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Abstract. Regional ocean models enable the generation of
computationally affordable and regionally tailored ensem-
bles of near-term forecasts and long-term projections of suf-
ficient resolution to serve marine resource management. Cli-
mate change, however, has created marine resource chal-
lenges, such as shifting stock distributions, that cut across
domestic and international management boundaries and have
pushed regional modeling efforts toward “coastwide” ap-
proaches. Here, we present and evaluate a multidecadal hind-
cast with a Northeast Pacific regional implementation of the
Modular Ocean Model, version 6, with sea ice and biogeo-
chemistry that extends from the Chukchi Sea to the Baja
California Peninsula at 10 km horizontal resolution (MOMG6-
COBALT-NEP10k, or NEP10k). This domain includes an
Arctic-adjacent system with a broad, shallow shelf season-
ally covered by sea ice (the eastern Bering Sea), a sub-Arctic
system with upwelling in the Alaska Gyre and predominant

downwelling winds and large freshwater forcing along the
coast (the Gulf of Alaska), and a temperate, eastern bound-
ary upwelling ecosystem (the California Current Ecosys-
tem). The coastwide model was able to recreate seasonal and
cross-ecosystem contrasts in numerous ecosystem-critical
properties including temperature, salinity, inorganic nutri-
ents, oxygen, carbonate saturation states, and chlorophyll.
Spatial consistency between modeled quantities and obser-
vations generally extended to plankton ecosystems, though
small to moderate biases were also apparent. Fidelity with
observed zooplankton biomass, for example, was limited to
first-order seasonal and cross-system contrasts. Temporally,
simulated monthly surface and bottom temperature anoma-
lies in coastal regions ( < 500 m deep) closely matched esti-
mates from data-assimilative ocean reanalyses. Performance,
however, was reduced in some nearshore regions coarsely re-
solved by the model’s 10km resolution grid and for point
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measurements. The time series of satellite-based chlorophyll
anomaly estimates proved more difficult to match than tem-
perature. System-specific ecosystem indicators were also as-
sessed. In the eastern Bering Sea, NEP10k robustly matched
observed variations, including recent large declines, in the
area of the summer bottom water “cold pool” (< 2 °C), which
exerts a profound influence on eastern Bering Sea fisheries.
In the Gulf of Alaska, the simulation captured patterns of sea
surface height variability and variations in thermal, oxygen,
and acidification risk associated with local modes of interan-
nual to decadal climate variability. In the California Current
Ecosystem, the simulation robustly captured variations in up-
welling indices and coastal water masses, though discrep-
ancies in the latter were evident in the Southern California
Bight. Enhanced model resolution may reduce such discrep-
ancies, but any benefits must be carefully weighed against
computational costs given the intended use of this sys-
tem for ensemble predictions and projections. Meanwhile,
the demonstrated NEP10k skill level herein, particularly in
recreating cross-ecosystem contrasts and the time variation
of ecosystem indicators over multiple decades, suggests con-
siderable immediate utility for coastwide retrospective and
predictive applications.

1 Introduction

The western coasts of the continental United States, Canada,
and Mexico form the eastern bounds of the North Pacific
Gyre, which substantially impacts North American climate
and supports a diverse assemblage of ecosystems, species,
and resources. These ecosystems include valuable fisheries
that represented roughly 42 % of the USD4.6 billion in
commercial U.S. domestic landings in 2020 (National Ma-
rine Fisheries Service, 2022). Management of these inter-
connected, multiscale marine resources presents a challenge,
particularly with the growing need to account for chang-
ing climate and ocean conditions. Ocean warming, acidifica-
tion, and deoxygenation stand to fundamentally alter coastal
ecosystems (Gruber, 2011), potentially driving fluctuations
in living marine resource abundance due to habitat range
shifts (e.g., Pinsky et al., 2013; Christian and Holmes, 2016;
Smith et al., 2021; Chasco et al., 2022; Thompson et al.,
2023), recruitment and fish size changes (e.g., Holsman et
al., 2019; Litzow et al., 2022), and heightened competition
and predation from invasive species (Grosholz et al., 2000;
Zeidberg and Robison, 2007; Compton et al., 2010). Ad-
ditionally, extreme events such as marine heat waves (e.g.,
Rogers-Bennett and Catton, 2019; McPherson et al., 2021)
and harmful algal blooms (e.g., Anderson et al., 2015) can
degrade foundational habitats and compromise water quality.

Numerical ocean models facilitate both the understanding
of difficult-to-observe ocean and ecosystem dynamics and
the forecasting and projection of near- to long-term ocean
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conditions. Previous regional modeling efforts in the North-
east Pacific Ocean have contributed considerably to our un-
derstanding of the Bering Sea (Danielson et al., 2011; Her-
mann et al., 2013, 2016; Cheng et al., 2015; Pilcher et al.,
2019; Kearney et al., 2020), Gulf of Alaska (Hermann et al.,
2009; Hinckley et al., 2009; Cheng et al., 2012; Coyle et al.,
2012, 2019; Danielson et al., 2020; Hauri et al., 2020, 2024),
and California Current System (Marchesiello et al., 2001; Di
Lorenzo et al., 2005; Gruber et al., 2006; Veneziani et al.,
2009; Neveu et al., 2016; Van Oostende et al., 2018; Dussin
etal., 2019; Deutsch et al., 2021; Renault et al., 2021) and the
broader NEP10k domain (Desmet et al., 2022, 2023). Pre-
dictions and projections from these regionally tailored ocean
models have also been enlisted to understand and anticipate
living marine resource responses to climate variability and
change (e.g., Gruber et al., 2012; Hermann et al., 2016; Hols-
man et al., 2020; Siedlecki et al., 2016; Howard et al., 2020;
Pozo Buil et al., 2021; Pilcher et al., 2022; Jacox et al., 2023).
In a growing number of cases, applications have been ex-
tended to management (e.g., Anderson et al., 2016; Punt et
al., 2021; Brodie et al., 2023; Smith et al., 2023; Hollowed et
al., 2024). Such applications have been hampered, however,
by the use of relatively small domains and limited ensem-
bles to characterize uncertainties. Climate change impacts
and species responses traverse the bounds of those domains,
thus motivating an integrated ‘“coastwide” modeling frame-
work with rigorously defined uncertainties.

A key challenge is thus configuring a coastwide modeling
framework with sufficient resolution and complexity to ade-
quately represent fisheries-critical ocean features across the
full domain while also maintaining low computational cost
conducive to generating ensembles (Drenkard et al., 2021).
This challenge is made more acute by the diversity of North-
east Pacific ecosystems and the mechanisms by which cli-
mate shapes them. The Bering Sea, for example, features
one of the world’s broadest shallow continental shelf envi-
ronments, which supports benthic and demersal fisheries that
are amongst the most productive in the world (National Re-
search Council, 1996). These fisheries, however, have proven
to be highly sensitive to temperature and food fluctuations
in these shallow habitats (Hunt et al., 2002, 2011). Recent
warming and reduced food supply in the eastern Bering Sea
(EBS), for example, was linked to the collapse of the snow
crab fishery (Szuwalski et al., 2023). Productivity as well as
benthic and pelagic habitat fluctuations on the eastern Bering
shelf are further linked to coupled ocean and sea ice dynam-
ics (Mueter and Litzow, 2008; Brown and Arrigo, 2013; Hunt
et al., 2022), presenting an additional challenge for ocean
modeling systems intended for fisheries applications in this
region.

In the Gulf of Alaska (GOA), downwelling winds and
abundant freshwater input prevail and contribute to a strong
cyclonic circulation of the Alaska Gyre (Stabeno et al.,
2004). Despite the predominance of downwelling winds, the
confluence of the high nitrate waters of the basin with the
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high iron waters of the shelf (assisted by shelf-break eddies),
as well as upwelling of nitrate by wind stress curl, promote
high production in the coastal GOA (Stabeno et al., 2004;
Hermann et al., 2009; Coyle et al., 2019). While correla-
tion with the El Nifio—Southern Oscillation (ENSQO) can be
found (e.g., Bailey et al., 1995; Whitney and Welch, 2002;
Amaya et al., 2023b), lower-frequency modes of decadal cli-
mate variability tend to predominate (e.g., Di Lorenzo et al.,
2008) and are associated with marked decadal-scale ecosys-
tem regime shifts (Anderson and Piatt, 1999; Hare and Man-
tua, 2000) and modulations in fisheries and ecosystem risks
(Hauri et al., 2021, 2024). Cold water temperatures and the
proximity of North Pacific basin waters, which are excep-
tionally rich in dissolved inorganic carbon (DIC), make the
Gulf of Alaska particularly susceptible to ocean acidification
(Fabry et al., 2009; Byrne et al., 2010; Mathis et al., 2015).
Periodic on-shelf intrusions of DIC-rich deep Pacific water
can suppress the aragonite and calcite saturation states and
stress commercially important crab and shell fisheries (Ladd
et al., 2005). Increased freshwater input due to deglacia-
tion, which is naturally low in alkalinity, may also exac-
erbate coastal acidification trends (Reisdorph and Mathis,
2014; Evans et al., 2014). In offshore waters, the iron supply
strongly modulates ocean productivity, though the impacts of
such variations on fisheries remains speculative (Lippiatt et
al., 2010; McKinnell, 2013; Kearney et al., 2015).

The California Current is one of the four major eastern
boundary upwelling systems in the global ocean (Hill et al.,
1998). Marine resource fluctuations are inextricably linked
to variations in the timing, strength, and source waters of this
seasonal upwelling (e.g., Bograd et al., 2009). Physical, bio-
geochemical, and marine resource dynamics of the California
Current correspond strongly with ENSO (Ohman et al., 2017;
Turi et al., 2018; Cordero-Quirds et al., 2022) through diverse
atmospheric and oceanic teleconnection pathways (Alexan-
der et al., 2002; Jacox et al., 2015; Frischknecht et al., 2015).
While a narrow shelf and modest riverine inputs over much
of the coast give the California Current an oceanic charac-
ter, the system nonetheless supports significant benthic and
demersal fisheries, which are periodically subject to height-
ened hypoxia and acidification risks common in upwelling
systems (Bograd et al., 2008; Hauri et al., 2009; Wolfe et
al., 2023). These risks can be further amplified by processes
resulting from changing land use such as increased nutri-
ent input, pollution, and coastal engineering (e.g., Halpern
et al., 2009; Hughes et al., 2015). The considerable produc-
tivity generated by coastal upwelling also supports climate-
sensitive forage fish, highly migratory species, and top preda-
tors that are ecologically, economically, and culturally impor-
tant. Projections suggest that upwelling strength, seasonality,
and source water properties may shift with climate change
(Rykaczewski and Dunne, 2010; Rykaczewski et al., 2015;
Sydeman et al., 2011; Pozo Buil et al., 2021) and signifi-
cantly alter ecosystem productivity and fisheries (McClatchie
et al., 2010; Bograd et al., 2023; Jacox et al., 2024).
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Here, we present a regional implementation of the modular
ocean model (MOMG6) with coupled sea ice and biogeochem-
istry spanning the Northeast Pacific and assess the degree to
which this system can capture fisheries-critical mean patterns
and fluctuations across the diverse ecosystems of the North-
east Pacific. We evaluate the model’s capacity to represent
both large-scale contrasts in ecologically important variables
across ecosystems and variations in fisheries-oriented diag-
nostics within each ecosystem. We also assess computational
costs to ensure the feasibility of ensemble predictions. We
conclude with an assessment of the model’s current utility
for fisheries applications and a discussion of priority devel-
opments for addressing model biases in order to maximize
future utility in informing fisheries and ecosystem decisions.

2 Methods
2.1 Physical model configuration

The NEP10k model domain (Fig. 1) is designed to cover
the western coast of the continental United States and con-
tiguous regions. It extends from 10.8-80.7° N and 156.6° E—
105.0° W, measuring 3320 4= 126 km by 7764 £ 58 km (mean
= standard deviation) in the offshore and along-shore dimen-
sions, respectively. The model is integrated on an orthogonal
curvilinear grid that consists of 342 x 816 tracer cells with a
horizontal resolution averaging 9.7 £ 0.5 km and a minimum
bathymetric depth of 10 m. The domain has four open bound-
aries, the longest of which arcs through the Pacific Ocean
and is referenced as the “western” boundary. In the vertical
direction, the model uses 75 z* coordinates, which are ap-
proximately consistent with the depth-from-mean-sea-level
but are stretched by variations in sea surface height across
all water column layer thicknesses rather than isolating that
variability in the surface layer (Adcroft and Campin, 2004).
We prescribe a layer thickness of 2 m from the surface to a
depth of 8 m, between 2.01 to 2.34m in thickness between
8 and ~ 31 m in depth, then with spacing gradually increas-
ing to 250 m in the deepest portions of the model domain.
Bathymetry for the NEP10k domain was derived from the
2020 General Bathymetric Chart of the Oceans (GEBCO
Bathymetric Compilation Group, 2020) and is not vertically
rounded or truncated. MOMG6 does not need the topography
to conform to the vertical level thicknesses but instead can
let the bottommost non-vanished layer vary in thickness to
match the topography and then collapse the layer to zero
thickness below where the topography intersects the model
layer. Simulations used a baroclinic time step of 400s and a
variable barotropic time step set to maintain stability (Hall-
berg, 1997; Hallberg and Adcroft, 2009). A longer, 1200s
time step was used for thermodynamic and biogeochemi-
cal tracer calculations, as thermodynamic processes tend to
evolve more slowly than dynamic ones. Past studies have
used a longer time step for these processes without compro-
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mising their representation while reducing the overall com-
putation time (e.g., Ross et al., 2023). The success of this
strategy for the NEP10k domain will be assessed herein.

The core components of the physical ocean model, Modu-
lar Ocean Model 6 (MOMO6), are described in Adcroft et al.
(2019). A full account of the parameterization choices im-
plemented for the simulations presented in this study can
be found in the Supplement in Drenkard et al. (2024a)
(MOM_parameter_doc.all). Here, we elaborate on a few
choices (Table A1), highlighting consistencies and contrasts
with the recently published Northwest Atlantic configuration
documented in Ross et al. (2023). As in Ross et al. (2023),
ocean boundary layer mixing, specifically vertical turbulent
mixing coefficients in the surface layer, are parameterized
using the energetic planetary boundary layer (ePBL) scheme
developed by Reichl and Hallberg (2018). However, unlike
Ross et al. (2023), we switched to the submesoscale mix-
ing and restratification scheme of Bodner et al. (2023) from
that of Fox-Kemper et al. (2011). The Bodner parameteriza-
tion has the advantage of dynamically calculating the sub-
mesoscale front length (i.e., the length scale perpendicular
to the front), which can vary significantly seasonally and
latitudinally across the ecosystems represented in NEP10k
(Bodner et al., 2023). In the ocean interior below the sur-
face boundary layer, mixing primarily depends on the shear-
driven turbulence mixing scheme of Jackson et al. (2008).
The standard Jackson formulation, however, was found to
overmix some shelf regions subject to strong tidal motions.
This overmixing was ameliorated by including a scaling fac-
tor for the turbulent decay length scale. Bottom drag and
horizontal viscosities were parameterized as in Ross et al.
(2023). Unlike Ross et al. (2023), the background kinematic
viscosity parameter, KV, was set to 0.0 mZsL: this parame-
ter is intended to supplement the existing dynamic viscosity
(based on the diapycnal diffusivity, KD) and was determined
to be unnecessary for this application. Sea ice is modeled
with the Sea Ice Simulator, version 2 (SIS2, Adcroft et al.,
2019). This sea ice model uses five sea ice thickness cate-
gories and no explicit ridging scheme. The sea ice rheology is
an elastic-viscous-plastic scheme (Hibler, 1979) and a direc-
tionally split piecewise constant advection scheme for thick-
ness. The delta-Eddington radiation scheme is used, and the
internal thermodynamics are enthalpy-conserving (Briegleb
and Light, 2007).

2.2 Physical model forcing

The ocean hindcast simulation was run from 1993 through
2019 on NOAA’s GAEA supercomputer, which is housed
and managed in partnership with the Department of Energy
through the National Climate-Computing Research Center.
Hourly atmospheric forcing for NEP10k was prescribed from
the European Centre for Medium-Range Weather Forecasts
Reanalysis 5 (ERAS; Hersbach et al., 2020). The bulk for-
mulae of Large and Yeager (2004) were used to calculate
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Figure 1. NEP10k domain and bathymetry. NEP10k domain and
bathymetry with a log-normal color scale to emphasize priority
coastal regions. White coloration indicates non-ocean (i.e., land-
masked) grid cells that are not computed in model integrations,
which include the Sea of Okhotsk. The agglomerate land mask is
outlined in black. Red lines indicate the areas that are spatially av-
eraged for regional shelf temperature and chlorophyll time series.
These regions, from north to south, are the Bering Sea (BS), Gulf
of Alaska (GOA), British Columbia (BC), Northern California Cur-
rent System (NCCS), Central California Current System (CCCS),
and Southern California Current System (SCCS). The southern arc
of the Bering Sea polygon traces the Aleutian island chain; the
southernmost land bounds of the Southern California Current Sys-
tem and Gulf of Alaska polygons, as well as both the northernmost
and southernmost land bounds of the British Columbia polygons,
roughly correspond with international geopolitical boundaries. The
dark green contour delineates the 500 m isobath, which we use to
isolate shelf grid cells (i.e., where depth < 500 m).
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latent and sensible heating after adjusting to the 2 m ERAS
reference height. Light attenuation and associated heating
within the water column was calculated from Manizza et al.
(2005) using dynamically varying chlorophyll from the bio-
geochemical model (Sect. 2.3).

Daily freshwater runoff was prescribed using output from
the Global Flood Awareness System, version 4.0 (GloFAS;
Harrigan et al., 2020; Grimaldi et al., 2022) — a hydrolog-
ical inundation model that is also forced by ERAS. Fresh-
water discharge at ocean-adjacent “pit cells” in GloFAS was
remapped to the nearest MOMG6 coastal ocean grid cells. Pit
cells are GloFAS grid cells where the local drain direction
indicates that only inward water flow occurs and is therefore
a point of accumulation (e.g., lakes) or a point of egress to
the ocean via either ocean adjacency or connectivity through
other pit cells (e.g., wetlands). For the Gulf of Alaska, we
substituted freshwater discharge from Beamer et al. (2016;
Hill, 2023), a model dedicated to the representation of fresh-
water discharge and glacier mass balance in Alaska, with cal-
ibration against observed watersheds.

Open lateral boundary and initial conditions for tempera-
ture, salinity, sea surface height, and momentum were pre-
scribed as daily means from the 1/12° Global Ocean Physics
Reanalysis (GLORYS12; Lellouche et al., 2021). Tidal forc-
ing was prescribed at the boundaries using the amplitude and
phase from the global tidal elevation and transport atlas, ver-
sion 9 (TPXO; Egbert and Erofeeva, 2002). Tides were im-
plemented as in Ross et al. (2023) with four semidiurnal con-
stituents (M2, S2, N2, K2), four diurnal constituents (K1, O1,
P1, Q1), and two long-period constituents (Mm and Mf). Ini-
tial and boundary conditions were regridded to the NEP10k
domain using the xESMF Python software package (Zhuang
et al., 2023). Boundary conditions were imposed as in Ross
et al. (2023), with barotropic flows handled with a Flather
(1976) boundary condition, while baroclinic flows are han-
dled with an Orlanski (1976) radiation condition. Lateral
boundary forcing also applies nudging and tracer reservoirs
(the latter retains a memory of water properties exchanged
with the modeling domain rather than instantaneous forc-
ing; see Ross et al., 2023, for more details). As in Ross et
al. (2023), the lateral ocean boundary radiation and nudg-
ing schemes utilize 3 d inflow, 360 d outflow timescales, and
both inward and outward tracer reservoir length scales were
9000 m (Table Al). No nudging was included in the interior
of the domain.

2.3 Biogeochemical model configuration

Biogeochemistry was simulated using version 3.0 of the
Carbon, Ocean Biogeochemistry, and Lower Trophics
(COBALTV3.0) model (Stock et al., 2025; Ross et al., 2023).
COBALTV3.0 includes 40 prognostic state variables to cap-
ture plankton food web dynamics and the cycling of car-
bon, nitrogen, phosphorus, iron, silica, calcium carbonate,
and lithogenic material in ocean and coastal environments.
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COBALTV3.0 builds on prior COBALT formulations (Stock
et al.,, 2014, 2020) by adding a third phytoplankton size
class following Van Oostende et al. (2018). The resulting
small, medium, and large sizes correspond to the canoni-
cal pico-, nano-, and microplankton size classes defined by
Sieburth et al. (1978) and enable COBALT to better re-
solve the range of phytoplankton communities from olig-
otrophic gyres to intensely productive upwelling systems.
These join diazotrophs to give a total of four phytoplank-
ton functional types to go along with a plankton food web
including three zooplankton functional types and free liv-
ing bacteria (Stock et al., 2014, 2020). Additional flexibil-
ity in zooplankton feeding, direct phytoplankton sinking, and
improved photoadaptation and photoacclimation dynamics
were also added (Stock et al., 2025), and the formulation en-
lists an adaptation of the dynamic N : P ratio scheme pro-
posed by Galbraith and Martiny (2015) and initially pre-
sented in Ross et al. (2023).

Initial and boundary conditions for biogeochemistry were
drawn from the same sources as Ross et al. (2023). The 2018
World Ocean Atlas (WOA18) was used for macronutrients
(NO3, POy4, SiO4) and oxygen (O;), with seasonal averages
above 800 m and annual climatologies below (Boyer et al.,
2019; Garcia et al., 2019a, b). The Empirical Seawater Prop-
erty Estimation Routines Locally Interpolated Regressions
(ESPER_LIR) presented by Carter et al. (2021) were used to
provide initial and time-varying (i.e., seasonal, interannual to
decadal variability, and multidecadal trends) boundary condi-
tions for dissolved inorganic carbon and alkalinity. The input
values used for this calculation were the location, tempera-
ture, salinity, and date. Boundary conditions for other trac-
ers, which generally come into more rapid equilibrium with
interior conditions, were drawn from an earlier global ocean
hindcast (Stock et al., 2014).

River carbon, alkalinity, nutrients (N, P, and Si) and oxy-
gen inputs were derived by combining the River Chem-
istry for U.S. Coast (RC4USCoast) database (Gomez et al.,
2023) for U.S. waters in the continental United States, the
Global River Chemistry database (GLORICH, Hartmann et
al., 2019, 2014) for subarctic/Canadian waters, and the Arctic
Great Rivers Observatory (Holmes et al., 2012; ArcticGro,
2024). To force COBALT, riverine nutrient inputs are needed
for dissolved inorganic and organic nitrogen and phosphorus,
particulate nitrogen, phosphorus, and iron. Direct informa-
tion on dissolved and particulate organic nutrient inputs was
not available in all cases. In cases where one or both of these
values were missing, the ratio of dissolved and/or particulate
organic inputs to dissolved inorganic nitrogen was estimated
from the Global Nutrient Export from WaterSheds (Global
NEWS) model (Mayorga et al., 2010). This NEWS-derived
ratio was then multiplied by the observed inorganic nitro-
gen to estimate dissolved and particulate organic fluxes in a
manner that preserved their relative importance but avoided
regional biases in global nutrient-load models such as Global
NEWS. Dissolved organic nitrogen and phosphorus was par-
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titioned into 40 % labile, 30 % semi-labile, and 30 % semi-
refractory components in COBALT to be consistent with
mean tendencies reported by Wiegner et al. (2006). Partic-
ulate phosphate is often the largest phosphorus source in
rivers, but much of it is buried in nearshore waters before
reaching the ocean. Following Froelich (1988), we assumed
that 30 % of the particulate phosphorus was mobilized in es-
tuarine sediments to phosphate, with the rest buried. Iron
concentrations for all rivers were set to 70nM (de Baar and
de Jong, 2001). As in Ross et al. (2023), atmospheric CO;
was set using the monthly historical time series of Mein-
shausen et al. (2017), updated after 2014 using SSP2-4.5 sce-
nario values (Meinshausen et al., 2020), and nutrient, dust,
and iron deposition were based on a 1993-2014 climatology
from GFDL’s ESM4.1 model (Dunne et al., 2020; Stock et
al., 2020).

2.4 Model spinup and simulation

Similar to Ross et al. (2023), we initialized the 1993-2019
hindcast simulation from rest starting at 1 January 1993, with
ocean physics prescribed from GLORYS (described above),
and we initialized the ocean biogeochemistry from a 10-year
spinup simulation. We generated the spinup simulation by
starting the model integration from rest on 1 January 1993
and by repeating ERAS atmospheric conditions for 1993—
1994 (May—December of 1993 and January—April 1994; fol-
lowing Stewart et al., 2020) for 10 1-year cycles. Atmo-
spheric CO; was maintained as the 12-month, 1993 seasonal
climatology, and the ocean boundaries were forced with a
smoothed, daily climatology (i.e., averaged by “day of year”
and smoothed with a triangular filter) of the hindcast’s GLO-
RYS12 1993-2019 open boundary conditions. River runoff
was similarly prescribed as a smoothed daily climatology.
The biogeochemical tracer fields at the end of this 10-year
spinup simulation were then used to initialize biogeochem-
istry for the 27-year hindcast simulation.

The purpose of implementing a spinup was to omit drifts
in the biogeochemistry associated with the adjustment of the
model from its initialized state, which was generally based on
coarse-resolution observation-based products, to the model’s
characteristic solution. We focused on fisheries-relevant vari-
ables in the top 500m. We found that a spinup period of
10 years generally resolved initial model adjustments, which
were strongest in the British Columbia region (Fig. S3 in the
Supplement). While 10 years removed the strongest drifts,
subtle trends remain in some regions, suggesting the poten-
tial value of longer spinup periods, particularly for represent-
ing the deeper ocean. These spinup sensitivities are left to
future NEP10k development efforts.

2.5 Model evaluation

As described in Sect. 1, the model evaluation focuses on the
simulation’s capacity to represent fisheries and ecosystem-
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relevant features across and within the diverse ecosystems
included within the NEP10k domain. The model evalu-
ation therefore includes comparisons against both large-
scale physical and biogeochemical patterns spanning the
full domain (Sect. 2.5.1) and ecosystem-specific quantities
(Sect. 2.5.2). These latter quantities were often drawn from
Ecosystem Status Reports developed by NOAA fisheries to
strategically inform marine resource management decisions
(e.g., Ferriss, 2023; Siddon, 2023; Leising et al., 2024). Com-
parisons against spatial and seasonal patterns were comple-
mented with interannual time series comparisons where pos-
sible; the latter serves as a building block toward making
predictive applications. We note that several comparisons
are made against gridded data products that were also used
to force and initialize the NEP10k hindcast (i.e., GLORYS,
TPXO, WOA23). While these comparisons are not fully in-
dependent, they are nonetheless meaningful tests of the ca-
pacity of the regional model to translate horizontal bound-
ary and surface forcing into an interior solution that remains
consistent with observations. The regional model must ex-
plain multiple observed interior properties by dynamically
extending from the specified boundaries with a single set of
self-consistent explicitly specified dynamics without the ben-
efit of assimilating, or being informed by, observation from
within the domain. Maintaining agreement with observation-
based products in the domain interior thus supports the fi-
delity of these dynamics. We lastly assess the computational
performance and viability of the model using analyses de-
scribed in Sect. 2.5.3.

2.5.1 Full domain comparisons

We broadly evaluated NEP10k performance against gridded
surface and 3D observation-based or observation-assimilated
physical and biogeochemical products to assess the simula-
tion’s coastwide capacity to represent cross-ecosystem pat-
terns. Table A2 summarizes these products and the time
frames analyzed. For spatial comparisons and calculations,
we first plot both the NEP10k results and the comparison
product on their native grids using the Python geographic
plotting package Cartopy (Met Office, 2022). We then regrid-
ded the finer-resolution product output (typically NEP10k,
but not in the case of comparisons against GLORYS12
and chlorophyll comparisons) to the coarser-resolution com-
parison grid using the Earth System Modeling Framework
(Hill et al., 2004) Python Regridding Interface (ESMPy) or
xESMF conservative regridding (Zhuang et al., 2023). Un-
less otherwise stated, assessments include the area-weighted
spatial mean bias (Bias, NEP10k — comparison data prod-
uct), area-weighted root mean squared error (RMSE), me-
dian absolute error (MedAE), and Pearson correlation coef-
ficient (R, based on the spatial pattern). We omit analysis
of model performance in the Chukchi Sea (i.e., north of the
Bering Strait at 66° N) — this region is included in the model
integration due to the rectilinear nature of the grid and our ob-
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jective to include the entire Bering Sea for which the Chukchi
provides a boundary condition. However, it is not a primary
region of interest for this model application and will be as-
sessed in a nascent pan-Arctic MOM6 configuration.

For ocean temperature validations, we compared condi-
tions against version 2.1 of the Daily Optimum Interpola-
tion Sea Surface Temperature product (OISSTv2.1; Huang
et al., 2021) and against GLORYS12 for both surface and
subsurface conditions. OISSTv2.1 is generated from multiple
temperature data sources and interpolated to a 1/4° global
grid, whereas GLORYS12 is a global eddying (1/12°) data-
assimilative ocean reanalysis that demonstrates strong coher-
ence with in situ surface and subsurface temperature records
along the U.S. West Coast (Amaya et al., 2023a). Both ref-
erence products have a continuous monthly output covering
1993-2019.

NEP10k surface and subsurface salinity is compared
against GLORYS12 reanalysis as well as the observation-
based NOAA National Centers for Environmental Informa-
tion (NCEI) 1/10° Northern North Pacific (nnp; Version 2,
Seidov et al., 2023) and Northeast Pacific (nep; Seidov et
al., 2017) regional climatologies for salinity. Annual and
seasonal means were downloaded for both nep and nnp re-
gions for the decades 1995-2004 and 2005-2014 (the sec-
ond decade for the older nep climatology only extends 2005—
2012). To ensure temporal coherence, we regrid NEP10k
separately for each region, using only the years represented
by each regional climatology (i.e., 1995-2012 for the nep and
1995-2014 for the nnp). The two decadal, annual, and sea-
sonal means for the regional climatologies are time-weight
averaged, and then the regional climatologies and regridded
NEP10k output are combined into a common grid. Where the
nnp and nep regions overlap in the GOA (i.e., above 50° N),
we use the values from the more recent nnp climatology.

We validated NEP10k mixed layer depth (MLD) against
the 1° de Boyer Montégut (2024) monthly MLD climatol-
ogy, which incorporates measurements from an assemblage
of MBT, XBT, and CTD casts and profiling floats and de-
fines the MLD as the seawater depth where the potential
density is 0.03 (kgm?) greater than the density at a refer-
ence depth of 5 m. From NEP10k, we used the MOMG6 diag-
nostic variable MLD_003, which calculates the mixed layer
depth based on a user-defined reference depth (in our case,
5m for consistency with de Boyer Montégut). The mixed
layer depth is identified as the depth where the potential
density increases by 0.03 kgm? relative to the surface refer-
ence depth. We also compared NEP10k MLD against GLO-
RYS12. The approximately equivalent MLD for GLORYS12
was determined by first calculating the potential density
from monthly GLORYS12 potential temperature and salin-
ity using the Python implementation of the Gibbs SeaWa-
ter (GSW) Oceanographic Toolbox of TEOS-10 (McDougall
and Barker, 2011). We then calculated GLORYS12 MLD us-
ing the same criteria as de Boyer Montegut (2024) and the
NEP10k MLD_003 diagnostic (i.e., depth at which potential

https://doi.org/10.5194/gmd-18-5245-2025

5251

density is 0.03 kgm? greater than the density at 5m depth at
a given location).

NEP10k sea surface height (SSH) was compared against
GLORYSI12 sea surface height above geoid (zos) and ab-
solute dynamic height (adt) above the Earth’s geopotential
surface (i.e., geoid) from 0.083° resolution satellite altimetry
(CMEMS, 2023). Given the different reference frames for
each observation, reanalysis, and model product, we mean-
centered each dataset by subtracting its respective area-
weighted time mean within the NEP10k region in order to
facilitate direct comparison of seasonal and annual mean sea
surface height distribution and gradients.

Tidal phase and amplitude for the M2 and K1 constituents
were calculated using the hourly NEP10k sea surface height
with the Unified Tidal Analysis and Prediction Python soft-
ware package (Codiga, 2011). These tidal phases and am-
plitudes were compared against TPXO9 to demonstrate the
ability of the model to incorporate and propagate tidal bound-
ary forcings. We further included additional comparisons of
tidal harmonics against several NOAA tide gauges (https:
/Itidesandcurrents.noaa.gov/, last access: 8§ May 2025) in the
tidally complex eastern Bering Sea and western Gulf of
Alaska.

NEP10k annual mean surface and subsurface nitrate and
phosphate concentrations were compared against the 1° 2023
World Ocean Atlas (WOAZ23; Garcia et al., 2023a) for the
time period 1993-2019. Primary phytoplankton nutrient lim-
itation was calculated for annual and seasonal mean time
frames following the methods detailed in Stock et al. (2020).
These nutrient limitation distributions specifically illustrate
where macronutrients nitrate and phosphate or micronutri-
ent iron are the primary nutrient limitation of phytoplankton
growth.

Surface chlorophyll is compared against the European
Space Agency’s satellite product produced as part of their
Ocean Color Climate Change Initiative (OC-CCI; Sathyen-
dranath et al., 2019, 2023). Monthly OC-CCI chlorophyll a
fields from 1998 to 2019 were remapped from 4 km resolu-
tion to the coarser NEP10k grid. NEP10k grid cells where the
OC-CC(lI satellite product is missing data were also masked in
the corresponding month to ensure the annual and seasonal
means are spatiotemporally consistent. Chlorophyll values
were then log10 transformed before comparison.

We compared seasonal means of 200 m integrated meso-
zooplankton carbon biomass concentrations against the
Coastal and Oceanic Plankton Ecology, Production and
Observation Database (COPEPOD; Moriarty and O’Brien,
2013). As described in Ross et al. (2023), we scaled the
COPEPOD dataset by a factor of 2 because the zooplank-
ton represented in COBALT’s mesozooplankton diagnostic
(medium + large, ranging from 200 to 20000 pm equiva-
lent spherical diameter) likely represents a larger fraction of
zooplankton biomass than in the COPEPOD observations,
which are derived from collections that used a net mesh of
333 um (Moriarty and O’Brien, 2013) and would exclude
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some of the size classes in the COBALT diagnostic (Skjoldal
et al., 2013). This conversion is consistent with those typi-
cally found when comparing 200 um and 333 um mesh nets
(Moriarty and O’Brien, 2013; Shropshire et al., 2020).

Similar to inorganic nutrients, surface and subsurface dis-
solved oxygen concentrations were compared against 1°
WOAZ23 (Garcia et al., 2023b) for 1993 through 2019, with
NEP10k oxygen values being remapped to the WOA23 grid.
We also computed the hypoxic boundary layer depth, here
defined as the depth at which oxygen concentrations drop
below 61.7 umol O; per kilogram of seawater, as in Dussin et
al. (2019).

We compared the annual and seasonal mean, surface and
subsurface carbonate chemistry diagnostics, total alkalinity,
dissolved inorganic carbon, and aragonite saturation state
against corresponding values in the 1° Coastal Ocean Data
Analysis Product in North America (CODAP-NA; Jiang et
al., 2021) dataset (Jiang et al., 2022) for the period of 2004—
2018.

2.5.2 Regional comparisons

The full domain comparisons were complemented with key
fisheries-critical regional time series comparisons. While re-
gions often have unique fisheries and ecosystem-critical pat-
terns, temperature and chlorophyll variability are broadly im-
portant across ecosystems. We thus complemented the broad
spatial comparisons with region-specific time series of shelf
(defined as grid cells where the bottom depth is less than
500 m) conditions, where the subregions are those shown in
Fig. 1 and regional shelf extents are depicted in Fig. S2 in the
Supplement. Both monthly climatologies and anomaly (with
the 12-monthly climatological cycle removed) time series
for surface and bottom temperatures were compared against
GLORYS12, while time series of chlorophyll were compared
against OC-CCI. For these (and later) time series analyses,
we report the Pearson correlation coefficient within the re-
spective figure as well as the Kling—Gupta efficiency (KGE;
Gupta et al., 2009) and its components in the Supplement
(Table S1) for a more comprehensive assessment of the in-
teractions of time series correlation, bias, and variance. It
should be noted that the KGE is calculated using the full time
series rather than the climatology or the anomaly time series
and thus the Pearson correlation coefficients may differ be-
tween the figures and the supplemental table.

For additional environmental context, anomaly time series
are depicted against warm and cold episodes of the Ocean
Nifio Index published by the NOAA Climate Prediction
Center (https://origin.cpc.ncep.noaa.gov/products/analysis_
monitoring/ensostuff/ONI_v5.php, NOAA Climate Predic-
tion Center, 2023a), where the warm and cold episodes are
defined as periods when the 3-month running mean of sea
surface temperature (SST) anomaly in the Nifio3.4 region
is above or below 0.5 °C, respectively. The purpose of this
comparison is to ascertain whether the model is able to accu-
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rately recreate the strength of the relationship between local
variability and this foremost mode of global climate variabil-
ity. Variations in simulation skills for different depth ranges
within each subregion were also analyzed to assess changes
in model fidelity in more inshore and offshore regions.

Additional region-specific assessments are described for
the Bering Sea, Gulf of Alaska, and California Current be-
low. Given the length constraints of a single documentation
paper, we limited treatment to two to three of the most promi-
nent ecosystem indicators currently used for each system be-
yond the foundational temperature and chlorophyll compar-
isons described above.

Our additional evaluation in the Bering Sea focused on the
representation of the Bering Sea cold pool and sea ice ex-
tent. As discussed in Sect. 1, fluctuations in the bottom area
covered by the Bering Sea cold pool, generally defined as
waters with < 2°C in the summer (Wyllie-Echeverria and
Wooster, 1998; Mueter and Litzow, 2008), have been associ-
ated with a range of ecosystem impacts (e.g., Clement Kin-
ney et al., 2022). Cold pool dynamics are intertwined with
sea ice fluctuations, with sea ice also having important im-
plications for the timing of seasonal ecosystem transitions
(Wyllie-Echeverria and Wooster, 1998; Mueter and Litzow,
2008; Brown and Arrigo, 2013; Hunt et al., 2022).

For the Bering Sea cold pool, we spatially and tempo-
rally interpolated the daily NEP10k bottom temperature us-
ing the Python package xESMF (Zhuang et al., 2023) to cor-
respond with Alaska Fisheries Science Center (AFSC) Bot-
tom Trawl Survey gear temperature samples collected from
1993 to 2019. These data are available in the Alaska Fisheries
Science Center cold pool GitHub repository (https://github.
com/afsc-gap-products/coldpool, NOAA-AFSC, 2024a). We
compared the trawl survey station bottom temperatures from
the NEP10k simulation against the AFSC dataset following
the methods in Kearney (2021) and analyzed the interpolated
model output using the cold pool toolset to reproduce the
cold pool area (CPA) indices reported by Rohan et al. (2022).

We compared seasonal Bering Sea sea ice against satel-
lite observations from the National Snow and Ice Data Cen-
ter (NSIDC; dataset NSIDCO0051; Cavalieri et al., 1996).
We also compared both the spatial mean extent in the en-
tire Bering Sea and temporal coherence in the southeastern
Bering Sea.

Hauri et al. (2024) highlight how the interaction of differ-
ent localized modes of multiannual to decadal climate vari-
ability can predispose the Gulf of Alaska to extreme physi-
cal and biogeochemical events. These climate variations are
most visibly reflected in observed Gulf of Alaska SSH vari-
ability. The first principal component of the detrended and
deseasonalized SSH over the Gulf of Alaska (62°N 50°N,
160°W 135°W) was referred to as the Northern Gulf of
Alaska Oscillation (NGAO, Hauri et al., 2021). A positive
phase is associated with weak cyclonic winds over the sub-
polar gyre, resulting in a higher SSH and decreased Ekman-
driven upwelling (i.e., Ekman suction). This state is asso-
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ciated with warmer temperatures but reduced prevalence of
deep high-acidity water. That is, risks of thermal stress are
enhanced, while risks of acidification stress are reduced, with
the opposite effects for negative NGAO. The second prin-
cipal component of the detrended and deseasonalized SSH
variability is referred to as the Gulf of Alaska downwelling
index (GOADI; Hauri et al., 2024). The GOADI serves as a
proxy of downwelling strength for Gulf of Alaska coastal wa-
ters: a positive index is associated with elevated coastal SSH,
enhanced coastal downwelling, and a reduced risk of the in-
trusion of cold, acidic, and low-oxygen water onto the bottom
of the Gulf of Alaska shelf. This intrusion risk is heightened
under negative GOADI.

We assessed NEP10k’s ability to generate realistic NGAO
and GOADI patterns by comparing against satellite altimetry
from the Copernicus Marine Environment Monitoring Ser-
vice (CMEMS, 2023). Empirical orthogonal function anal-
ysis was performed on SSH across the GOA domain in a
manner consistent with Hauri et al. (2021) and Hauri et al.
(2024). We then generated composites of ecosystem condi-
tions during the positive vs. negative phases of the GOADI to
assess whether NEP10k can successfully recreate the shelf-
scale surface and benthic condition anomalies that signifi-
cantly impact living marine resource habitat and well-being
(Hauri et al., 2024).

Fisheries and ecosystems in the California Current are
shaped by the timing, strength, and source waters fueling
the strong seasonal upwelling. The system-specific indica-
tors chosen for this region thus focus on these patterns. First,
we compared the vertical mass transport (calculated as the
depth-integrated divergence of orthogonal horizontal mass
transports) at a depth of 30 m to the Coastal Upwelling Trans-
port Index (CUTI) developed by Jacox et al. (2018). As in
Jacox et al. (2018), transports were integrated to 75 km off-
shore over 1° latitude bins. We assessed long-term trends
in dissolved oxygen concentrations against those calculated
at stations in the California Cooperative Oceanic Fisheries
Investigations (CalCOFI) observation array similar to the
methods of Bograd et al. (2008). We interpolated monthly
3D NEPI10k dissolved oxygen to the locations and depths
of the CalCOFI bottle sample data (https://calcofi.org/data/
oceanographic-data/bottle-database/, last access: 7 February
2025) from 1993 to 2019. We then calculated linear trends for
both NEP10k and CalCOFI at specific station locations. We
also included additional comparisons of NEP10k representa-
tion of CalCOFI temperature, salinity, and biogeochemistry
measurements.

2.5.3 Computational expense and scaling

As mentioned in Sect. 2.2, simulations were conducted on
NOAA’s GAEA high-performance computing system. This
system consists of HPE-Cray EX 3000 nodes (2 x AMD
EPYC 9654, 2.4 GHz base, 96 cores per socket), connected
via HPE Slingshot 11 — a high-speed interconnect designed
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for exascale systems. The system also features over 150 PB
of shared storage using IBM Spectrum Scale parallel file sys-
tems. The model runs in a distributed-memory configuration
using MPI across hundreds to thousands of cores. Additional
system details can be found in the NOAA RDHPCS docu-
mentation (https://docs.rdhpcs.noaa.gov/systems/gaea_user_
guide.html#system-overview, last access: 22 October 2024).

As described in Sect. 1, the viability of the NEP10k con-
figuration for ecosystem applications depends on its ability
to not only simulate fisheries-critical features but also to run
with sufficient computational economy to permit generation
of the thousands of years of retrospective forecasts and pro-
jections required to provide credible uncertainty estimates
(e.g., Koul et al., 2024; Ross et al., 2024). However, we
also recognize that others interested in running the NEP10k
configuration may have different computing resource avail-
ability. Therefore, we report the computational performance
under different NEP10k configuration options (i.e., scaling,
land masking, and time-step splitting) in order to provide
insight into how one might optimize production on a given
computing system.

To quantify computational performance, we focused on
the scaling of the wall clock time for 1 year of simulation
against the number of processing elements (PEs). Variations
in both the number and layout of PEs were considered. For
our baseline production simulations herein, we divided the
NEP10k domain (342 columns x 816 rows of tracer grid
cells) across 32 x 80 PEs. This division yields an ~ 10 x 10
grid (i.e., square) decomposition of model grid cells on
each PE. Land processor masking in MOMG6 further econ-
omizes computational resources by omitting domain subre-
gions without ocean (i.e., those that contain only land) grid
cells from PE assignment, thus presenting a domain-specific
optimization consideration when selecting a specific PE con-
figuration. We were able to mask 524 PEs with the 32 x 80
PE breakdown, so our total PE count for this configuration
was 2036 (20 % fewer than the otherwise 2560 PEs required
for this breakdown).

The scalability of the simulation with increasing and de-
creasing processor counts was explored using alternative lay-
outs with fewer PEs (40 x 40), a similar PE total but with a
more rectangular model grid cell decomposition (a 50 x 50
PE breakdown yielding an ~ 7 x 16 model grid cell subset
per PE), and larger numbers of PEs (50 x 75 and 50 x 100).
These experiments allow us to judge the relative efficiency of
our base configuration and the point of diminishing returns
as the PE count is increased and growing requirements for
inter-PE communication begin to overwhelm the advantage
of more PEs. Finally, we include additional 50 x 75 PE and
50 x 100 PE simulations with the thermodynamic time step
equal to the baroclinic time step (400 s) rather than 3 times
the baroclinic time step (i.e., 1200 s), as was used in the base
configuration. These last two experiments allow us to quan-
tify and demonstrate the computational value of the flexible
time stepping that MOMG6 enables.
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3 Results
3.1 Domain-wide evaluation
3.1.1 Large-scale physical ocean properties

Annual mean SST and subsurface temperatures broadly
agree with the distribution and curvature of reference
isotherms along the west coasts of the United States, Canada,
and Mexico (Fig. 2), with temperatures largely falling within
0.5°C of OISST (Fig. 2c, RMSE =0.28°C) and GLO-
RYS12 SST values (Fig. 2f, RMSE = 0.29°C). A surface
temperature cold bias of just over 0.5 °C is apparent over the
eastern Bering Sea, while a warm bias of similar magnitude
is apparent in the nearshore regions of the southern and cen-
tral California Current System. At a depth of 200 m, larger
warm biases relative to GLORYS12 are apparent in the Gulf
of Alaska, where the northern edge of the eastward flowing
North Pacific Current interacts with the adjacent westward
flowing Alaska Stream (Fig. 2I, Stabeno et al., 2004), and
a warm bias of similar magnitude appears in the southwest
corner of the domain. These biases are seasonally persistent
during both Boreal winter (January—March, Fig. S1 in the
Supplement) and summer (July—September, Fig. S2), as are
the cold (Fig. Slc and f) and warm (Fig. S2c and f) coastal
surface biases, respectively. In all seasons and across depths
above 200 m, however, the overall absolute model bias is be-
low 0.38°C, the RMSE stays below 0.57 °C, and the cor-
relations with OISSTv2.1 and GLORYS12 stay above 0.98
(Figs. 2, S1, and S2).

Similar to temperature, NEP10k broadly reproduces an-
nual mean salinity fields found in regional climatologies and
GLORYS12, with the majority of the domain falling within
0.25 practical salinity units (PSU) of the reference datasets
(Fig. 3). Notable fresh surface biases exceeding 0.5 PSU oc-
cur along the coast in the Gulf of Alaska, eastern Bering
Sea, and northern CCS, coincident with regions of substan-
tial freshwater inputs from rivers and glacial melt (Fig. 3c
and 1). Positive salinity biases relative to GLORYS12 oc-
cur in the western Bering Sea at the surface and 100 m and
over all depths in the southwest region of the domain (Fig. 3,
right panels). In the latter case, the salty bias coincides with
warm biases (Fig. 2). Seasonally, similar generally modest
biases can be seen in the Boreal winter (Fig. S3) and summer
(Fig. S4 in the Supplement) equivalents.

Mixed layer depth in NEP10k, defined as the depth at
which density is 0.03kgm™ greater than at 5m depth, ex-
hibits a modest shallow/negative bias relative to the estimates
of de Boyer Montégut (2024), with deeper (positive) biases
occurring in the interior ocean near the Bering shelf break
(Fig. 4, top row). These biases are amplified and reduced dur-
ing Boreal winter (JFM, Fig. S5 in the Supplement, top row)
and summer (JAS, Fig. S6, top row), respectively, when mix-
ing drivers (i.e., surface heating/cooling, wind, and storm in-
tensity) are correspondingly modified. Conversely, NEP10k
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exhibits a positive mean bias when compared against GLO-
RYS12 MLD, which is particularly pronounced in the Bering
Sea (Fig. 4, bottom row) and exhibits a reverse seasonal re-
sponse (i.e., reduced positive bias in the winter and increased
in the summer; Figs. S5 and S6 in the Supplement, bottom
row). With the exception of the deep/positive winter biases
in the Bering Sea, the model represents MLD spatial vari-
ability fairly well, with significant (p < 0.001) correlations
exceeding 0.85 across all seasons and comparisons (Figs. 4,
S5, and S6).

SSH gradients in the NEP10k hindcast are broadly con-
sistent with GLORYS12 and CMEMS satellite altimetry
(Fig. 5), exhibiting the lowest values along the Aleutian is-
land chain, in the GOA, and in the western Bering Sea and
the highest values near 25° N along the western edge of the
domain. Similar to satellite measurement and GLORYS12,
NEP10k also exhibits relatively low SSH along the U.S. West
Coast (compared with offshore SSH values at the same lat-
itude), a signature of coastal upwelling. However, the SSH
gradients in NEP10k are smaller along the Aleutian island
chain than exhibited in the reference datasets. There is a no-
table correspondence of this SSH gradient bias with the Gulf
of Alaska subsurface temperature biases noted in Fig. 2, sug-
gesting a potential relationship between these two features.

Compared against the TPXO dataset, which was used as
the tidal boundary forcing conditions, NEP10k reproduces
tidal amplitude and phases in the domain interior with high fi-
delity (Fig. 6). The greatest tidal amplitude discrepancies oc-
cur in the nearshore regions of the eastern Bering Sea (Fig. 6¢
and f) and partially enclosed features (e.g., northern Gulf
of California and Cook inlet; Fig. 6¢). Amplitude biases for
the most prominent semidiurnal (M2) and diurnal (K1) con-
stituents in these nearshore and partially enclosed regions can
exceed 20 cm and 10 cm, respectively. These regions, how-
ever, also have the largest overall amplitudes, with values
exceeding 1 m and 50 cm, respectively. Such nearshore tidal
biases are not surprising given the relatively coarse 10km
resolution enlisted herein, and we note that skillful tidal sim-
ulations extend all the way to the coast in most regions. To in-
vestigate some of these biases further, we include additional
zoomed-in maps of the eastern Bering Sea and western Gulf
of Alaska in the Supplement (Fig. S12), along with compar-
ison against several tide gauges in that region. Both TPXO
and NEP10k perform well at most tide gauges. Generally,
TPXO better approximates tidal harmonic constituents than
NEP10k, with higher Pearson correlation coefficients and/or
lower RMSE (with the exception of the M2 phase). However,
in cases such as the gauge in Anchorage, AK, the bias in M2
amplitude for TPXO is comparable to the bias exhibited by
NEP10k. Because these biases have opposite signs, the dis-
crepancy between the two gridded products (i.e., NEP10k-
TPXO, shown in the maps in Figs. 6 and S12) exaggerates
the model bias by almost a factor of 2 relative to the bias
for the gauge. Thus, some of the more severe nearshore dif-
ferences in Fig. 6 may be a reflection of how NEP10k and
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Figure 2. Temperature comparisons. Annual mean surface and subsurface (100 m, 200 m) temperature compared against NOAA OISSTv2.1
and the GLORYS12 reanalysis. Values in the left two columns represent the average of the annual means covering 1993 through 2019. The
right column depicts the difference between NEP10k and the respective validation product, along with the area-weighted mean bias, root
mean squared error (RMSE), medium absolute error (MedAE), and Pearson correlation coefficient (R). The NEP10k model domain below

66° N is outlined in black. Panels a and d show the same model output.

TPXO approximate complex coastline geometry (bottom of
Fig. S13 in the Supplement) rather than an exact indication
of NEP10k performance.

3.1.2 Large-scale biogeochemical and ecosystem
properties

Macronutrient concentrations (nitrate and phosphate) exhibit
large-scale agreement with annual World Ocean Atlas nutri-
ents, but significant regional biases are also apparent (Figs. 7
and 8). The largest high bias occurs along the Aleutian is-
land chain and Bering Sea shelf break. In the simulation,
the region of elevated surface nutrients observed in the cen-
tral Bering Sea extends further south and east in the model.
These biases correspond with the most prominent region
of overmixing (Fig. 4). Positive surface nitrate and phos-
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phate biases in affected regions exceed 5pumolkg™!NOj3
and 0.25 umol kg ~! POy, respectively, and extend with lesser
severity onto the Bering shelf. The positive surface bias is
underlain by negative nitrate and phosphate biases at 200 m,
reinforcing the likelihood that the surface high macronutrient
bias is linked to excessive mixing rather than excessive nu-
trients in underlying source waters. Uncertainty in nitrogen
removal processes in shallow Bering shelf sediments (e.g.,
denitrification and burial) may also play a role in the per-
petuation of biases onto the shelf. Macronutrient concentra-
tions in Gulf of Alaska surface waters, in contrast, are biased
low by 1.5-3 umolkg™!'NO3 and 0-0.375umolkg™' POy,
respectively (Figs. 7c and 8c), despite exhibiting a combi-
nation of positive and negative biases at depth. These biases
are consistent with shallow mixed layer biases in the Gulf
of Alaska (Fig. 4). Finally, the California Current exhibits

Geosci. Model Dev., 18, 5245-5290, 2025
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Figure 3. Salinity comparisons. Annual mean surface and subsurface (100 m, 200 m) salinity compared against NCEI regional ocean cli-
matologies and the GLORYS12 reanalysis. The regional climatologies are a composite of the northeast Pacific (nep) and northern North
Pacific (nnp) climatologies. The nep climatology extends from 1995 to 2012, while the updated nnp climatology (Version 2) covers 1995—
2014. Where the two regional climatologies overlap in the GOA (i.e., above 50° N), we use the more recent nnp climatology. For comparison
against the model, we use the same years of NEP10k, with panels (a), (d), and (g) showing the model values for average annual mean salinities
for 1995-2014 above 50° N (as opposed to average annual mean salinities for 1995-2012 below 50° N). The comparison against GLORYS12
(bottom three rows) covers 1993-2019. Area-weighted bias, root mean squared error (RMSE), median absolute error (MedAE), and Pearson
correlation coefficient (R) are reported in the right column of figures, depicting the difference between NEP10k and the respective validation
product.
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Figure 4. Mixed layer depth comparisons. Climatological mean of mixed layer depth compared against de Boyer Montégut (a—c) and
GLORYS (d-f). Black reference contours in (a), (b), (d), and (f) are depicted at 5 m intervals and at 8 m intervals in (c¢) and (f); contours
depicting negative values in (c¢) and (f) are drawn with dashed lines. Area-weighted bias, root mean squared error (RMSE), median absolute
error (MedAE), and Pearson correlation coefficient (R) are reported in the right column of figures, depicting NEP10k-respective reference
products. All values represent the annual mean for years 1993 through 2019, and the extent of the NEP10k domain is outlined in black in all
figures. Panels a and d show the same model output.
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Figure 5. Sea surface height comparisons. NEP10k average-centered, climatological mean sea surface height comparison for NEP10k (a, d;
identical panels), GLORYS12 (b), CMEMS satellite altimetry (e), and their respective differences (c, f). All values represent the annual mean
(1993-2019). Area-weighted mean bias (Bias), root mean squared error (RMSE), median absolute error (MedAE), and Pearson correlation
coefficient (R) are reported in the right column of figures, depicting the difference between NEP10k and the comparison product; all correla-
tions are significant (p < 0.001). The reference height contours in all panels are drawn at 0.1 and 0.05 m intervals for the mean and difference
plots, respectively, with negative values shown as dashed lines. All panels show the extent of the NEP10k domain as a black outline.
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Figure 6. M2 and K1 tidal amplitudes and period. Comparison of tidal constituents M2 (top row) and K1 (bottom row) in NEP10k against

those in the TPXO9 forcing dataset. Filled contours depict the tidal

amplitude, while overlain colored contours depict the tidal phase for the

given constituent. Filled contours in the difference plot (¢, f) show the difference in amplitude only; bias, root mean squared error (RMSE),
median absolute error (MedAE), and Pearson correlation coefficient (R) are also reported in these panels. The extent of the NEP10k domain

is outlined in gray in all figures.

a modest positive surface macronutrient bias. Despite these
discrepancies, the simulation generally exhibits high correla-
tions with observed macronutrients (R > 0.96) and RMSEs
that are only ~ 5 % of the dynamic range of the macronu-
trient concentrations across the west coast ecosystems. This
skill extends to seasonal patterns with correlation values ex-
ceeding 0.8 and RMSE < 10 % of the dynamic range in all
cases (Figs. S9-S12 in the Supplement). Notably, winter and
summer nitrate conditions exhibit more pronounced bias pat-
terns relative to the mean state, with particularly high levels
in the Bering surface waters and low levels in portions of
the Gulf of Alaska (Figs. S9c and S10c). Conversely, sur-
face phosphate levels over the Bering shelf are biased low in
the winter and high in the summer (Figs. S11c and S12c).
Summer surface nitrate levels along the California Current
Ecosystem (CCE) (Fig. S10c) are potentially suggestive of
overrepresentation of summer upwelling.

While macronutrients play an important role in the biogeo-
chemistry and ecosystem dynamics of the NEP, iron has been
observed to be a limiting or co-limiting nutrient (Browning et
al., 2017; Browning and Moore, 2023). The simulated distri-
bution of surface iron exhibits a gradient from inshore highs
exceeding 1 nmolkg™" to offshore lows < 0.25nmolkg™!
(Fig. 9, left panel). This distribution of dissolved iron results
in large-scale patterns of phytoplankton iron limitation in the
NEP10k simulation (Fig. 9, right panel) that are consistent
with those observed (e.g., Moore et al., 2013; Hutchins et al.,
1998).

Geosci. Model Dev., 18, 5245-5290, 2025

Simulated surface chlorophyll is spatially well correlated
with satellite-based chlorophyll estimated from the OC-CCI
(Fig. 10), and simulated values are generally within a fac-
tor of 2 of those observed, which span 2 orders of magni-
tude (i.e., the RMSE of the logio-transformed data is less
than 0.3 in all seasons). The simulation, however, is gen-
erally biased high in the Gulf of Alaska and Bering Sea in
the boreal spring and summer, with biases exceeding a factor
of 2 along the Bering Sea shelf break and along the subpo-
lar/subtropical boundary in the Gulf of Alaska. The model
underestimates the OC-CCI-based chlorophyll concentration
during the fall and winter on the eastern Bering Sea shelf:
while NEP10k-COBALTv3 suggests lower chlorophyll con-
centrations during these cold and dark periods, OC-CCI es-
timates remain high in nearshore waters. Indeed, satellite-
based estimates suggest higher chlorophyll along the Bering
coast in fall and winter than in spring and summer. It is no-
table, however, that satellite-based chlorophyll estimates are
sporadic at high latitudes during these seasons, and OC-CCI
uses a chlorophyll estimation algorithm developed primarily
for “case 1”/oceanic water. Vigorously mixed, turbid waters
along the Bering shelf in winter undoubtedly depart consider-
ably from the algorithm’s high degree of water transparency
assumptions. In the CCE, the model is able to match the jux-
taposition of coastal chlorophyll highs and subtropical off-
shore lows estimated by OC-CCI during the spring and sum-
mer upwelling period. Elevated chlorophyll levels do extend
further offshore in the simulation than satellite estimates sug-
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Figure 7. Nitrate comparisons. Annual mean surface and subsurface (100 m, 200 m) nitrate compared against WOA23. Comparison time
frames cover 1993-2019. Reference contours are depicted in black at 5 and 1.5 pmol nitrate per kg sea water in the mean state (left and
center columns a, b, d, e, g, h) and difference (right column ¢, f, i) plots; contours representing negative values in the difference plot are
drawn as dashed lines. Bias, root mean squared error (RMSE), median absolute error (MedAE), and Pearson correlation coefficient (R) are
reported in the right column (¢, f, i) of figures, depicting the difference between NEP10k and WOAZ23. The extent of the NEP10k domain is

outlined in black in all figures.

gest. Values are also elevated near the domain boundary dur-
ing this period, likely due to some spurious boundary mixing.
Fall and winter conditions in the California Current exhibit a
moderate positive bias in offshore waters that generally falls
below a factor of 2.

Moving up the food web, simulated seasonal mesozoo-
plankton biomass concentrations (Fig. 11) exhibit similar
large-scale spatial and seasonal patterns as the COPEPOD
database (Moriarty and O’Brien, 2013). The patchiness of
the observations reduces correlations relative to the smoother
physical, nutrient, and satellite-based chlorophyll estimates
compared thus far (R > 0.30 for all seasons). However, peak
summer concentrations (~ 50 mng_3 ) consistent with ob-
served values are evident in the Bering Sea and inshore re-
gions of the Gulf of Alaska in both the model and observa-
tions. These highs contrast sharply with observed and mod-
eled values (~ 1-2mgCm™3) within the North Pacific sub-
tropical gyre. Intermediate values of ~ 10-20 are evident
in the California Current upwelling. Both the observed and
modeled values are highest during the peak summer up-
welling period, though the highest modeled values are some-
what lower, particularly in nearshore regions. This pattern

https://doi.org/10.5194/gmd-18-5245-2025

will be addressed further in the Discussion section. The off-
shore waters of the Gulf of Alaska and western Bering Sea
exhibit summer mesozooplankton biomass peaks of similar
magnitude as the California Current, with simulated values
again lower yet comparable to those observed.

Simulated oxygen concentrations in the top 200m in
the NEP10k are generally spatially consistent with WOA
(Fig. 12). Some biases, however, are apparent below the sur-
face. Most notably, the model has a low oxygen bias south
of the Aleutian Islands at 100 m (Fig. 12f). This bias coin-
cides with a warm water bias (Fig. 2) and is overlain by a
fresh/high stratification bias (Figs. 3 and 4). As noted above,
this is the region where the westward flowing Alaska Stream
and eastward flowing North Pacific Current interact, suggest-
ing that the biases may be linked to a suboptimal representa-
tion of these two currents. Moderately high oxygen biases
(i.e., greater than 25umolkg™') are apparent in the west-
ern Bering Sea, eastern Gulf of Alaska, and off of Baja at
200 m (Fig. 12i), but none are large enough to compromise
NEP10k’s large-scale fidelity to the observed oxygen distri-
bution in the top 200m (i.e., R values > 0.9 across depths
and seasons; Figs. 12, S14, and S15 in the Supplement).

Geosci. Model Dev., 18, 5245-5290, 2025
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Figure 8. Phosphate comparisons. Annual mean surface and subsurface (100 m, 200 m) phosphate compared against WOA23. Comparison
time frames cover 1993-2019. Reference contours are depicted in black at 0.25 pmol phosphate per kg sea water in the mean state (left and
center columns a, b, d, e, g, h) and difference (right column ¢, f, i) plots; contours representing negative values in the difference plot are
drawn as dashed lines. Bias, root mean squared error (RMSE), median absolute error (MedAE), and Pearson correlation coefficient (R) are
reported in the right column (¢, f, i) of figures, depicting the difference between NEP10k and WOAZ23. The extent of the NEP10k domain is
outlined in black in all figures.
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Figure 9. Surface dissolved iron and phytoplankton nutrient limitation. NEP10k simulated annual mean surface dissolved iron concentra-
tions (a) and climatological mean distribution of the nutrient most limiting to phytoplankton growth (b). In COBALT, the degree of limitation
by N, P, and Fe is expressed as a factor between 0 and 1 (Stock et al., 2020). Nutrient limitation is then calculated according to Liebig’s law
of the minimum. This most limiting nutrient is indicated in the figure below. We further differentiate areas where the N, P, or Fe limitation
term is less than 0.25 more limiting than another nutrient, which effectively indicates areas that are near co-limitation. Time frame covers
1993-2019. Note: Sparse P limitation occurs nearshore.
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Figure 10. Surface chlorophyll comparisons. Seasonal means of surface chlorophyll compared with OC-CCI satellite observations. The
3-month seasonal periods include January through March (JFM, a—c), April through June (AMJ, d—f), July through September (JAS, g-i),
and October through December (OND, j-I). Comparison time frames cover 1998-2019; all chlorophyll values were logjo-transformed prior
to temporal averaging. Bias, root mean squared error (RMSE), median absolute error (MedAE), and Pearson correlation coefficient (R)
are reported in the right column (c, f, i, 1) of figures, depicting the difference between NEP10k and OC-CCI. Black contours in the right
column (c, f, i, 1) indicate where the difference = 3log;y(2). The extent of the NEP10k domain is outlined in gray in all figures.

Deeper in the water column, NEP10k robustly simulates
the cross-ecosystem variation in the depth of the hypoxic
boundary (i.e., the depth at which the oxygen concentra-
tion drops below 61.7 pmol oxygen per kg sea water; see
Fig. 13). The hypoxic boundary is shallowest, approaching
100 m from the surface, along the southern domain boundary,
which lies along the periphery of the broader eastern equa-
torial Pacific hypoxic zone. The hypoxic boundary then de-
scends progressively to ~ 400 m in both the model and obser-
vations as one moves northward along the California Coast
into Canada, before shoaling again to ~ 150 m in the north-
ern Gulf of Alaska. While these overall patterns are consis-
tent, the biases discussed in Fig. 12 are echoed in the hypoxic
boundary layer depth. The boundary layer is deeper in the
western Bering Sea, eastern Gulf of Alaska, and Southern

https://doi.org/10.5194/gmd-18-5245-2025

CCS but biased shallow south of the Aleutian island Chain
and, to a lesser degree, in the northern-to-central CCS.
Finally, simulated carbon chemistry patterns (total alka-
linity, dissolved inorganic carbon (DIC), and aragonite satu-
ration state; Figs. 14-16) broadly capture observation-based
estimates reported in CODAP-NA. Low coastal surface al-
kalinity patterns consistent with low alkalinity river inputs
are apparent in the Gulf of Alaska and, to a lesser degree,
the eastern Bering Sea. Simulated alkalinity increases from
these lows toward maximal values in the North Pacific gyre
in a manner consistent with observations, though the simu-
lated values are biased high (Fig. 14a—c). The largest posi-
tive surface alkalinity biases occur in the western Bering Sea
and in the southwest corner of the domain. These surface al-
kalinity biases are aligned with positive salinity biases that

Geosci. Model Dev., 18, 5245-5290, 2025
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Figure 11. Seasonal zooplankton biomass. Seasonal mean mesozooplankton biomass concentrations for NEP10k on the model grid (top
row), the COPEPOD dataset (middle row), and NEP10k values remapped to the COPEPOD grid where there are corresponding data from
the COPEPOD dataset (bottom row). The bottom row also reports statistics using the logjy normalized data, specifically the area-weighted
mean bias (Bias, NEP10k — COPEPOD), the area-weighted root mean squared error (RMSE), the median absolute error (MedAE), and the
Pearson correlation coefficient (R); all correlation values are significant (p < 0.001). Maps are plotted with a gray background to increase

contrast with the patchy observation data.

penetrate to depth (Fig. 3). The largest subsurface bias, how-
ever, occurs at a depth of 100 m in the Gulf of Alaska near
the large freshwater outflows in the Gulf of Alaska. This bias
distribution suggests that the low alkalinity freshwater signal
in this region may be overly restricted to the surface in the
model, though there does not appear to be a strong positive
subsurface salinity model bias in this region (Fig. 3).

Dissolved inorganic carbon has a high bias that is consis-
tent with the high alkalinity bias (compare Figs. 14 and 15).
Like alkalinity, the largest positive biases occurred along
the Bering Sea shelf break and in the southwestern corner
of the domain where areas are overmixed (Fig. 4) and ex-
hibit salty biases (Fig. 3). The high surface DIC bias in the
northern Gulf of Alaska, however, is more pronounced than
the corresponding high surface alkalinity bias in this region
(i.e., Fig. 13c vs. Fig. 14c). The northern Gulf of Alaska is
strongly impacted by river and glacial outflows. While some
of these freshwater sources (e.g., the Copper and Susitna
rivers) have observational constraints on DIC and Alk, most
do not. Improved constraints may be needed to improve the
model fit in this region.

The more-pronounced high surface DIC bias in the north-
ern Gulf of Alaska yields aragonite saturation states that are
0.25-0.5 units lower than the CODAP-NA product (Fig. 16).
The overall gradient between low saturation states (higher
acidification vulnerability) in the surface waters of the Bering
Sea/Gulf of Alaska to high saturation states (lower acidifica-
tion vulnerability) in equatorial and subtropical surface wa-
ters in the southern parts of the domain, however, is well cap-

Geosci. Model Dev., 18, 5245-5290, 2025

tured (Fig. 15¢, R = 0.93). Saturation state biases are also
small in subsurface waters where subsaturated waters are
more prevalent (Fig. 16, middle and bottom panel) and where
valuable shell, crab, and demersal fisheries reside.

3.2 Region-specific evaluation

The evaluation of NEP10k against observed large-scale phys-
ical and biogeochemical patterns in Sect. 3.1 was gener-
ally favorable. In all cases, the model was able to cap-
ture the primary physical, biogeochemical, and plankton
contrasts across ecosystems within the broad NEP10k do-
main with often high but at least moderate fidelity. As de-
scribed in Sect. 1, however, the NEP10k configuration is
intended for marine resource applications both across and
within NEP10k subregions and across management-relevant
time horizons from seasons to multiple decades. The eval-
uation in Sect. 3.1 provides a foundation for such applica-
tions but is not sufficient. The evaluation in this section fo-
cuses on regional fisheries-critical metrics and their variation
across management-relevant seasonal to multidecadal time
horizons.

Perhaps the most ubiquitous indicators of ecosystem state
across all regions are ocean temperature (surface and bot-
tom) and surface chlorophyll. These indicators are highly
relevant to diverse aspects of ecosystem function, and long
time series of observation-informed estimates are available.
Modeled shelf (where depth < 500m) surface and bottom
temperature climatologies for the regions identified in Fig. 1
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Figure 12. Dissolved oxygen comparisons. Annual mean surface and subsurface (100 m, 200 m) dissolved oxygen compared against WOA23.
Comparison time frames cover 1993-2019. Reference contours are depicted in black at 25 pmol oxygen per kg sea water in the mean state
(left and center columns a, b, d, e, g, h) and difference (right column ¢, f, i) plots; contours representing negative values in the difference plot
are drawn as dashed lines. Bias, root mean squared error (RMSE), median absolute error (MedAE), and Pearson correlation coefficient (R)
are reported in the right column (c, f, i) of figures, depicting the difference between NEP10k and WOA23. The extent of the NEP10k domain
is outlined in black in all figures.
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Figure 13. Hypoxic boundary layer depth. Annual mean hypoxic boundary layer depth (i.e., depth at which the dissolved oxygen concentra-
tion drops below 61.7 pumol oxygen per kg sea water) compared against WOA23. Black reference contours indicate 150 m and 25 m intervals
in the mean state (a, b) and difference (c) plots; contours representing negative values in (c) are drawn as dashed lines. Area-weighted
mean bias (Bias), root mean squared error (RMSE), median absolute error (MedAE), and Pearson correlation coefficient (R) are reported in
panel (c). The extent of the NEP10k domain is outlined in black in all figures.

exhibit high correlation (Fig. 17, left column) with GLO-
RYS12, but surface temperatures tend to be biased warm
in more southerly regions. As initially illustrated in Figs. 2
and S2, mean and summer surface temperatures, respectively,
in the central and southern California Current System are 1—
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2 °C warmer than those observed, but biases in other regions
tend to be < 1°C.

The NEP10k and GLORYS12 monthly surface and bot-
tom temperature anomaly time series (Fig. 17, right column)
have correlations > 0.7 in nearly all regions, with values ex-
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Figure 14. Total alkalinity comparisons. Annual mean surface and subsurface (100 m, 200 m) total alkalinity compared against CODAP-NA.
Comparison time frames cover 2004-2018. Reference contours are depicted in black at 25 pmol alkalinity per kg sea water in the mean state
(left and center columns a, b, d, e, g, h) and difference (right column c, f, i) plots. Area-weighted mean bias (Bias), root mean squared error
(RMSE), median absolute error (MedAE), and Pearson correlation coefficient (R) are reported in the right column (¢, f, i) of the difference
plots. All correlation values are significant at p < 0.001. The extent of the NEP10k domain is outlined in black in all figures.

ceeding 0.9 in many. In the California Current, fluctuations in
both NEP10k and GLORYS12 show a strong correspondence
with the Nifio 3.4 index (shaded regions), with warm condi-
tions prevalent during warm ONI states and cold conditions
prevalent during cold ONI. The lowest NEP10k-GLORYS12
correlations (R = 0.82 for the surface and R = 0.64 for the
bottom) were found in the smallest, southernmost South-
ern California Current System (SCCS) region. The relatively
complex coastline and limited resolution of island chains in
this region (Fig. S2) may contribute to this decreased skill
relative to other regions, but the correlation for monthly
anomalies remains > 0.6 even in this most challenging of
systems. The SCCS bottom temperature similarly exhibits
the lowest KGE (0.724), attributable to both lower corre-
lation and variance relative to that seen in GLORYS. This
was similarly the case for the bottom temperature in British
Columbia (BC), which was the only other region with a KGE
below 0.8.

Matching satellite-derived chlorophyll climatologies and
time series (Fig. 18) proved more challenging than temper-
ature. The monthly chlorophyll climatologies had moderate
(R > 0.8 NCCS, CCCS) to high (R > 0.9, GOA, BC, SCCS)
consistency with OC-CCI-based estimates for all systems ex-

Geosci. Model Dev., 18, 5245-5290, 2025

cept the Bering Sea (Fig. 18, left column). In the Bering
Sea, NEP10k has a pronounced late-spring-to-summer peak
approaching 4 mgChlm~3, while OC-CCI estimates com-
parable intermediate concentrations of ~2mgChlm™> for
all months but January and December. Similar, though less
marked, discrepancies were found in the Gulf of Alaska. In
the California Current, chlorophyll concentrations in both
NEP10k and OC-CCI peak in the late spring and summer,
consistent with the timing of the upwelling season. NEP10k
estimates tend to drop more rapidly than OC-CCI estimates
in the fall, with the central CCS exhibiting a secondary fall
peak not found in NEP10k. Notably, the shelf chlorophyll
comparisons in Fig. 18, which focus on temporal chlorophyll
variability within a defined region, are not log transformed.
This amplifies the discrepancies at the higher end of the ob-
served range relative to those in the full domain, which focus
on the model’s ability to capture order-of-magnitude cross-
ecosystem differences (Fig. 10).

KGE for full chlorophyll time series are more moderate
than those achieved for temperature, though only the GOA
and the SCCS exhibit values below 0.6. For the GOA, this
value was attributable to both the relative bias and vari-
ance, while in the SCCS, lower correlation and relative vari-
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Figure 15. Dissolved inorganic carbon comparisons. Annual mean surface and subsurface (100 m, 200 m) concentration of dissolved inor-
ganic carbon compared against CODAP-NA. Comparison time frames cover 2004—2018. Reference contours are depicted in black at 50 and
25 umol carbon per kg sea water in the mean state (left and center columns a, b, d, e, g, h) and difference (right column c, f, i) plots; contours
representing negative values in the difference plots are drawn as dashed lines. Area-weighted mean bias (Bias), root mean squared error
(RMSE), median absolute error (MedAE), and Pearson correlation coefficient (R) are reported in the right column (c, f, i) of the difference
plots. All correlation values are significant at p < 0.001. The extent of the NEP10k domain is outlined in black in all figures.

ance were the primary contributors to a lower KGE. Re-
gional monthly anomaly time series for NEP10k chlorophyll
were generally weakly correlated with OC-CCI (Fig. 18,
right column), with most R values slightly below 0.4. While
these correlations are significant (p < 0.01), their modest
values temper expectations for actionable chlorophyll fore-
casts. A possible exception is found in the northern Cali-
fornia Current, where high correlation (R = 0.58) provides
some ground for optimism. Conversely, simulated and OC-
CCI chlorophyll anomalies in the Bering Sea were uncorre-
lated (R = —0.01). We emphasize that interpretation of both
NEP10k’s correspondence and misfits in Fig. 18 must be
moderated by uncertainties associated with the derivation of
satellite-based ocean color products in coastal waters.

3.2.1 Bering-Sea-specific indicators

As discussed in Sect. 1, the eastern Bering Sea has one of the
most prolific demersal/benthic fisheries in the world, and its
ecosystem dynamics are strongly shaped by fluctuating sea-
sonal sea ice. Compared to the trawl results, NEP10k trawl-
equivalent bottom temperature (Fig. 19) in the Bering Sea
tends to be biased slightly warm, particularly in the mid-shelf
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region that approximately corresponds with the area of maxi-
mum/minimum September ice edge extent reported by Wang
et al. (2014). The model exhibits a modest cold bias, in con-
trast, on the inner shelf of the southeastern Bering Sea. The
NEP10k model, however, robustly reproduces interannual
variability of the cold pool area (CPA) indices, with the best
performance at the higher temperature thresholds (Fig. 20).
The model does tend to underrepresent the CPA delineated
by the coldest threshold (water temperature < —1 °C; dark
blue in Fig. 20). This is emphasized by a particularly low
KGE (—0.111), which is due to a particularly low relative
bias and high relative variance. KGE for the < —1 °C thresh-
old is also low, similarly due to relative variance and bias.
However, the correlation remains high across thresholds, and
there is minimal bias at the higher thresholds (i.e., water tem-
perature < 1 or 2 °C; lighter blues in Fig. 20). Critically, the
simulation captures the very small CPAs in recent years that
have been linked to recent declines in the lucrative snow crab
fishery (Szuwalski et al., 2023).

The NEP10k simulation does overestimate the sea ice con-
centration, particularly in the northern Bering Sea (Fig. 21).
However, the contours for the 10 % and 50 % sea ice concen-

Geosci. Model Dev., 18, 5245-5290, 2025
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Figure 16. Aragonite saturation state comparisons. Annual mean surface and subsurface (100 m, 200 m) aragonite saturation state compared
against CODAP-NA. Comparison time frames cover 2004—-2018. Reference contours are depicted in black at 0.5 and 0.25 saturation state
units in the mean state (left and center columns a, b, d, e, g, h) and difference (right column c, f, i) plots; contours representing negative
values in the difference plots are drawn as dashed lines. Area-weighted mean bias (Bias), root mean squared error (RMSE), median absolute
error (MedAE), and Pearson correlation coefficient (R) are reported in the right column (c, f, i) of the difference plots. All correlation values
are significant at p < 0.001. The extent of the NEP10k domain is outlined in black in all figures.

trations correspond with observations fairly well from Jan-
uary through April, suggesting that the simulation generates
areasonable spring sea ice extent. NEP10k ice extent time se-
ries for the southeastern Bering Sea (Fig. S16 in the Supple-
ment) are highly correlated with the satellite product, though
NEP10k does overestimate the coverage area, which may be
consistent with the ~ 0.5 °C Bering Sea cold bias noted in
Fig. 2.

3.2.2 Gulf-of-Alaska-specific indicators

NEP10k successfully simulates the two leading localized
modes of SSH variability identified by Hauri et al. (2024)
that can predispose the Gulf of Alaska to extreme physical
and biogeochemical events (Fig. 22). The first two princi-
pal components (PCs) of the empirical orthogonal analysis of
monthly NEP10k SSH in the Gulf of Alaska have spatial pat-
terns that are consistent with the CMEMS SSH product, with
significantly correlated spatial loading patterns in both cases
(EOF1 R =4.2, EOF2 R = 0.95; Fig. 22, top panels). The
NEP10k-generated NGAO and GOADI time series are also
in good agreement with satellite altimetry observed over the
corresponding region and time frame, particularly at lower

Geosci. Model Dev., 18, 5245-5290, 2025

frequencies (Fig. 22, bottom panels). These two modes of
variability comprise 47 % and 34 % of the variance in the
model and observed SSH, respectively, suggesting that they
may be somewhat overprominent in the model relative to
other sources of SSH variability.

Composites of environmental conditions when the second
PC, the GOADI, is below or above 1 demonstrate the impact
of downwelling and relaxation of downwelling conditions,
respectively, on shelf habitat in the Gulf of Alaska (Fig. 23).
Relaxation of downwelling is associated with colder, lower-
oxygen and more-acidic shelf waters from the enhanced in-
trusion of deep water. Conversely, positive phases of the
GOADI exhibit significantly warmer bottom temperatures
and elevated levels of bottom dissolved oxygen and arago-
nite saturation state.

3.2.3 California-Current-specific indicators

Seasonal upwelling plays an important role in CCS ecosys-
tem dynamics, having bottom-up driving effects on pri-
mary productivity in this eastern boundary upwelling sys-
tem (Sect. 1, Jacox et al., 2016). Summer upwelling con-
ditions are evident in the map of vertical velocity (Fig. 24)

https://doi.org/10.5194/gmd-18-5245-2025
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Figure 17. Surface and bottom temperature comparisons for shelf (0-500 m) regions. Regional shelf (depth < 500 m) surface and bottom
temperature climatologies (left column) and anomaly time series (right column) for the subregions delineated in Fig. 1. Comparison of
temperature climatologies (left panels) and monthly anomalies (right panels) for surface (orange) and bottom (purple) temperatures for
NEP10k (bold) and GLORYS12 (pale). Axes for surface and bottom temperature anomalies are separate and offset for improved readability.
Pearson correlation coefficients are reported for surface (Rstc, RsTa) and bottom (Rgtc, RpTa) climatology and anomaly comparisons,
respectively. Background shading in the monthly anomaly time series plots indicates the oceanic Nifio index produced by the NOAA Climate

Prediction Center for context.

with, on average, a predominantly positive/upward signal
across the approximate mixed layer depth (30 m) from March
through August, similar to that reported in Jacox et al.
(2018). Monthly climatologies of NEP10k simulated verti-
cal transport across 30 m demonstrate high correlation with
the Jacox et al. (2018) CUTI metric, with R values above
0.92 at representative latitudes (Fig. 24). Correlations be-
tween the Jacox et al. (2018) monthly CUTI anomaly time
series and corresponding NEP10k vertical transport are also
significant, but the relationship is strongest at more northern
latitudes (R = 0.76 at 45° N) and drops off at more southerly

https://doi.org/10.5194/gmd-18-5245-2025

latitudes (R = 0.30 at 35° N). The 33N bin also exhibits the
lowest KGE (0.248) for the full CUTI time series compar-
ison, due to both a relatively low Pearson correlation coef-
ficient and a fairly high relative variance. It is important to
note, however, that the NEP10k and the ROMS model in Ja-
cox et al. (2018) are forced by different atmospheric reanal-
ysis products; thus, it may not be surprising that they differ
in high-frequency variability. Additionally, the differences in
methodologies such as approximating using a constant ref-
erence depth of 30 m for NEP10k could contribute to depar-
tures.

Geosci. Model Dev., 18, 5245-5290, 2025
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Figure 18. Regional chlorophyll time series comparisons. Regional shelf (< 500 m) surface chlorophyll monthly climatologies (left column)
and anomaly time series (right column) for the satellite-derived OC-CCI product (orange) and NEP10k (green). Pearson correlation coeffi-
cients are reported for both climatologies and anomalies; background shading in the monthly anomaly time series plots indicates the oceanic
Nifio index produced by the NOAA Climate Prediction Center for context.

AFSC Bottom Trawl

NEP10k NEP10k - Trawl Comparisons

Figure 19. Bering Sea cold pool extent. Comparison with AFSC Bering Sea summer trawl. Marker size is scaled by the number of annual
data points that comprise the mean. The color map in a and b emphasizes the 2 °C transition point for consistency with the threshold value for
identifying the cold pool. The black outline delineates the southeastern Bering Sea; trawl data collected from this region are used to calculate
the Bering Sea summer cold pool extent and index.
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Figure 20. Southeastern Bering Sea cold pool area index. Comparison of the cold pool index time series derived from the AFSC bottom
trawl survey data (a) and the spatially and temporally consistent NEP10k bottom temperature output (b) following the methods described in
Rohan et al. (2022) and the AFSC cold pool software repository. The plots report the fraction of the total survey of the southeastern Bering
Sea trawl area (outlined in the figure above) that exhibits bottom temperatures under the specified thermal thresholds. We report Spearman
correlation values between NEP10k and trawl indices in the bottom panel (b).

NEP10k trends in dissolved oxygen reproduce offshore
CalCOFI trends (Fig. 25), with strongest declines occurring
at around 300 m and becoming less pronounced with depth.
In the California Bight, however, NEP10k exhibits positive
trends (most pronounced at a depth of 100 m) where the
CalCOFI time series exhibit declining trends in dissolved
oxygen levels. Many of the stations exhibiting discrepancies
in the NEP10k are not statistically significant (p < 0.05),
and it should be noted that some of the time series are
quite variable, with linear trends being sensitive to the time
frame analyzed. Indeed, direct point-to-point comparisons
against the CalCOFI bottle sample dataset (Figs. S26-S29
in the Supplement) demonstrate that, while NEP10k broadly
reproduces temperature and salinity (Fig. S26, r > 0.89)
and biogeochemistry (e.g., Fig. S27, r > 0.96) conditions
in the southern California Current System, the model was
more challenged to represent the temporal variation observed
across decades for individual sampling sites and depth strata
(Fig. S28). Agreement was best at the surface and for tem-
perature but generally decreased with depth. Skill improved
when values averaged across the CalCOFI sampling grid
were considered (Fig. S29).

3.3 Computational performance and scalability

As described in Sect. 1, the goal of the NEP10k config-
uration is to provide a simulation capable of skillfully re-
solving fisheries-critical features with manageable compu-
tational cost to allow for ensemble predictions and pro-
jections. Our baseline simulation averaged just over 5.3h

https://doi.org/10.5194/gmd-18-5245-2025

of wall clock time per hindcast year while distributing the
342 x 816 grid (cross-shore x along-shore) across a 32 x 80
decomposition (Fig. 26, green circle) and using a 400 s baro-
clinic time step and a 1200 s thermodynamic and tracer time
step. After land masking, the run used 2036 PEs, yielding
roughly 10800 PE hours per simulation year on the c5 par-
tition of NOAA’s GAEA supercomputer. The 27-year hind-
cast produced herein thus requires ~ 292 000 PE hours, while
1200 years of retrospective seasonal forecasts (e.g., Ross et
al., 2024) would require approximately 13 million PE hours.

The NEP10k computational cost is comparable to the re-
cently published Northwest Atlantic regional MOMG6 config-
uration (NWA12) of Ross et al. (2023), which used a 40 x 40
layout (1200 PEs after land masking) to generate 1 simula-
tion year in about 9 h (about 10 800 PE hours per simulation
year). While NWA12 was a larger domain, NEP10k required
smaller baroclinic and thermodynamic time steps for stabil-
ity (400 versus 600s and 1200 versus 1800 s, respectively).
The instability at longer time steps in the NEP10k configura-
tion primarily occurred in the vicinity of the Aleutian island
chain, where strong currents could be generated within tight
channels.

Geosci. Model Dev., 18, 5245-5290, 2025
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Figure 21. Bering seasonal sea ice concentration and spatial extent. Comparison of spatial patterns in the Bering Sea monthly mean NEP10k
sea ice concentration against NASA satellite estimates (Cavalieri et al., 1996). Black contours indicate the positions of the 10 % and 50 %

sea ice concentrations.

Computational scaling tests showed that increases in
throughput were achievable, but returns fell considerably be-
low the ideal 1 : 1 scaling between the processor count and
the wall clock time (Fig. 26). An approximate doubling of
PEs from 2038 to nearly 4000, for example, only decreased
the wall clock time for a simulation year from ~ 5.3 to
~ 4.2 h (compare the green circle and the purple diamond in
Fig. 26). The decreased scaling is not unexpected, as higher
processor counts decompose the model grid into increasingly
granular tiles, taxing communication across PEs. This ef-
fect can also be seen when comparing the performance of
the 32 x 80 baseline setting, which maximizes the number

Geosci. Model Dev., 18, 5245-5290, 2025

of interior to exterior cells on a PE by decomposing the
342 x 816 grid into squares, versus the approximately 10 %
slower 50 x 50 decomposition that relies on rectangular el-
ements. Scaling from the base configuration to lower pro-
cessor counts, in contrast, is relatively strong, supporting the
viability of running simulations on smaller supercomputing
systems.

Consistent with the findings of Ross et al. (2023), we
found considerable computational benefit from leveraging
MOMG6’s capacity to have a longer thermodynamic and tracer
time step than the baroclinic time step (closed versus open
symbols in Fig. 26). Throughput was nearly doubled when

https://doi.org/10.5194/gmd-18-5245-2025
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Figure 22. GOA SSH EOFs and principal component time series. Spatial maps of the first (top row) and second (middle row) EOFs for
satellite (left) and NEP10k (right) SSH variability. These are complemented with time series comparisons (monthly, left; 6-year running
mean, right) for the first two principal components (NGAO, top row; GOADI, bottom row) from the empirical orthogonal function analyses
of Gulf of Alaska sea surface height for NEP10k (orange) and the CMEMS satellite product (navy). R values indicate the Pearson correlation
coefficient calculated between NEP10k and the satellite product, all of which are significant at p < 0.001. X axis labels indicate 1 January
of the specified year.
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Figure 23. GOADI composites. Composites of important ecolog-
ical conditions during the positive (GOADI > 1; 44 months out of
324) and the negative (GOADI < —1; 45 months out of 324) phases
of the Gulf of Alaska Downwelling Index (GOADI). Grid cells are
colored where the composite differs significantly from O (student
t-test, p < 0.05).

the thermodynamics and tracer time step was 3 times longer
than the baroclinic time step.

4 Discussion

There were three primary design criteria for the NEP10k
model. The first was that a coastwide configuration was
needed to address coastwide challenges arising from cli-
mate change, such as shifting fisheries distributions across
state and international boundaries. The second was that the
model must resolve and accurately reproduce enough of
the physical and biogeochemical drivers of ocean change
in and across the disparate ecosystems within the domain
to support ecosystem and fisheries applications. The third
was that the model must be suited, both computationally and
in terms of model skill, for ensemble predictions and pro-
jections. The comprehensive model evaluation herein sug-
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gests that the NEP10k configuration meets these design cri-
teria sufficiently to provide a basis for initial applications
and a robust foundation for further model improvement. The
comparison against large-scale physical and biogeochem-
ical patterns in Sect. 3.1 showed that a single physical—-
biogeochemical modeling framework could robustly capture
the primary physical and biogeochemical contrasts between
the EBS, GOA, and CCE (Figs. 2-5, 7-8, 12-15). Simula-
tion fidelity extended to seasonal patterns in most quantities
(Figs. 17 and 18, Figs. S1-S15) and robust matches to in-
terannual variations for many, even within limited regions
of the domain (Figs. 16, 19, 21, 24, and 25). While biases
were present, and at times prominent, the skill achieved sup-
ports NEP10k’s current utility. This discussion will focus on
model characteristics contributing to successes and on fur-
ther model developments that may ameliorate current limita-
tions.

A central challenge for NEP10k was the representation
of physical and biogeochemical processes governing a large
range of ecosystems, from subtropical to polar and olig-
otrophic to eutrophic. Success in this regard requires model
formulations and parameterizations that are robust across
regimes. For ocean physics, one advance that led to notable
improvement was the replacement of the submesoscale re-
stratification parameterization of Fox-Kemper et al. (2011)
with that of Bodner et al. (2023). The Fox-Kemper parame-
terization requires a single choice for the submesoscale front
length, while Bodner diagnoses the front length from the
ocean state, revealing considerable variability with season
and latitude. Smaller front lengths at high latitudes proved
critical to limiting deep mixing biases in the western Bering
Sea, while longer front lengths further south were critical in
limiting shallow mixed layer biases in the Gulf of Alaska and
California Current (Fig. 4). Though the more dynamic Bod-
ner scheme did not eliminate MLD biases, we did find that
it improved them considerably relative to the Fox-Kemper
et al. (2011) parameterization, where a single characteristic
submesoscale frontal length scale forced one to exacerbate
one bias or the other (Fig. S18 in the Supplement).

For biogeochemistry, starting with a model designed for
global applications provided a sound starting point for
achieving cross-system skill. Evaluation of the shelf-scale fi-
delity of global models, however, is generally limited by their
often coarse resolution (e.g., Stock et al., 2014, 2020). A key
addition to extend skill in NEP10k to coastal regions was an
additional phytoplankton size class, which allowed the model
to better resolve the coastal diatoms responsible for high
chlorophyll concentrations along the coast. This expanded
formulation was initially developed by Van Oostende et al.
(2018) for use in the California Current, where it was shown
to improve the resolution of both very high coastal chloro-
phyll concentrations and the biogeochemical signals that can
be associated with them (e.g., coastal hypoxia). These ben-
efits can be seen in the generally high coastal (relative to
open ocean) chlorophyll levels along the U.S. West Coast

https://doi.org/10.5194/gmd-18-5245-2025
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Figure 24. CCS upwelling indices. Spring/summer (March—August) vertical velocity (map) at a depth of 30 m. Bins of 1° are indicated by
the black outline and used for integrating vertical transport. This (blue line) is compared against the Jacox et al. (2018) ROMS CUTI metric
(orange line) at several latitudes, decomposing the time series into monthly climatology (left) and anomalies (right). Pearson correlations (R)
are reported in the upper-right corner of each time series panel; all correlations are significant (p < 0.001).

(Fig. 10) and the robust depiction of the hypoxic bound-
ary layer depth (Fig. 13). The most glaring chlorophyll bias
is the model’s tendency to underestimate winter/fall OC-
CClI-estimated chlorophyll in the nearshore EBS (Fig. 10),
which degrades the seasonal chlorophyll fidelity for this re-
gion (Fig. 18). Satellite-based estimates in shallow regions
of the EBS actually peak during these months despite cold,
dark, and vigorously mixed conditions, suggesting potential
contamination of chlorophyll estimates in turbid coastal wa-
ters (Dierssen, 2010; Schofield et al., 2013). A recent study in
the Arctic, for example, suggests that global satellite chloro-
phyll algorithms may overestimate chlorophyll by over a fac-
tor of 2 (Li et al., 2024).

Other chlorophyll and plankton misfits require additional
scrutiny. The tendency to overestimate offshore spring and
summer chlorophyll along the margin separating the Gulf of
Alaska and the California Current, for example, may reflect
biases in dust delivery, dust solubility, or iron scavenging in
this iron-limited region. The relatively persistent and strong
iron limitation in the offshore waters of the California Cur-
rent in NEP10k, however, may already exceed the “mosaic”
of alternating N and Fe limitation suggested by some prior
studies (Messié and Chavez, 2015; Moore et al., 2013; Till et
al., 2019). A spatially indiscriminate iron tuning is thus un-
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likely to resolve these biases. They may also arise, however,
from misrepresented grazing controls. NEP10k’s skill in sim-
ulating mesozooplankton biomass is limited to capturing
first-order cross-ecosystem and seasonal biomass contrasts
(Fig. 11), with the patchiness in mesozooplankton biomass
in net tow data being underrepresented. There are also some
systematic biases, such as the tendency for mesozooplank-
ton populations to be displaced offshore and biased low rel-
ative to observations during the summer upwelling season
in the California Current. Previous work (e.g., Batchelder et
al., 2002) has suggested that zooplankton may enlist diur-
nal vertical migration to avoid being swept offshore, alter-
nating between surface feeding in offshore currents at night
and predator avoidance in inshore flowing currents during the
day. Such behavior is not included in NEP10k but could in-
crease mesozooplankton biomass and shift the distribution
inshore.

Capturing mean spatial and seasonal patterns is a critical
starting point for any model intended for ecosystem/fisheries
science and management applications. Many applications,
however, require the capacity to anticipate change across sea-
sonal to multidecadal management time horizons (Tommasi
et al., 2017). The robust representation of surface and bot-
tom temperature variability (Fig. 16) provides a promising

Geosci. Model Dev., 18, 5245-5290, 2025
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Figure 25. CCS trends in dissolved oxygen at CalCOFI stations.
Linear trends in subsurface dissolved oxygen (O,) at CalCOFI sta-
tions for NEP10k (left) and the CalCOFI dataset (right) calculated
over the time frame of the NEP10k hindcast (1993-2019). Black
markers indicate where station trends are significant (p < 0.05), fol-
lowing Bograd et al. (2008).
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start in this regard. Temperature anomalies are a first-order
indicator of ecosystem conditions and a primary determi-
nant of habitat viability (e.g., Deutsch et al., 2015), and tem-
perature extremes are a primary source of ecosystem stress
in a changing climate (e.g., Frolicher et al., 2018). The ro-
bust representation of surface and bottom water anomalies at
a regional scale and for shallower waters (< 500 m), com-
bined with the growing capacity of global prediction systems
to anticipate fluctuations in large-scale climate drivers (e.g.,
ENSO), supports the potential viability of predictive appli-
cations. Retrospective forecast experiments are underway to
assess this. NEP10k was less successful, however, in captur-
ing coastal chlorophyll anomalies (Fig. 17). The correlation
with monthly chlorophyll anomalies was only marginally
significant in most systems, approaching useful levels (i.e.,
R ~ 0.6) in the NCCS. This weaker correlation was not nec-
essarily surprising, given the volatile and patchy nature of
coastal chlorophyll and observing challenges in such envi-
ronments, but points to the need for further scrutiny of both
the model and observations before predictive chlorophyll ap-
plications can be realized in most systems.

Possibly the most critical metrics for ecosystems and fish-
eries applications considered herein were the region-specific
quantities considered in Figs. 18-25. These were drawn from
existing management-linked documents, such as the “State
of the Ecosystem” reports created by NOAA’s National Ma-
rine Fisheries Service to strategically inform management
decisions. Evaluations against the admittedly limited set of
region-specific fisheries metrics herein was generally posi-
tive. Perhaps the most striking of these successes is the fi-
delity with which NEP10k reproduces the Bering Sea cold
pool relative to over 2 decades of Alaska Fisheries Science
Center bottom trawl data (Figs. 19 and 20). The model’s rep-
resentation of these metrics was improved during the course
of development when an excess of shear-driven mixing on
the Bering shelf was identified and addressed with an ad-
justment of Jackson et al. (2008) shear mixing parameteri-
zation. The addition of a simple scaling factor for the ge-
ometric limitation imposed by this formulation was found
to be the most effective way to pragmatically calibrate the
shear-driven mixing to better produce observed values for
both mixing and bottom temperature. A more comprehensive
analysis of this parameterization and its impact on Bering
Sea dynamics is currently underway (Seelanki et al., 2025)
and will inform regional MOM®6 shear mixing parameteriza-
tion for mixed turbulence regimes.

While NEP10k’s overall representation of variations in the
Bering Sea cold pool extent was excellent, the model did
underestimate the summer extent of the coldest bottom wa-
ter (< —1 °C; darkest blue in Fig. 19). This seemingly con-
flicts with NEP10k’s overrepresentation of seasonal sea ice
extent (Figs. 20 and S16) because greater sea ice extent and
coverage tend to be associated with a more extensive cold
pool (e.g., Wyllie-Echeverria and Wooster, 1998). The model
does achieve substantial winter levels of cold bottom water

https://doi.org/10.5194/gmd-18-5245-2025



E. J. Drenkard et al.: NEP10k documentation and evaluation

Total time to run 1

5275

year of simulation

11
10 4
9 >
% 8 O
ey
o
£ 71
g B 40x40
S 50x50
T 61 @ 32x80
= p 50x75
¢ 50x100 °
[> 50x75 DT_THERM=400
3 { 50x100 DT_THERM=400
— 1x (ideal)
1.25x >
1.50x ¢
4 T T T T T
1000 1500 2000 2500 3000 3500 4000

Number of PEs (after land masking)

Figure 26. Computational scalability efficiency. Amount of computer wall clock time used for completing 1 year of NEP10k simulation with
a given number and configuration of processing elements (PEs). Markers indicate a given simulation’s PE decomposition for diving in the
horizontal model domain prior to omitting PEs that do not contain any ocean grid cells. The diagonal lines indicate constant computational
cost (processes x time) relative to the 40 x 40 (blue square) reference simulation. The two hollow markers represent simulations wherein the

thermodynamics time step was set to a dynamics time step (i.e., reduced

(Fig. S19 in the Supplement), but they erode more quickly
than observed in May and June, just prior to the trawl sea-
son. This decline in bottom coverage by the coldest water
mass category coincides with a dramatic monthly reduction
in NEP10k’s SEBS sea ice extent relative to satellite esti-
mates (Fig. S20 in the Supplement, May—April and June—
May). The drivers of this bias will be explored. We empha-
size, however, that simulated Bering Sea ice variations in
NEP10k are highly correlated with observations (Fig. S16),
suggesting the potential for predictive applications despite
the mean sea ice bias.

NEP10k reproduction of localized modes of low-
frequency climate variability in the Gulf of Alaska (NGAO
and GOADI, correlation with satellite-derived PCs > 0.65,
Fig. 22) holds promise for potential for multiyear to decadal
fisheries applications in the GOA. These modes of variability
map onto important ecosystem drivers such as bottom tem-
perature and aragonite saturation state (Figs. 22 and S17 in
the Supplement) and can contribute to extreme compound
events that can have severe consequences for marine ecosys-
tems (Hauri et al., 2024). Understanding of the relationships
between SSH variability and shelf ecosystem conditions will
be aided by the growing availability of physical and biogeo-
chemical observations of GOA bottom conditions. Increasing
the horizontal resolution of the NEP10k configuration may

https://doi.org/10.5194/gmd-18-5245-2025
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further improve representations of important regional GOA
ecosystem features. For example, sea surface heights south
of the Aleutian island chain, central to the Alaska Gyre, are
lower than observed in reference datasets (Fig. 5) and could
improve with better resolution of opposing horizontal flows,
specifically the southwestward Alaska stream and eastward
Subarctic or Aleutian Current. Higher resolution may also
improve the representation of transports through the Aleu-
tian island chain, which can significantly impact water mass
properties in the Bering Sea (Stabeno et al., 1999).

Finally, in the California Current System, our regional as-
sessment focused on ecosystem-critical seasonal upwelling
and source water trends. NEP10k’s climatological vertical
transport at 30 m along the continental U.S. West Coast
is highly correlated (i.e., R values > 0.93, Fig. 24) with
the CUTI metric published by Jacox et al. (2018). Simi-
larly, reproduction of multidecadal trends in dissolved O,
(Fig. 25) observed in the CalCOFI record was an important
benchmark, indicative of the model’s ability to capture pro-
cesses driving ecologically consequential deoxygenation in
the southern CCE (Bograd et al., 2008). While these find-
ings further support the suitability of the current NEP10k
configuration for ecological applications, continued model
development will seek to understand and improve localized
performance. For example, warm/cold-biased climatologi-

Geosci. Model Dev., 18, 5245-5290, 2025
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cal surface/bottom temperatures in both CCCS and SCCS
(Fig. 17), underrepresentation of climatological upwelling
and low correlation in upwelling monthly anomalies (33N
in Fig. 24), and underrepresentation of deoxygenation trends
in the Southern California Bight (200 m and 300 m depths in
Fig. 25) suggest that we may not be adequately representing
the physical processes that influence these conditions due to
excessive stratification in the southern CCE. Given the com-
plex bathymetry and circulation that impact these processes
in the Southern California Bight (e.g., Hickey, 1992), this
is another instance where increased spatial resolution may
improve model performance. Indeed, at a 10km resolution,
the SCCS shelf (where depth < 500m) extends as little as
a single grid cell (or less) offshore. However, while higher-
resolution (i.e., ~ 5 km) simulations are currently underway,
any benefits of doubling the horizontal resolution will need
to be balanced against the roughly 8-fold increase in com-
putational cost (i.e., 2-fold for each horizontal dimension
and an additional 2-fold increase for the need to shorten the
time step needed to maintain Courant—Friedrichs-Lewy sta-
bility). For applications wherein many-fold higher resolution
is necessary, it may be more practical to utilize a smaller,
higher-resolution nested domain (e.g., modeling the Salish
Sea in Khangaonkar et al., 2018) that can be forced by the
NEP10k at the open boundaries, rather than increasing the
resolution for the full NEP10k domain. Continued NEP10k
development will incorporate comparison against a broader
array of local observation datasets similar to that of Cal-
COFI. Such extensive observation records are invaluable for
better understanding and evaluating model performance, par-
ticularly in regions that may not be well represented in rela-
tively coarse, gridded data products. However, it is important
to approach such comparisons with realistic expectations. As
shown in Fig. S28, NEP10k poorly reproduces temporal vari-
ability (i.e., low Pearson correlation coefficients) of repeated
samplings of individual stations across multiple years. This
is not surprising because the NEP10k hindcast does not as-
similate observations, and thus any biases in the mean loca-
tions of fronts and other features are compounded by stochas-
tic mesoscale and submesoscale features whose precise lo-
cations and timing will not match those observed. Indeed,
more coherent patterns emerge after averaging over such fea-
tures (e.g., Figs. S29, 17, and 20), which demonstrates that
NEP10k’s strength and utility are in representing reason-
able approximations of ecologically important environmental
conditions rather than an exact reproduction of in situ obser-
vations.
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5 Conclusions

The results presented herein demonstrate that NEP10k is “fit
for purpose” — in terms of both model skill and computation
cost — for numerous living marine resource management ap-
plications across multiple time horizons. The model also es-
tablishes a basis for community evaluation to assess against
a much broader set of fisheries and ecosystem metrics and a
basis for co-development with fisheries scientists and man-
agers to address identified limitations and maximize model
utility. As part of NOAA’s Changing Ecosystems and Fish-
eries Initiative, the community contributing to this effort has
grown tremendously, facilitated by the open development of
MOMS6, COBALT, and preprocessing and analytical scripts
made available via the CEFI GitHub. With increasing input
from collaborators and co-development with end users, on-
going model development will prioritize NEP10k represen-
tation of key ecosystem indicators to maximize the utility of
climate change projections and forecasts for living marine
resource management.
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Appendix A

Table A1l. Notable parameters, their current names, and the associated values used in the physical ocean (MOM6) component of the model
and relevant references. BGC denotes biogeochemistry; SAL denotes self-attraction and loading. Bold text indicates where parameter choices
differ from Ross et al. (2023). Comprehensive documentation of physical MOMG6 parameters can be found in MOM_parameter_doc.all
(Drenkard et al., 2024a).

Parameter
(as it appears in MOM_parameter_doc.all)

Value
(as it appears in MOM_parameter_doc.all if it differs)

Reference

Vertical coordinate
(REGRIDDING_COORDINATE_MODE,
ALE_COORDINATE_CONFIG)

75-layer zx
(Z*, FILE:vgrid_75_2m.nc,dz)

Adcroft et al. (2019)

Baroclinic time step 400s
(DT)
Thermodynamics and BGC time step 1200s

(DT_THERM)

Planetary boundary layer parameterization
(EPBL_MSTAR_SCHEME,
EPBL_VEL_SCALE_SCHEME)

Energetics-based planetary boundary layer (ePBL)
(REICHL_H18, REICHL_H18)

Reichl and Hallberg (2018)

Mixed-layer restratification
(USE_BODNER23)

Bodner et al. (2023) formulation
(TRUE)

Bodner et al. (2023)

Biharmonic viscosity

Maximum of Smagorinsky and resolution-dependent
viscosities

Griffies and Hallberg (2000)

(SMAGORINSKY_AH) (TRUE)

Smagorinsky coefficient (SMAG_BI_CONST) 0.015

Resolution-dependent (AH_VEL_SCALE) 0.01 A3 m*s~1 (0.01) Adcroft et al. (2019)
Bottom boundary layer mixing efficiency 0.0

(BBL_EFFIC)

Background kinematic viscosity
(KV) * NOTE: this term is additive to the viscosity
calculated internally

1.0x 1070 m?s~!
0.0)

Background diapycnal diffusivity
(KD)

1.0x 1070 m2s~1

Boundary conditions (example for open boundary 001)
Sea level and barotropic velocity
(OBC_SEGMENT_001)

Baroclinic velocity

Flather scheme

(FLATHER,ORLANSKILNUDGED,
ORLANSKI_TAN,NUDGED_TAN)

Radiation and nudging scheme (3 d inflow, 360 d outflow
timescales)

Flather (1976)

Marchesiello et al. (2001),
Orlanski (1976)

(OBC_SEGMENT_001_VELOCITY_NUDGING_ (3.0, 360.0)
TIMESCALES)
Tracers Reservoirs with 9000 m length scales
(OBC_TRACER_RESERVOIR_LENGTH_SCALE_OUT)  (9000.0)
(OBC_TRACER_RESERVOIR_LENGTH_SCALE_IN) (9000.0)
Tidal SAL coefficient 0.01 Irazoqui Apecechea et al.

(SAL_SCALAR_VALUE)

(2017), Stepanov and
Hughes (2004)

Opacity scheme
(OPACITY_SCHEME, PEN_SW_NBANDS)

Three-band with chlorophyll
(MANIZZA_05, 3)

Manizza et al. (2005)
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Table A2. Ocean diagnostics used for evaluating the NEP10k hindcast.

Diagnostic NEP10k variable Sampling Reference dataset Comparison
(Fig. #) (original units) time frame
Time Depth Name Variable Horizontal if blank:
reference (original units) resolution 1993-01-01 to
2019-12-31
Temperature thetao (°C) Annual and seasonal Surface OISSTv2.1 sst 1/4°
(Fig. 2) mean climatology Huang et al., 2021 °O)
Surface, 100m, 200m  GLORYS12 thetao 1/12°
Lellouche et al., 2021 O
Salinity SO Annual and seasonal Surface, 100m, 200m  NCEI nnp and nepP S_an 1/10° 1995-01-01 to
(Fig. 3) mean climatology Regional climatologies 2014-12-31 (nnp)
Seidov et al., 2023, 2017 2012-12-31 (nep)
GLORYS12 SO 1/12°
Lellouche et al., 2021
Mixed layer depth MLD_003 Annual and seasonal - de Boyer Montégut, 2024 mld_dr003 1°
(Fig. 4) (m) mean climatology (m)
GLORYS12 thetao (°C), 1/12°
Lellouche et al., 2021 so, deptho (m)
Mean sea level ssh Annual and seasonal Surface GLORYS12 Z0S 1/12°
(Fig. 5) (m) mean climatology Lellouche et al., 2021 (m)
Gridded satellite altimetry adt 1/4°
CMEMS, 2023 (m)
GOA EOF & PCA Monthly means
(Fig. 22)
Tidal amplitude and phase ssh Hourly means Surface TPX0O9 ha (m), 1/6° 1993-02-01 to
(Fig. 6) (m) Egbert and Erofeeva, 2002 hp (° GMT) 1993-02-28
Inorganic nutrients no3, po4 Annual and seasonal Surface, 100m, 200m  WOA23 n_an, p_an 1°
(Figs. 7 and 8) (mol xml_v mean climatology Garcia et al., 2023a (umol wml_v
Surface chlorophyll chlos Seasonal mean Surface OC-CCI v6.0 chlor_a 4km 1998-01-01 to
(Fig. 10) (kg m~3) climatologies Sathyendranath et al., 2023 (mg m3) 2019-12-31
Regional surface chlorophyll Monthly mean
variability climatology and
(Fig. 18) anomalies
Zooplankton biomass mesozoo_200 Seasonal mean 0-200 m integrated COPEPOD cmass Site
(Fig. 11) ABO_E\N O) climatologies Moriarty and O’Brien, 2013 (mgC m3 ) locations
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Code availability. The  source code for each com-
ponent of the model has been  archived at
https://doi.org/10.5281/zenodo.13936294  (Drenkard et al.,
2024c). The GitHub repositories for MOM6 can be found at
https://github.com/mom-ocean/MOM6 (Modular Ocean Model,
2024) and https://github.com/NOAA-GFDL/MOM6 (NOAA-
GFDL, 2024a). Repositories for other model components are also
available at https://github.com/NOAA-GFDL (NOAA-GFDL,
2024b). Codes for generating regional MOMS6 initial conditions,
boundary conditions, and other necessary model inputs as well as
diagnostic scripts are maintained on the NOAA CEFI GitHub repos-
itory:  https://github.com/NOAA-GFDL/CEFI-regional-MOM®6/
(NOAA-GFDL, 2024c). The  Alaska  Fisheries  Sci-
ence Center (AFSC) R code base used for the Bering
Sea cold pool analyses can be found on GitHub at
https://github.com/afsc- gap-products/coldpool (NOAA-AFSC,
2024a), which utilizes the AFSC akgfmaps toolset, also on GitHub
at https://github.com/afsc-gap-products/akgfmaps (NOAA-AFSC,
2024b). Carter et al. (2021) alkalinity and DIC estimation algorithm
(ESPER; https://doi.org/10.5281/zenodo.5512697, Carter, 2021).

Data availability. All model
was analyzed, and the corresponding analysis codes
used in preparing this paper have been published at
https://doi.org/10.5281/zenodo.13936240  (Drenkard et al,,
2024b). Model parameter, forcing, and initial condition files
are  published at  https://doi.org/10.5281/zenodo.13936479
(Drenkard et al.,, 2024a). The datasets used for model vali-
dation and comparison, which are tabulated in Appendix Ta-
ble 2, with the associated URL or DOI from which the
data can be downloaded are as follows: OISSTv2.1 (https:
/lwww.ncei.noaa.gov/products/optimum-interpolation-sst, Huang
et al., 2021); GLORYS12 reanalysis (https://doi.org/10.48670/moi-
00021, Lellouche et al., 2021); NCEI Northern North Pacific
Regional Climatology, version 2 (https://doi.org/10.25921/dym6-
q737, Seidov et al., 2023); NCEI Northeast Pacific Regional
Climatology (https://doi.org/10.7289/VSNCSZDN; Seidov et
al., 2017); de Boyer Montégut mixed layer depth over the
global ocean (https://doi.org/10.17882/98226, de Boyer Mon-
tégut, 2024; de Boyer Montégut et al., 2004); Global Ocean
Gridded L 4 Sea Surface Heights and Derived Variables
(https://doi.org/10.48670/moi-00148; CMEMS, 2023); OSU
TPXO9 Tide Model (https://www.tpxo.net/home, Egbert and
Erofeeva, 2002); World Ocean Atlas 2023 Nitrate, Phosphate, and
Oxygen Output (https://doi.org/10.25923/39qw-7j08, Garcia et al.,
2023a; https://doi.org/10.25923/rb67-ns53, Garcia et al., 2023b);
ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci):
Global chlorophyll a data products gridded on a geographic
projection at 4km resolution, Version 6.0 (https://catalogue.
ceda.ac.uk/uuid/bOec72a28b6a4829a33ed9adc215d5be/, Sathyen-
dranath et al., 2019); COPEPOD-2012 (https://www.st.amfs.
noaa.gov/copepod/biomass/biomass-fields.html, ~Moriarty and
O’Brien, 2013); CODAP-NA total alkalinity, DIC, and aragonite
saturation (https://doi.org/10.25921/g8pb-zy76, https://www.ncei.
noaa.gov/data/oceans/ncei/ocads/metadata/0270962.html, last
access: 29 April 2023, Jiang et al., 2022); NOAA NCEP Ocean
Nifio Index (https://origin.cpc.ncep.noaa.gov/products/analysis_
monitoring/ensostuff/detrend.nino34.ascii.txt, NOAA Climate Pre-

output, the  part that
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diction Center, 2023b; AFSC bottom trawl gear temperature data
(https://github.com/afsc- gap-products/coldpool/tree/main/data,
Rohan et al., 2022; Rohan, 2025); NASA NSIDC Sea

Ice Concentrations from Nimbus-7 SMMR and DMSP
SSM/I-SSMIS  Passive  Microwave  Data,  Version 2
(https://doi.org/10.5067/MPYG15WAA4WX, DiGirolamo

et al., 2022); Coastal Upwelling Transport Index (CUTI;

https://oceanview.pfeg.noaa.gov/data/ui/CUTI_daily.csv, Ja-
cox et al, 2018); and California Cooperative Oceanic
Fisheries Investigations (CalCOFI) Bottle Database

(https://calcofi.org/downloads/database/CalCOFI_Database_
194903-202105_csv_160ctober2023.zip, National Marine Fish-
eries Service (NOAA) et al., 2025).

The datasets used to create the model forcing and the URL or
DOI from which the data can be downloaded are as follows: GLO-
RYS12 reanalysis (https://doi.org/10.48670/moi-00021, Lellouche
etal., 2021); OSU TPXO9 Tide Model (https://www.tpxo.net/home,
Egbert and Erofeeva, 2002); World Ocean Atlas (2018) (https:
/Iwww.ncei.noaa.gov/archive/accession/NCEI-WOA18); GloFAS
(https://doi.org/10.24381/cds.a4fdd6b9, Grimaldi et al., 2022);
Coastal freshwater discharge simulations for the Gulf of Alaska,
1931-2021 (https://doi.org/10.24431/rw1k7d3, Beamer et al., 2016;
Hill, 2023); ERAS (https://doi.org/10.24381/cds.adbb2d47, Hers-
bach et al., 2023); RC4USCoast (https://doi.org/10.25921/9jfw-
ph50, Gomez et al., 2022, 2023); Global River Chemistry database
(GLORICH, https://doi.org/10.1594/PANGAEA.902360, Hart-
mann et al., 2019); Global NEWS 2 (https://ars.els-cdn.com/
content/image/1-s2.0-S1364815210000186-mmc2.xls, Mayorga
et al., 2010); ArcticGro (https://www.arcticgreatrivers.org/data,
Holmes et al., 2012); Meinshausen et al. (2017) atmospheric CO»
(https://doi.org/10.22033/ESGF/input4MIPs.1118, = Meinshausen
and Vogel, 2016; https://doi.org/10.22033/ESGF/input4MIPs.9866,
Meinshausen and Nicholls, 2018); and GFDL ESM4.1
model output prepared for CMIP6 CMIP historical
(https://doi.org/10.22033/ESGF/CMIP6.8597, Krasting et al.,
2018).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-5245-2025-supplement.
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