et al., 2023), the SSH re-
construction method by Martin et al. (2023), NeurOST (Mar-
tin et al., 2024), and MAESSTRO (Goh et al., 2024).

Traditional methods like DINEOF (Alvera-Azcárate et al.,
2005) have been widely adopted, iteratively filling in missing
data using truncated EOF decomposition. While effective for
large-scale patterns, DINEOF struggles with fine-scale fea-
tures, mostly because of their transient nature. Deep learning
approaches have since emerged, surpassing traditional meth-
ods’ performance. DINCAE1 (Barth et al., 2020) introduced
a UNet-based (Ronneberger et al., 2015) model with prob-
abilistic output, while 4DVarNet (Fablet et al., 2021) pro-
posed an energy-based formulation for interpolation, achiev-
ing comparable SST reconstruction performance to a con-
volutional autoencoder architecturally similar to DINCAE1.
Recently, Young et al. (2024) proposed a physically in-
formed neural network that reconstructs daily SSTs in both
cloudy and cloud-free areas, outperforming DINEOF. Be-
yond gap filling, super-resolution techniques have been de-
veloped to enhance SST resolution: Lloyd et al. (2021) de-
signed a network that fuses optical and thermal satellite im-
agery, and, more recently, Fanelli et al. (2024) applied a con-
volutional super-resolution network (originally proposed by
Buongiorno Nardelli et al., 2022) to super-resolve small low-
resolution SST tiles obtained through optimal interpolation,
improving fine-scale feature reconstruction.

DINCAE2 (Barth et al., 2022), the current state of the
art and successor to DINCAE1, extended the original imple-
mentation with an additional refinement UNet. It operates on
temporally consecutive partial SST observations, gradually
improving central SST field reconstruction. However, its fi-
nite receptive field limits long-range spatio-temporal depen-
dency exploitation, resulting in oversmoothed reconstruc-
tions lacking high-frequency details. Recently, MAESSTRO
(Goh et al., 2024) addressed some limitations by adapting the
Masked Autoencoder (MAE) (He et al., 2022) framework
for SST reconstruction. It employs a Vision Transformer
(ViT) (Dosovitskiy et al., 2021) architecture to capture global
spatial dependencies. However, its single-time-step approach

neglects temporal correlations, potentially compromising re-
construction quality for large, contiguous cloud occlusions.
Furthermore, MAESSTRO’s random patch masking strategy
during training and evaluation may inadequately represent
real cloud patterns, potentially yielding optimistic error es-
timates.

To address these limitations, we propose a two-stage
Coarse Reconstruction with ITerative Refinement network
(CRITER). A transformer-based module first leverages long-
range spatio-temporal dependencies to estimate a low-
frequency reconstruction. Subsequently, an iterative refine-
ment module enhances high-frequency content. Unlike previ-
ous methods, which attempt full signal reconstruction in each
block, CRITER decomposes the problem into a sequence of
networks, each reducing the residual error of its predecessor,
thus optimizing network capacity for local error reduction.

The paper is structured as follows. Section 2 contains de-
scriptions of employed datasets together with preprocess-
ing steps executed prior to the training. Section 3 describes
the CRITER architecture, focusing on coarse reconstruction
step in Sect. 3.1, its iterative refinement in Sect. 3.2, and
residual estimation network in the “Residual estimation net-
work (REN)” section. The training strategy is described in
Sect. 3.3, and results are listed in Sect. 4, including an in-
depth ablation study investigating the role of individual ar-
chitectural components (Sect. 4.5).

2 Input data: sea surface temperature

2.1 Evaluation datasets

For our study we utilize Level 3 (L3) sea surface tempera-
ture (SST) satellite observation products. L3 level of product
refers to the satellite product where spatially sparse and irreg-
ular point observations of the ocean surface are gridded into a
fixed grid across space and/or time. Such products may com-
bine multiple satellite overpasses or even multiple sensors for
the same observed quantity.

Specifically we consider the following three datasets cor-
responding to three different geographic regions:

1. Central Mediterranean: The
SST_MED_SST_L3S_NRT_OBSERVATIONS_010_
012_a (E.U. Copernicus Marine Service Information,
2023a) dataset contains daily near-real-time (NRT)
SST measurements over the Mediterranean sea from
1 January 2008 to 31 December 2021. The dataset is
provided on a remapped grid with a spatial resolution
of 0.0625°× 0.0625°.

2. Adriatic: The SST_MED_PHY_L3S_MY_010 _042
(Pisano et al., 2016; Casey et al., 2010) dataset contains
daily multi-year reprocessed (MY) SST measurements
over the Adriatic Sea from 25 August 1981 to 31 De-
cember 2022.
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Figure 1. The map shows the spatial extent of the Central Mediter-
ranean, Adriatic, and Atlantic datasets, highlighting the distinct ge-
ographic areas covered by each dataset.

The dataset is provided on a remapped grid with a spa-
tial resolution of 0.05°× 0.05°.

3. Atlantic: The SST_ATL_PHY_L3S_MY_010 _038
(E.U. Copernicus Marine Service Information, 2023b)
dataset contains daily multi-year reprocessed (MY) SST
measurements from 1 January 1982–1 January 2022.
The dataset is provided on a remapped grid with a spa-
tial resolution of 0.05°× 0.05°.

These regions were chosen due to their oceanographic
variety. The Adriatic is an elongated semi-enclosed basin
with correspondingly poor satellite coverage, and the Cen-
tral Mediterranean exhibits a wide variety of oceanographic
regimes (from regions of freshwater influence in the north-
ern Adriatic to a much deeper Ionian where Levantine and
Adriatic water masses communicate), while the Atlantic re-
gion is essentially an open ocean region, very different from
the Adriatic. These regions should demonstrate generaliza-
tion abilities of CRITER under a variety of oceanographic
conditions. The geographic areas of the three datasets are
shown in Fig. 1. It is worth noting that two different satellite
products are used in this study, a near-real-time (NRT) and a
multi-year (MY) reprocessed dataset. This was done to show
that like DINCAE2, CRITER also generalizes well across
various datasets of SST. Furthermore, multi-year reprocessed
datasets come at a higher resolution and span significantly
longer periods of time, which gives access to a larger train
and, more importantly, test set.

2.2 Input data preprocessing

2.2.1 Filtering out days with excessive cloud coverage

The satellite products corresponding to Level 3 (L3) SST are
provided on a fixed grid but are spatially sparse over a subset
of spatial locations (mainly due to clouds and land pixels).

For training and evaluation of the method in this work, ad-
ditional missing values need to be simulated to test network
performance on values which are hidden to the network but
are otherwise known. If the original SST observation field
already contains a large number of missing measurements,
it becomes difficult to effectively simulate additional miss-
ing data. Consequently, to ensure that the dataset is suitable
for training and evaluating models, observations that are too
sparse need to be filtered out. In the preprocessing stage, we
first construct sequences of 3 temporally consecutive days of
observed SST fields, as proposed by Barth et al. (2020). The
observation sequences are then filtered. Specifically, any 3 d
observation sequence is discarded according to the following
rule: if the cloud coverage, defined as the fraction of pixels
that are missing in the central observation field, relative to the
total number of pixels belonging to the sea, is greater than or
equal to a certain threshold, the corresponding observation
sequence is discarded. The appropriate threshold is selected
by considering the total number of samples in each dataset.
Specifically, we use a threshold of 100 % for the Mediter-
ranean dataset, resulting in a total of 5114 samples. For the
Adriatic dataset, we apply a threshold of 60 %, which yields
7800 samples. Finally, we use a threshold of 75 % for the
Atlantic dataset, resulting in 3454 samples.

2.2.2 Train, validation, and test datasets

The filtered satellite SST observations are chronologically
split into three subsets: the train set, which comprises the first
90 % of the samples; the validation set, which comprises the
next 5 % of the samples; and the test set, which consists of the
last 5 % of the samples. The models are trained on the train
set, the hyper-parameters are tuned on the validation set, and
the performance is assessed on the test set. This approach
ensures evaluation on future, unseen data with no temporal
overlap between training and test phases.

3 CRITER – Coarse Reconstruction with ITerative
Refinement network

Given a sequence of spatially sparse sea surface temper-
ature observations Xm = [xt−1t , . . .,xt , . . .,xt+1t ], where
xt ∈ R1×W×H is the potentially sparse observation field of
width W and height H at time step t and [t −1t , t +1t ]
defines the observed time interval, the task is to estimate
the dense reconstruction x̃ at time step t and the uncertainty
specified by the variance σ 2. Following Barth et al. (2022),
we set the temporal horizon to 1t = 1 d, thus in reconstruc-
tion of xt , the days before and after day t are considered.

The proposed Coarse Reconstruction with ITerative Re-
finement network (CRITER) is a two-stage method com-
posed of a Coarse Reconstruction Module (CRM), described
in Sect. 3.1, and an Iterative Refinement Module (IRM), de-
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scribed in Sect. 3.2. An overview of the architecture is pro-
vided in Fig. 2.

3.1 Coarse Reconstruction Module (CRM)

The Coarse Reconstruction Module (CRM, Fig. 2) follows
the ViT encoder–decoder architecture (Dosovitskiy et al.,
2021), similar to spatio-temporal MAE (Feichtenhofer et al.,
2022). The input observation fields Xm = [xt−1,xt ,xt+1] ∈

R3×1×W×H are first fed to a tokenization process. To en-
code information about the yearly temperature cycle, each
observation field xt is concatenated channel-wise with a day-
of-the-year auxiliary tensor at = [sin(dt 2π

365 ),cos(dt 2π
365 )] ∈

R2×W×H , where the two channels contain constants, and
dt is the numerical day of year index (between 1 and 365).
The resulting fields are split into non-overlapping 3× 8× 8
patches, which are then flattened and linearly projected into
tokens of shape 1×Dt, where Dt is the dimension of to-
kens used in ViT blocks, thus creating the list of tokens
T= {Tr,Tc}. Tokens Tr correspond to patches in xt with at
least one unobserved pixel and thus have to be reconstructed.
Tokens Tc are the remaining tokens, and they are used as a
context for reconstruction. To encode the extent of missing
values in a token, all tokens in xt are summed with their cor-
responding mask tokens. These are obtained by splitting the
binary mask indicating missing pixels Mt ∈ {0,1}W×H into
8× 8 non-overlapping patches, which are then flattened and
projected into mask tokens of shape 1×Dt. To maintain the
necessary spatio-temporal location of each token, all tokens
in T are summed with a spatio-temporal positional embed-
ding as in Feichtenhofer et al. (2022).

After obtaining tokens T, the context tokens Tc are en-
coded by a ViT (Dosovitskiy et al., 2021) encoder EViT into
TE

c (Fig. 2). Then, the list of tokens Tr requiring recon-
struction is concatenated with the list of the encoded tokens
TE

c . The set of all tokens is again summed with the spatio-
temporal positional embedding and passed through a ViT
decoder DViT, producing the decoded tokens TD. The de-
coded tokens not corresponding to the central observation xt
are removed from TD, resulting in TD

t . Tokens in TD
t are

then linearly projected into 1× 82 vectors and reshaped into
1× 8× 8 patches. Finally, the patches are reassembled into
a grid to form the coarse reconstruction x̂t . All pixel values
corresponding to land areas are set to zero using the land
mask Ml ∈ {0,1}W×H that accompanies the data.

3.2 Iterative refinement module (IRM)

To improve the reconstruction accuracy, the coarse recon-
struction x̂t is refined by an iterative refinement module
(IRM, Fig. 2) through a sequence of residual improvements,
producing the final reconstruction x̃ and the corresponding
uncertainty characterized by the variance σ 2. Per pixel j , we
model the reconstructed SST as a Gaussian distribution pa-
rameterized by predicted mean x̃(j) and standard deviation

σ (j), following Barth et al. (2020). Note that σ 2 emerges
from training the model to minimize Eq. (4), which penal-
izes over- and underestimation of the error variance σ 2.

Let x̃(i) and σ 2(i) be the reconstruction of the observa-
tion field xt and its estimated uncertainty at ith refinement
iteration. An iteration of IRM proceeds as follows. The in-
put observation fields Xm = [xt−1,xt ,xt+1] ∈ R3×W×H and
the refined estimates [x̃(i),σ 2(i)

] ∈ R2×W×H from the previ-
ous iteration are concatenated channel-wise and passed to a
residual estimation network REN(i) (detailed in Sect. “Resid-
ual estimation network (REN)”) alongside the tokens TD

t
produced by CRM, to produce a two-channel output Y(i) =
[Y(i)1 ,Y

(i)
2 ] ∈ R

2×W×H . Following the formulation of Barth
et al. (2020), Y(i) = [Y(i)1 ,Y

(i)
2 ] are decoded into reconstruc-

tion δ(i)x and uncertainty δ(i)
σ 2 residuals:

δ
(i)

σ 2 =
1

max(exp(min(Y(i)1 ,θ1)),θ2)
, (1)

δ(i)x = Y(i)2 � δ
(i)

σ 2 , (2)

where � denotes element-wise tensor multiplication (the
Hadamard product), while θ1 and θ2, θ1 > θ2 > 0 are hy-
perparameters ensuring training stability. The reconstruc-
tion and uncertainty estimates at iteration i = 0 are initial-
ized with the coarse reconstruction x̃(0) = x̂t and a zero
σ 2(0)

= 0. The reconstruction and uncertainty estimated at
the (i+1)th refinement iteration are thus x̃(i+1)

= x̃(i)+δ(i)x
and σ 2(i+1)

= σ 2(i)
+ δ

(i)

σ 2 , respectively. IRM runs for NIRM

iterations, with each REN(i) having its own set of trained pa-
rameters, allowing each to specialize to its respective residual
estimation, finally producing the refined reconstruction x̃ and
uncertainty σ 2.

Residual estimation network (REN)

The residual estimation network REN(i) is a UNet-
type architecture (Ronneberger et al., 2015). The en-
coder EREN takes the reconstruction and uncertainty esti-
mates [x̃(i),σ 2(i)

] as well as the observation fields Xm =
[xt−1,xt ,xt+1] as input and produces the latent features z(i)

with an 8-fold reduction in spatial resolution compared to
the input. The latent features are then enriched with spatio-
temporally aggregated features TD

t from CRM. Specifically,
the tokens TD

t (see Fig. 2) are spatially reshaped and bilin-
early upsampled to match the dimensions of z(i). The two
tensors are concatenated and fused by the feature fusion
module (FFM) (Yu et al., 2018), yielding the enriched bot-
tleneck features z̃(i).

The resulting features are then input in the decoder DREN
and decoded to the same dimensions as the input [x̃(i),σ 2(i)

]

via convolutional and upsampling blocks, while incorporat-
ing intermediate encoder features at multiple scales through
UNet skip connections. The resulting decoded features are
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Figure 2. Given observations for 3 consecutive days [xt−1,xt ,xt+1] and a binary mask Mt indicating missing pixels, CRITER densely
reconstructs xt in two phases. First, the CRM estimates a coarse reconstruction x̂t , which the IRM then iteratively refines to produce the
final reconstruction x̃ and uncertainty σ 2. CRM tokenizes the input into tokens requiring reconstruction Tr and contextual tokens Tc. These
contextual tokens are encoded by a ViT-based encoder into TE

c , combined with Tr, and decoded by a ViT-based decoder into decoded tokens
TD

t , which are finally mapped to x̂t . In the IRM, dashed lines indicate the iterative refinement process. At each iteration i, the current

reconstruction estimate x̃(i) and uncertainty estimate σ 2(i) are refined by adding the predicted residuals: reconstruction residual δ(i)x and
uncertainty residual δ(i)

σ 2 . The index in REN(i) indicates the change in network parameters in each iteration.

transformed with two 1×1 convolutional layers to produce a
two-channel output Y(i) ∈ R2×W×H .

3.3 Training strategy

CRITER is trained in two stages to train both CRM and IRM.
First, supervised learning with automatically generated tar-
gets is used to train CRM. In this setup, part of the input sig-
nal is deleted, and the network is trained to reconstruct the
entire input signal. The input training samples are created by
sampling triples of consecutive observations [xt−1,xt ,xt+1]

and deleting parts of the central observation xt , resulting in
[xt−1,xt �Mm,xt+1], where Mm ∈ {0,1}W×H is a gener-
ated binary mask with 0 corresponding to missing values.
Following Barth et al. (2022), the masks Mm are generated
by copying clouds from a random day not included in the
triplet to maintain mask simulation realism. CRM is trained
to minimize the following reconstruction error:

LCRM =
1

|Mt�Ml|

∑N

i=1

[
(xt (i)− x̂t (i))

2Mt(i)Ml(i)

]
, (3)

where x̂t is the coarse reconstruction generated by CRM, and
mask Mt has zeros at locations where ground truth measure-
ments within the observation field xt are missing, while Ml
has zeros at spatial locations belonging to land, and |Mt�Ml|

denotes the number of ground truth measurements. The sum-
mation goes over the N pixels in each of xt , x̂t , Mt, and
Ml. The operator (·)(i) indexes the ith element of a matrix.
The consecutive observations used as the model input and

the masks Mt, Ml, and Mm used in the training process are
visualized in Fig. 3.

In the second stage, the parameters of CRM are fixed and
only the parameters of IRM are trained. The training sam-
ples are generated as in CRM training, but since IRM pro-
duces the mean and variance of the reconstruction, the fol-
lowing negative log-likelihood loss is minimized as in DIN-
CAE (Barth et al., 2020, 2022):

LIRM =
1

|Mt�Ml|

∑N

i=1[
(xt (i)− x̃(i))

2

σ 2
(i)

+ log(σ 2
(i))

]
Mt(i)Ml(i), (4)

where x̃ and σ 2 are the reconstruction and variance estimated
after the last iteration in IRM, and the summation goes over
the N pixels in each of x̃, σ 2, and xt . This loss thus trains
the model to assign higher variance to areas with greater than
expected reconstruction error. We validate the variance pre-
diction quality in Sect. 4.4, by demonstrating its correlation
with empirical errors.

3.4 Implementation details

CRM (Sect. 3.1) consists of 12 encoder and decoder trans-
former blocks, with 3 multi-head attention (MHA) heads, a
token dimension of Dt = 192, and a patch size of 3× 8× 8,
where 3 denotes the number of channels, while 8× 8 rep-
resents the width and height, respectively. IRM (Sect. 3.2)
consists of a CNN-based encoder with 3 double conv blocks,
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Figure 3. Top row: a sequence of three consecutive observation fields xt−1,xt ,xt+1, and the central observation xt �Mm, with additional
missing values deleted by the sampled mask Mm. Bottom row: the land mask Ml with zeros at land locations; the missing data mask Mt with
zeros at locations with missing measurements in xt ; and Mm, which is a randomly sampled Mt from an observation field not included in the
input.

each followed by a 2× 2 max pooling operation. The double
conv block is composed of two 3× 3 convolutional layers,
each followed by a batch normalization layer and a ReLU
activation function. The number of convolutional kernels in
each block is 32,64, and 128, respectively. This is followed
by another double conv block, with 256 kernels, at the bot-
tleneck of the network, a Feature Fusion Module (FFM), and
a decoder with 3 transpose convolution layers, each followed
by a concatenation based skip connection and a double conv
block. The number of kernels in each block is 128,64, and
32, respectively. IRM utilizesNIRM = 3 refinement iterations
– this value is selected based on the results of the ablation
study in Sect. 4.5.4. Hyperparameters θ1 and θ2 are set as
θ̃1 = ln(NIRM)+ θ1 and θ̃2 =NIRMθ2 to ensure that the vari-
ance σ 2 is bounded between 1/exp(θ1) and 1/θ2 for an arbi-
trary number of refinement iterations NIRM ≥ 1.

4 Results

4.1 Implementation details

CRITER is implemented using the PyTorch library (Paszke
et al., 2017) and trained on an NVIDIA Tesla V100 GPU.
The CRM block is trained with a batch size of 8 using
the AdamW optimizer with a learning rate α = 3× 10−4,
β1 = 0.9, and β2 = 0.95 for 60 epochs (warm-up period) and
then with a cosine decay scheduler (Loshchilov and Hutter,
2016) with step size 30 for another 140 epochs. In the next
phase the IRM block is trained using the pre-trained CRM
with fixed parameters. We train IRM using the Adam opti-
mizer, with α = 3× 10−4, β1 = 0.9, and β2 = 0.999 for 300

epochs, using a step learning rate scheduler with step size 50
and multiplicative factor γ = 0.5.

4.2 Performance measures

The performance of CRITER is assessed on an independent
test set. Reconstruction quality is computed in terms of root-
mean-squared error (RMSE) between the ground truth xt and
the reconstruction x̃. In particular, the overall reconstruction
error RMSEall is defined as

RMSEall =

√∑N
i=1

[
(xt (i)− x̃(i))

2Mt(i)Ml(i)
]

|Mt�Ml|
. (5)

For additional insights we compute the RMSE separately
for (i) deleted regions, corresponding to observations artifi-
cially removed by simulated clouds in the L3 SST product
and thus withheld during the training, and (ii) visible regions,
corresponding to remaining observations post-deletion in xt .

The reconstruction error of deleted regions is defined as

RMSEmis =

√∑N
i=1

[
(xt (i)− x̃(i))

2Mt(i)Ml(i)(1−Mm(i))
]

|Mt�Ml� (1−Mm)|
, (6)

Mm is the mask of deleted regions, and |Mt�Ml�(1−Mm)|

denotes the number of deleted ground truth measurements.
The reconstruction error of visible regions is defined as

RMSEvis =

√∑N
i=1

[
(xt (i)− x̃(i))

2Mt(i)Ml(i)Mm(i)
]

|Mt�Ml�Mm|
, (7)

where |Mt�Ml�Mm| is the number of visible ground truth
measurements. To enhance the metric stability, we sample
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10 distinct cloud masks for each test SST field, simulating
realistic observational variability. We thus evaluate the per-
formance on 2560, 3900, and 1720 masked SST fields for
the respective regions, ensuring robust statistical validation.

4.3 Comparison with state of the art

We compare CRITER with DINCAE2 (Barth et al., 2022),
a well-known and highly competitive SST reconstruction
method, serving as a widely recognized benchmark in recent
studies (Barth et al., 2024), and with the recently presented
MAESSTRO (Goh et al., 2024) on the three datasets from
Sect. 2.1. We reimplemented both DINCAE2 (originally in
Julia) following Barth et al. (2022) and MAESSTRO (pub-
lic implementation unavailable) following Goh et al. (2024)
in Pytorch. To ensure a fair evaluation, both methods were
trained using the same dataset splits, with tuned hyperparam-
eters, and employed the same loss function computed over
identical regions to CRITER. For MAESSTRO, architectural
modifications were necessary to ensure comparability. Please
refer to Appendix D for the implementation details of base-
line models.

Results in Table 1 demonstrate CRITER’s consistent supe-
rior performance across all datasets. Compared to the current
state of the art, DINCAE2, CRITER achieves error reduc-
tions in deleted and visible regions of 20 % and 89 % for the
Mediterranean, 44 % and 80 % for the Adriatic, and 1 % and
88 % for the Atlantic dataset, respectively. MAESSTRO’s
significantly lower performance is attributed to its single time
step reconstruction approach. This hypothesis is confirmed
by our ablation study, detailed in Sect. 4.5, which examines
the importance of modeling spatio-temporal data dependen-
cies.

The relative improvements of CRITER compared to the
related methods vary across the datasets. This can be at-
tributed to the differing amounts of information available for
reconstruction, which is inversely proportional with the ex-
tent of missing values. Our analysis of missing values (Ap-
pendix A) reveals that the datasets can be ranked by the
average amount of information available in each observa-
tion triplet, from highest to lowest: Mediterranean, Adriatic,
and Atlantic. Notably, the Adriatic dataset shows the great-
est decrease in reconstruction error, suggesting that CRITER
achieves optimal improvement when the available informa-
tion is moderate. In contrast, the Atlantic dataset, with the
lowest amount of available information, likely requires addi-
tional data to be effectively reconstructed. To address this, we
propose increasing the temporal horizon 1t and incorporat-
ing supplementary or proxy variables, such as chlorophyll a
and surface winds. We leave the exploration of this approach
to future work.

4.3.1 Qualitative comparison

For further insights we visualize the CRITER and DINCAE2
reconstructions in Figs. 4 and 5. We showcase examples from
the Mediterranean and the Adriatic test set, respectively,
highlighting the masked SST (xt�Mm), target SST (xt ), full
reconstruction (x̃), standard deviation (σ ), and RMSE com-
puted over the entire target (RMSEall). Notice that CRITER
preserves fine details in cloud-free regions, ensuring mini-
mal distortion of the original input data. In contrast, obscured
(deleted) regions require the model to infer missing SST val-
ues using spatio-temporal context from adjacent days/pixels.
These reconstructed regions exhibit reduced sharpness as a
result of the inherent uncertainty caused by sparse observa-
tions. However, CRITER demonstrates an excellent ability
to reconstruct high-frequency components of the target SST
under deleted regions compared to DINCAE2. Additionally,
CRITER proves robust to clouds of arbitrary shape, whether
small and scattered (Fig. 4, first and last comparison) or
large and contiguous (Fig. 4, second and third comparisons).
Similar observations can be drawn from the comparisons
on the Adriatic dataset presented in Fig. 5. On the Atlantic
test set, both models face challenges in reconstructing high-
frequency components under deleted regions, as illustrated in
Fig. 6. However, we observe that CRITER is able to preserve
the SST measurements over visible regions, whereas DIN-
CAE2 introduces significant smoothing. Additional compar-
ison figures are shown in Appendix B (Figs. B1, B2, and B3).

4.3.2 Spatial spectral analysis

We conduct spatial spectral analysis by comparing the power
spectral density (PSD) of ground truth observations against
reconstructions from CRITER and DINCAE2, focusing on
the Ionian Sea region due to its significant SST variability.

First, we identify observation fields with maximum num-
ber of known measurements within the ROI (Region Of Inter-
est) and compute their PSDs over the ROI. Following Fanelli
et al. (2024), we compute PSD using a fast Fourier trans-
form (FFT) with a Blackman–Harris window. We then sam-
ple 30 cloud masks with distinct coverage over the ROI, with
the fraction of missing values ranging from 50 % to 98 %.
For each mask, we simulate missing data in the observation
fields, reconstruct them using both methods, and compute
PSD over the reconstructed ROI.

Figure 7 shows an observation sequence with few avail-
able measurements. Both methods maintain PSD values near
the target at low wavenumbers, indicating comparable low-
frequency reconstruction. For wavenumbers k ≥ 4 cycles per
degree, however, CRITER’s PSD remains closer to the tar-
get than DINCAE2’s, demonstrating its superior ability to
resolve high-frequency components. Figure 8 depicts a case
with more measurements, where both methods generally
align closer to the target. Nevertheless, CRITER still outper-
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Figure 4. Comparison of sea surface temperature (SST) reconstructions generated by CRITER and DINCAE2 on the Mediterranean dataset.
The columns display (1) the original SST field with simulated missing values, (2) the original SST field, (3, 4) full reconstruction of the SST
field and the associated standard deviation, and (5) the absolute error map, highlighting the differences between the original and reconstructed
fields. All panel values are in °C. Note that color scales for σ and RMSEall are truncated at the 90th percentile of the data to improve visibility.
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Table 1. Comparison of CRITER, DINCAE2, and MAESSTRO. We report the overall reconstruction error (RMSEall), as well as the error
over deleted (RMSEmis) and observed regions (RMSEvis), where the two numbers in parentheses correspond to the 10 % and 90 % percentiles
of the error. Bold font indicates the best result for each metric and dataset.

Dataset Model RMSEall (°C) RMSEmis (°C) RMSEvis (°C)

Mediterranean MAESSTRO 0.487 (0.320, 0.657) 0.607 (0.394, 0.856) 0.434 (0.299, 0.564)
DINCAE2 0.209 (0.140, 0.300) 0.319 (0.226, 0.418) 0.148 (0.112, 0.184)
CRITER (ours) 0.127 (0.037, 0.235) 0.255 (0.168, 0.352) 0.017 (0.013, 0.021)

Adriatic MAESSTRO 0.456 (0.296, 0.635) 0.583 (0.362, 0.844) 0.392 (0.261, 0.539)
DINCAE2 0.270 (0.111, 0.522) 0.433 (0.203, 0.769) 0.106 (0.087, 0.129)
CRITER (ours) 0.130 (0.045, 0.222) 0.243 (0.140, 0.358) 0.021 (0.014, 0.030)

Atlantic MAESSTRO 0.802 (0.508, 1.239) 0.832 (0.514, 1.301) 0.764 (0.479, 1.137)
DINCAE2 0.444 (0.332, 0.581) 0.525 (0.396, 0.692) 0.302 (0.236, 0.364)
CRITER (ours) 0.391 (0.249, 0.542) 0.518 (0.386, 0.692) 0.036 (0.019, 0.046)

Figure 5. Same as Fig. 4 but for the Adriatic domain.
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Figure 6. Same as Fig. 4 but for the Atlantic domain.

forms DINCAE2 at high wavenumbers (k ≥ 5 cycles
deg ). Addi-

tional results are provided in Appendix C.

4.3.3 Comparison under different cloud coverage levels

The qualitative results presented in Sect. 4.3.1 suggest that
CRITER is robust to clouds of various size. To test this, we
compare the reconstruction error of CRITER and DINCAE2
on images with different coverage levels. The cloud coverage
is given by the fraction of pixels that are missing or deleted
relative to the total number of pixels belonging to the sea.
Specifically, we categorize clouds into three distinct groups
based on their coverage: low coverage (0 %, 60 %], moderate
coverage (60 %, 75 %], and high coverage (75 %, 100 %). We
then compute the reconstruction error within each group to

assess the performance of both models under varying cloud
conditions.

On the Mediterranean test set, the cloud coverage ranged
from a minimum of 8.7 % to a maximum of 99 %. CRITER
outperformed DINCAE2 across all cloud coverage groups,
achieving significant reductions in reconstruction error over
deleted regions. Specifically, the error was reduced by 21 %
in the low-coverage group, 18 % in the moderate-coverage
group, and 16 % in the high-coverage group. Similarly, on the
Adriatic test set, the cloud coverage ranged from a minimum
of 3.4 % to a maximum of 93 %. Here, CRITER substantially
reduced the reconstruction error over deleted regions by 38 %
in the low-coverage group, 49 % in the moderate-coverage
group, and 54 % in the high-coverage group. Finally, on the
Atlantic test set, the cloud coverage ranged from a minimum
of 37 % to a maximum of 97 %. CRITER achieved a 4 % de-
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Figure 7. Visualization of reconstruction performance. Row 1 shows the full fields (left to right: masked SST, target SST, CRITER re-
construction, and DINCAE2 reconstruction) with the Region of Interest (ROI) marked by a dashed black rectangle. Row 2 displays the
corresponding ROI fields: target SST, CRITER reconstruction, and DINCAE2 reconstruction. Row 3 presents gradient magnitudes within
the ROI for target, CRITER, and DINCAE2 outputs. Row 4 compares power spectral densities: target ROI (black), CRITER mean±SD
(orange band), and DINCAE2 mean±SD (blue band), with solid orange and dotted blue lines showing CRITER’s and DINCAE2’s PSDs
for the selected example.

crease in the low coverage group and around a 1.3 % decrease
in moderate- and high-coverage groups.

4.4 Uncertainty estimation and bias analysis

CRITER and DINCAE2 estimate both the reconstruction of
missing values and the associated uncertainty (i.e., the stan-
dard deviation) for each pixel. To assess the reliability of
the estimated standard deviation, we employ the scaled er-
ror metric

ε(i) =
x(i)− x̃(i)

σ (i)
, (8)

as proposed by Barth et al. (2020). This metric quantifies
the difference between the ground truth observation x(i) and

the reconstruction x̃(i), normalized by the estimated standard
deviation σ (i), where i is the pixel index. We calculate the
mean, µε , and standard deviation, σε , of the scaled error over
the entire test set. Furthermore, we compute the bias, defined
as the (non-normalized) mean difference between the ground
truth observations and reconstructions. An ideal reconstruc-
tion method would thus have the bias equal to zero (i.e., pre-
dicted values are not globally under or over estimated). and
standard deviation of the scaled error σε equal to 1 (i.e., per-
pixel disparities match the predicted uncertainties). Standard
deviation of the scaled error σε < 1 indicates that the pre-
dicted standard deviation σ is overestimated, while σε > 1
indicates that σ is underestimated.

Figure 10 displays the histogram of the scaled error met-
ric ε(i) for each test set, along with the corresponding Gaus-
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Figure 8. Same as Fig. 7 but for another sample.

sian distribution, characterized by the estimated mean µε
and standard deviation σε . The mean (µε), standard devi-
ation (σε), and the bias for each dataset are provided in
Table 2. Notably, CRITER moderately underestimates the
standard deviation, with standard deviation of the scaled er-
ror σε values of 1.116, 1.082, and 1.156 on the Mediter-
ranean, Adriatic, and Atlantic datasets, respectively, ranging
from 8 % to 16 %. In contrast, on average, DINCAE2 signifi-
cantly overestimates the standard deviation, with σε values of
0.334,0.996, and 0.801 across the three datasets. The over-
estimation thus ranges from as little as 0.4% to substantial
over-estimates of 66 %. CRITER consistently exhibits a very
low bias (of the order of 0.01 °C or lower) over all datasets.
Furthermore, CRITER exhibits a significantly smaller bias
on the Mediterranean and Adriatic datasets than DINCAE2,
whereas DINCAE2 achieves a smaller bias on the Atlantic
dataset. Note that, on the Adriatic dataset, DINCAE2 ex-
hibits 18× larger bias than CRITER.

Table 2. Comparison of CRITER and DINCAE2 on each test set,
showing the mean of the scaled error (µε ), standard deviation of the
scaled error (σε ) – both unitless and bias in °C. Bold font indicates
the best result for each metric and dataset.

Dataset Model µε (/) σε (/) bias (°C)

Mediterranean DINCAE2 −0.060 0.334 −0.060
CRITER (ours) −0.022 1.116 −0.007

Adriatic DINCAE2 0.198 0.996 0.128
CRITER (ours) 0.041 1.082 0.007

Atlantic DINCAE2 −0.017 0.801 −0.006
CRITER (ours) 0.118 1.156 0.047

4.5 Ablation study

We analyze the proposed CRITER architecture by ablating
or replacing individual parts. All model variants are trained
for a total of 500 epochs (CRM and IRM are trained for 200
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Figure 9. Reconstruction error comparison between CRITER and DINCAE2 across different cloud coverage groups (low, moderate, and
high) on the Mediterranean, Adriatic, and Atlantic test sets. The three rows correspond to the RMSE computed over (1) all ground truth
measurements, (2) missing measurements, and (3) observed measurements. The error bars indicate the 10 % percentile, mean, and 90 %
percentile of the error, respectively.

Figure 10. Histograms of the scaled error ε(i) for the Mediterranean, Adriatic, and Atlantic datasets, overlaid with the corresponding Gaus-
sian distributions, which are characterized by the estimated mean (µε ) and standard deviation (σε ). Additionally, an ideal model is shown in
black.
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Table 3. Performance of CRITER and CRITERCRM, which does
not utilize CRM. Bold font indicates the best result for each metric.

Variant RMSEall (°C) RMSEmis (°C) RMSEvis (°C)

CRITERCRM 0.205 0.336 0.129
CRITER 0.127 0.255 0.017

and 300 epochs, respectively) using the hyper-parameters de-
scribed in the “Implementation details” section (Sect. 4.1).
The variants are evaluated on the Mediterranean dataset.

4.5.1 Importance of the coarse reconstruction stage

We evaluate CRITERCRM, a variant without CRM. In this
configuration, IRM is initialized with an uninformative prior
x̃(0) = 0 and operates without FFM. Consequently, the first
Residual Estimation Network (REN) assumes responsibility
for the low-frequency reconstruction, a task previously per-
formed by the transformer-based CRM. Table 3 demonstrates
that incorporating CRM reduces the error over deleted and
visible regions by 24 % and 87 %, respectively, validating the
use of a transformer-based model for estimating the low fre-
quency components.

4.5.2 Architectural design of CRM

Vision Transformer-based backbone

CRM (Sect. 3.1) utilizes a Vision Transformer-based archi-
tecture to compute a coarse reconstruction. The main argu-
ment for the transformer-based design is to allow direct infor-
mation flow from all observed measurements into all corre-
sponding tokens and the final coarse reconstruction. To eval-
uate the transformer design choice, we replace it by a convo-
lutional counterpart, which maintains the same spatial reduc-
tion as the original CRM.

The convolutional variant, denoted with CRITERCNN, uti-
lizes a CNN-based CRM which accepts the same input as the
original CRM and reduces the spatial resolution 8× by three
double conv blocks, each followed by a 2×2 max pooling op-
eration. The number of convolutional kernels in each block
is 64,128, and 256, respectively. This is followed by a bottle-
neck layer, consisting of a double conv block with 512 con-
volutional kernels. The output latent features are upsampled
to the original spatial resolution by applying 3 transpose con-
volution layers, each followed by a double conv block. The
number of convolutional kernels in each block is 256,128,
and 64, respectively. Finally, a single 1× 1 convolutional
layer computes the coarse reconstruction, which is passed to
the IRM along with the latent features.

Results in Table 4 show that using CRITERCNN leads to
a substantial increase in reconstruction error over deleted
and visible regions. This verifies the importance of the
transformer-based design of CRM and suggests that global

Table 4. Performance of CRITER variants with different back-
bones. CRITERCNN utilizes a CNN-based CRM, while CRITER
utilizes the proposed ViT-based CRM. Bold font indicates the best
result for each metric.

Variant RMSEall (°C) RMSEmis (°C) RMSEvis (°C)

CRITERCNN 0.203 0.345 0.115
CRITER 0.127 0.255 0.017

Table 5. Performance of MAESSTRO and CRM. Bold font indi-
cates the best result for each metric.

Model RMSEall (°C) RMSEmis (°C) RMSEvis (°C)

MAESSTRO 0.487 0.607 0.434
CRITERIRM 0.242 0.337 0.190

information flow plays an important role in obtaining good
latent features and the coarse reconstruction.

Modeling spatio-temporal data dependencies

We next inspect the importance of using spatio-temporal in-
formation in the coarse reconstruction. For this reason we
remove the IRM from CRITER, leading to only using our
proposed spatio-temporal masked-auto-encoder-based CRM
architecture for reconstruction. We compare the reconstruc-
tion capabilities of CRM with the recent MAESSTRO (Goh
et al., 2024), which also employs a Vision Transformer (ViT)
(Dosovitskiy et al., 2021) and is based on a masked autoen-
coder (He et al., 2022). In fact, the major difference is that
CRM utilizes three temporally consecutive SST fields to re-
construct the central field, while MAESSTRO uses only the
central field.

Table 5 demonstrates that CRITERIRM reduces recon-
struction error by 44 % and 56 % over deleted and visible re-
gions, respectively, compared to MAESSTRO. These results
confirm the CRM modeling capability of spatio-temporal
data dependencies, which considerably improves reconstruc-
tion performance.

4.5.3 Importance of the refinement stage

To investigate the importance of refinement, we compare
CRITER with two variants. The first variant, CRITERIRM,
does not utilize refinement and takes the output of CRM as
the final reconstruction. The second variant CRITERres mod-
ifies IRM to estimate the full reconstruction at each iteration
(in contrast to the proposed IRM that estimates a sequence of
residuals).

Table 6 shows that utilizing refinement consistently leads
to improved reconstruction. In particular the proposed IRM
reduces CRM reconstruction error by 24 % and 91 % over
deleted and visible regions, respectively. Furthermore, the
results confirm that our proposed approach of consecutive
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Table 6. Performance of CRITER variants using different refine-
ment approaches. CRITERIRM does not utilize refinement, and
CRITERres modifies IRM to estimate the full reconstruction at each
iteration, while CRITER utilizes the proposed IRM. Bold font indi-
cates the best result for each metric.

Variant RMSEall (°C) RMSEmis (°C) RMSEvis (°C)

CRITERIRM 0.242 0.337 0.190
CRITERres 0.156 0.286 0.062
CRITER 0.127 0.255 0.017

Figure 11. Performance of CRITER variants with increasing num-
ber of refinement iterations.

residual estimation leads to lower errors than when the full
signal is reconstructed at each refinement step. We hypoth-
esize two reasons for this result. First, the residual estima-
tion approach better exploits the individual REN networks in
IRM, allowing each network to dedicate the full capacity for
correction of the errors from the previous REN, thus gradu-
ally focusing on the high-frequency content reconstruction.
Secondly, since the final reconstruction is obtained by sum-
ming the residuals, this enables a better gradient flow directly
to each REN, thus enabling better training.

4.5.4 Influence of refinement iteration steps

We next investigate the impact of varying the number of re-
finement steps in IRM (Sect. 3.2) on the reconstruction qual-
ity. Figure 11 shows results of CRITER retrained with differ-
ent number of steps in IRM. The lowest reconstruction error
is reached at three refinement steps. In particular the RMSEall
is reduced by 8 % compared to using a single refinement step.
Using more refinement steps does not improve performance
but leads to increased error. This is likely due to the param-
eter increase, since each refinement step introduces a new
REN network, which makes training less efficient on the lim-
ited dataset size. We defer explorations of more resilient IRM
architectures to future work.

Table 7. Comparison of CRITER, which utilizes latent features
computed by CRM, with CRITERfus, which does not. Bold font
indicates the best result for each metric.

Variant RMSEall (°C) RMSEmis (°C) RMSEvis (°C)

CRITERfus 0.130 0.260 0.021
CRITER 0.127 0.255 0.017

Table 8. Comparison of CRITER, which utilizes auxiliary features
(cosine and sine of the day of the year), with CRITERaux, which
does not. Bold font indicates the best result for each metric.

Variant RMSEall (°C) RMSEmis (°C) RMSEvis (°C)

CRITERaux 0.130 0.259 0.023
CRITER 0.127 0.255 0.017

4.5.5 Importance of the CRM latent features

In IRM (Sect. 3.2), the latent features computed by CRM
are fused with the bottleneck features to improve injection of
global coarse information in the refinement steps. To evalu-
ate the importance of this, we retrained CRITER without the
coarse latent features fusion in IRMs – this variant is denoted
as CRITERfus.

Results in Table 7 show that the reconstruction error over
deleted and visible regions of CRITER with feature fusion
reduces by 1.9 % and 19 %, respectively, compared to the
feature fusion free counterpart.

4.5.6 Importance of time auxiliary features

CRM (Sect. 3.1) takes as input a sequence of consecutive ob-
servation fields, that are concatenated with auxiliary features,
particularly the cosine and sine of the day of the year that
encode the yearly cycle of SST. The auxiliary features of-
fer additional information which CRM can incorporate when
computing the latent features and generating the coarse re-
construction. To evaluate the importance of this, we train a
CRM variant which does not leverage auxiliary features, de-
noted by CRITERaux. Results in Table 8 show that augment-
ing the input with auxiliary features leads to a 1.5 % and 26 %
decrease in reconstruction error over deleted and visible re-
gions, respectively.

5 Conclusions

This study introduced CRITER, a novel two-stage model for
reconstructing sea surface temperature (SST) from sparse
satellite observations. High performance of the CRITER
method stems from a Coarse Reconstruction Module (CRM)
utilizing a Vision Transformer (ViT) architecture for initial
reconstruction, followed by an Iterative Refinement Mod-
ule (IRM) to refine the reconstruction with a focus on high-

https://doi.org/10.5194/gmd-18-5549-2025 Geosci. Model Dev., 18, 5549–5573, 2025
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frequency information. The global receptive field of the ViT
enables modeling of long-range dependencies in the data,
while iterative refinement allows each network to focus its
full capacity on modeling high-frequency corrections. This
combination leads to significant enhancements in overall per-
formance. The introduction of CRM’s ViT global attention
mechanism proved crucial for effective long-range depen-
dency modeling, addressing limitations of convolutional ar-
chitectures.

Our results show that CRITER surpasses the state-of-the-
art DINCAE2 model by a significant margin across three di-
verse SST datasets: Mediterranean, Adriatic, and Atlantic.
Notably, CRITER achieves substantial reductions in recon-
struction error, with improvements of up to 89 % in observed
regions and up to 44 % in missing regions.

The iterative refinement process of IRM, focusing on
residual estimation, further enhanced reconstruction ac-
curacy by efficiently utilizing model capacity for high-
frequency variability in the SST observations. Ablation stud-
ies confirmed the importance of CRM’s transformer-based
design, the effectiveness of iterative residual estimation in
IRM, and the utility of incorporating auxiliary features such
as the day-of-year encoding.

Overall, CRITER sets a new benchmark for SST recon-
struction, providing a robust framework that leverages the
strengths of both transformer and convolutional architectures
to deliver superior performance. Future work will explore ex-
tending CRITER’s applicability by incorporating additional
environmental proxy variables (like chlorophyll a, which of-
ten serves as a complementary variable to SST in ocean state
estimates) and increasing the temporal horizon for even more
accurate sparse data reconstructions.

Appendix A: Analysis of missing values in evaluation
datasets

We analyze the extent of missing values in each dataset de-
scribed in Sect. 2.1. To quantify the number of missing data,
we define the cloud coverage At of an observation xt as

At =
|1−Mt|

|Ml|
, (A1)

where Mt ∈ {0,1}W×H is the missing data mask correspond-
ing to observation xt , and Ml ∈ {0,1}W×H is the land mask.
Cloud coverage is computed as the fraction of pixels that are
missing relative to the number of pixels belonging to sea ar-
eas. We then calculate the mean cloud coverage over 1t = 3
consecutive observation fields as A= 1

3 (At−1+At +At+1).
Note that the proportion of available information in the en-
tire observation triplet is thus given by 1−A. Figure A1
presents a histogram of the mean cloud coverage A for all
three filtered datasets. The results show that the datasets can
be ranked by the average amount of available information
in each observation triplet, from highest to lowest: Mediter-
ranean, Adriatic, and Atlantic.

Figure A1. Histogram (100 bins) of cloud coverage for all three
(filtered) datasets.
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Appendix B: Additional qualitative analysis figures

This section presents additional reconstructions generated by
CRITER and DINCAE2 (Barth et al., 2022). For a detailed
discussion of the qualitative comparison, refer to Sect. 4.3.1.

Figure B1. Same as Fig. 4 on different samples.
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Figure B2. Same as Fig. 4 but for the Adriatic domain.
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Figure B3. Same as Fig. 4 but for the Atlantic domain.
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5568 M. Zupančič Muc et al.: Sparse satellite data reconstruction

Appendix C: Extended spatial spectral analysis

This section presents supplementary power spectral density
(PSD) comparisons. Figure C1 shows a challenging case
with sparse measurements, where CRITER’s PSD remains
closer to the target (on average) for wavenumbers k ≥ 4 cycles

deg .
Figure C2 depicts a high-measurement scenario featuring a
failure case for CRITER: minor noise amplification beyond
k ≥ 5 cycles

deg . A similar issue occurs with DINCAE2 but in a
different wavenumber band: Fig. C3 shows significant noise
amplification within k ∈ [2,4] cycles

deg . For a detailed discus-
sion of the comparison, refer to Sect. 4.3.2.

Figure C1. Same as Fig. 7 but for a different sample.
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Figure C2. Same as Fig. 7 but for a different sample.
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Figure C3. Same as Fig. 7 but for a different sample.

Appendix D: Implementation details of baseline models

MAESSTRO (Goh et al., 2024) is trained using mean
squared error loss, as described in Sect. 3.3, for consistency
in our comparison. The model processes only the current
time step SST field without auxiliary features. We modi-
fied MAESSTRO’s original random patch masking to in-
ject sampled real cloud masks, enhancing real-world appli-
cability. An SST patch is masked if its corresponding cloud
mask patch contains any zero values. MAESSTRO employs
a ViT-Tiny backbone with 12 encoder and decoder layers,
3 multi-head attention (MHA) heads, a token dimension of
Dt = 192, layer-norm epsilon of 1× 10−12, and patch size
of 8× 8. MAESSTRO is trained with a batch size of 8 us-
ing the AdamW optimizer with a learning rate α = 3×10−4,
β1 = 0.9, and β2 = 0.95 for 100 epochs (warm-up period)
and then with a cosine decay scheduler (Loshchilov and Hut-
ter, 2016) with a step size of 50 for another 300 epochs.

DINCAE2 (Barth et al., 2022) is trained using the negative
log-likelihood loss, as described in Sect. 3.3, to maintain con-
sistency in our comparison. The model utilizes a sequence
of three temporally consecutive SST fields, along with day-
of-the-year auxiliary features, to reconstruct the central SST
field. Hyperparameters of the re-implemented DINCAE2 dif-
fer slightly between the datasets. On the Mediterranean and
Atlantic, DINCAE2 is trained using the Adam optimizer,
with an initial learning rate of α = 4× 10−3, β1 = 0.90, and
β2 = 0.999 and a batch size of 8 for a total of 1000 epochs,
using a step learning rate scheduler with a step size of 100
epochs and a multiplicative factor of γ = 0.5. On the Adri-
atic we use an initial learning rate of α = 7×10−3 and a step
size of 150; all other hyperparameters remain unchanged.
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Code and data availability. Implementation of CRITER and the
code to train and evaluate the model are available in the
GitHub repository at https://github.com/Matjaz12/CRITER. We
also include CRITER weights pretrained on the Mediter-
ranean, Adriatic, and Atlantic datasets. The persistent ver-
sion of our GitHub repository containing code under MIT
license is available at https://doi.org/10.5281/zenodo.13923156
(Zupančič Muc, 2025). We publish all three datasets at
https://doi.org/10.5281/zenodo.13923189 (Zupančič Muc et al.,
2024).
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