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Abstract. This work introduces GPTCast, a generative deep
learning method for ensemble nowcasting of radar-based pre-
cipitation, inspired by advancements in large language mod-
els (LLMs). We employ a generative pre-trained transformer
(GPT) model as a forecaster to learn spatiotemporal pre-
cipitation dynamics using tokenized radar images. The tok-
enizer is based on a Variational Quantized Autoencoder (VQ-
GAN) featuring a novel reconstruction loss tailored for the
skewed distribution of precipitation that promotes faithful re-
construction of high rainfall rates. This approach produces
realistic ensemble forecasts and provides probabilistic out-
puts with accurate uncertainty estimation. The core architec-
ture operates deterministically during the forward pass; en-
semble variability arises from sampling the categorical prob-
ability distribution predicted by the forecaster during infer-
ence, rather than requiring external random inputs such as
noise injection common in other generative models. All fore-
cast variability is thus learned solely from the data distribu-
tion. We train and test GPTCast using a 6-year radar dataset
over the Emilia-Romagna region in northern Italy, showing
superior results compared to state-of-the-art ensemble ex-
trapolation methods.

1 Introduction and prior work

Nowcasting — short-term forecasting up to 6 h — of precip-
itation is a crucial tool for mitigating water-related hazards
(Werner and Cranston, 2009). Sudden precipitation can result
in landslides and floods, frequently compounded by strong
winds, lightning, and hailstorms, which can seriously jeopar-
dize human safety and damage infrastructure. The foundation

of very short term (up to 2 h) precipitation nowcasting sys-
tems is the application of extrapolation techniques to weather
radar reflectivity sequences (Bojinski et al., 2023) that ingest
current and n previous observations T_y, ..., T_1, Ty with the
aim to extrapolate m future time steps 71, 73, ..., T,,. These
short-term precipitation forecasts are essential for emergency
response when released timely and communicated properly
via early warning systems (Gober et al., 2023).

The main contenders to extrapolation techniques are nu-
merical weather prediction (NWP) models, which can be
used to forecast the probability and estimate the intensity
of precipitation across large regions, but their accuracy is
limited at smaller geographical and temporal scales (Surcel
et al., 2015). Convective precipitation, which produces high
rainfall rates and small cells, is especially difficult to forecast
correctly for NWP models (Sun et al., 2014). For these rea-
sons, operational weather agencies recognize the great value
offered by short-term extrapolation forecasts and make heavy
use of statistical and, more recently, data-driven models that
utilize the most recent weather radar observations for now-
casting (Woo and Wong, 2017; Turner et al., 2004).

Lagrangian extrapolation is the most well known method
for nowcasting precipitation (Bellon and Austin, 1978). It
generates motion vectors to forecast the future direction of
precipitation systems by applying optical-flow algorithms
to a series of radar-derived rain fields. However, this ap-
proach becomes less accurate for increasing lead time, par-
ticularly in convective situations where precipitation could
increase or decrease quickly. Several alternative techniques
have been studied to overcome these constraints, such as the
seamless integration between nowcasting and NWP forecasts
(Sideris et al., 2020; Bowler et al., 2006) and the integration
of orography data (Foresti et al., 2018; Panziera et al., 2011).
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Other, more sophisticated nowcasting methods improve the
Lagrangian approach by generating ensemble nowcasts and
preserving the precipitation field’s structural characteristics.
These sets of multiple forecasts aid in the assessment of fore-
cast uncertainty by presenting multiple future scenarios. The
most widespread example of this approach is the Short-Term
Ensemble Prediction System (STEPS) (Bowler et al., 2006;
Seed et al., 2013).

The most recent advancements in nowcasting precipitation
have seen the application of data-driven methods and, more
prominently, of deep neural networks (DNNs) and genera-
tive Al techniques to enhance forecast accuracy and realism.
Deterministic DNNs have been instrumental in predicting the
dynamics of precipitation, including its development and dis-
sipation, overcoming one of the major shortcomings of ex-
trapolation methods (Shi et al., 2015; Agrawal et al., 2019;
Wang et al., 2018; Franch et al., 2020; Ayzel et al., 2020).
However, deterministic models tend to produce less precise
forecasts over time due to increasing uncertainty that mani-
fests itself as a forecast field that smooths progressively with
the lead time. Similarly to Lagrangian extrapolation, to over-
come this limitation, ensemble deep learning methods have
been introduced. Generative methods have significantly im-
proved the generation of realistic precipitation fields beyond
deterministic average predictions. The forefront of this tech-
nology is embodied in models that employ techniques, such
as generative adversarial networks (GANs) (Zhang et al.,
2023; Ravuri et al., 2021), which enable more accurate and
detailed precipitation forecasts by learning to mimic real
weather patterns closely, and more recently by latent diffu-
sion models (Leinonen et al., 2023; Gao et al., 2023), which
can not only generate realistic rainfall forecasts but also pro-
duce reliable ensembles that can provide accurate uncertainty
quantification of future scenarios. Many of these techniques
were originally born in the field of computer vision and have
subsequently been adapted to the weather forecasting domain
with resounding success (Goodfellow et al., 2014; Rombach
et al., 2022).

In this study, we take inspiration from the successful
trend of applying large language model (LLM) architec-
tures (Vaswani et al., 2017; Wolf et al., 2020) born in the
field of natural language processing (NLP) to other disci-
plines (Dosovitskiy et al., 2020; Liu et al., 2021), including
the medium-range weather forecasting domain (Lang et al.,
2024; Lessig et al., 2023), intending to transfer this knowl-
edge to the nowcasting domain. To do so, in our work, we fol-
low a strategy that mimics the setup of natural language pro-
cessing: a tokenization step, where an input tokenizer splits
and maps the input to a finite vocabulary, and an autoregres-
sive model trained on the tokens produced by the tokenizer.
We show that such an approach produces realistic and reli-
able ensemble forecasts. Given the different characteristics
of our input data compared to LLMs (i.e., spatiotemporal
precipitation fields vs. texts or images), our adaptation in-
troduces several novel contributions instrumental to our task.
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2 GPTCast model architecture

There are two main components of our approach, which we
call GPTCast:

— Spatial tokenizer (VQGAN). An image compression and
discretization model that learns to map patches of the
radar image from/to a finite number of possible repre-
sentations (tokens). The learned codebook of tokens can
be used to express a compact representation of any pre-
cipitation field. The tokenizer thus has a dual role: learn-
ing how to compress and decompress the information in
the input image and how to discretize the compressed
information (i.e., learn an optimal codebook).

— Spatiotemporal forecaster (generative pre-trained
transformer, GPT). A model trained on token se-
quences to causally learn the evolutionary dynamics of
precipitation over space and time. Given a tokenized
spatiotemporal context (a compressed precipitation
sequence), the model outputs probabilities over the
fixed codebook for the next expected token for the
context. The output probabilities can be leveraged for
ensemble generation.

This dual-stage architecture is an adaptation of the work
of Esser et al., which we repurposed from the task of image
generation to the task of precipitation nowcasting by intro-
ducing two key modifications:

— In the spatial tokenizer (VQGAN) model, we replace
the standard reconstruction loss (mean absolute error,
MAE) with a specific loss that helps improve the recon-
struction of precipitation patterns (magnitude weighted
absolute error, MWAE). Moreover, the new loss also
shows a promotion of the token utilization rate, where
we achieve 100 % codebook utilization.

— The token sequences used to train the GPT model repre-
sent a fixed three-dimensional context of time x height
x width of precipitation patterns. This allows the model
to learn spatiotemporal dynamics of the evolution of
radar sequences.

The two components of the model are trained indepen-
dently in cascade, starting with the tokenizer. This deliberate
dual-stage architecture is crucial for achieving stable train-
ing and unlocking desirable properties for operational now-
casting run by meteorological services. Indeed, training the
VQGAN and the GPT simultaneously with an end-to-end ap-
proach would introduce significant instability. As a proba-
bilistic sequence model, the GPT relies on a fixed, finite vo-
cabulary for stable operation: attempting to learn the token
representation (vocabulary) concurrently with the complex
spatiotemporal dynamics would force the GPT to learn de-
pendencies over a constantly evolving vocabulary, likely hin-
dering convergence. Furthermore, the fundamentally differ-
ent architectures (CNN-based VQGAN with its specific loss
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functions versus the autoregressive transformer GPT) and the
challenges of backpropagation through the VQGAN’s dis-
crete quantization step would exacerbate training instability.
By firstly establishing a robust and fixed vocabulary through
the VQGAN, we create a stable foundation for the GPT to
learn the spatiotemporal dynamics of precipitation. This sep-
aration allows specialized and stable optimization of each
component, ultimately enabling both realistic ensemble gen-
eration and accurate uncertainty estimation at the spatiotem-
poral (token) level, which are instrumental in meeting the re-
quirements of operational nowcasting systems run by meteo-
rological services.

Another notable feature of GPTCast is that its core archi-
tecture operates deterministically, meaning it does not re-
quire stochastic elements such as injected noise during the
forward pass for either training or inference. This contrasts
with models such as GANSs or diffusion models (Ravuri et al.,
2021; Leinonen et al., 2023; Zhang et al., 2023), which often
rely on random inputs to generate variability. In GPTCast,
variability for ensemble generation stems from the learned
data patterns: the tokenizer learns a discrete representation,
allowing the forecaster to output a categorical probability
distribution over the token vocabulary for each prediction
step. Sampling from this distribution during autoregressive
inference generates diverse ensemble members, ensuring all
variability originates from the learned conditional probability
of future states given the past, rather than external random-
ness (note: standard stochasticity in parameter initialization
and optimization, e.g., stochastic gradient descent, is still em-
ployed during training).

We describe the details of the model setup and novel con-
tributions in the following subsections.

2.1 Spatial tokenizer: VQGAN

The spatial tokenizer is a Variational Quantized Autoencoder
(VQGAN) featuring an adversarial loss (Esser et al., 2021)
and a novel reconstruction loss specifically tailored to im-
prove the reconstruction of precipitation. We carefully tune
the architecture of the VQGAN to obtain a model that pro-
vides the highest possible compression while maintaining
a good reconstruction performance and computational com-
plexity. The architecture of the tokenizer is visually summa-
rized in Fig. 1.

The encoder (E) and decoder (G) of the autoencoder are
symmetric in design and formed mainly by convolutional
blocks, with o =4 steps of downsampling and upsampling,
respectively. With this setup, each latent vector at the bot-
tleneck summarizes a patch of 2% = 2* = 16 x 16 pixels of
the input image. Following recent studies (Yu et al., 2022),
we find it useful to set a number of channels at the bottle-
neck (i.e., the length of the latent vector) of 8 to obtain effi-
cient utilization of the codebook, good training stability, and
the effective capture of essential features in a space of re-
duced dimension. This choice was informed by the cited lit-
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erature and our preliminary experiments, indicating a good
balance between codebook utilization, training stability, and
feature capture. The latent vectors at the bottleneck are dis-
cretized using a quantization layer that maps them to a finite
codebook (Z) by finding the closest vector in the codebook.
We define a codebook size of 1024 tokens in the quantiza-
tion layer. The codebook vectors are initialized randomly and
then learned during training.

As an example, with an input precipitation map of 192 x
192 pixels with a dynamic range of 601 possible values for
each pixel (from O to 60dBZ with a 0.1dBZ step, as de-
scribed later in Table 2), the resulting feature vector at the
bottleneck will have a dimensionality of 12H x 12W x 8
channels. Each 8-channel vector is then mapped to one of the
possible 1024 vectors in the codebook, resulting in a com-
pressed and discretized representation of 12 H x 12 W with a
dynamic range of 1024 values. The resulting total compres-
sion ratio of the spatial tokenizer is % ~ 150 times.

To support such a high compression ratio while maintain-
ing good reconstruction ability, especially for the extreme
values, we developed a novel reconstruction loss that we use
in place of commonly used reconstruction losses (/1 or Iy,
a.k.a. mean absolute error or mean squared error), defined as
follows:

n
MWAE(x,y)=Z|0(xz')—0(yi)|-0(xz‘), ey
i=1

where o is the sigmoid function o (z) = H% and x and y
are the input and output vectors of the autoencoder, respec-
tively. We call this loss the magnitude weighted absolute er-
ror (MWAE). By giving more weight to pixels with higher
rain rates (magnitude), this loss simultaneously serves two
purposes: the first is to nudge the tokenizer towards reserving
more learning capacity for the reconstruction of extremes,
and the other is to help to rebalance the notoriously skewed
distribution of precipitation data, which by nature leans to-
wards low rain rates. While the sigmoid function can saturate
for very large input values, potentially diminishing the sen-
sitivity to differences in extreme rain rates, this effect is mit-
igated by our data preprocessing. The input radar reflectivity
values (0-60dBZ) are linearly rescaled to the range [—1, 1]
before being fed into the VQGAN. Within this range, the sig-
moid function operates in a quasi-linear manner, ensuring
that the absolute difference term |o (x;) — o (y;)| appropri-
ately reflects differences between the scaled true and recon-
structed values, even for high rain rates within the considered
0-60 dBZ range. The primary reason for using the sigmoid,
rather than a purely linear weighting, is to provide robustness
against potential out-of-range predictions from the decoder
during training, which can occur due to the perturbations in-
troduced by adversarial training. The sigmoid gracefully han-
dles such out-of-range values without assigning excessively
large loss values, thereby improving training stability.
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Alongside MWAE and the adversarial loss, the model in-
corporates the Learned Perceptual Image Patch Similarity
(LPIPS) loss (Zhang et al., 2018), as shown in Fig. 1, which
further encourages perceptually realistic reconstructions by
comparing feature activations in a pre-trained network. In our
preliminary experiments, while not affecting the final recon-
struction performance, this loss term enabled a faster model
convergence.

The interactions between loss terms during training follow
the original VQGAN implementation (Esser et al., 2021).
The total size of the VQGAN model is 90 million trainable
parameters.

2.2 Spatiotemporal forecaster: GPT

Similarly to Esser et al., the core predictive component of
GPTCast is an autoregressive transformer model based on
the GPT-2 architecture (Radford et al., 2019). We chose this
specific architecture, as it represents a well-established, ro-
bust, and widely understood foundation, allowing us to focus
on the novel application of the tokenization and autoregres-
sive generation paradigm to radar nowcasting, rather than op-
timizing for the latest transformer variants. GPT-2 provides a
strong baseline whose components are readily adaptable for
spatiotemporal forecasting tasks.

The GPTCast transformer utilizes 24 layers and 16 atten-
tion heads, resulting in a total of 304 million trainable param-
eters for this forecasting component. When combined with
the VQGAN tokenizer (approximately 90 million parame-
ters; see Sect. 2.1), the entire GPTCast system comprises
roughly 394 million parameters. While potentially smaller
than the largest models currently used in natural language
processing, this scale is substantial within the atmospheric
sciences. For context, it exceeds the size of ECMWF’s op-
erational Al Forecasting System (AIFS; approx. 253 million
parameters according to its public checkpoint (Lang et al.,
2024)), is comparable to recent diffusion models for dynam-
ical downscaling (e.g., approx. 300 million parameters in
Tomasi et al., 2025), and is significantly larger than promi-
nent graph-based models such as GraphCast (36.7 million
parameters; Lam et al., 2023). This highlights that GPTCast,
despite using an established architecture, represents a large-
scale deep learning approach for precipitation nowcasting.
While GPT-2 serves as an effective proof of concept, future
work could certainly explore the potential benefits of more
recent or specialized transformer architectures (e.g., those
optimized for efficiency or long-context modeling) for this
task.

We train two configurations, one with a spatiotemporal
context size of 8 time steps (40 min) x256 x 256 pixels and
one with 8 time steps x 128 x 128 pixels. At the token level,
the two configurations amount to a context length of 2048
(8 x 16 x 16 tokens) and 512 (8 x 8 x 8 tokens), respectively.
We refer to the two models as GPTCast-16x16 and GPTCast-
8x8, respectively. In a GPT-like transformer model, the con-

Geosci. Model Dev., 18, 5351-5371, 2025

G. Franch et al.: GPTCast

text size (or sequence length) does not affect the number
of parameters; instead, it influences the computational com-
plexity and memory requirements of the model during train-
ing and (more crucially) inference. For these reasons, care-
ful consideration in balancing computational complexity and
model performance should be made, since timely forecasts
are crucial for nowcasting. A summary of the two GPT mod-
els’ settings is reported in Table 1.

The training process of the forecaster is schematized in
Fig. 2: contiguous spatiotemporal sequences of radar data
are retrieved from the training dataset and encoded into code-
book indices through the frozen VQGAN encoder and passed
to the GPT model as training samples. The GPT forecaster is
trained autoregressively to predict the probability distribu-
tion for each token z; given the sequence of preceding tokens
Z<t- The tokens are ordered starting with the oldest image
using a row-first format. The ordering is instrumental to the
nowcasting task: in inference, we can provide the model with
a context that is pre-filled with the past seven time steps to
generate the tokens for the eighth time step.

2.3 Inference

At inference time, the two models are combined in a
sandwich-like configuration, with the encoding of the con-
text input images through the VQGAN encoder, the autore-
gressive generation of the indices of multiple forecast steps
via the transformer model, and the final decoding of the to-
kens back to pixel space using the VQGAN decoder (see
Fig. 3). To obtain multiple ensemble members, the autore-
gressive generation of the indices can be repeated multiple
times while applying a multinomial draw over the output
probabilities to pick different tokens.

To generate forecasts for spatial domains larger than the
specific training context size, we employ a sliding window
inference strategy, illustrated in Fig. 4 and detailed in Algo-
rithm 1. We process the target forecast frame sequentially,
following the row-first raster scan order. To predict the to-
ken index z;, ; for a specific spatial location (7, j) in the fore-
cast frame, we construct an input context sequence for the
transformer. This sequence comprises relevant tokens from
previous time steps within a defined spatiotemporal window
around (i, j), along with any tokens already predicted in the
current forecast frame that precede (i, j) in the row-first se-
quential order. The transformer then predicts the probability
distribution for the next token based on this context. Sam-
pling from this distribution yields the predicted token z; ;.
This sequential, conditioned generation ensures that spatial
and temporal consistency is learned and maintained across
the domain via the transformer’s attention mechanism, as
each token prediction depends on its previously generated
neighbors in space and time. The handling of domain edges
occurs naturally as the available context within the sliding
window adapts based on the target token’s position.
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them to produce easily quantizable representations.

Table 1. GPTCast model configurations with large and small spatial domain.

Configuration/model name  GPTCast-16x16

GPTCast-8x8

Vocabulary size 1024 1024

Context length 2048 (8T x 16 H x 16 W tokens) 512 (8T x 8 H x 8 W tokens)
Number of layers 24 24

Number of heads 16 16

Embedding dimension 1024 1024

3 Dataset

The dataset we propose for the study is the radar reflectiv-
ity composite produced by the Hydrometeorlogical Service
of the Regional Agency for the Environment and Energy
of Emilia-Romagna Region in northern Italy (Arpae Emilia-
Romagna). The agency operates two dual-polarization C-
band radars in the area of the Po Valley, located in
Gattatico (44°47'27” N, 10°29’54” E) and San Pietro Capofi-
ume (44°39'19” N, 11°37'23” E), respectively. The scanning
strategy allows coverage of the entire region every 5 min. The
area is characterized by a complex morphology, and it spans
from the flat basin of the Po Valley in the north to the upper
Apennines in the south and from the Ligurian coast in the
west to the Adriatic Sea in the east. For the purpose of this
work, scans with a radius of 125 km were chosen with a total
coverage of 71 172 km?, summarized in Fig. 5.

Arpae fully manages both the radar acquisition strategy
and the data processing pipeline, including several stages of
data quality control and error correction developed to reduce
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the effect of topographical beam blockage, ground clutter,
and anomalous propagation (Fornasiero et al., 2006). Spe-
cific corrections are applied over the vertical reflectivity pro-
file to improve precipitation estimates at the ground level
(Fornasiero et al., 2008). While these quality controls miti-
gate major issues, residual errors inherent to radar measure-
ments are still present, also affecting the corresponding quan-
titative precipitation estimation (QPE). No rain gauge cor-
rection is applied given the challenges of reconciling the two
sources at the short integration time of 5 min.

The resulting product is a 2D reflectivity composite map
on a 290 x 373 km grid at a resolution of 1 km? per pixel, with
a time step of 5 min. The data are provided in units of dBZ
(reflectivity factor), with original values ranging from —20 to
60 dBZ. To further minimize the presence of spurious echoes
and drizzle, the reflectivity values are clipped between the
range of 0 and 60 dBZ, where 0 dBZ represents no precipita-
tion and 60 dBZ represents a rain rate of 205mmh~! (the
radar saturation point). The conversion from dBZ to rain
rate is done by applying the standard Marshall-Palmer Z-R

Geosci. Model Dev., 18, 5351-5371, 2025
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(Marshall and Palmer, 1948) transformation with parameters
a=200and b =1.6.

3.1 Data selection, preprocessing, and augmentation

For the purposes of our study, we extract all contiguous pre-
cipitating sequences in the 6 years between 2015 and 2020.
Non-precipitating sequences are discarded, resulting in the
selection of 179264 time steps out of 630720 (71.5% of
the data is discarded). Specifically, we remove all time steps
where the average precipitation over all pixels in the en-
tire domain is less than 0.0l mmh~! for at least 1h. The
remaining sequences are retained only if they form a con-
tiguous sequence of at least 3 h. This focus on precipitating
events aims to concentrate the model’s learning on the com-
plex dynamics of precipitation itself. The handling of non-
precipitating inputs, which are common in operational sce-
narios, is discussed further in Sect. 5 and addressed empiri-
cally in Sect. 4.2.5, where we test the model’s behavior with
entirely non-precipitating synthetic inputs.

The precipitating sequences are divided between training,
validation, and test sets, and the data values are preprocessed
by rounding the values to the first decimal digit, resulting in
an effective dynamic range of 601 values (from 0 to 60 with
a 0.1 step) per pixel.

Geosci. Model Dev., 18, 5351-5371, 2025

We prepare two test sets, one for the testing of the spatial
tokenizer and one for the testing of the forecaster. To test the
spatial tokenizer, we isolate all time steps belonging to the
days in the years 2019 and 2020 where extreme events hap-
pened by analyzing historical weather reports, resulting in a
total of 21 871 radar images (time steps). We call this the 7o-
kenizer Test Set (TTS). To test the forecaster, we follow the
same validation approach of Pulkkinen et al. (2019), and we
extract out of the TTS 10 sequences of 12h each represen-
tative of the most relevant events. This 120 h subset, namely
the Forecaster Test Set (FTS), is used for the testing of the
forecaster.

The remaining sequences are randomly divided between
training and validation, with the following final result:
149524 steps for training, 7869 steps for validation, and
21871 steps for the TTS including 1450 steps (12h x 10
events) of the FTS. To further increase the training dataset
size and promote generalization, we apply random cropping,
random 90° rotation, and flipping to the training dataset dur-
ing the training phase. The primary motivation for this aug-
mentation strategy is pragmatic: to increase the effective
size and variability of the training dataset and, crucially, to
mitigate overfitting. We observed, particularly for the larger
GPTCast-16x16 model, that training without augmentation
led to overfitting on the validation set relatively early. In-
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Figure 4. An illustration of the sliding window approach for a forecaster trained with a context length of 4 steps x 3 height x 3 width (36
tokens). Forecasts for domains of arbitrary sizes can be generated by moving the context window across the forecasting domain to predict a
target token in the larger domain (starting with the token at the top-left position). A fixed start-of-sequence token (index 0) is prepended to

the context to provide an initial conditioning for the first token.

troducing these random transformations allows significantly
longer training periods, improving the model’s generaliza-
tion by encouraging invariance to the orientation of precipi-
tation features.

We acknowledge that this approach has trade-offs. By
making the dataset invariant to orientation, we prevent the

https://doi.org/10.5194/gmd-18-5351-2025

model from explicitly learning geographically fixed patterns,
such as precipitation enhancement due to specific orography
or effects related to dominant wind directions within the fixed
geographical domain. We do not provide additional contex-
tual information (e.g., topography, large-scale wind fields)
to the model, partly to maintain a fair comparison with the

Geosci. Model Dev., 18, 5351-5371, 2025
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Figure 5. Extent of the dataset. Effective coverage is the composite of the 125 km range of the Gattatico and San Pietro Capofiume radars

(green area). The hatched area is the Emilia-Romagna region.

baseline extrapolation methods (introduced in Sect. 4.2.1),
which also operate solely on the precipitation fields. The cho-
sen augmentation strategy therefore prioritizes learning the
inherent dynamics, structure, and evolution of precipitation
patterns themselves, aiming for a model that generalizes well
to these dynamics regardless of their orientation within the
frame, at the expense of capturing location-specific effects.
Table 2 summarizes the resulting dataset characteristics.

4 Results

Before presenting the quantitative and qualitative results, we
clarify the roles of the different data subsets used throughout
model development and evaluation.

All model development, hyperparameter tuning, and se-
lection processes were performed using only the training and
validation sets. This includes the selection of the final VQ-
GAN tokenizer architecture (based on reconstruction fidelity
and downstream performance on the validation set, compar-
ing MAE and MWAE variants) and the selection of the best-
performing GPTCast forecaster checkpoint (based on met-
rics evaluated exclusively on the validation set).

The two test sets (FTS and TTS) were used for the final
evaluation presented in the following sections, after all model
architectures and checkpoints were finalized based on valida-
tion performance. To further assess generalization to truly in-

Geosci. Model Dev., 18, 5351-5371, 2025

dependent data beyond the scope of the original dataset, we
also present an evaluation on a separate, out-of-distribution
dataset over Germany in Sect. 4.2.4.

We analyze the performance of our model at two stages:
firstly, we analyze the amount of information loss introduced
by the data compression in the tokenizer, and then we analyze
the performance of GPTCast as a whole for the nowcasting of
precipitation up to 2 h in the future. All scores and measures
in the Results section are computed on rain rate values (after
applying Z-R conversion).

4.1 Spatial tokenizer reconstruction performance

Given the high compression ratio that we introduce in the
VQGAN, it is crucial to understand how much and what
type of information is lost during the compression and dis-
cretization step operated by the tokenizer. Depending on the
nature of the information loss, certain phenomena may be
completely lost, and this can compromise the ability of the
transformer to learn and forecast some precipitation dynam-
ics (e.g., extreme events). The new MWAE loss introduced
in Sect. 2.1 is specifically built to improve the reconstruction
performance of the tokenizer and reach a good level of data
reconstruction while maintaining a high compression factor.

Table 3 shows the performance in reconstruction ability
on the TTS between a VQGAN trained using as reconstruc-
tion loss a standard mean absolute error (MAE) and using

https://doi.org/10.5194/gmd-18-5351-2025
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Table 2. Summary of dataset characteristics.

5359

Attribute Details

Product description

Map size 290 x 373 pixels
Pixel size 1 km resolution
Time step 5 min
Reflectivity range

Date range

Dataset size
Training and validation
Test datasets

Arpae radar reflectivity composite (northern Italy)

—20 to 60 dBZ (clipped to 0-60 dBZ, 0.1 step = 601 values of dynamic range)
Precipitation sequences in the years 2015-2020

630 720 total time steps (179 264 precipitating time steps selected)

149 524 time steps for training, 7869 for validation

TTS: 21871 time steps; FTS: 1450 time steps (10 events of 12h)

Algorithm 1 Pseudocode for sliding window prediction al-
gorithm.

Require: input_indices {Tensor of shape [B, S, H, W]}
Require: c_indices {Conditioning tokens (Start of Sequence)}
Require: window_size {Size of sliding context window }
Ensure: predicted_indices {Next frame token indices}
B, _, H, W < shape(input_indices)
half_window <« |window_size/2]
predicted_indices «<— Tensor(B, H, W) filled with — 1
conditioning <« reshape(c_indices) {Flatten conditioning}
fori=0to H—1do
for j=0to W —1do
/* Calculate window boundaries with edge handling */
istart < max(0, i — half_window)
lend < min(H, istart + window_size)
istart < max(0, ieng — window_size) { Adjust if at bottom
edge}
Jstart <— max(0, j — half_window)
Jend <= min(W, jstart + window_size)
Jstart <= max(0, jeng — window_size) {Adjust if at right
edge}
/* Extract past context and already predicted tokens */
past_tokens <« flatten(input_indices|[:, :, istart :
lend Jstart  Jend])
pred_patch < predicted_indices|:, istart : fend> Jstart :
Jend]
window_pos; <—i — istart
window_pos < J — Jstart
tokens_count <— window_pos; X (jend — Jstart) +
window_pos i
pred_tokens < first tokens_count elements from flattened
pred_patch
/* Build context and predict next token */
context <— concatenate(conditioning, past_tokens,
pred_tokens)
next_token < predict_next_index(context)
predicted_indices|:, i, j] <— next_token.squeeze()  {Fix
shape mismatch}
end for
end for
return predicted_indices
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our proposed MWAE loss. We consider both global regres-
sion scores, such as the mean absolute error (MAE), the mean
squared error (MSE), and the structural similarity index mea-
sure (SSIM; Wang et al., 2004), along with categorical scores
computed by thresholding the precipitation at multiple rain
rates (1, 10 and 50 mm h_l), such as the critical success in-
dex (CSI) and the frequency bias (BIAS).

The autoencoder trained with MWAE shows significant
improvements over all the considered metrics, but it is cru-
cial to notice that the improvements are more pronounced
for higher rain rates, whose frequency is almost precisely re-
constructed by the autoencoder. This is clearly visible in the
improvements in BIAS at 50 mm h~1, which is defined as
the fraction between the number of pixels in the input im-
age over S0mmh~! and the number of pixels that surpass
the same threshold in the reconstruction, where we obtain a
jump in performance from 0.22 to 0.92 (where 0 is total un-
derestimation, 1 is the perfect score, and greater than 1 is
overestimation).

The recovery in frequency is also confirmed by analyz-
ing the radially averaged power spectral density (i.e., the
amount of energy) of the input and reconstruction: as shown
in Fig. 6, the average power spectra of the MWAE autoen-
coder closely resemble the input (albeit with an overestima-
tion at the smallest wavelengths), while the standard autoen-
coder distribution is constantly shifted and underestimated at
all wavelengths.

Improvement in CSI score is also significant (at
50 mmh~!, more than 3 times higher), albeit not as thorough
as the frequency recovery. This implies that the remaining
source of error is that the reconstructed precipitation fields
have either a different structure or a different location when
compared to the input (i.e., the amounts of the reconstructed
precipitation are correct but misplaced at the spatial level).

To better characterize this remaining source of error, we
compute the SAL measure (Wernli et al., 2008, 2009), which
evaluates three key aspects of the precipitation field within
a specified domain: structure (S), amplitude (A), and loca-
tion (L). The amplitude component (A) measures the rela-
tive deviation of the domain-averaged reconstructed precip-
itation amount from the input. Positive values indicate an

Geosci. Model Dev., 18, 5351-5371, 2025
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Table 3. Reconstruction performance on the TTS of VQGAN trained with mean absolute error (MAE) loss and with our proposed MWAE
loss. ({) means lower is better, and (1) means higher is better; for frequency bias (BIAS), closer to 1 is better. The best model is in bold.

Model/performance MAE ({) RMSE () SSIM (1) CSI (1)/BIAS @ Imm™" CSIUBIAS @ 10mm™" CSI/BIAS @ 50 mm™"
VQGAN MWAE 0.204 2.02 0.988 0.81/1.03 0.56/0.94 0.44/ 0.92
VQGAN MAE 0.265 2.66 0.981 0.74/0.93 0.38/0.62 0.13/0.22
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Figure 6. Comparison of radially averaged power spectral density reconstruction performance by adopting the MWAE loss function com-
pared to MAE. The adoption of MWAE improves the ability of the autoencoder to reproduce the energy distribution of precipitation at all

wavelengths.

overestimation of total precipitation, while negative values
indicate an underestimation. The structure component (S) as-
sesses the shape and size of predicted precipitation areas.
Positive values occur when these areas are too large or too
flat, while negative values indicate that they are too small or
too peaked. The location component (L) evaluates the accu-
racy of the predicted location of precipitation. It combines
information about the displacement of the reconstructed pre-
cipitation field’s center of mass compared to the input and the
error in the weighted average distance of the precipitation ob-
jects from the center of the total field. Perfect forecasts result
in zero values for all three components, indicating no devia-
tion between input and reconstructed precipitation patterns.

The SAL analysis plot for both autoencoders is shown in
Fig. 7. The MWAE autoencoder improves over the baseline
autoencoder on all scores, with a median value that is close
to zero for all three components. A residual source of ab-
solute error remains in the structure component, while both
amplitude and location errors are negligible.

In summary, divergences in the size and shape of the re-
constructed precipitation patterns account for the majority of
the error for our new autoencoder, while the locations, fre-
quencies, and energy contents of the precipitation patches are
mostly accurate. Overall, this is a good compromise for the
nowecasting task, since we can tolerate higher compromises
for errors in structure, whereas systematic errors in ampli-

Geosci. Model Dev., 18, 5351-5371, 2025

tude, frequency, or location can seriously impair the fore-
caster’s ability to accurately predict the evolutionary dynam-
ics of precipitation. Some qualitative examples of the input
and reconstruction from both autoencoders are presented in
Fig. 8.

The last test involves an assessment of the ability of the
autoencoder to reconstruct saturation-level inputs. We cre-
ate a synthetic image with a saturated 64 x 64 km patch of
205mmh~! (60dBZ) at the center, encode it through the
tokenizer, and decode the resulting token map. The recon-
struction in Fig. 9 visually confirms that end-of-scale val-
ues are much better represented in the learned codebook
of the MWAE autoencoder, which is able to express rain
rates up to the saturation level, although not for large ex-
tents like the one provided in the input. This limitation is
expected due to the absence of such extensive saturated ar-
eas in the training data. Consequently, this could potentially
affect the model’s performance when encountering record-
breaking extreme events that might exhibit such large areas
of maximum intensity.

https://doi.org/10.5194/gmd-18-5351-2025



G. Franch et al.: GPTCast

SAL Scores (MAE Loss)

T— 5:0.101
A: 0.101
0.4 4 01 02 03 04 05 L 0.022
S+A+L: 0.225
0.2 1
Q
el
2
£ o0 ALl
E b
S ____________________ E e et o DR sy TIST TN ——==
_02.
-0.4
-0.4 -0.2 0.0 0.2 0.4

(S)tructure

(a) SAL scores for Auteoencoder with MAE Loss

(A)mplitude

5361
SAL Scores (MWAE Loss)

T ] 5:0.090

A: 0.021

0.4 1 01 02 03 04 05 L0014

S+A+L: 0.126
0.2 1

0.0 B G e [Emy ey Ly L et e TR Ay A
_02 o

-0.4
-0.4 -0.2 0.0 0.2 0.4

(S)tructure

(b) SAL scores for Auteoencoder with MWAE Loss

Figure 7. Structure, amplitude, and location (SAL) plot that compares the performance of the MAE and MWAE autoencoders. Each dot on
the plot represents the scores of one image in the TTS. Structure and amplitude are plotted on the horizontal and vertical axes, respectively,
while the location component is represented by the color. The dashed vertical and horizontal lines indicate the median values of the structure
(S) and amplitude (A) scores, respectively. The rectangular box represents the area between the 25th and 75th percentiles (i.e., the vertical
and horizontal sides of the box contain 50 % of the points). The numbers on the top right show the mean absolute values.

4.2 GPTCast nowcasting performance
4.2.1 Baseline model: LINDA

We examine and compare GPTCast forecasting perfor-
mance with that of the Lagrangian INtegro-Difference equa-
tion model with Autoregression (LINDA) (Pulkkinen et al.,
2021), the state-of-the-art ensemble nowcasting model in-
cluded in the pySTEPS package (Pulkkinen et al., 2019).
LINDA is a nowcasting technique intended to provide su-
perior forecast skill in situations with intense localized
rainfall compared to other extrapolation methods (S-PROG
or STEPS). Extrapolation, S-PROG (Seed, 2003), STEPS
(Bowler et al., 2006), ANVIL (Pulkkinen et al., 2020), an
integro-difference equation (IDE), and cell tracking tech-
niques (Dixon and Wiener, 1993) are all combined in this
model.

4.2.2 Verification scores

For verification assessment, we rely on the continuous ranked
probability score (CRPS) and the rank histogram, which are
essential tools for verifying ensemble forecasts. By showing
the frequency of observed values among the forecast ranks,
the rank histogram evaluates the dispersion and reliability of
ensemble forecasts and highlights biases such as under- or
over-dispersion. By comparing the prediction’s cumulative
distribution function to the actual value, CRPS calculates a
numerical score for forecast skill that indicates how accu-
rate a probabilistic forecast is. The two scores complement
each other, with the CRPS providing a measure of forecast
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accuracy as a whole and the rank histogram emphasizing the
ensemble spread and reliability.

4.2.3 Performance on the forecast test set

We use the FTS for our main performance comparison. Out
of the 10 events in FTS, 7 are convective events occurring in
spring or summer and 3 are winter precipitation events. For
each event, we produce a forecast every 30 min, and each
forecast is a 20-member ensemble forecast with 5 min time
steps and a maximum lead time of 2h (i.e., 24 forecasting
steps) for both LINDA and GPTCast. This results in a total
of 200 forecasts (20 forecasts per event) generated per model.
For GPTCast, we test both of the two model configurations,
GPTCast-16x16 and GPTCast-8x8.

The CRPS score for each of the three models — LINDA,
GPTCast-16x16, and GPTCast-8x8 — is displayed in Fig. 10:
both variants of GPTCast outperform LINDA across all lead
times, with GPTCast-16x16 outperforming all other models.
This result clearly shows that the model can learn a more
thorough dynamic of the evolution of precipitation patterns
when the context size is more spatially extended. It is im-
portant to notice that this improvement comes with a non-
negligible increase in terms of computational time at infer-
ence, which in our experiments was close to 1 order of mag-
nitude (GPTCast-8x8 computes a time step in 2 s compared
to 17 s for the larger model on an NVIDIA RTX 4090).

Figure 11 analyzes the rank histogram at different lead
times for all three models, including information on the
Kullback-Leibler (KL) divergence from the uniform distri-
bution. Both versions of GPTCast provide a better overall

Geosci. Model Dev., 18, 5351-5371, 2025
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Figure 8. Qualitative comparison between precipitation snapshots reconstructed by the VQGAN autoencoder trained with MWAE loss and
MAE loss, taken from the TTS. The autoencoder trained with MWAE loss shows a marked improvement in the reconstruction of precipitation,
with crucial improvements in the reconstruction of higher rain rates (thunderstorms).

Geosci. Model Dev., 18, 5351-5371, 2025 https://doi.org/10.5194/gmd-18-5351-2025



G. Franch et al.: GPTCast

Synthetic Input

Reconstructed (MAE)

(=} (=]

B w

(=]

Precipitation intensity [mm/h]

0.25
0.16
0.08

5363
Reconstructed (MWAE)
160 160
100 100
63 _ 63
40 -FE_ 40 -FE_
25 25
16 E 16 E
10 £ 10 2
63 ¢ 63 ¢
4 £ 4 £
25 ¢ 25 ¢
L6 2 L6 2
1 = 1 =
0635 063 5
0.40 £ 0.40 £
0.25 0.25
0.16 0.16
0.08 0.08

Figure 9. Qualitative comparison between precipitation snapshots reconstructed by the VQGAN autoencoder trained with MWAE loss and
MAE loss on a synthetic saturated image. The MWAE-trained model can reach saturation-level intensities, although only over small areas.
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Figure 10. Continuous ranked probability score (CRPS) comparison of GPTCast and LINDA over the FTS (lower is better) at different lead

times.

score than LINDA, which tends to be under-dispersed, with
GPTCast-8x8 being the best model. Moreover, GPTCast-8x8
shows a rank distribution close to optimal up to the first
hour, with a KL divergence from the uniform distribution of
0.006 at 60 min lead time (12 steps). GPTCast-16x16 dis-
plays an overall better rank histogram than LINDA up to
the first 60 min, with a tendency to underestimate that com-
pounds over time: we attribute this behavior to the increased
ability of the GPTCast-16x16 to capture the training distri-
bution, which has a higher ratio of dissipating precipitation
events than the FTS (which is filtered to contain only extreme
events).

Figure 12 shows an example of nowcast for a convective
case in the FTS, with two ensemble members and the ensem-
ble mean for both LINDA and GPTCast. GPTCast generates
two realistic and diverse forecasts, with an ensemble mean
that features a better location accuracy than LINDA com-
pared to the observations.

https://doi.org/10.5194/gmd-18-5351-2025

4.2.4 Out-of-distribution evaluation on German radar
data

To assess the generalization capability of GPTCast beyond
the primary dataset used for training and testing, we per-
form an additional evaluation on an independent dataset from
a different geographical region and source. We utilized the
radar dataset over Germany presented alongside RainNet
(Ayzel et al., 2020). From the first 150000 time steps avail-
able in this dataset, we selected the 10 cases exhibiting the
highest domain-average precipitation to focus on challeng-
ing forecasting scenarios.

For each selected case, we extracted the central 256 x
256 pixel domain, matching the spatial dimensions used in
our primary experiments. We then generated 60 min precipi-
tation forecasts using a 20-member ensemble for both GPT-
Cast (specifically, GPTCast-16x16) and LINDA.

The results indicate that GPTCast achieves a lower (better)
average CRPS compared to LINDA over these 10 selected

Geosci. Model Dev., 18, 5351-5371, 2025
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Figure 11. Rank histogram comparison of GPTCast and LINDA on the FTS. The horizontal gray line represents the ideal value (the closer
the better). The numbers in the legend indicate the Kullback—Leibler divergence from the uniform distribution (lower is better).

cases, suggesting better overall probabilistic forecast skill in
this out-of-distribution setting. However, the rank histogram
for GPTCast still exhibited a tendency towards lower ranks,
consistent with the underestimation characteristic observed
in the primary evaluation (Sect. 4.2.3).

It is important to interpret these results with caution.
Firstly, the evaluation comprises only 10 cases, which lim-
its the statistical significance of the findings. Secondly, as
noted by Ritvanen et al. (2025), LINDA’s performance is
often optimized for and excels during high-intensity con-
vective events. The case selection based on domain-average
precipitation might not perfectly align with the scenar-

Geosci. Model Dev., 18, 5351-5371, 2025

ios where LINDA demonstrates its peak performance rela-
tive to other models. Nonetheless, this preliminary out-of-
distribution evaluation provides encouraging evidence that
the precipitation dynamics learned by GPTCast possess a de-
gree of transferability to different geographical regions and
data sources.

4.2.5 Behavior with non-precipitating input

To address the model’s behavior when presented with in-
put sequences entirely devoid of precipitation (a scenario
excluded during training), we conduct an additional experi-
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Figure 12. Example comparison of GPTCast-16x16 and LINDA nowcast on a convective case in the Forecaster Test Set (8 June 2020,
11:00 UTC). The domain is cropped on the central area for visualization convenience.
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Figure 13. CRPS and rank histogram of GPTCast-16x16 and LINDA on 10 precipitation events over central Germany.

ment using synthetic data. We initialized the GPTCast-16x16
model with an input sequence consisting entirely of zero-

value radar reflectivity images (representing “all clear” con-
ditions) across the 256 x 256 pixel domain for the standard

7-time-step context window. We then generated an ensemble

forecast of 20 members for the next time step.

The results show that most ensemble members correctly

predicted continued zero (or near-zero) precipitation, con-

sistent with a persistence forecast expected under such con-
ditions. However, in particular, one ensemble member gen-
erates a significant spurious, albeit localized and physically
plausible-looking, precipitation pattern. This highlights a po-
tential drawback of the generative nature of the model: the
possibility of “hallucinating” precipitation features when ini-
tialized with data far outside its training distribution (i.e.,
entirely empty sequences). While infrequent in this test (1
member out of 20), this behavior warrants consideration for
operational deployment and is discussed further in Sect. 5.

Geosci. Model Dev., 18, 5351-5371, 2025

mation.

GPTCast’s deterministic architecture enhances
pretability and reliability by generating realistic ensemble
forecasts without random noise inputs. The model can be

Figure 14 illustrates the behavior of the members and the
generated pattern from the deviating ensemble member.

5 Discussion and future work
5.1 Summary and contributions

GPTCast introduces a novel approach to ensemble nowcast-
ing of radar-based precipitation, leveraging a GPT model and
a specialized spatial tokenizer to produce realistic and ac-
curate ensemble forecasts. We show that this approach can
provide reliable forecasts, outperforming the state-of-the-art
extrapolation method in both accuracy and uncertainty esti-

inter-
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Figure 14. Behavior of the model initialized from a zero-precipitation input sequence of 256 x 256 pixel domain. Only 1 out of the 20

ensemble members develops a significant precipitating pattern.

scaled to different sizes, both in context length and in terms
of parameters (which we postponed to future analyses), al-
lowing a balance in the trade-off between accuracy and com-
putational demands and providing flexibility for different op-
erational settings.

We believe that our method, by adopting an architecture
influenced by large language models (LLMs), paves the way
for future promising research in precipitation nowcasting that
can incorporate all the improvements and developments from
the quickly developing field of LLM research. This includes
more efficient architectures, improved training techniques,
and better interpretability tools. Such integration can poten-
tially enhance GPTCast’s performance, scalability, and us-
ability, ensuring that it remains a state-of-the-art nowcasting
tool.

5.2 Implementation challenges

Despite its strengths, the approach poses specific challenges
that must be considered for the operational usage of the
model.

The approach requires the training of two models in cas-
cade, each with its own set of challenges. In our experi-
ments, it was hard to find a stable configuration to train
the spatial tokenizer that has to balance multiple compet-
ing losses. The MWAE reconstruction loss we introduced
helped substantially in terms of both convergence and sta-
bility, although at the cost of slower training induced by the

https://doi.org/10.5194/gmd-18-5351-2025

smoothing effect of the sigmoid (o) terms in the loss. On
the other hand, we found the forecaster to be very stable in
training (as expected by transformers) but computationally
intensive in inference, especially for the long context config-
uration (GPTCast-16x16), making its use in a real-time ap-
plication such as nowcasting challenging without significant
resources.

5.3 Handling non-precipitating conditions and
generative artifacts

The ability of the model to effectively capture the training
distribution is both its main strength and potential pitfall.
A key aspect of our training strategy was the exclusion of
entirely non-precipitating sequences, representing a signifi-
cant portion (71.5 %) of the raw data. This decision aimed
to focus the model’s learning capacity on the core challenge:
capturing the complex dynamics of precipitation initiation,
evolution, and decay, rather than diluting the learning signal
with vast amounts of “all clear” data. Operationally, if the
recent radar sequence shows no precipitation, a simple per-
sistence forecast (predicting continued “no precipitation”) is
often sufficient and computationally inexpensive for the very
short term, making the deployment of a complex model such
as GPTCast potentially wasteful in such specific situations.
Our training strategy thus aligns with a targeted use case
where the model is primarily invoked when precipitation is
present or developing.

Geosci. Model Dev., 18, 5351-5371, 2025
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However, this raises the question of how the model be-
haves when presented with the non-precipitating inputs it
might encounter operationally. While the model learns to
handle the cessation of precipitation within partly precip-
itating sequences present in the training data, its behavior
on entirely clear inputs was not explicitly trained. Our anal-
ysis in Sect. 4.2.5, using synthetic all-zero inputs, showed
that, while the model predominantly predicts continued clear
conditions as expected, a small fraction of ensemble mem-
bers (1 out of 20 in our test) can generate spurious pre-
cipitation patterns (‘“hallucinations”). This generative arti-
fact, occurring when the input is significantly outside the
training distribution, represents a potential drawback. While
infrequent, this highlights the need for caution and poten-
tially post-processing checks if the model were to be de-
ployed in scenarios where it might frequently receive en-
tirely non-precipitating inputs or, alternatively, highlights the
need to implement a simple check to bypass the deep learn-
ing model when inputs are non-precipitating. Further inves-
tigation could explore fine-tuning strategies or architectural
modifications to mitigate such behavior, although the current
targeted training approach already aligns well with typical
operational workflows where nowcasting models are most
crucial during active precipitation events. Moreover, strate-
gies exist to exert more control over the generation process
during inference and potentially reduce the occurrence of un-
desirable outcomes. One common technique, adapted from
natural language processing, is top-k sampling (Fan et al.,
2018; Holtzman et al., 2020). Instead of sampling from the
entire probability distribution over the VQGAN codebook in-
dices predicted by the transformer, top-k sampling restricts
the selection pool to only the k tokens (codebook indices)
with the highest predicted probabilities at each step. By filter-
ing out low-probability options, this can make the generated
sequences more focused and less likely to contain highly im-
probable or spurious transitions. However, this comes at the
cost of potentially reduced forecast diversity and the risk of
suppressing genuinely rare but physically valid meteorologi-
cal events. Choosing an appropriate value for k, or exploring
related techniques such as nucleus sampling (top-p) (Holtz-
man et al., 2020), involves a trade-off between forecast cre-
ativity/diversity and robustness against potential hallucina-
tions. Further investigation into optimal decoding strategies
for precipitation nowcasting with GPTCast, possibly incor-
porating physical constraints or adaptive sampling methods,
remains an area for future research to enhance reliability for
operational use.

5.4 Geographical generalizability

A further consideration regarding the generalizability of
GPTCast pertains to the geographical scope of the data
used for training and primary evaluation. Our main experi-
ments were conducted using radar data covering the Emilia-
Romagna region, which possesses distinct topographical
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features and precipitation characteristics. Consequently, the
model’s performance might differ when applied to regions
with significantly different environments, such as coastal ar-
eas or large flat plains, which exhibit distinct precipitation
regimes or atmospheric dynamics.

To provide an initial assessment of the model’s robustness
beyond its training domain, we performed an additional eval-
uation on a completely independent dataset comprising re-
cent precipitation events over Germany, a region with differ-
ent geographical characteristics (as detailed in Sect. 4.2.4).
The promising results obtained in this out-of-distribution set-
ting (Sect. 4.2.4) suggest that GPTCast learns representations
of precipitation dynamics that possess some degree of geo-
graphical transferability. While these findings are encourag-
ing, they represent only a first step. More extensive valida-
tion across a wider variety of geographical regions and cli-
matological conditions would be necessary to fully establish
the broad applicability and potential regional biases of the
model, representing an important avenue for future research.

5.5 Inference efficiency and optimization strategies

Another important practical consideration for deploying
large autoregressive transformer models such as GPTCast in
operational settings is their computational cost during infer-
ence. While powerful, the attention mechanism and the sheer
number of parameters can lead to significant latency and
memory requirements. However, the field has developed nu-
merous optimization techniques specifically targeting these
challenges, which could be applied to GPTCast to enhance
its real-time feasibility.

One major advancement is the development of optimized
attention algorithms, such as FlashAttention (Dao et al.,
2022), which reduces the memory footprint and increases
the speed of the attention computation by avoiding materi-
alization of the large attention matrix. Furthermore, model
quantization techniques (Gholami et al., 2021) can signifi-
cantly reduce the model size and accelerate inference by rep-
resenting weights and activations using lower-precision inte-
ger formats (e.g., INTS8) instead of floating-point numbers,
often with minimal impact on predictive performance. Re-
latedly, inference can be performed using reduced precision
formats such as FP8 (Kuzmin et al., 2022), which speeds
up matrix multiplications on hardware accelerators support-
ing these formats. For autoregressive generation, efficiently
managing the key-value (KV) cache is crucial (Pope et al.,
2023); techniques optimizing KV cache storage and retrieval
avoid redundant computations for previously processed to-
kens, drastically speeding up the generation of subsequent
forecast steps. While the implementation and evaluation of
these optimizations are beyond the scope of this initial study,
their successful application in other domains suggests that
they represent a viable path towards deploying models like
GPTCast efficiently in time-critical operational nowcasting
workflows.
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5.6 Future work and outlook

Finally, in future studies, we also plan to explore the inter-
pretability of the model to control and condition the model
for different tasks. The peculiar characteristics of GPTCast
open the possibility of guiding the generative process of the
model by combining the probabilistic output of the forecaster
with the interpretability of the learned codebook in terms of
physical quantities. A possibility that we envision is to lever-
age GPTCast for tasks such as seamless forecasting (a.k.a.
blending), generation of what-if scenarios, forecast condi-
tioning, weather generation, and observation correction ca-
pabilities.

Code and data availability. Data are from Arpae Emilia-Romagna.
The full, preprocessed dataset used for the presented experiments
is available on Zenodo (https://doi.org/10.5281/zenodo.13692016;
Franch et al., 2024a), including the generated ensemble forecasts to
reproduce the verification scores. The pre-trained models are avail-
able on Zenodo (https://doi.org/10.5281/zenodo.13594332;
Franch et al, 2024c). A dedicated GitHub reposi-
tory (https://github.com/DSIP-FBK/GPTCast (last ac-
cess: 20 August 2025) hosts the PyTorch Lightning
(https://doi.org/10.5281/zenodo.3828935;  Falcon and The
PyTorch Lightning team, 2019) code of the models de-
scribed in this paper, based on the Lightning-Hydra-Template
(https://github.com/facebookresearch/hydra; Yadan, 2019),
licensed under the MIT License. The repository also
hosts the code to reproduce the images shown in this pa-
per. GPTCast v1.0 GitHub release is archived on Zenodo
(https://doi.org/10.5281/zenodo.13832526; Franch et al., 2024b)
and allows users to download the code to reproduce the presented
experiments.
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