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Abstract. Uncertainty estimation is a key issue in nuclear
crisis situations. Probabilistic methods for taking uncertain-
ties into account in assessments are often costly in terms of
the number of simulations and computation time. This is why
emulation methods, which enable rapid estimation of numer-
ical model outputs, represent a promising solution. However,
in the context of radioactive dispersion modeling, existing
emulators are mostly limited to scalar outputs. In a crisis
context, decisions are often based on dose maps, which are
mathematically represented by high-dimensional data. In this
study, we use the auto-associative model method to reduce
the dimension of dose results and then predict these reduced
representations using kriging. We also compare this predic-
tion method with others used by the French Nuclear Safety
and Radiation Protection Authority (ASNR) to predict the
consequences of a nuclear accident.

1 Introduction
1.1 Context

In the event of a nuclear accident, numerical simulations of
atmospheric dispersion are used to predict the territories po-
tentially impacted by radioactive releases. The French Nu-
clear Safety and Radiation Protection Authority (ASNR) de-
velops and uses atmospheric dispersion models embedded
within its operational crisis platform called C3X to perform
these calculations (Tombette et al., 2014). These simulations
are used to infer operational indicators, such as the maxi-
mum distance from the source, where a dose threshold can
be exceeded. The thresholds may be, for instance, regula-

tory protective action guide levels that could trigger protec-
tive actions such as population evacuation, sheltering, stable
iodine prophylaxis, or food restrictions. Although the dose
guide levels differ from one country to another, this approach
based on zones of threshold exceedance is widely used, as de-
scribed in IAEA’s publications on emergency preparedness
and response (International Atomic Energy Agency, 2021).
Such evaluations are subject to uncertainties due to a lack
of information on the installation’s status, meteorological
forecast uncertainties, and models’ approximations (Lead-
better et al., 2020; Le et al., 2021). Prediction errors can in-
duce two kinds of wrong decisions: either insufficient popu-
lation protection zones, where a threshold exceedance occurs
but was not predicted, or unnecessary actions zones, where
a threshold exceedance is forecast but does not come true.
While the detriment to the population in the former case is
obvious, leading to the use of conservative evaluations de-
signed to avoid this situation at all costs, limiting evacuation
and other restrictions where possible is also desirable as these
actions may have a high and potentially long-term econom-
ical and health cost (Nomura et al., 2013, 2016). A better
quantification of uncertainties may help refine the hypothe-
ses and potentially reduce the margins of the conservative as-
sumptions while ensuring sufficient population protection. In
the approach applied by the ASNR’s emergency center, the
very first response generally relies on pre-calculated scenar-
ios, the data of which are gathered in an “accident type sheet”
(ATS). This database relies on calculations carried out in the
preparedness phase for a number of accidental scenarios and
for selected weather situations described by a few parameters
(wind direction and speed, atmospheric stability, and rain) as-
sumed to be constant in time and homogeneous over the sim-
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ulation domain. In a second step, ASNR uses its local-scale
Gaussian puff atmospheric dispersion model, called pX (Ko-
rsakissok et al., 2013; El-Ouartassy et al., 2022), to obtain
predictions that correspond more closely to the actual acci-
dental and meteorological situation.

Forecasting tools must be compatible with emergency re-
sponse time constraints, when the first evaluations should be
provided typically within 1 h after the alert. This timing in-
cludes not only the computational time required to set up
and run the simulations themselves, but also the time re-
quired to gather meteorological forecasts and source term
assessments, analyze the results, and communicate them to
decision-makers. Thus, a numerical model such as pX requir-
ing typically a few minutes to run can be used for a single,
deterministic estimation. However, the computation time re-
quired to account for uncertainties using hundreds of simula-
tions does not fit with these operational constraints.

1.2 Emulation and dimension reduction

An emulator is a surrogate model that approximates the out-
put of a computationally intensive physical model while be-
ing much faster to evaluate. Emulators are often constructed
by interpolating scalar outputs from a set of pre-computed
simulations.

In radiological emergency contexts, emulators enable sev-
eral practical applications:

— They enlarge the pre-calculated scenario database by in-
cluding a variety of input parameters, allowing us to
evaluate results for a larger range of meteorological sit-
uations than those considered in the ATS.

— They replace the original model in the case of uncer-
tainty estimation (Le et al., 2018) or sensitivity analyses
(Girard et al., 2016), where several hundred simulations
are needed to perturb the model inputs in order to obtain
a large number of outputs.

— Thanks to their speed, they allow interactive exploration
of the input space with a graphical interface where it is
possible to vary the model inputs to observe their influ-
ence on the output. Such a tool can be used for educa-
tion and training purposes in order to demonstrate the
influence of input parameters on the outputs and to help
making “reasonably conservative” evaluations of uncer-
tain parameter values.

However, the output of dispersion models is typically a
spatial map — high-dimensional and structured — whereas
most emulators are designed for scalar outputs. One naive
solution would be to build an emulator for each grid point,
but this approach ignores spatial correlations and is compu-
tationally inefficient.

In the field of atmospheric dispersion modeling, emula-
tors have been used to predict spatio-temporal average quan-
tities, values at a monitoring point (Le et al., 2018; Girard
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et al., 2016), or maximum exceedance distances (Périllat
et al., 2020). Fitting an emulator for each grid point of a two-
dimensional map would be difficult to both compute and im-
plement as it would ignore the spatial correlations inherent in
the data. For these reasons, emulating a spatial map requires
a first step of dimension reduction.

The most widely used dimension reduction method is prin-
cipal component analysis (PCA) (Jolliffe and Cadima, 2016;
Jolliffe, 2002). It consists of projecting a set of points onto
a vector subspace in a least-squares optimal way in order to
obtain the most faithful representation of this set of points
in a reduced dimensional subspace. It has been applied in
the specific domain of atmospheric dispersion, sometimes in
combination with emulation (Burgin et al., 2017; Le et al.,
2018; Mallet et al., 2018; Swallow et al., 2017; Lumet et al.,
2025). However, being a linear approximation, PCA fails to
encode sets of maps that are too different from one another.

The auto-associative model (AAM) is an extension of PCA
that captures nonlinear relationships in the dataset (Girard,
2000). Instead of projecting the data onto a linear subspace,
the AAM approximates the dataset by a low-dimensional dif-
ferentiable manifold. It does so through two complementary
mappings: a projection function that reduces the dimension-
ality and a recovery function that reconstructs the original
data from the reduced coordinates. These mappings are typ-
ically estimated using spline regression, allowing the model
to learn smooth nonlinear variations in the dataset.

The AAM can be seen as a constrained form of an autoen-
coder, where both the architecture and the optimization strat-
egy are adapted to small sample sizes and structured data,
such as spatial fields. Compared to PCA, which assumes lin-
ear combinations of orthogonal basis vectors, the AAM pro-
vides better reconstruction when data exhibit spatial trans-
formations such as shifts, deformations, or plume rotations
— situations that frequently occur in dose maps produced by
atmospheric dispersion models.

The AAM has already been applied once in this context to
the dimension reduction of radiological dispersion maps (Gi-
rard et al., 2020). In that study, it was shown that the AAM
could recover over 78 % of the variance using only two non-
linear coordinates, while PCA required six components to
achieve the same reconstruction quality. The difference was
particularly notable for simulations with varying wind direc-
tions, where PCA struggled to encode rotated structures. Vi-
sual comparisons confirmed that the AAM preserved spatial
features more faithfully.

The present paper presents the first combination of the
AAM with emulation applied to the prediction of dose maps
in the event of an accidental release of radioactive materials
into the atmosphere. We introduce the case study in Sect. 2,
the methodology in Sect. 3, and the results in Sect. 4. We de-
velop and validate the AAM independently in Sect. 4.1.1, the
kriging model in Sect. 4.1.2, and finally the complete emu-
lation framework in Sect. 4.1.3. Validation is performed on
an operational scenario for predicting threshold exceedance
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Table 1. Input parameters and ranges of variation for the construc-
tion of emulators.

Input variable Range of variation ~ Unit

‘Wind module [0,10] m s7!
Rain intensity [0,10] mm h!
Release height [0,100] m
Source term amplitude [10,100] %

[1x1073,1x1072] ms~!
[5x1074,5x1073] ms~!

Deposition velocity of iodine
Deposition velocity of other elements

areas. The performance of the proposed approach is com-
pared to alternative prediction methods in Sect. 4.2. Finally,
in Sect. 5, we illustrate the practical applications enabled
by the emulator, particularly in terms of real-time response,
probabilistic risk assessment, and decision support.

2 Case study

We simulated the result of a primary breach leading to a total
core meltdown in 1 h of a 1300 MWe pressurized water reac-
tor. This accidental scenario is one of the pre-calculated sce-
narios leading to the exceeding of protective action guide lev-
els over significant distances. We used the pX Gaussian puff
dispersion model with the Doury diffusion model in neutral
atmospheric stability and with a meandering wind coefficient
of 3. The meandering wind coefficient is a multiplicative fac-
tor applied to the diffusion model and designed to account for
wind direction variations that occur during the time span of
the release and are not taken into account by the meteorolog-
ical inputs.

We focused here on two-dimensional maps of thyroid in-
halation equivalent dose 24 h after the beginning of the re-
leases. In France, stable iodine prophylaxis is related to a
dose criteria of 50 mSv to the thyroid. We used a polar mesh
with smaller cells close to the source, where there are strong
spatial dose variations. The nodes of the mesh are distributed
on 36 angles between 0 and 360° and on 61 different radii
from 500 m, increasingly spaced from each other as we move
away from the source until a distance of 30 km.

Thus, the output data have a dimension of 2196. The case
study is stationary: inputs are assumed to be constant in time
and space. This is not generally the case for meteorological
variables but is consistent with the simple situations on which
pre-calculated sheets are based. We considered six sources
of uncertainty as inputs of the model, which are listed in Ta-
ble 1. Two of them are related to the meteorological situa-
tion: the wind module and rainfall rate; two uncertain param-
eters, the source amplitude (a multiplicative factor applied to
the source term computed for the chosen accidental scenario)
and release height, describe the source term characteristics;
and the two last parameters are used to define radionuclide
deposition rates for iodine and others.
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The choice of uncertain parameters and their ranges of
variation is not representative of the full range of possible sit-
uations. They were chosen to be representative of the usual
range of values encountered during emergency exercises to
build and validate a proof of concept that can then be ex-
tended to other situations and scenarios. For instance, the
source term computed for the accidental scenario comprises
224 radionuclides, each of them being associated with a re-
lease rate as a function of time. It was computed using con-
servative assumptions regarding the quantity of radioactive
materials emitted into the atmosphere. Therefore, the multi-
plicative factor applied to these quantities is assumed to vary
between 10 % and 100 % as the evaluation of the installation
status at the time of the accident is more likely to lead to a
downward revision of the source term.

The ranges of variation for each input parameter were se-
lected based on operational knowledge and literature values,
as well as their relevance in emergency scenarios:

— Wind module: varied between 0 and 10ms~'. This
range covers typical near-surface wind speeds encoun-
tered in most meteorological conditions relevant for nu-
clear dispersion scenarios. Wind speeds above 10 ms ™!
are less frequent and usually associated with lower con-
centrations and are therefore less likely to trigger thresh-
old exceedance.

— Rain intensity: varied between 0 and 10mmh~!, cov-
ering the range from no precipitation to heavy rain.
This interval includes typical rain intensities relevant for
wet deposition modeling in nuclear dispersion scenar-
ios. Rain intensities above 10 mmh~! are less frequent
and often short-lived, and are therefore not prioritized
in standard emergency simulations.

— Release height: varies from 0 to 100 m. A value of O m
corresponds to a ground-level release, which is rele-
vant for some accident scenarios, such as leaks near the
base of a reactor building. The upper bound of 100 m
corresponds approximately to the height of the ventila-
tion stacks or highest building points in most nuclear
facilities and thus reflects realistic release heights for
stack emissions or elevated plumes. Higher plume emis-
sions would not lead to any threshold exceedance at the
ground level for the accidental scenario considered.

— Source term amplitude: from 10 % to 100 %, reflect-
ing the uncertainty in estimating the actual quantity
of radioactive material released. It is common practice
during an emergency to revise the source term ampli-
tude downward as more information becomes available
about the plant’s condition and containment efficiency.

— Deposition velocities: for iodine, a range of 1 x 1077—
1 x 102 ms~! is used, and for other elements from 5 x
107%to 5 x 1073 ms~!. The range of variation was de-
rived from a literature review (Baklanov and Sgrensen,
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2001) and is consistent with previous studies (Girard
et al., 2014).

3 Emulation method
3.1 Auto-associative models

“Reducing the dimension” of an ensemble embedded in a
high-dimensional vector space consists of building an asso-
ciated ensemble with a lower-dimensional coordinate sys-
tem. A rough definition of topological dimension would be
“the minimum number of variables needed to represent a
set” (Fukunaga and Olsen, 1971). More rigorously, we must
choose the nature of the associated sets in order to have a pre-
cise definition of “coordinate system”, for example, the one
recalled by Milnor (1997) for differentiable manifold.

Given aset G C R™, with a large m, we try to construct the
approximate set A C R™ in bijection with the vector space
C C R, with a small I:

-1
GRS C RS AR )
be
The auto-associative model (Girard and Iovleff, 2008) is a
nonlinear method of dimension reduction. The term “linear”
here means that the approximating space A would be a sub-
vector space and x o ¥ an orthogonal projection. In contrast,
in the “nonlinear” case, the approximating space A is a dif-
ferentiable manifold and x o v a composition of orthogonal
projections by a nonlinear x function.

3.2 Kriging

Kriging is a spatial interpolation method and the core of geo-
statistics. It was originally designed for optimizing gold min-
ing (Chiles and Delfiner, 1999) by inferring from a few bore-
holes the spatial distribution of gold grades over the whole
mining field. Kriging becomes an emulation method by re-
placing the spatial coordinates by the model inputs and the
gold grade by the scalar model output.

The kriging emulator predicts the output at a new input
point x as a linear combination of N known outputs f (x,‘)f,v= |
at previously simulated input points x;. The weights w; of
this linear combination are chosen to minimize the variance
of the prediction error under the assumption that the output is
a realization of a Gaussian process. This Gaussian process is
assumed to be second-order stationary, meaning its mean is
constant and its covariance between two input points depends
only on their relative position.

The weights are the solution to the following system:

N
Vie(l....N}, Y w;jK@i.x)+r=Kx.x). (2
j=1
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N
Zu}j = 1, (3)
j=1

where K (-,-) is a positive definite covariance kernel, A is
a Lagrange multiplier enforcing unbiasedness, and x is the
target point. The predicted centered value is then f x)=
Z?’lejf(xj). The mean of the process can also be esti-
mated by a generalized least-squares regression.

In this work, we use the DiceKriging R package
(Roustant et al., 2012), which implements kriging metamod-
els for deterministic computer codes. We use a product of sta-
tionary covariance kernels, one for each input variable, and
estimate the correlation lengths via maximum likelihood op-
timization.

A comprehensive introduction to kriging for emulation can
be found in the textbook Gaussian Processes for Machine
Learning (Rasmussen and Williams, 2006), and an applica-
tion to atmospheric dispersion modeling is described in Gi-
rard et al. (2016).

3.3 Putting it into practice

We performed 2548 simulations uniformly sampling the five-
dimensional input space of the release height, the wind mod-
ule, the rain intensity, and the two deposition velocities (their
range of variation is given in Table 1). The output dose being
linear with the amplitude of the source term, we completed
the simulation sample using two random amplitudes for each
input vector, thus covering the whole six-dimensional input
space with a total of 5096 points. 4096 of them were used
to train the AAM, while the other 1000 were used to fit the
model.

Given that the dose values vary by up to a factor of 10
depending on distance, we applied the method to their loga-
rithm to better reveal relative variations. The AAM reduced
the dimension of the results to 9 coordinates, whereas the ini-
tial data dimension was 2196, corresponding to a grid mesh
36 x 61 in size. Using fewer than nine coordinates resulted
in larger errors, while higher-dimensional approximations
increased computation times with only moderate improve-
ments in results. Since the final goal of this parameterization
is to focus on the zones where a dose threshold (th) is ex-
ceeded, we also truncated the logarithm of the doses: any val-
ues below log(th) /2 were set to log(th)/2. Thus, small dose
variations do not disturb the parameterization by the AAM.

Kriging is then used to create emulators. The emulator
combined with dimension reduction can then be used to pre-
dict an output map for any new input vector (see Fig. 2). The
AAM can finally associate with these nine scalars a two-
dimensional map of the inhalation dose. Each of the nine
AAM coordinates is predicted independently using a sepa-
rate kriging model, allowing us to capture the specific re-
sponse behavior associated with each latent component.

The number of AAM coordinates was chosen based on a
trade-off between reconstruction accuracy and model com-
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Figure 1. Evolution of the relative reconstruction error (in %) as a
function of the number of AAM coordinates. The solid line repre-
sents the median error in the test set; the shaded areas correspond to
the 25th—75th and 5th-95th percentiles.

plexity. We performed a systematic validation by varying the
number of coordinates from 1 to 12 and computing the rel-
ative reconstruction error in a separate test set. As shown in
Fig. 1, the relative error decreases sharply with the number
of coordinates of up to eight to nine, beyond which addi-
tional coordinates yield only marginal improvements. The in-
terquartile and 5 %-95 % ranges also stabilize at that point,
indicating that the reconstruction quality no longer signifi-
cantly benefits from added complexity. Based on this analy-
sis, we retained nine coordinates as a good compromise.

4 Results
4.1 Validation

An additional simulation sample was built to test the reliabil-
ity of the emulator. We drew M = 1000 random new points
in our six-dimensional input space and then run the compu-
tational model M times with input parameters corresponding
to these draws. We obtained M output results that were com-
pared with the maps reconstructed after dimension reduction
with the AAM (Sect. 4.1.1) and with emulator predictions
(Sect. 4.1.2) and then with the combination of the two meth-
ods (Sect. 4.1.3).

https://doi.org/10.5194/gmd-18-5513-2025

4.1.1 Validation of the dimension reduction by the
AAM

We assessed the validity of the dimension reduction step by
comparing the maps two by two for our test sample, as in
Fig. 3, and by calculating the figure of merit in space (FMS)
of the dose criteria exceedance isolines for each of these
maps. This score is calculated by dividing the area of the
intersection of the two surfaces A and B by the area of the
union of the two:
ANB

FMS = .
AUB

The FMS of two very similar surfaces approaches 1, while
when two isolines have little surface in common, it ap-
proaches 0. This metric has been used in previous studies of
radioactive dispersion, such as the European CONFIDENCE
project (Bedwell et al., 2020), where it helped quantify the
spatial agreement between predicted and reference dose ar-
eas.

Figure 4 presents a histogram of the FMS values, showing
that the areas enclosed by the isolines exceeding 50 mSv are
well preserved by the AAM approximation. In 75.5 % of the
cases of the testing samples, the FMS is greater than 0.8,
indicating a strong agreement between the AAM prediction
and the reference model. In 11.7 % of the cases, the FMS
could not be computed because no threshold exceedance was
observed, meaning that no isoline was formed. Overall, these
results confirm that the predicted isolines are very close to
those produced by the original model.

4.1.2 Validation of the interpolation by kriging

Figure 5 shows how well each scalar is predicted. The closer
the set of points is to the line y = x, the better the prediction.

We quantified the prediction error with the standardized
mean squared error (SMSE). For a set of N observed points
(xi)ier,n) and a set (X;)ier1,n] of estimated points, the
SMSE is defined as follows:

ZIN:I(xi _’%i)z
Y -2

where x is the mean of (x;);e[1,n].

We can observe in Table 2 that the first three coordinates
are reconstructed with excellent accuracy (very low SMSE).
The SMSE increases progressively with the score index,
reaching high values for the last two scores. This degradation
is largely due to one outlier point in the test sample, which
heavily impact the SMSE because it is based on squared er-
rors.

To provide a more robust evaluation of the prediction qual-
ity, we also computed the 95 % quantile of the relative ab-
solute error. This metric gives an upper bound on the error
affecting most points without being overly sensitive to rare

SMSE =

Geosci. Model Dev., 18, 5513-5525, 2025
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Figure 2. Dose map prediction process using emulation coupled with the AAM.
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Figure 3. Inhalation dose map and 50 mSv guide-level exceedance
isolines for a model output in (a) and for the approximation of this
output by the AAM in (b).
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Figure 4. Histogram of the FMS that compares the threshold ex-
ceedance zones for the model outputs with AAM approximations
across the testing samples. 75.5 % of the FMS is between 0.8 and
1, which implies that the projected results are very often similar to
those obtained by simulation.

extreme values. As shown in Table 2, the Q95 scores remain
acceptable even for the least accurate coordinates, confirm-
ing that the predictions remain generally reasonable despite
isolated errors. These last coordinates bring fine details to
the reconstruction and were therefore retained to preserve the
quality of the final maps.

4.1.3 Validation of the emulator that combines the two
methods

With the AAM, this prediction of the nine scalars can be
transformed into a two-dimensional dose map, which can be
used to determine a threshold exceedance isoline. The suc-
cession of the two methods thus allows us to convert the

Geosci. Model Dev., 18, 5513-5525, 2025

Table 2. SMSE and the 95 % quantile of relative absolute error for

each score.

Score SMSE Qos rel. abs. error
1 9.939 x 10704 1.219 x 10701
2 6.482x 10703 9413 x 10701
3 1.466 x 10702 1.811 x 10100
4 7.065x 10702 4368 x 10100
5 1.228 x 10791 4.044 x 10100
6 6.076 x 10702 2.078 x 10100
7 1.604 x 10701 3.231 x 10100
8 5.114x 10701 2268 x 10790
9 1.001 x 10100 3,134 x 10100

model inputs into a decision-aiding map, defined by an iso-
line, to estimate whether or not a guide-level might be ex-
ceeded.

Comparisons between simulations and associated emula-
tor predictions can be classified into four cases:

— Case I: dose maps that are well reconstructed by the
method, as shown in Fig. 6a and b. The shape of the iso-
line is preserved, and its size is similar to that given by
the simulation, resulting in a well-estimated maximum
distance.

— Case 2: dose maps that are well reconstructed, but the
isolines can differ slightly in scale from what is ex-
pected, as illustrated in Fig. 6¢ and d.

— Case 3: dose maps that are less well reconstructed,
where the general shape of the isoline is not accurately
reproduced. This typically occurs under low-wind con-
ditions, as shown in Fig. 6e and f.

— Case 4: dose maps that approach the threshold value
with little or no exceedance, but the predicted and sim-
ulated isolines may differ significantly. Figure 6g and h
illustrate this: although the two dose maps appear simi-
lar, a slight difference in intensity can cause a noticeable
discrepancy in the exceedance isoline prediction.

We evaluated the adequacy of the simulated and predicted
surfaces by calculating the FMS of our test sample simula-
tions. Figure 7 represents the histograms of the FMS. We
can notice a slight degradation compared to Fig. 4. However,
70.9 % of the FMS is between 0.8 and 1, which implies that
the predicted isolines are very often similar to those obtained
by simulation (Cases 1 and 2 described earlier). Also, 11.5 %

https://doi.org/10.5194/gmd-18-5513-2025
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Figure 5. Comparison of the prediction of the emulator (on the y axis) with the target obtained by simulation (on the x axis). Each graph

represents one coordinate of the AAM.

of the FMS cannot be calculated because both the simulation
and emulator detect no threshold exceedance. Those cases
correspond also to good prediction of the emulator. We note
that 2.8 % of the FMS is equal to zero, which corresponds
to the problem of the non-reached threshold mentioned pre-
viously (Case 4). The last 14.8 % of the intermediate FMS
corresponds to badly reconstructed isolines (Case 3), for in-
stance, when the wind module is low, which does not neces-
sarily mean that the surface error is large because the FMS
is a relative score. Excluding the cases where no threshold is
exceeded, badly reconstructed areas amount to 17.6 %, which
means that more than 80 % of the threshold exceedance areas
are correctly forecast.

https://doi.org/10.5194/gmd-18-5513-2025

4.2 Comparison to other prediction methods

We benchmarked our new prediction method against two
state of the art procedures:

— At the start of a crisis, a first estimate is derived from
the ATS, yielding orders of magnitude and first results
for distance and angular aperture of exceedance. Then
simulations are performed with the pX model in order
to predict a guide-level exceedance zone and estimate a
maximum distance of threshold exceedance. An angular
aperture is also estimated from pre-computed tables de-
pending on the wind, atmospheric stability, and mean-
dering wind factor. This simulated maximum distance,
associated with this angular aperture obtained without
emulation, allows us to deduce a portion of the circle

Geosci. Model Dev., 18, 5513-5525, 2025
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Figure 6. Examples of inhalation dose maps for simulated results by the original physical model (a, ¢, e, g) and emulator-predicted re-
sults (b, d, f, h).
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Figure 7. Histogram of the FMS that compares the threshold ex-
ceedance zones for the model outputs with the emulator outputs
across the testing samples. 70.9 % of the FMS is between 0.8 and
1, which implies that the predicted results are very often similar to
those obtained by simulation.

which corresponds to the zone for which decisions are
recommended.

— In a previous study (Périllat et al., 2020), an emulator
was created to directly predict, without using the AAM,
the maximum distance of the threshold exceedance
given by the model as well as the angular aperture of
this zone. Kriging was used to estimate those two geo-
metrical parameters from the original model, pX.

These two methods will be referred to as the “ATS esti-
mator” and the “emulator of geometrical parameters” in the
remainder of this paper.

Figure 8 shows the comparison between the AAM—kriging
emulator described in Sect. 3 (Fig. 8c) and the two usual
approaches (Fig. 8a and b). In addition, we tested a fourth
method: the AAM-kriging emulator applied to a lower
threshold exceedance than the actual guide-level value to
take a margin on the results obtained by the emulator
(Fig. 8d). To achieve that, instead of creating an isoline at
log(th) on our logarithmic dose, we created an isoline at
log(th)/1.1.

We compared the isolines of these different prediction
methods to the one given by the Gaussian puff model for the
1000 simulations of our test sample. Four kinds of areas may
be defined:

— True positives: areas where both the predictor and the
model forecast a threshold exceedance;

— True negatives: areas where the predictor and the model
do not forecast a threshold exceedance;

— False positives: areas where the predictor forecasts
threshold exceedance, while the model forecasts the op-
posite;

https://doi.org/10.5194/gmd-18-5513-2025
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Figure 8. Guide-level exceedance zone for one simulation of the
test sample obtained by the different estimation methods. Each sub-
figure corresponds to a different method: (a) the ATS estimator
(in purple), (b) the emulator of geometrical parameters (in green),
(c) the emulator coupling kriging to the AAM (in blue), and (d) the
same emulator with a lower threshold (in red). In each plot, the esti-
mated exceedance zone is shown in a light color, and the reference
exceedance zone is given by the Gaussian puff model pX that is su-
perimposed in grey. Colors are consistent with other figures to ease
comparison between methods.

— False negatives: areas where the predictor does not fore-
casts a threshold exceedance, while the model forecasts
the opposite.

These surfaces allow us to evaluate the performance of
each method. Each output pair (model, predictor) is charac-
terized by a certain number of true-positive, true-negative,
false-positive, and false-negative areas.

Figure 9 presents the empirical cumulative distribution
functions (CDFs) of the false-positive and false-negative sur-
face areas (in km?) over the 1000 test simulations. The x axis
represents the area, while the y axis gives the proportion
of simulations with a surface area less than or equal to that
value. For both curves, a faster rise towards 1 on the y axis
indicates better performance.

Table 3, in contrast, summarizes the total false-positive
and false-negative areas accumulated across the 1000 sim-
ulations for each prediction method. It provides an aggregate
view of each method’s overall behavior.

We observe that the ATS estimator, used as a very
first response, produces the largest false-positive surface
(10.665km?), with an extremely low false-negative area

Geosci. Model Dev., 18, 5513-5525, 2025
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Figure 9. Cumulative distribution functions (CDFs) of the probabil-
ity of obtaining false-positive and false-negative surfaces (in km?)
for the different predictors. These CDFs were estimated from a test
sample of 1000 simulations. The plot in (a) corresponds to the dis-
tribution of false-negative surfaces, and the plot in (b) corresponds
to the distribution of false-positive surfaces. For both plots, curves
closer to the value 1 on the y axis indicate better performance as
they correspond to a lower probability of significant false-positive
or false-negative areas.

Table 3. Total surfaces (in km?) of false-positive and false-negative
areas over the 1000 test simulations for each method used to pre-
dict the zones of dose threshold exceedance. The total area of the
studied domain is 94.25km?. A false-positive surface corresponds
to an area predicted as exceeding the threshold by the method but
not by the reference model. A false-negative surface corresponds to
an area where the method failed to predict a threshold exceedance
that was actually present according to the model. Lower values in
both categories indicate better predictive performance.

Total surface (km2)
False positive  False negative

Estimator

ATS estimator 10.665 0.030
Emulator of geometrical parameters 3.846 0.056
AAM-kriging emulation 0.221 0.227
AAM-kriging emulation with margin 1.747 0.015
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Figure 10. Example of a map which represent the estimation by the
emulation with the AAM of the probability of threshold exceedance
after a nuclear accident.

(0.030km?). This conservative behavior is expected as the
method prioritizes avoiding any underestimation of risk.

The emulator of geometrical parameters developed in a
previous study reduces the false-positive surface (3.846 km?)
but increases the false negatives (0.056 km?), which are more
critical from a public health perspective.

The AAM-kriging emulator achieves a balanced result
with low errors on both sides: 0.221 km? of false positives
and 0.227 km? of false negatives. This method aims to match
the reference isoline closely without introducing conserva-
tive margins.

Finally, the margin-based AAM-kriging method slightly
increases the false positives (1.747 km?) but drastically re-
duces the false negatives (0.015 kmz). This trade-off leads to
a false-negative performance similar to that of the ATS es-
timator while reducing false positives by more than a factor
of 8.

5 Application

The combination of the AAM and kriging enables the con-
struction of emulators capable of reproducing the model out-
put in approximately 0.005 s compared to about 1 min for the
original pX dispersion model. This drastic reduction in com-
putation time opens up new possibilities for operational use,
especially in situations where rapid decision-making is cru-
cial, such as nuclear emergencies.

One immediate application of the emulator is to facilitate
probabilistic risk assessments. The need to include uncertain-
ties in experts’ assessments provided to decision-makers in
cases of radiological emergencies was documented in the Eu-
ropean H2020 project CONFIDENCE (French et al., 2020),
and the use of ensemble simulations was recommended pro-
vided the computational time was compatible with the op-
erational time constraints of emergency situations (Bedwell
et al., 2020). Since a single prediction now requires only a
few milliseconds, it becomes possible to generate thousands

https://doi.org/10.5194/gmd-18-5513-2025
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Figure 11. Example of a graphical interface created during the project that enables users to directly observe how each input impacts the dose

map.

of simulations across the uncertainty space of the input pa-
rameters. This allows for the uncertainty inherent in the at-
mospheric dispersion process to be fully propagated through
to the final dose predictions. As an illustration, Fig. 10 shows
a map of the estimated probability of exceeding a given dose
threshold. Such probabilistic maps provide emergency man-
agers with a richer understanding of the risk zones compared
to a single deterministic prediction (Nagy et al., 2020).

Beyond the probabilistic analysis, we also developed a
dedicated graphical interface (see Fig. 11) to make the emu-
lator easily accessible to non-expert users, such as emergency
responders. This tool allows users to quickly adjust key in-
put parameters (such as wind speed, release height, or source
term amplitude) and immediately visualize the resulting dose
map. It thus supports both real-time response activities and
training sessions by offering an intuitive way to explore how
changes in environmental or release conditions impact the
dispersion of radioactive material.

Overall, the AAM-kriging emulator greatly enhances both
the reactivity and the robustness of operational decision sup-
port systems in the event of an atmospheric radiological re-
lease.

https://doi.org/10.5194/gmd-18-5513-2025

6 Conclusions

The AAM coupled with kriging allows us to create emulators
which can reproduce the model output with a drastic reduc-
tion in computational time. The guide-level dose exceedance
isoline obtained with the emulator is very close to the one
obtained with the original model: the FMS between the two
is under 0.8 in less than 17.6 % of our test sample. For oper-
ational use, we recommend to take a margin by reducing the
threshold exceedance of the dose. It will slightly increase the
false positives but significantly decrease the false negatives.

We obtained very similar results with different guide-
levels and with the Doury dispersion model in weak diffu-
sion.

This method of creating an emulator is currently in an op-
erationalization phase to reproduce it on several other source
terms and to create a catalog of emulator which covers sce-
narios among the ATS of the ASNR.

This is the first time the AAM is used for a real and opera-
tional application. This study advances the state of the art in
atmospheric dispersion by creating a new way to parameter-
ize and predict quantity maps, which can be used in an opera-
tional context with probabilistic approaches where hundreds
of results must be obtained.

Geosci. Model Dev., 18, 5513-5525, 2025
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The main limitation of our approach is that in some rare
cases, mainly when the wind module is low, the emulator’s
ability to reconstruct the model’s predicted map is lower.
However, these cases are also badly forecast by the physical
dispersion model itself, and the error of the emulator would
not necessarily exceed that of the pX model, were they were
compared to environmental observations. We think that these
results would be improved by modifying the AAM construc-
tion method, which at some point in its process uses a Eu-
clidean distance to compare maps. However, some mathe-
matical distances, such as the Wasserstein distance (Kolouri
et al., 2017), for example, could be more suitable for com-
paring two-dimensional dose maps within them. The AAM
method could then benefit from a modification to use other
distances in its algorithm to go one step further in improving
the application cases.
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