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Abstract. Here we present a research framework for the
first atmosphere-connected supermodel using state-of-the-art
atmospheric models. The Community Atmosphere Model
(CAM) versions 5 and 6 exchange information interactively
while running, a process known as supermodeling. The pri-
mary goal of this approach is to synchronize the models, al-
lowing them to create a new dynamical system which can
theoretically benefit from each component model, in part by
increasing the dimensionality of the system.

In this study, we examine a single untrained supermodel
where each model version is equally weighted in creating
pseudo-observations. We demonstrate that the models syn-
chronize well without decreased variability, particularly in
storm track regions, across multiple timescales, and for vari-
ables where no information has been exchanged. Synchro-
nization is less pronounced in the tropics, and in regions
of lesser synchronization we observe a decrease in high-
frequency variability. Additionally, the low-frequency modes
of variability (North Atlantic Oscillation and Pacific North
American Pattern) are not degraded compared to the base
models. For some variables, the mean bias, as well as the
non-interactive ensemble mean, is reduced compared to con-
trol simulations of each model version.

1 Introduction

Climate models are essential for understanding and analyz-
ing the complex dynamics of our Earth system. However, sig-
nificant uncertainties remain, primarily due to the challenges

in accurately parameterizing key processes and the biases in-
herent in different components of these models. These bi-
ases often exceed the projected climate change signals and
the natural background variability that we aim to predict
(Palmer and Stevens, 2019). Numerous options to improve
climate representation are actively being explored, including
enhancing subgrid physics, incorporating stochastic terms
(e.g., Berner et al., 2008, 2012, 2017), utilizing machine-
learned parameterizations and closures developed from ob-
servations or high-resolution model runs (e.g., Gregory et al.,
2023; Chapman and Berner, 2024; Watt-Meyer et al., 2021;
Bretherton et al., 2022), and increasing climate model res-
olution to directly resolve specific processes instead of pa-
rameterizing them (e.g., Judt, 2018; Palmer, 2014; Segura
et al., 2025). Often, these approaches effectively increase
the dimensionality of the prediction system in some form by
adding additional degrees of freedom. However, these meth-
ods are challenging to develop and often too computationally
intensive to implement in practice. Despite these challenges,
progress is crucial for improving climate predictions and in-
forming policy decisions on climate adaptation and mitiga-
tion. Thus, alternative methods, which rely on the current
generation of models, must be tested.

A simple approach to improving model representation
is multi-model averaging, performed after individual mod-
els have been run. This method has been shown to re-
duce climate model biases in various applications (e.g., the
North American Multi-Model Ensemble and Coupled Model
Intercomparison Project). These non-interacting ensembles
(NIEs) reduce errors by balancing the biases from multiple
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models. Moreover, advanced ensemble weighting schemes
can further improve NIE effectiveness (e.g., Weigel et al.,
2010; Tegegne et al., 2019). However, NIEs have limitations
because they cannot combine model outputs in real time,
making them confined to the attractor space of each indi-
vidual model. Additionally, biases that are shared across the
individual models in an NIE cannot be corrected due to the
linear nature of post-process averaging.

Supermodels are designed to address this limitation by
creating a new synchronized dynamical system, which con-
sists of the individual models interacting during runtime by
exchanging either state or tendency information. Since the
models exchange information at runtime, the interactive en-
semble is effectively of higher dimensionality. Taking advan-
tage of model diversity compensates for individual model
bias errors and allows for more complex dynamical behavior.
However, this is often evidenced in representations of local-
ized structures, rather than in reductions in mean-squared er-
ror (Duane and Shen, 2023). Supermodeling is a generaliza-
tion of the interactive ensemble approach introduced by Kirt-
man and Shukla (2002), who coupled multiple realizations
of the same atmospheric general circulation model to a sin-
gle ocean general circulation model through averaging each
model’s air–sea fluxes. Since then a number of efforts have
focused on linking increasingly complex models from low-
dimensional simple models to models of intermediate com-
plexity (van den Berge et al., 2011; Duane et al., 2009, 2018;
Schevenhoven et al., 2023), and a framework for a state-
of-the-art ocean-connected supermodel has been developed
(Counillon et al., 2023).

Supermodels depend on two key principles: first, the syn-
chronization of different models, rooted in the concept of
chaos synchronization in non-linear dynamical systems (Du-
ane and Tribbia, 2001; Pecora et al., 1997), and, second,
the diversity among models, which can reflect the actual be-
havior of the target dynamical system. The models can ei-
ther be directly linked to each other via a subset or all vari-
ables (e.g., van den Berge et al., 2011) or connected to their
weighted average (e.g., Schevenhoven, 2021; Wiegerinck
et al., 2013). The weighted average is also referred to as
pseudo-observations, a term which is explained below. A
central point is that if the models are sufficiently synchro-
nized, the supermodel should not suffer from a decrease in
variance. A decrease in variance in a particular region or
variable is a sign of insufficient synchronization and might
require the exchange of more information between the inter-
active ensemble members (Wiegerinck et al., 2013).

To achieve optimal performance, a supermodel must be
trained using data from the “truth”, such as observations or a
reference model. During the training phase, the supermodel
interaction coefficients are optimized to formulate the super-
model with the best skill. Since only the interaction coeffi-
cients need to be learned, the training effort is substantially
less than that used by modern machine learning approaches,
which learn the entire forward operator of a model (e.g.,

Watt-Meyer et al., 2023). Efficient methods have been devel-
oped to train supermodels (Schevenhoven and Selten, 2017)
and have been shown in a coupled model of intermediate
complexity, SPEEDO, connected via the atmospheres only
(Severijns and Hazeleger, 2010). These training methods
have shown promising results (Schevenhoven et al., 2019),
even when the observations were sparse and noisy (Scheven-
hoven, 2021). As the goal of this paper is to describe the
modeling framework itself, we henceforth focus on results
from an untrained supermodel.

Exchanging information between models at runtime intro-
duces substantial technical complexity and difficulties. Con-
ceptually, each model has to be integrated forward for a num-
ber of model time steps and then paused. Information be-
tween the component models is then exchanged. For simple
models, all model variables will be available on a single pro-
cessor, and the exchange of information is straightforward.
However, for more complex models, which need to run on
large distributed memory systems, this information sharing
can be more difficult. Often, input and output files need to be
written and combined, and each component model has to be
“restarted” or “resumed” after reading exchanged informa-
tion. This methodology is reminiscent of the traditional data
assimilation (DA) approach, which attempts to synchronize a
numerical weather forecast (NWP) with the observed atmo-
spheric state. As such, traditional data assimilation in NWP
can be considered a special case of supermodeling. This anal-
ogy explains why the exchanged information is also called
“pseudo-observations”.

Duane et al. (2006) recognized this analogy and suggested
the use of traditional data assimilation tools (e.g., Du and
Smith, 2017) to introduce the pseudo-observations into the
component models. This approach was adopted by Counil-
lon et al. (2023) to successfully connect multiple ocean mod-
els. However, the overhead of writing and reading input and
output files and restarting the component models is compu-
tationally very inefficient and prohibits interaction at every
time step. Furthermore, a workflow manager is necessary
to create the pseudo-observations and delay the restart un-
til the latter are available, especially if one of the component
models is slower than the others. Additionally, while some
models have pause/resume capability and can be restarted
quickly, others, like the one used in this study, take a rel-
atively long time to re-initialize, which makes the DA ap-
proach for creating a supermodel undesirable.

Here, we describe the technical details of the implemen-
tation of the most complex supermodel developed so far in
a heavily parallelized high-performance computing environ-
ment. It connects two versions of the Community Atmo-
sphere Model (CAM), which is the atmospheric component
of the Community Earth System Model (CESM; Danaba-
soglu et al., 2020). The advantage over previous implemen-
tations comes in through three new developments: (1) the
availability of a newly developed Python–Fortran bridge in
CESM; (2) the adaptation of the existing nudging toolbox
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(Chapman and Berner, 2023) for our purposes; and (3) the
submission of multiple jobs through a single PBS or SLURM
scheduler, which allows both component models to get into
the same queue.

A newly developed Python–Fortran bridge is now avail-
able in CESM, which allows calls to Python routines from the
Fortran executable at runtime. Called via the CESM-internal
workflow, the Python calls take the role of the workflow man-
ager, control the generation of the pseudo-observations, and
effectively introduce pause/resume functionality into CESM.

The CESM nudging toolbox was used by Chapman and
Berner (2024) to compare nudging tendencies to DA incre-
ments. In the supermodeling context, its infrastructure can
be easily adapted to facilitate nudging to the (weighted)
model average, specify the interaction interval, and de-
termine which variables should be connected via Fortran
namelist parameters.

While we present only first results using an unweighted,
atmosphere-connected supermodel, we stress that the inter-
operability of the implementation will make extensions to
include ocean connections straightforward. It is also easy to
add additional component models, as long as they are avail-
able on the same supercomputer. We also use the above-
described training methods to optimize the performance of
the supermodel, the results of which will be described in a
forthcoming paper.

The paper is structured as follows. Section 2 describes the
component models, verification datasets, and implementa-
tion of the supermodel. Section 3 discusses model synchro-
nization and presents results that support a successful im-
plementation. Section 4 provides a discussion and concludes
with the findings.

2 Implementation and synchronization methodology

2.1 Component models and experiment setup

We combine different simulations of the Community Atmo-
sphere Model (CAM), an atmospheric general circulation
model (AGCM) developed at the National Center for At-
mospheric Research with extensive community support. Our
supermodel integrates CAM version 5 (CAM5; Neale et al.,
2010) and CAM version 6 (CAM6; Bogenschutz et al., 2018;
Gettelman et al., 2018), each incorporating different physics
suites while using the same finite-volume (FV) dynamical
core. CAM5 is released as the atmospheric component of
CESM1 and CAM6 as that of CESM2.

The CAM5 simulation is run from the CAM6 code base
with the CAM5 physics flag activated, which configures
CAM to specifically use the physics schemes from CAM5.1
(CESM1.0.6). CAM5.1 treats stratiform cloud microphysics
with a two-moment formulation (Morrison and Gettelman,
2008). The spatial distribution of shallow convection is sim-
ulated with a set of realistic plume dilution equations (Park

and Bretherton, 2009). The ice cloud fraction scheme allows
supersaturation via a modified relative humidity over ice and
the inclusion of ice condensation amount (Gettelman et al.,
2010). Descriptions of all other physics schemes (deep con-
vection, planetary boundary layer (PBL), radiation, etc.) can
be found in Neale et al. (2010).

CAM6 uses the publicly released version of
cam_cesm2_1_rel_60 from CESM2.1.5. Significant
changes from CAM5 physics include substantial modi-
fications to every atmospheric physics parameterization
except for radiative transfer. The Cloud Layers Unified by
Binormals (CLUBB; Golaz et al., 2002; Bogenschutz et al.,
2013) scheme replaces CAM5 schemes for boundary layer
turbulence, shallow convection, and cloud macrophysics.
Additionally, an improved two-moment prognostic cloud
microphysics (MG2; Gettelman and Morrison, 2015)
was introduced between versions. The deep convection
parameterization (Zhang and McFarlane, 1995) has been
significantly retuned to increase sensitivity to convective in-
hibition. Both subgrid orographic drag calculation schemes
have undergone substantial modifications. The orographic
gravity wave scheme now incorporates topographic orien-
tation (ridges) and low-level flow blocking effects. Finally,
the previous parameterization of the boundary layer form
drag, known as turbulent mountain stress (TMS), has been
replaced by the scheme of Beljaars et al. (2004).

While our supermodeling implementation utilizes inter-
polation routines to support different vertical and horizon-
tal resolutions, we here use the resolution for which the at-
mospheric component models were scientifically released,
namely a grid size of 0.9° N× 1.25° E in the horizontal and
32 hybrid sigma-pressure levels up to 2.26 hPa in the vertical.

The model simulations followed the protocol of the At-
mospheric Model Intercomparison Project (AMIP) and are
forced by observed monthly sea surface temperatures and
sea ice from 1979 to 2005 (26 years), with values linearly
interpolated at each time step. The simulations also include
prescribed evolutions of aerosol emissions and trace gas con-
centrations (including CO2).

2.2 Validation datasets

We verify the model against the ∼ 0.25° ERA5 reanalysis
product (Hersbach et al., 2020) for all fields except precip-
itation, which is verified against the 1° NOAA Global Pre-
cipitation Climatology Project (GPCP) product (Adler et al.,
2003). For verification, the ERA5 product is bi-linearly inter-
polated to the native CAM grid prior to any metric calcula-
tion. The GPCP product is regridded to the native CAM grid
using a conservative mapping method.

2.3 RMSE and bias calculation

As in the National Center for Atmospheric Research (NCAR)
Atmospheric Modeling Working Group Diagnostic Package
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(AMWG, 2022), model error is calculated as the sum of the
cosine-latitude-weighted root-mean-squared error (RMSE)
of the spatial field after a seasonal, monthly, or daily mean
has been computed. RMSE was used so that opposite-signed
local biases do not cancel out and erroneously inflate skill.
Percent improvement is determined by first calculating glob-
al/regional RMSE and then calculating the percent change in
RMSE compared to the reference.

2.4 Supermodel implementation

Our first attempt at implementing a supermodeling frame-
work followed previous work (Counillon et al., 2023) and
utilized a workflow manager, CYLC, together with tools
from the data assimilation research testbed (DART; Ander-
son et al., 2009) to restart the component models after their
interaction via nudging to averaged output files. CESM-
specific bottlenecks were (1) the time needed to re-initialize
CESM after a restart, since the current CESM version does
not have pause/resume capability, and (2) re-entering the sys-
tem queue after each interaction interval. Due to these ineffi-
ciencies, completing a single year’s simulation took approx-
imately 24 h (at 6 h coupling), a cost that becomes untenable
for multi-year simulations and made it impossible to increase
the interaction frequency.

To overcome these difficulties, we devised a new cus-
tom workflow management system that eliminates the need
for halting and re-initializing the model with each in-
terchange of information between models by employing
a PAUSE/RESUME mechanism. At the beginning of the
physics time step, the first component model outputs the
model state variables – zonal wind (U ), meridional wind (V ),
temperature (T ), and specific humidity (Q) – and initiates a
model pause by writing a PAUSE file. Subsequently, CAM
calls a Python script that waits for the second model to reach
the beginning of its physics time step and then combines
the outputs from both models at the same timestamp. If the
component model grids differ, Python interpolation routines
are invoked to ensure consistency. Once the output has been
processed, the Python script removes the PAUSE file, allow-
ing the model to resume operation without the need for re-
initialization or re-entering the queue. The implementation
of efficient mpi-based communication between the models
(i.e., standard coupling software) was beyond the scope of
the study but is something that should be explored in future
efforts.

A nudging tendency is then applied to each component
model, following Eq. (1), which nudges the model state to-
ward the combined model state (Xcombined) during the first
time step after the models resume running (e.g., Chapman
and Berner, 2024). The user can set the nudging timescale
(τ ); in this experiment, we use a relaxation timescale of 6 h,
though we emphasize that the tendency is only applied at the

first time step after the combination (e.g., snapshot nudging).

dX
dt
= F(X)+

Xcombined−X

τ
(1)

Here X is the model state, F(X) represents the model’s in-
ternal tendencies, and τ is the nudging relaxation timescale.

To address the challenge of submitting multiple jobs
through a single PBS/SLURM scheduler, we implemented
a batch submission script that allows two model simulations
to be launched concurrently while managing resource alloca-
tion efficiently. Our approach ensures that both models utilize
the available compute nodes without interfering with each
other, thus avoiding scenarios where one model monopolizes
the queue while the other remains pending.

Specifically, our submission script does the following:

1. prepares model runs by creating initialization files for
both simulations;

2. defines model-specific execution settings, including the
number of processing elements required for each job;

3. partitions compute resources dynamically by selecting
appropriate node allocations from $PBS_NODEFILE,
ensuring that both jobs receive the necessary resources
without conflicts;

4. executes model runs in parallel using background pro-
cesses (&), allowing both jobs to start simultaneously
while still being managed within a single job submis-
sion;

5. waits for all processes to complete using wait, ensur-
ing that computational resources are fully utilized be-
fore job completion.

This method ensures efficient job scheduling and mitigates
the risk of asynchronous queuing delays, ultimately reducing
computational time.

The resulting CAM5 and CAM6 supermodel software
workflow diagram is shown in Fig. 1. First, we provide
scripts to build, compile, set namelist parameters, and stage
the necessary Python and Fortran files. Then, all component
models are submitted to the same submission queue using
a single PBS or SLURM scheduler. The component models
then run independently using their respective physics pack-
age until the first interaction timescale (η) is reached. The in-
teraction timescale η signifies the time after which the super-
models share information. At this point, each model writes
output and is paused. Using a Python call from within the
CESM workflow of one of the component models, the model
states are subsequently averaged to create the combined state
or pseudo-observation. The component models then resume,
each being nudged towards the pseudo-observations. Once
the next interaction timescale is reached, the models are
paused and resume after their combined state has been com-
puted. The last two steps are repeated until the desired simu-
lation length is obtained (Fig. 1, grey box).
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Figure 1. CAM5 and CAM6 supermodel workflow.

By adapting the previously developed nudging tool-
box (Davis et al., 2022) for our purposes, we can easily
set the interaction timescale, interacting variables, pseudo-
observation file name, and output path locations via namelist
parameters.

The CAM5/CAM6 supermodel, including the CESM
Fortran–Python bridge, supermodel module toolbox with a
namelist section, and scheduler scripts, is readily available
via the GitHub repository (https://github.com/WillyChap/
SuperModel_CAM, last access: 15 January 2025). Currently,
this system is deployed on two high-performance computing
(HPC) platforms: (1) the National Center for Atmospheric
Research’s computer Derecho and (2) the Norwegian Re-
search Infrastructure Services’ machine Betzy.

With these improvements, a 1-year simulation is now ac-
complished in 7 h and is independent of system queuing time.
Moreover, increasing the frequency of coupling does not sig-
nificantly increase the wall clock time. We acknowledge that
this is a significant slowdown from a CAM5/CAM6 simula-
tion, which can accomplish a year-long simulation in∼ 2.5 h
with identical computational resources.

3 Supermodel results

We now demonstrate the synchronization and resulting mean
state representation for the CAM5/CAM6 supermodel for the
period 1979 to 2005. The supermodel uses an interaction
timescale of η = 6 h and employs snapshot nudging to the

unweighted averaged state. In this implementation, the in-
formation in U , V , and T is exchanged and nudged, while
Q is left to evolve freely. We speculate that the main chal-
lenges of including specific humidity (Q) in the nudging pro-
cess stem from the intrinsic properties of moisture in the at-
mosphere and its coupling with cloud and precipitation pro-
cesses. This was done because previous work has indicated
difficulty when adjusting specific humidity Q in CAM in
both nudging (e.g., Chapman and Berner, 2024) and full-DA
experiments (Raeder et al., 2021).

We show results for four experiments: CAM5; CAM6; the
supermodel which uses CAM5 physics but is nudged to the
combined state, SUMO5; and the supermodel which uses
CAM6 physics but is nudged to the combined state, SUMO6.
We analyze the 6-hourly-averaged prognostic state variables
(U , V , T , Q, surface pressure (SP)) and standard CAM out-
put, which is averaged monthly.

3.1 Synchronization

Figure 2 shows the zonal wind (U wind) at 200 hPa for four
experiments started from the same initialization at a single
model point (40° N, 160° W). The results indicate that while
CAM5 and CAM6 vary independently, the two supermodel
trajectories synchronize after ca. 15 d, and the trajectories
stay closely linked throughout the model run.

Figure 3 illustrates the anomaly Pearson correlation coef-
ficients for four atmospheric variables (U , V , T , Q) at a 6-
hourly-averaged temporal frequency. These correlations are
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Figure 2. Experiments initialized from the same atmospheric state and integrated for 1 month. An independent CAM6 run (dashed black), an
independent CAM5 run (dashed red), a supermodel which uses CAM5 physics (SUMO5; teal), and a supermodel which uses CAM6 physics
(SUMO6; purple) at 40° N (lat), 160° W (long) and 200 hPa.

computed between the two super models (SUMO5, SUMO6)
and between the individual CAM6 model and SUMO6 in
model year 1979–1980. The analysis covers the 200 hPa level
at every grid point. To avoid anomalously high correlations
for areas where the variability is largely driven by the an-
nual cycle, we remove the 30 d centered rolling mean of the
data. Figure 3 provides a quantitative measure of the degree
of similarity between the two supermodel versions and the
similarity between one of the component models, CAM6,
and the associated supermodel also using CAM6 physics. It
highlights the effectiveness of the supermodeling approach
in synchronizing the atmospheric state across different vari-
ables.

As expected, there is no synchronization of the CAM6 and
SUMO6 model states, as expressed by a low correlation co-
efficient of< 0.15 for almost all grid points (Fig. 3, right col-
umn). Correlations between the SUMO5 and SUMO6 exper-
iments are much higher (Fig. 3, left column), indicating that
the synchronization is evident not only across the compo-
nent models, but also between the supermodels using differ-
ent physics packages. Synchronization is strong in the U , V ,
and T fields poleward of 15°, especially in the storm track re-
gions. The Maritime Continent region (lat 15° S–15° N, long
60° E–200° W) displays the least amount of synchronization.
Q displays less synchronization (Fig. 3g), with the lowest
correlation in the tropical belt, but still more than the corre-
lation between CAM5 and CAM6. The supplemental mate-
rial shows the same analysis for pressure levels of 750 and
900 hPa (Figs. S1 and S2 in the Supplement). Generally, we
see greater synchronization of U , V , and T at higher pres-
sure levels, while Q has a greater synchronization nearer to
the surface, which could be a result of a similar sea surface
temperature field between the two models.

If the component models are not sufficiently synchro-
nized, the combined model state will exhibit diminished
high-frequency variance compared to the individual models.
This variance deflation occurs because the supermodel, rep-
resenting a weighted average, tends to smooth out discrep-

ancies between the models. As a result, the supermodel may
lose critical variance, leading to reduced accuracy in captur-
ing fine-scale variability. This issue is structurally related to
the double-penalty problem in modern machine learning for
numerical weather prediction (Brenowitz et al., 2024).

Poor synchronization between models, whether spatial or
temporal, leads to an averaging effect that disproportionately
smooths out high-frequency variations, dampening the sys-
tem’s true variability. Studies show that the less synchronized
the models are, the more the supermodel’s variance is com-
promised by this effect, detracting from its ability to capture
dynamic processes accurately (Counillon et al., 2023).

To examine the supermodel for signs of significant vari-
ance deflation, we compare histograms of 6-hourly-averaged
wind speed values (Fig. 4). We note that the CAM5 (dashed
red) and CAM6 (dashed black) distributions are quite simi-
lar; this is likely due to the model tuning activity at NCAR
prior to the model release. We detect a slight damping of the
background winds near the mode of the distribution but no
degradation of the highest wind speeds. Overall, the differ-
ence between the component and supermodels is minimal.

Even if the full fields do not suggest variance deflation,
previous work using nudging (e.g., Chapman and Berner,
2024) suggests that any linear relaxation back to some sort of
reference field is expected to reduce band-pass-filtered vari-
ance. Hence, we compute the standard deviation of the 12 h
to 5 d band-passed-filtered winds for U and V at 200 hPa
(Fig. 5). The zonal average (line) and zonal standard de-
viation (shading) are shown for SUMO6 (teal) and CAM6
(black) in the right-hand column for the U and V winds
(Fig. 5c and f, respectively). There is a significant damping
of variability in this frequency band in areas where we find
lower model synchronization, like the tropics and the poles
(Fig. 3a and c), especially over the Maritime Continent. In
nudging studies, moving to an observation frequency of less
than 6 h seems to alleviate effects of damping (Davis et al.,
2022), so we hypothesize that increasing the SUMO interac-
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Figure 3. Anomaly correlation between SUMO5 and SUMO6 (left: a, c, e, g) and between the SUMO6 and CAM6 experiments (right: b, d,
f, h). Shown are 6-hourly-averaged model variables, zonal wind (a, b, c, d), temperature (e, f), and specific humidity (g, h), at 200 hPa for
the period spanning 1979–1980. Anomalies are computed by removing a 30 d centered mean at every time step.

tion frequency will be beneficial with regard to minimizing
the damping of high-frequency variability.

3.2 Low-frequency modes of variability

Evaluating the performance of an atmospheric model re-
quires an adequate depiction of natural climate variability
and significant low-frequency climate modes (e.g., Phillips
et al., 2014). Intraseasonal variability arises from complex
dynamical processes operating across multiple timescales,
which subsequently influence downstream weather patterns
(e.g., Branstator, 1992; Simmons et al., 1983; Wallace and
Gutzler, 1981). The model’s background climatology signif-
icantly influences this low-frequency variability, with several

mechanisms proposed for its sustenance and growth. These
mechanisms include the development of low-frequency
anomalies due to instabilities in the zonally asymmetric mid-
latitude jet (e.g., Branstator, 1990, 1992; Frederiksen, 1983;
Simmons et al., 1983), alterations in quasi-stationary eddies
linked to changes in the zonal mean flow (e.g., Branstator,
1984; Kang, 1990), tropical heating or orographic forcing
(e.g., Hoskins and Karoly, 1981; Sardeshmukh and Hoskins,
1988), and vorticity fluxes from high-frequency eddies (e.g.,
Branstator, 1992; Egger and Schilling, 1983; Lau, 1988; Ting
and Lau, 1993). Accurately representing this low-frequency
variability is vital for climate models, as the numerous in-
teractions that contribute to an accurate depiction of low-
frequency modes are indicative of the model’s reliability.
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Figure 4. Histogram of all 6-hourly-averaged wind speed values in
model year 1979 at 200 hPa. An independent CAM6 run (black), an
independent CAM5 run (red), the CAM5 supermodel (teal), and the
CAM6 supermodel (purple).

To extract the leading patterns of variability, we perform
an empirical orthogonal function (EOF) decomposition on
the monthly anomaly fields. The climatology is defined as the
monthly mean from the full 26-year run or reanalysis prod-
uct. All EOF patterns are area weighted by the square root of
the cosine (latitude) prior to decomposition. We express the
orthogonal spatial field as the pointwise regression of each
time series with a 1 standard deviation change in the tem-
poral principal component. The DJF Pacific–North Ameri-
can (PNA) pattern (Fig. 6) and North Atlantic Oscillation
(NAO; Fig. S3) are examined in detail. These patterns are
defined as in Phillips et al. (2014) (NCAR’s Climate Vari-
ability Diagnostics Package) as the leading mode of atmo-
spheric variability in the region (20–85° N, 120° E–120° W
and 20–80° N, 90° W–40° E, respectively.

A single atmospheric realization and 26 years are likely
too short to adequately assess the spatial bias of either the
PNA or the NAO (Deser et al., 2017). Therefore, we sim-
ply examine the patterns to show general loading locations
(Fig. 6a–d) and compare the representation of total vari-
ance to observations (Fig. 6e, grey histogram). To develop
the histogram of explained variances, we sub-sample the
ERA5 observations into random 26-year chunks and boot-
strap the EOF calculation 500 times (as in Chapman and
Berner, 2024). The PNA shows a classic stationary Rossby
wave pattern spanning the central Pacific, across Canada,
and through Florida for every simulation. It is encouraging
that the pattern in the supermodels is nearly identical, show-
ing that low-frequency modes of variability are also synchro-
nized and that connecting U , V , and T leads to the synchro-
nization of the geopotential height field.

The principal components (PCs) corresponding to the
SUMO5 and SUMO6 PNA exhibit a Pearson correlation
coefficient of 0.992, whereas the correlation between the
CAM6 PNA PC and the SUMO6 PC is only 0.27. We would
expect some correlation due to tropical sea surface tempera-

ture forcing in the AMIP runs (Wallace and Gutzler, 1981).
Additionally, the PNA’s explained variance falls well within
the spread of the observations (Fig. 6e).

The NAO is slightly less synchronized (Fig. S3), with a
Pearson correlation coefficient of 0.75 between the two su-
permodel runs, but this correlation is still much higher than
the correlation of −0.012 between the SUMO6 and CAM6
runs.

3.3 Impact on mean-field biases

One motivation for developing supermodels is their poten-
tial to reduce mean-field biases. In our work, we emphasize
the supermodeling implementation connecting CESM com-
ponents without performing any training – any bias improve-
ments are muted. Therefore we do not anticipate a substan-
tial reduction in bias, but there may be minor improvements
beyond those from averaging non-interactive simulations be-
cause of error compensation at an early stage (Schevenhoven
et al., 2023; Duane and Shen, 2023). To ensure that the syn-
chronization did not introduce significant errors or artifacts,
we diagnose the climatological biases. For most variables,
the SUMO biases fall between those of CAM5 and CAM6
(see Table S1 in the Supplement for statistics on the prog-
nostic variables at multiple model levels), a pattern that holds
true even when the fields are stratified by season (data not
shown).

Figure 7 shows the annual precipitation climatology in
the NOAA GPCP product and the model biases (models–
observations). The SUMO5 and CAM5 precipitation biases
are similar, likely because they share the same convection
and boundary layer schemes (see Sect. 2.1.1 and 2.1.2). The
same is true for the SUMO6 and CAM6 experiments.

In SUMO6 the largest differences from its respective con-
stituent models are over the tropics, with loading differences
from the Bay of Bengal across the international dateline and
again off the Pacific coast of central America (see Fig. 8a).
This indicates that the synchronization of the prognostic vari-
ables likely affects the monsoonal regions and deep convec-
tive zones.

We introduce a new experiment, the non-interactive en-
semble (NIEnse), a multi-model ensemble mean of the
CAM5 and CAM6 simulation runs, which interestingly has
the lowest RMSE, with a value of 0.91 mm d−1. Figure 9
shows the same analysis but for the 10 m wind speed. For
wind speed, SUMO6 has an RMSE of 0.91 m s−1, even out-
performing the NIEnse simulation. The largest changes be-
tween the respective CAM and SUMO models occur over
the Maritime Continent. This is particularly noticeable in the
SUMO5 simulation (see Fig. 9e), which is closer to CAM6
than to CAM5 in this region.

To examine this more closely, we compare the dif-
ferences between NIEnse and an ensemble formed as
the average of the two SUMO runs (SUPERense). Fig-
ure 10 shows the absolute difference in bias ((|NIEnse-
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Figure 5. Standard deviation of 12 h to 5 d band-passed U (a, b) and V (d, e) winds for the SUMO6 (column I) and CAM6 (column II)
model runs. The zonal average (line) and standard deviation (shading) of the band-passed winds for U (c) and V (f) for the SUMO6 (teal)
and CAM6 (black) runs.

Figure 6. DJF 500 mbar geopotential leading mode of variability over the region (NAO; 20–80° N, 90° W–40° E): ERA5 (a), CAM6 (b),
SUMO6 (c), CAM5 (d), and SUMO5 (e). The explained variance in each model experiment (solid lines) and the bootstrapped spread of
explained variance in the observations (f, grey histogram).

Observations|)− (|SUPERense-Observations|)) for annually
averaged precipitation (top) and U10 (bottom). Positive val-
ues (green) indicate that SUPERense outperforms NIEnse,
while negative values (blue) indicate the opposite. It is clear
that SUMOs formed their own dynamical systems with dis-

tinct biases. We observe that SUPERense represents a 5 %
improvement to RMSE over NIEnse for annual U10 winds
and a 3 % degradation of annual precipitation when com-
pared to NIEnse.
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Figure 7. The observed annual precipitation climatology (mm d−1) in the NOAA GPCP product (a) and the biases in the CAM5 model (b),
the CAM6 model (c), SUMO6 (d), SUMO5 (e), and NIEnse (f) relative to the observations. The model RMSE (mm d−1) is shown in the title
of each panel. The color bars indicate the precipitation bias in mm d−1, with orange representing positive biases (too much precipitation)
and purple representing negative biases (too little precipitation).

Figure 8. Annual climatological difference between SUMO6 and
CAM6 for annual precipitation (a) and annual 10 m winds (b).

Focusing on the U10 winds (Fig. 10b), the Pacific low-
cloud deck regions are attenuated and degraded, while the
eastern boundary current regions are enhanced (see, for ex-
ample, the Kuroshio and Gulf Stream extensions). Unlike
Counillon et al. (2023), we do not find that the areas of low
synchronization necessarily lead to areas of high bias.

4 Conclusions

In this work, we give technical details on the implementa-
tion of the CAM5/CAM6 supermodel, which is the first to
connect two atmospheric components of general circulation
models in an HPC setting.

Our implementation leverages three new developments:

1. The exchange of information is managed through a
novel Python–FORTRAN I/O interface that avoids the
need to stop and start each model. In CESM this
circumvents the costly initialization stage and intro-
duces a pause/resume capability (Fig. 1). This Python–
FORTRAN bridge is also used to manage the times-
tamps in the output files and efficiently write the
pseudo-observation files.

2. All component models are submitted through a single
PBS or SLURM scheduler, which allows both compo-
nent models to get into the same queue. This minimizes
the time one component model has to wait for the other
one to finish. Without these two improvements, the su-
permodel would have been too slow to produce multi-
year simulations.

3. We are able to adapt the CESM nudging toolbox (Davis
et al., 2022) for our purposes so that we have full control
over, e.g., which pseudo-observation variables we want
to connect.

The supermodel framework is readily available for Earth sys-
tem research via our public GitHub repositories, making it
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Figure 9. As in Fig. 7 but for 10 m wind speed.

Figure 10. The annual absolute bias difference in NIEnse
and SUPERense ((|NIEnse-Observations|)− (|SUPERense-
Observations|)) for precipitation (a) and 10 m wind speed (b).
Positive values indicate SUPERense is more skillful and vise versa.

relatively easy to port if active CESM systems are installed
on a machine. Currently, the framework is available on both
the NCAR supercomputer and Norwegian supercomputers.
Our driver scripts set up the user constituent models and
pseudo-observations. All software is made available through
GitHub repositories (see the “Code and data availability”
section).

To test our implementation, we linked the CAM5/CAM6
atmosphere and confirmed that synchronization occurs
across various temporal scales and variables. Additionally,
even though the supermodels only exchange limited infor-
mation (U , V , and T ) every 6 h, fields outside of the ex-
changed information exhibit synchronization across multiple
timescales.

A key consideration for future work is assessing how the
supermodel maintains physical consistency in terms of en-
ergy conservation. While our current analysis focused pri-
marily on wind and temperature fields, a thorough evalua-
tion of radiative fluxes, surface turbulent fluxes, and the over-
all energy budget will be essential before extending this ap-
proach to coupled Earth system models. Ensuring an accu-
rate energy balance will be crucial for improving the fidelity
of the supermodel and avoiding unintended biases in simula-
tions. A potential promising avenue of research would be to
dynamically connect the fluxes in our supermodeling state as
in Shen et al. (2017), which could ensure that each model’s
energy fluxes are accounted for in the supermodeling frame-
work.

Additionally, our study primarily examined large-scale
variability modes such as the PNA and NAO. However, given
the noted reduction in high-frequency variability over the
tropics, it will be important to assess the impact on phe-
nomena such as the Madden–Julian Oscillation (MJO) and
convectively coupled equatorial waves. These modes play a
key role in tropical variability and global teleconnections,
and their representation within the supermodel framework
remains an important avenue for future research.

In this study, we only nudge to pseudo-observations,
which are the equally weighted mean of the two component
models. Unweighted-mean supermodels can lead to partial
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synchronization regimes and localized variability damping
(see also Counillon et al., 2023). We find that in regions
of lesser synchronization, some model variability is damped
due to the smoothing effect of averaging over dissimilar
fields, though the effects are minimal and should improve
as the information exchange frequency (η) is increased.

Since our supermodel is untrained, we do not expect large
improvements in the mean-field biases. However, even with
the untrained field, we find evidence of some improvement to
the model climatological biases (see Fig. 9). We specifically
examined localized structures for signs of improvement (Du-
ane and Shen, 2023) but found no evidence to support any
enhancement. With the computational efficiency of our im-
plementation, we can now focus on the question of whether
a trained supermodel of comprehensive Earth system mod-
els can outperform its component models, as demonstrated
for simpler systems. Since our implementation uses the latest
CESM infrastructure, an extension to a coupled framework is
straightforward.

Additional work will explore the use of machine learning
techniques to dynamically optimize the weights and improve
the performance of the CESM supermodel.

Code and data availability. To promote transparency and repro-
ducibility, this study includes two code repositories:

1. All figure scripts are readily accessible and can be
downloaded using the provided code on Zenodo
(https://doi.org/10.5281/zenodo.14983576, Chapman, 2025)
to produce all figures.

2. To create all model runs and build your own
supermodel, refer to Chapman et al. (2025a,
https://doi.org/10.5281/zenodo.14983620). This second
repository contains the setup for the supermodel and its
constituent models, including source modifications, model
build scripts, and namelists for running the described CAM
versions.

Comprehensive instructions for each step of this study are doc-
umented in the repository’s README file. Raw ERA5 reanal-
ysis data can be obtained from the NSF NCAR Research Data
Archive (https://doi.org/10.5065/BH6N-5N20, European Centre for
Medium-Range Weather Forecasts, 2019). The Global Precipitation
Climatology Project (GPCP) monthly analysis product data are pro-
vided by the NOAA PSL, Boulder, Colorado, USA, and can be
accessed at https://psl.noaa.gov/data/gridded/data.gpcp.html (Adler
et al., 2003). CAM5 and CAM6, with directions to run them, can
be accessed at https://github.com/ESCOMP/CESM (last access: 15
January 2024).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-5451-2025-supplement.
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