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Abstract. TROLL 4.0 is an individual-based forest dynam-
ics model that jointly simulates the structure, diversity, and
functioning of tropical forests, including their water balance,
carbon fluxes, and leaf phenology, while accounting for in-
traspecific trait variation for a large number of species. In
a companion paper, we describe how the model represents
the physiological and demographic processes that control the
tree life cycle in a 1 m resolution spatially explicit scene
and uses plant functional traits measurable in the field to
parameterize such processes across species and individuals
(Maréchaux et al., 2025). Here we evaluate the performance
of TROLL 4.0 for two Amazonian sites with contrasting soil

and climate properties. We assessed the model’s ability to
represent forest structure, composition, and dynamics using
lidar-derived spatial distribution of top canopy height and
forest inventories combined with information on plant func-
tional traits. We also evaluated the model’s ability to rep-
resent carbon and water fluxes, as well as leaf area varia-
tion, at daily and fortnightly resolution over a decade, using
detailed information from on-site eddy covariance towers,
satellite data, and ground-based or airborne lidar data. We
finally compared the responses of carbon and water fluxes to
environmental drivers between simulated and observed data.
Overall, TROLL 4.0 provided a realistic representation of
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forests at both sites. The simulated canopy height distribution
showed a high correlation coefficient (CC) with observed
aerial and satellite data (CC > 0.92), while the species and
functional composition were well represented (CC> 0.75).
TROLL 4.0 also realistically simulated the seasonal vari-
ability of carbon and water fluxes (CC> 0.46) and their re-
sponses to environmental drivers, while capturing temporal
variations in leaf area (CC> 0.76) and its partitioning into
leaf age cohorts. However, TROLL 4.0 overestimated an-
nual gross primary productivity at both sites (mean RM-
SEP= 0.94± 0.67 kgC m−2 yr−1) and evapotranspiration at
one site (mean RMSEP= 0.75± 0.63 mm d−1), likely due to
an underestimation of the soil water depletion and stomatal
control during the dry season. This evaluation highlights the
potential of TROLL 4.0 to represent ecosystem fluxes and
the structure, diversity, and dynamics of plant communities
at a fine resolution, paving the way for model predictions of
the effects of climate change, fragmentation, and forest man-
agement on forest structure and dynamics.

1 Introduction

Tropical forests cover just 7 % of the Earth’s land surface,
yet they play a disproportionately large role in the bio-
sphere, store around 25 % of terrestrial carbon, and con-
tribute to more than a third of global terrestrial productivity
(Bonan, 2008). Regionally, tropical forests recycle around a
third of precipitation through evapotranspiration, contribut-
ing to the generation and maintenance of a humid climate
(Harper et al., 2014), effects that extend well beyond the
tropics (Lawrence and Vandecar, 2014). However, tropical
forests remain a major source of uncertainty in simulations
of global biogeochemical cycles (Fisher et al., 2014; Koch et
al., 2021).

As an illustration, for light-limited tropical forests, dy-
namic global vegetation models (DGVMs; Prentice et al.,
2015) typically simulate a decrease in productivity with
a seasonal decline in precipitation (Restrepo-Coupe et al.,
2016; Chen et al., 2020), while observations from eddy co-
variance data point to an increase in gross primary produc-
tivity during the dry season (Guan et al., 2015; Aguilos et al.,
2018). Similarly, simulated forest responses to experimental
and natural droughts have highlighted large model–data dis-
crepancies and variation across models (Powell et al., 2013;
Joetzjer et al., 2022; Yao et al., 2022; Paschalis et al., 2023).
Improving the representation of tropical forest functioning in
models is needed to enhance our understanding and ability to
predict biogeochemical cycles.

One challenge is to better integrate the structure, diversity,
and functioning of forests into vegetation models (Purves and
Pacala, 2008; McMahon et al., 2011; Evans, 2012; Mokany
et al., 2015). In spite of progress (Fisher et al., 2017), most
models still adopt a coarse-grained representation of vegeta-

tion, which makes it difficult to use field data to parameterize
and evaluate the models. Also, several processes driving the
variation of tropical forest productivity and water fluxes re-
main incompletely represented in vegetation models. These
include water uptake by the root system and seasonal varia-
tion of leaf quantity and quality at the ecosystem level, which
are driven by leaf phenology and allocation processes at the
individual level (Chen et al., 2020; Wu et al., 2021; Restrepo-
Coupe et al., 2016; Cusack et al., 2024).

In a companion paper, we described the individual-based
forest dynamics model TROLL 4.0 (Maréchaux et al., 2025).
This model jointly simulates tropical forest structure, diver-
sity, and functioning, including forest water balance, carbon
fluxes, and leaf phenology, and accounts for intraspecific trait
variation for a large number of species. TROLL 4.0 repre-
sents the processes underlying ecosystem fluxes, such as leaf
gas exchanges and their responses to environmental varia-
tion, and is thus similar to DVGMs in that respect, with its
outputs comparable with data from eddy covariance tow-
ers. However, unlike DGVMs that are designed for global
applications and typically represent plant diversity with a
few functional types, TROLL 4.0 represents diversity at the
species level (e.g. tens to hundreds of tropical tree species).
TROLL 4.0 is spatially explicit and represents plant com-
munity structure and diversity at a spatial resolution of 1 m,
which is consistent with that used by field ecologists. Physio-
logical and demographic processes are integrated using a pa-
rameterization based on plant traits measurable in the field,
relying on recent knowledge in plant physiology and func-
tional ecology. The individual-based, species-specific, and
spatially explicit representation of forest structure and com-
position enables TROLL 4.0 outputs to be directly compared
with spatially explicit forest inventories, trait distributions, or
fine-scale remote sensing products.

In this paper, we evaluate TROLL 4.0 for two Amazonian
sites with contrasting soil and climate properties. We param-
eterized the model using functional trait and soil data at both
sites. We first calibrated three major forest structure parame-
ters using inventory data and then the three parameters of the
phenological module that control leaf shedding as a func-
tion of soil water availability using litterfall data. We then
ran simulations and evaluated the model’s representation of
forest structure, composition, and dynamics against indepen-
dent data, including lidar-derived canopy height distribution,
understorey inventories, and functional trait distribution. We
also assessed the model ability to represent carbon and wa-
ter fluxes at daily resolution, as well as leaf area variation at
fortnightly resolution, against eddy covariance, satellite and
terrestrial, or drone lidar data. We finally compared the re-
sponse of simulated and observed fluxes to incoming radi-
ation, vapour pressure deficit, temperature, and wind speed.
Finally, we discuss the potential model–data discrepancies
and identify priorities for future developments.
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2 Methods

TROLL represents individual trees explicitly in an above-
ground voxelized space (1 m3), in which light diffusion is
modelled, and in a belowground space, which consists of
several layers with user-defined thickness and horizontal res-
olution (here 25 m2). Belowground water flow is simulated
using a bucket model. We assign a species label to each
simulated tree and provide as input species-specific mean
plant trait values and intraspecific trait variances and covari-
ances. New trees appear in the community through the pro-
cess of tree recruitment, which is only possible in empty cells
and with favourable light and water availability. Trees of a
given species are recruited if there is at least one seed of
that species in the local seed bank. Individual trait values of
each recruited tree are randomly drawn from the intraspe-
cific trait distribution. These traits parameterize the physio-
logical and demographic processes that govern the life cycle
of trees, from recruitment to growth, seed dispersal, and fi-
nally death. Carbon assimilation by trees is computed using
the photosynthesis model of Farquhar et al. (1980), coupled
to the stomatal conductance model of Medlyn et al. (2013),
as a function of leaf micro-environmental conditions, tree ac-
cess to water, and leaf photosynthetic capacity and leaf respi-
ration rate. Sugars produced during photosynthesis are used
for tree respiration and allocation to plant tissues, including
foliar production, carbon storage, and woody growth.

We conducted model calibration and evaluation at two
lowland Amazon forest sites: the Paracou research station
in French Guiana (5°28′ N, 52°92′W), hereafter Paracou
(Gourlet-Fleury et al., 2004; Bonal et al., 2008), and the
Tapajos National Forest in Brazil at the K67 site also named
BR-Sa1 (2°86′ S, 54°96′W), hereafter Tapajos (Silver et al.,
2000; Saleska et al., 2003). Both sites are covered by a high
biomass and species-rich lowland moist tropical forest, and
they present contrasting soil characteristics and climate (Ta-
ble 1), with a longer dry season in Tapajos than in Paracou
resulting, in 2075 mm per year against 3041 mm in Paracou.
They thus differ in water regimes and resulting plant water
stress and phenology. In addition, the two sites have been in-
tensively monitored for several decades, mainly through re-
peated forest inventories and eddy flux tower measurements,
fulfilling the requirement for in-depth model evaluation as
previously used for such applications (Longo et al., 2019b).
Additionally, we assumed forest dynamics to be at equilib-
rium, as both sites are characterized by old-growth forests.

To provide a conservative assessment of the model’s per-
formance and its transferability to multiple sites, we re-
stricted the number of site-specific calibrated parameters to
the ones that are currently poorly informed by available data
or to which the model is known to be sensitive based on sen-
sitivity analyses performed on previous versions of the model
(Maréchaux and Chave, 2017; Fischer et al., 2019). At each
site, we calibrated six parameters. These include three pa-
rameters related to forest structure: the reference background

mortality rate m and the intercept aCR and slope bCR of the
crown radius scaling relationship (Table A1; Maréchaux and
Chave, 2017; Fischer et al., 2019). m can be site-specific as
it is used to simulate tree mortality events that are triggered
by processes not explicitly represented in the model, such
as site-specific disturbance regimes (e.g. Rau et al., 2022).
Novel developments in TROLL 4.0 were based on known
or measurable ecological parameters and physical constants,
but the three parameters of the new leaf phenology mod-
ule, aT,o, bT,o, and δo (Table A1), are more empirical and
not ecologically measurable. In TROLL 4.0, the shedding of
old leaves is accelerated as soil water availability decreases
(Maréchaux et al., 2025). When the leaf pre-dawn water po-
tential (ψpd, MPa) falls below a threshold ψT,o (MPa), the
residence time of old leaves is decreased using a multiplica-
tive factor f0< 1. The parameter ψT,o varies with the tree
leaf drought tolerance and its size as follows:

ψT,o =min(aT,o× πtlp,−0.01×h− bT,o), (1)

where πtlp is the leaf water potential at turgor loss point
(MPa) and h is the tree height (m). f0 is decreased (in-
creased) by δo when ψpd <ψT,o (ψpd >ψT,o). The first term
accounts for a decline in leaf drought tolerance with age, i.e.
a reduced ability of old leaves to maintain turgor when the
soil dries, where aT,o controls the ratio of the turgor loss
point of old to mature leaves. The second term accounts
for the height dependence of this susceptibility to decreas-
ing water availability: it makes large trees susceptible to a
(small) decrease in soil water availability bT,o, while pre-
venting them from constantly shedding their old leaves at a
fast rate. Finally, δo controls the rate of leaf shedding in old
leaves as they begin to lose turgor, but in the absence of water
depletion. Overall, the parameters aT,o, bT,o, and δo control
the intensity and timing of the peak of litterfall under drying
soil conditions. This scheme is consistent with field obser-
vations (Maréchaux et al., 2025); uncertainties remain in the
values of aT,o, bT,o, and δo, however, and they need to be cal-
ibrated. After calibration, we compared model outputs with
site-specific data for evaluation at each site.

2.1 Simulation inputs and climatic drivers

TROLL 4.0 uses 35 global parameters defined by the user
and provided as inputs. These parameters relate to atmo-
spheric constants, light transmission, leaf carbon acquisition,
leaf shedding, tree carbon allocation, and tree shape, repro-
duction, and death, as well as intraspecific trait variability
(Table S1). Except for the three parameters of forest struc-
ture mentioned above and the three parameters of the leaf
shedding module that have been calibrated at each site, all
values are assumed to be site-independent.

TROLL 4.0 requires trait parameters for each species: val-
ues need to be provided as input for six functional traits and
three scaling parameters. The scaling parameters are species
maximum diameter at breast height (dbhthres, cm) and param-
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Table 1. Site overview with climate, vegetation, and soil properties. Soil properties are those used as input from the pedotransfer functions
implemented in TROLL 4.0.

Variables Units Paracou Tapajos References

Climate

Annual rainfall mm 3041 2075 P: Aguilos et al. (2018); T:
Silver et al. (2000)

Average air
temperature

°C 25.7 26.1

Vegetation

Aboveground biomass
(dbh≥ 10)

mg ha−1 419 287 P: Rutishauser et al. (2010); T:
Rice et al. (2004)

Number of stems
(dbh≥ 10)

ha−1 612 470 P: Derroire et al. (2022); T:
Rice et al. (2004)

Basal area (dbh≥ 10) m2 ha−1 31 24 P: Derroire et al. (2022); T:
Goncalves et al. (2018)

Soil

Type – Sandy clay loam Clay –

Depth m 2.50 16.10 P: Hiltner et al. (2022); T:
Nepstad et al. (2002)

Layer thickness (top to
bottom)

m 0.10/0.23/0.40/0.80/0.97 0.10/0.40/1.00/2.50/12.10 –

Sand % 65.25 37.27 P: Van Langenhove et
al. (2021); T: Silver et al. (2000)

Clay % 21.50 60.09
Silt % 13.25 2.64

Soil organic content % 2.37 2.54 P: Van Langenhove et al.
(2021); T: Quesada et al. (2010)

Dry bulk density g cm−3 1.040 1.125 P: Van Langenhove et al.
(2021); T: Silver et al. (2000)

Cation exchange
capacity

mEq 100 g−1 2.98 2.97 P: Sabatier et al. (1997); T:
Quesada et al. (2010)

pH 4.34 3.84 P: Sabatier et al. (1997); T:
Quesada et al. (2010)

eters defining the relationship between height and diameter at
breast height (dbh), which are the asymptotic height (hlim, m)
and the parameter ah (see Maréchaux et al., 2025, Eqs. 16 and
62). We used forest inventories from Paracou (Derroire et al.,
2022) and Tapajos (Goncalves et al., 2018) to create a species
list for each site and computed dbhthres as the 95th quan-
tile of species diameter at breast height for species includ-
ing more than 10 individuals. We used the TALLO global
database of height and diameter measurements (Jucker et
al., 2022) to infer species-specific values of hlim and ah for
the 496 species of the database that are present in Amazo-
nia (latitude between 10° N and 18° S and longitude between

39 and 78° W; n= 24 609 trees with a mean of 49.62± 730
trees per species). Parameters ah and hlim were inferred using
Bayesian inference as follows:

log(h)∼ N
[

log(hlim×
dbh

ah+ dbh
),σ 2

]
|hlim ∼ N(hlim,0,σ

2
h) , ah ∼ N(ah,0,σ

2
a), (2)

with the logarithm of height (h, m) following a normal distri-
bution centred on the log of a Michaelis–Menten model with
asymptotic height hlim, height–dbh scaling parameter ah, and
variance σ 2. We used a Michaelis–Menten model form for
tree height h, which grows with diameter (dbh) towards a
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plateau value hlim at a rate ah (Molto et al., 2014). The two
species-specific parameters hlim and ah are random parame-
ters following a normal distribution respectively centred on
hlim,0 and ah,0 with variances σ 2

h and σ 2
a .

The functional traits used in the parameterization include
leaf area (LA, in cm2), leaf mass per area (LMA, g m−2),
leaf nitrogen content per dry mass (N, g g−1), leaf phospho-
rus content per dry mass (P, g g−1), leaf water potential at
turgor loss point (πtlp, MPa), and wood specific gravity (wsg,
g cm−3). We used several datasets to retrieve species-specific
mean values for these traits (Vleminckx et al., 2021; Bois-
seaux et al., 2025; Kattge et al., 2020; Maréchaux et al., 2015,
2019; Ziegler et al., 2019). Finally, we used predictive mean
matching (van Buuren and Groothuis-Oudshoorn, 2011) to
impute missing trait values for ah, hlim, dbhthres, and πtlp.
Overall, this procedure leads to a parameterization of 114
species for Paracou and 113 species for Tapajos, with im-
puted values for 4 to 34 species for ah, hlim, dbhthres, and πtlp
(Fig. A1).

TROLL 4.0 requires nine soil parameters to describe the
texture, depth, and chemistry. These were gathered from the
literature, assuming a single soil type and depth per site for
simplicity and setting the number of soil layers to five (Ta-
ble 1). Testing the influence of horizontal and vertical soil
heterogeneity on model outputs is left for future work.

TROLL 4.0 simulations are forced with six climatic
drivers. Two of them are daily: cumulative rainfall (mm)
and average nighttime temperature (°C). The remaining
four drivers are provided every half-hour during the day-
time (defined below): incoming shortwave radiation (SW,
W m−2), temperature (T , °C), vapour pressure deficit (VPD,
kPa), and wind speed (WS, m s−1). Historical time series
for these climatic variables have been retrieved from the
FLUXNET 2015 dataset (Pastorello et al., 2020a), which
provides standardized data from eddy flux towers located at
each site (2004–2014 for Paracou and 2002–2011 for Tapa-
jos). However, at Tapajos, rainfall data from FLUXNET 2015
are not reliable due to issues with rain gauges (Restrepo-
Coupe et al., 2016). Instead, we used rainfall data from
the ERA5-Land reanalysis dataset (Muñoz-Sabater et al.,
2021) available at hourly resolution between 2002 and 2011.
For other climatic variables, data from ERA5-Land showed
high correlation with FLUXNET 2015 data and ERA5-Land
showed better agreement with on-site precipitation data from
FLUXNET 2015 at Paracou when compared to other prod-
ucts, like CHIRPS (Funk et al., 2015; Fig. A2). We used
spline interpolation to derive half-hourly time series from the
hourly FLUXNET 2015 data in Tapajos. The half-hourly net
radiation time series was used to define daytime hours (i.e.
with Snet> 0), which were set from 06:00 to 18:00 UTC−3
in Paracou and from 07:00 to 19:00 UTC−3 in Tapajos. The
dry season was defined as a period with fortnightly rainfall
below 50 mm on average across years, consistent with the
100 mm per month used by Bonal et al. (2008). This leads to
a 4-month dry season in Paracou (1 August to 1 December)

and a 4.5-month dry season in Tapajos (15 June to 1 Novem-
ber). Dry seasons were defined for illustration purposes only
and have no effect on the model behaviour, which is driven
by the meteorological inputs described above.

2.2 Calibration and simulation set-up

As opposed to fine-tuning the model, we opted for min-
imum calibration to assess the model’s behaviour with a
minimum of information per site and tuning to assess its
transferability, at least across Amazonian sites. We cali-
brated the three forest structure parameters (m, aCR, and
bCR) for each site. aCR and bCR are not independent, and
we used the TALLO global database of crown radius (CR)
and diameter (dbh) measurements (Jucker et al., 2022) to
infer their relationship. To do so, we restricted the TALLO
database to observations located within 10 km around sites
from which we generated 1000 pairs of (aCR, bCR) values.
Each pair of values was determined by randomly drawing
10 individuals per 10 cm diameter class to generate a size-
balanced dataset to which the following model was fitted:
log(CR)∼ N [aCR+bCR×log(dbh), σ 2

]. This resulted in the
following linear relationship between the two parameters:
bCR =−0.39+0.59×aCR +εbCR , with εbCR the error around
the relation. This relationship constrained the exploration of
the three-dimensional parameter space, so we only had to cal-
ibrate aCR, εbCR , and m. Based on preliminary exploratory
analyses with the previous version of TROLL, we defined
the range of calibration for each parameter and site as fol-
lows: aCR varied from 1.60 to 2.00 in Paracou and from 2.3
to 2.7 in Tapajos with a step of 0.05, εbCR from −0.30 to
0.10 in both sites with a step of 0.05, and m from 0.030 to
0.050 in both sites with a step of 0.0025. This resulted in
9aCR ×5εbCR×9m×2 site= 810 triplets of parameter val-
ues.

For each set of three parameter values, we performed
a 600-year simulation from bare ground over a 4 ha area.
Simulations were run with an external seed rain uniformly
distributed across species so that the simulated community
structure is an emergent property resulting from the com-
munity assembly mechanisms embedded in the model. As
succession unfolds and the number of mature trees increases
in the simulation, internal seed production increases accord-
ing to the assumed relationships between individual size and
fecundity. An alternative to uniform seed rain across species
would be to prescribe nonuniform seed rain based on species’
regional abundances. This approach would tend to make the
simulated species abundances more closely resemble the ob-
served regional abundances. In contrast, uniform seed rain
as simulated here biases the simulated abundances towards
evenness across species, and differences in simulated abun-
dances reflect differences in demographic performance con-
trolled by the model trait-based parameterization rather than
prescribed differences in the seed rain. Each simulation was
forced each year by randomly drawing a year among the 10
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years of climatic data. In doing so, we avoided applying a pe-
riodic climatic forcing or any potential trend linked to global
warming.

To evaluate the forest structure simulated with each triplet
of parameter values, we compared simulated to observed to-
tal aboveground biomass (AGBtot, mg ha−1), total number of
stems (N tot, ha−1), and number of stems per 5 cm diameter
class (N i , ha−1 for dbh class i) at the end of the 600-year re-
generation. The Paracou reference dataset was a 2015 inven-
tory of trees with dbh> 10 cm in six 6 ha plots (Derroire et
al., 2022). The Tapajos reference dataset was a 1999 inven-
tory of trees with dbh> 10 cm in 19.75 ha along four 1 km
transects (Rice et al., 2004). At both sites, we calculated the
relative root mean squared error defined as

RRMSEP=
AGBtot

o −AGBtot
s

AGBtot
o

+
N tot

o −N
tot
s

N tot
o

+

√
1
n
×
∑n
i=1(N

i
o−N

i
s )

2

|N i
o|

, (3)

where AGBtot
o ,N tot

o , andN i
o are observed values, and AGBtot

s ,
N tot

s , andN i
s are the simulated values. n is the number of dbh

classes and |N i
o| is the mean number of stems among dbh

classes. We extracted the simulation with the lowest RRM-
SEP at each site and used the corresponding values for m,
aCR, and bCR in all subsequent simulations.

After 600 simulated years of forest dynamics the system
reached a mature forest stage with stable forest structure
(Fig. A3), composition, and functioning at both sites. This is
referred to as the “spin-up phase”. We then used this mature
forest stage to calibrate the three parameters of the phenolog-
ical module. We performed an exhaustive search in the pa-
rameter space for combinations of aT,o in [0.01, 0.025, 0.05,
0.075, 0.1, 0.2, 0.3, 0.4, 0.5], bT,o in [0.01, 0.015, 0.02, 0.05,
0.04, 0.06, 0.08, 0.10], and δo in [0.1, 0.2, 0.3, 0.4, 0.5], re-
sulting in 9aT,o × 8bT,o× 5δo× 2 sites= 720 simulations.
For each triplet, we ran a 20-year simulation with historical
weather repeating the 10 years of data twice with the mature
forest as an initial condition. Only the last 10 years were used
for the calibration to allow the leaf dynamics to adjust to new
parameter values.

To evaluate each simulation, we used leaf litter data from
litter traps at both sites (Damien Bonal, personal communi-
cation, 2023 at Paracou, Rice et al., 2008 at Tapajos). Litter
traps were typically collected fortnightly (although time in-
tervals between consecutive litter trap collections were some-
times higher and up to 80 d in Paracou) between 2004 and
2023 in Paracou and between 2000 and 2005 in Tapajos. The
litter collected from the traps was oven-dried until the mass
stabilized and partitioned between leaves, fruits, and woody
debris, and then the fractions were weighed. We computed
observed leaf litterfall flux in mg ha−1 yr−1 as the mean
across traps converted from trap surface to hectare and time
interval in days to years. We also recorded the time inter-

val between consecutive trap collections to account for the
smoothing effect of the longer time intervals in simulated
data. Simulated leaf litterfall fluxes over the last 10 years
of simulation for each triplet of parameter values were com-
pared to the observed fluxes using the same observation dates
and corresponding time intervals.

To compare simulations against observations, we defined
two yearly indices that quantify the timing and intensity of
the litterfall peak. The two indices are (i) the day of the litter-
fall peak as the Julian day of the maximum annual litterfall
flux value (day) and (ii) the ratio between the maximum value
(computed as the average of litterfall flux over the two con-
secutive time intervals before and after the peak day) and the
basal flux (computed as the yearly average between January
and April). Both indices are key features of litterfall patterns
in tropical rainforests (Chave et al., 2010; Yang et al., 2021).
For each simulation we calculated the root mean squared er-
ror defined as

RMSEP=√∑y=ymax
y=y0

(ratioy,o− ratioy,s)2

Nyear
+

∑y=ymax
y=y0

(dayy,o− dayy,s)
2

Nyear
, (4)

where dayy,o and ratioy,o are observed z scores (i.e. standard
deviations from the mean) for year y, and dayy,s and ratioy,s
are simulated z scores for year y. Thus a unit RMSEP corre-
sponds to a ratio error of 1 standard deviation, i.e. 7.6 folds,
or to a day error of 1 standard deviation, i.e. 45.5 d. The best-
fit parameters were those corresponding to the lowest RM-
SEP at each site.

To assess the model sensitivity to the chosen parameters,
we used the calibration parameter spaces and measured re-
sponse variable sensitivity to each parameter with partial cor-
relation coefficients (PCCs). Moreover, we used a sequential
calibration scheme to reduce computation load based on the
hypothesis that the second calibration of litterfall parameters
does not interfere with the first of forest structure parame-
ters. To assess this assumption, we explored the sensitivity
of forest structure variables to forest litterfall parameters.

Finally, to quantify the envelopes of stochastic simulation
outputs, we ran 10 replicates of 600-year simulations starting
from bare ground with the six calibrated parameter values.

2.3 Evaluation of forest structure, composition, and
dynamics

To assess the model’s ability to simulate forest structure and
dynamics, as well as species and functional composition, we
used airborne lidar scanning (ALS) and satellite data, as well
as forest inventories combined with functional traits. Inde-
pendently from the calibration, we evaluated the diameter
distribution of the forest understorey at Paracou using an in-
dependent 9 ha inventory of trees with dbh between 1 and
10 cm from 2020–2023 (unpublished data). We evaluated the
structure of the simulated forest at the end of the 600-year
replicates against observed basal area (BA, m2 ha−1) and the
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logarithm of the number of stems (ha−1) per 1 cm diame-
ter class below 10 cm. We evaluated tree height distributions
using ALS data from 2015 at Paracou (unpublished data)
and from 2012 at Tapajos (dos-Santos et al., 2019), which
were processed into canopy height models with a standard-
ized pipeline (Fischer et al., 2024). From both simulated and
ALS-derived canopy height models, we derived the distribu-
tion of top canopy height, expressed as a proportion of 1 m2

pixels per 1 m height class. We evaluated the species compo-
sition after the 600-year replicates against the observed rank
abundance curve of the 114 most abundant species at both
sites and the functional composition against the observed
density distribution of each trait for each site and each plot.
Due to a lower taxonomic resolution of botanical identifica-
tion at the Tapajos site, we used genus-level functional trait
data at Tapajos and species-level functional trait data at Para-
cou. Finally, we evaluated forest dynamics by retrieving the
simulated individual tree growth rates (cm yr−1) and death
rates (% yr−1) over 10 years per 5 cm diameter class and
comparing them to the ones estimated from field inventories
of six 6.25 ha plots in Paracou from 2003 to 2013.

2.4 Evaluation of total leaf area dynamics

We assessed the model’s ability to represent the dynamics of
total leaf area and its partitioning into three leaf age cohorts
(Maréchaux et al., 2025). For evaluation, we gathered leaf
area index (LAI) datasets as follows: LAI from MODIS satel-
lites at both sites, LAI from terrestrial lidar at Tapajos (Smith
et al., 2019), and LAI from UAV-borne lidar at Paracou (un-
published data; Vincent et al., 2017). The MODIS LAI prod-
uct was at 8 d and 500 m resolution and pre-processed in
PLUMBER2 (Ukkoloa, 2020). At Tapajos, plant area index
(PAI) was derived from terrestrial lidar scanning (TLS) per-
formed every 1–2 months in 2010, 2012, 2015, and 2017
along four 1 km long transects representing 0.4 ha with a spa-
tial resolution of about 3 m to characterize canopy porosity
(Smith et al., 2019). PAI was derived from lidar hits follow-
ing Stark et al. (2012) and based on the MacArthur–Horn
transformation (MacArthur and Horn, 1969). This PAI was
then converted to LAI using an annual mean LAI of 5.7
(Stark et al., 2012). In Paracou, the PAI was derived from re-
peated UAV-borne lidar surveys, resulting in PAI mapping at
21 d and 1 m resolution between 2020 and 2022 over a 2.5 ha
forest area. This PAI derived from UAV lidar was obtained
by vertical integration of plant area density (PAD) profiles
previously recalibrated to match a TLS-derived PAD profile
of a common 1 ha plot scanned in October 2019. This was
required because the limited penetration of the UAV lidar
yielded overestimation of raw PAD values (Vincent et al.,
2023). This PAI was converted to LAI variation with a fac-
tor of 0.68, where the conversion factor is derived from other
products.

Simulated LAI variations per leaf age cohort (Eqs. 56–
57, Maréchaux et al., 2025) were compared qualitatively
against the one derived from phenological cameras by Wu
et al. (2016) at Tapajos and from the reanalysis of Yang et
al. (2023) at both sites. Wu et al. (2016) analysed 478 im-
ages collected over 24 months from 65 tree crowns and fit-
ted the transition from young to mature and from mature to
old leaf pools, assumed to occur at 1 and 3 months, respec-
tively. Yang et al. (2023) used global satellite observations
of the TROPOMI satellite solar-induced fluorescence (SIF)
sensor as an indicator of leaf photosynthesis variation, val-
idated by in situ measurements, and set the transition from
young to mature and from mature to old leaf pools, occur-
ring at 1.71 and 5.14 months, respectively. By comparison,
simulated leaf age per cohort depends on the individual leaf
lifespan in TROLL 4.0 (see Maréchaux et al., 2025).

2.5 Evaluation of carbon and water fluxes

To assess the model’s ability to simulate carbon and wa-
ter fluxes, we evaluated gross primary productivity (GPP,
kgC m−2 yr−1) and evapotranspiration (ET, mm d−1). We ex-
tracted GPP and latent heat flux (LE, W m−2 half-hour−1)
from the FLUXNET 2015 dataset (Pastorello et al., 2020a).
ET was derived from LE and temperature (T , in °C) using
ET= LE×60×30×10−6

λ(T )
with λ(T )= 2.501−(2.361×103)×T

(Allen et al., 1998). GPP was obtained from net ecosys-
tem exchange with the nighttime partitioning method (Re-
ichstein et al., 2005). We summarized half-hourly GPP and
ET into daily values by calculating the daily mean and sum.
TROLL 4.0 carbon fluxes were also compared with a re-
motely sensed product of GPP derived from TROPOMI SIF
using the formula GPP= 15.343×SIF (Chen et al., 2022).
We additionally computed the light use efficiency (LUE in
molC mol−1

photons) by normalizing GPP by photosynthetic pho-
ton flux density (PPFD) and the fraction of absorbed photo-
synthetically active radiation (fAPAR) derived from leaf area
index (LAI) to explore carbon flux environmental drivers in-
dependently of the overriding effect of light as in Bloom-
field et al. (2023). We compared how the fluxes depended
on environmental drivers in both simulated and observed
data. Using the FLUXNET 2015 dataset (Pastorello et al.,
2020a), daily values of cumulative photosynthetically active
radiation (PAR, mol m−2), maximum vapour pressure deficit
(VPD, kPa), mean temperature (T , °C), and mean wind speed
(WS, m s−1) were calculated, and simulated and observed
responses of GPP, LUE, and ET to PAR, VPD, T , and WS
were compared. TROLL 4.0 water fluxes were assessed us-
ing the relative variation of soil water content (RSWC, %) of
the top horizon from the Paracou eddy flux tower (Bonal et
al., 2008) and the relative variation of soil water content of
the top horizon reanalysed against the climatic water deficit
at Tapajos (Restrepo-Coupe et al., 2024). RSWC is defined
as the daily mean of soil water content (m3 m−3) divided by
the annual 95th quantile of the daily mean.

https://doi.org/10.5194/gmd-18-5205-2025 Geosci. Model Dev., 18, 5205–5243, 2025



5212 S. Schmitt et al.: TROLL 4.0 – Part 2: Model evaluation for two Amazonian sites

All simulations were run using TROLL 4.0 (Maréchaux
et al., 2025) wrapped in the R package rcontroll (Schmitt et
al., 2023a) and encapsulated in a Singularity image (Kurtzer
et al., 2017) by leveraging a Python Snakemake workflow
(Köster and Rahmann, 2012) on a high-performance com-
puting platform using 100 cores. To compare simulations and
observations, we used the same metrics for all variables, re-
gardless of their type, origin, and spatial or temporal resolu-
tion: the goodness of fit R2 from linear regression with null
intercept, the Pearson’s correlation coefficient (CC), the root
mean square error of prediction (RMSEP), the standard de-
viation (SD) of the error of prediction.

3 Results

3.1 Forest structure, composition, and dynamics

We calibrated the background mortality rate (m) and crown
radius scaling parameters (aCR and bCR) at Paracou and
Tapajos against observed aboveground biomass, total num-
ber of stems, and number of stems per 5 cm dbh classes and
found m= 0.035, aCR = 1.80, and bCR = 0.3860 at Paracou
and m= 0.040, aCR = 2.45, and bCR = 0.7565 at Tapajos.
For trees with 10 cm dbh, the calibrated crown radius–dbh al-
lometry (Eq. 17 in Maréchaux et al., 2025) predicts a crown
radius of 2.49 m at Paracou and 2.03 m at Tapajos, a varia-
tion that falls well within the one reported globally (Jucker et
al., 2025). The modelled aboveground biomass, total num-
ber of stems, and number of stems per 5 cm dbh classes
were in good agreement with observations (correlation co-
efficient CC> 0.99 at both sites, Fig. 1). The three parame-
ter values were very similar across the five best simulations,
i.e. the ones minimizing RRMSEP (m± 0.0025, aCR± 0.1,
and bCR± 0.057 at Paracou and m± 0.01, aCR± 0.1, and
bCR± 0.0285 at Tapajos, Tables A3 and A4), and we used
the values of the best simulation in all subsequent simu-
lations. Finally, in agreement with results on previous ver-
sions of the model, forest structure showed high sensitivity
to the explored parameters. Partial correlation coefficients
(PCCs) were around −0.4 for aCR and around 0.4 for bCR
with the number of stems, aboveground biomass, and basal
area. The background mortality rate m also had a strong ef-
fect on aboveground biomass and basal area, with a PCC
around −0.2, but little to no effect on the number of stems
(Fig. A4). The sensitivity of forest structure to aCR, bCR,
and m was illustrated by a high variation of simulated for-
est structure when varying these parameters, for instance a
basal area variation of 3.9, 2.9, and 1.7 m2 m−2 per standard
unit of aCR, bCR, and m, respectively (Fig. A13).

After calibration, the top canopy height distribution sim-
ulated by TROLL 4.0 matched that measured by lidar aerial
scanning (ALS), with a root mean square error of prediction
(RMSEP) of the proportion of 1 m2 pixels per 1 m height
class below 0.8 % and a correlation coefficient (CC) above

0.91, despite a slight overestimation of low-canopy areas in
Paracou, at heights below 20 m, and a slight underestima-
tion of high-canopy areas, above 40 m in Tapajos (Fig. 2).
For example, in Paracou, 4 % of the 1 m2 pixels scanned by
ALS had a canopy height around 25 m. An RMSEP of 0.8 %
means that TROLL simulations could lead to 3.2 or 4.8 % of
pixels with a canopy height of 25 m. TROLL 4.0 simulations
also reproduced the forest understorey structure character-
ized by basal area (BA) and the distribution of the number of
stems per 1 cm diameter class for trees< 10 cm dbh at Para-
cou (Fig. 3). However, TROLL 4.0 underestimated the num-
ber of small trees (2139 vs. 3787 trees ha−1), resulting in an
underestimation of basal area (BA= 2.9 vs. 3.7 m2 ha−1).

At Paracou, the simulated and observed species rank abun-
dance curves were similar (Fig. 4), with an RMSEP of
3.67 trees ha−1 and a CC of 0.93, but with an underesti-
mation of the abundance of dominant species and an over-
estimation of the abundance of rare species, resulting in a
higher evenness overall. At Tapajos, the simulated and ob-
served rank abundance curves displayed similar patterns as at
Paracou (RMSEP= 3.62 trees ha−1 and CC= 0.94) but am-
plified, with a strong underestimation of the abundance of
dominant species and an overestimation of the abundance of
rare species.

Functional trait distributions simulated by TROLL 4.0
were consistent with empirical ones at Paracou and Tapajos
(Fig. 5), with a CC from 0.91 to 1.00 for all traits at both
sites, except for leaf area at Paracou (CC= 0.74) and Tapa-
jos (CC= 0.87). However, abundances of low-wood-density
trees, high-LA trees, and high-LMA trees were underesti-
mated in simulations when compared to observations at Para-
cou.

Forest dynamics simulated by TROLL 4.0 were consis-
tent with the ones estimated from field inventories at Para-
cou (Fig. 6). Simulated individual tree growth–size relation-
ship were comparable to the ones retrieved from invento-
ries (simulated mean of 0.18 cm yr−1 against 0.13 cm yr−1)
with an expected bell-shaped relationship (Hérault et al.,
2011) and similar high variation (Schmitt et al., 2023b). Sim-
ulated death rates also showed a magnitude and variation
similar to observed ones (simulated mean of 1.73 % yr−1

against 2.60 % yr−1 observed at Paracou but with consistent
and overlapping ranges). Despite overlapping confidence in-
tervals between simulated and observed death rate variation
across size, simulated mean death rates tended to be lower
for medium to large trees, especially between 30 and 75 cm
dbh, than observed.

3.2 Leaf phenology

The calibration of the three parameters of the leaf shedding
module against observed litterfall illustrated how each pa-
rameter affects the simulated timing and intensity of the lit-
terfall peak during the dry season, with no or little effect on
the background litterfall rate (Fig. A5) but revealing a strong
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Figure 1. Tree size structure at Paracou and Tapajos, expressed in terms of the number of stems per 5 cm dbh class. Comparison between
distributions simulated by TROLL 4.0 after calibration of m, aCR, and bCR in blue and the ones derived from field inventories of trees
with dbh> 10 cm in black at Paracou (a) and Tapajos (b). Observed (black) and simulated (blue) densities of trees with dbh> 10 cm, and
aboveground biomass are also provided. All simulated values correspond to the end state of a 600-year regeneration from bare ground with
calibrated values for m, aCR, and bCR at each site.

Figure 2. Canopy height distribution at Paracou and Tapajos. For each 1 m2 pixel of the ground, the top canopy height in that pixel (i.e. the
height of the highest voxel with positive plant area density, or PAD, and located above this ground pixel) was determined, and its distribution
across 1 m2 pixels was plotted as the proportion of 1 m2 ground pixels (%, x axis) with a given canopy height (m, y axis, at 1 m resolution).
The figure shows a comparison between distributions derived from PAD fields simulated by TROLL 4.0 (blue lines) and the ones derived from
airborne laser scanning point clouds (black lines). Simulated values and their confidence intervals correspond to the end state of simulations
of 10 4 ha 600-year regenerations from bare ground for each site.

positive effect of aT,o and bT,o on the peak day of litterfall
and a negative effect on the ratio of the peak of litterfall, as
well as a weak effect of δo on the peak of litterfall. As an-
ticipated, litterfall calibration was independent of the forest
structure calibration (Fig. A4). Calibration resulted in a best-

fit aT,o value of 0.2, and a bT,o value of 0.015 at both sites.
The calibrated δo differed across sites (δo = 0.1 at Paracou
and δo = 0.2 at Tapajos). The simulated seasonal variation of
litterfall at Paracou and Tapajos shows qualitative agreement
with the observed data (Fig. 7). Both empirical and simu-
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Figure 3. Understorey tree size structure at Paracou, expressed in terms of basal area distributions (a) and number of stems (b) per 1 cm dbh
class. The figure compares distributions simulated by TROLL 4.0 in blue and field inventory observations in black. Simulated values and
their confidence intervals correspond to the end state of simulations of 10 4 ha 600-year regenerations from bare ground. Confidence intervals
at 95 % are shown with error bars and are based on variations among plots (nine plots of 1 ha) for the observations. Simulated (blue) and
observed (black) total basal area (a) and densities (b) for trees with dbh> 1 cm and< 10 cm are also provided. To the best of our knowledge,
similar data were not available for Tapajos.

Figure 4. Species rank abundance curves at Paracou and Tapajos. Comparisons between curves simulated by TROLL 4.0 (blue) and de-
rived from field inventories at both sites. Simulations included 114 and 113 species at Paracou and Tapajos, respectively. Curves derived
from inventories were cut at the 114th species. Simulated values and their confidence intervals correspond to the end state of 10 4 ha 600-
year regenerations from bare ground. Confidence intervals at 95 % are shown with error bars and are based on variations among plots for
observations.

lated data showed a marked peak in litterfall during the dry
season, despite a clear underestimation of simulated litterfall
flux during both wet and dry seasons, particularly at Tapa-
jos, and a delayed peak during the dry season, particularly at
Paracou, in comparison to observations.

The empirical LAI datasets displayed strikingly different
results, illustrating the challenge of estimating LAI with con-
fidence in dense tropical forests (Fig. 8, Table S2). MODIS-
derived LAI displayed almost no seasonality, with mean LAI
values around 6.0 m2 m−2 at both sites. At Paracou, LAI de-
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Figure 5. Functional trait distributions at Paracou and Tapajos. Distributions derived from field inventories (black) were based on botanical
identification at the species level in Paracou and the genus level in Tapajos. Simulated distributions (blue) were based on the final stage of 10
4 ha 600-year regenerations from bare ground. Confidence intervals are shown with repeated lines and are based on variations among plots
for observations and among repetitions for simulations. dbhthres: maximum diameter in metres, LA: leaf area in cm2, LMA: leaf mass per
area in g cm−3, Nmass: leaf nitrogen content per dry mass in g g−1, Pmass: leaf phosphorus content per dry mass in g g−1, πtlp: leaf water
potential at turgor loss point (MPa), WSG: wood specific gravity in g cm−3.

rived from UAV-borne lidar showed a clear seasonality, with
the lowest values around 5.5 m2 m−2 from April to June and
the highest values of almost 6.0 m2 m−2 in December, at the
end of the dry season. At Tapajos, LAI derived from terres-
trial lidar showed no seasonality and was around 5.8 m2 m−2

throughout the year, but LAI derived from phenological cam-
eras (PhenoCams) did display some seasonality, with the
lowest values at 5.5 m2 m−2 in June and the highest values
above 6.0 m2 m−2 in December, at the end of the dry sea-
son. These observations were compared with simulations. At
Paracou, simulated LAI matched the one derived from UAV-
borne lidar, with both showing an increase during the dry sea-
son (CC= 0.84, RMSEP= 0.11 m2 m−2). At Tapajos, simu-
lated LAI matched the empirical LAI derived from Pheno-
Cams (CC= 0.91, RMSEP= 0.15 m2 m−2; Table S2).

The different datasets gathered to estimate LAI dynamics
per cohort also showed contrasting patterns (Figs. 9 and A6).
At Tapajos, PhenoCams indicate a maximum young-leaf LAI
reached during the dry season and a minimum during the wet
season, with inverse patterns for old-leaf LAI. TROLL 4.0
simulations yielded patterns consistent with these observa-
tions (Fig. 9). However, Yang et al. (2023)’s reanalysis pre-
dicts the exact opposite trends for young and old leaves, with
a maximum young-leaf LAI during the wet season and a min-
imum during the dry season. At Paracou, we could only com-

pare simulated trends against Yang et al. (2023)’s reanalysis
and the match was relatively poor (Fig. 8).

3.3 Water and carbon fluxes

TROLL 4.0 captured the seasonality of gross primary pro-
ductivity (GPP) observed at the two sites, with an increase
before the onset of the dry season, reaching its maximum
during the dry season, and a decrease starting before or at the
onset of the wet season (Fig. 10 and see Fig. A7 for inter-
annual variations, Table S2). Comparisons of eddy flux esti-
mates with simulations showed high correlation at both Para-
cou (CC= 0.60) and Tapajos (CC= 0.46). TROLL 4.0 over-
estimated GPP at both sites, particularly during the dry sea-
son, with an RMSEP of 0.75 and 1.12 kgC m−2 yr−1 when
compared with both eddy flux and TROPOMI SIF estimates
at Paracou and Tapajos, respectively.

The seasonality of water flux was captured by TROLL 4.0
(Fig. 11 and see Fig. A8 for interannual variations, Table S2),
with a pronounced increase in evapotranspiration (ET) dur-
ing the dry season at both sites, leading to CC of 0.66 and
0.70 when compared with eddy flux estimates at Tapajos
and Paracou, respectively. Although intra-annual variations
of simulated and observed values overlapped, TROLL 4.0
tended to overestimate ET in Tapajos during the dry season,
leading to RMSEP values of 0.60 and 0.75 mm d−1 when
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Figure 6. Forest dynamics at Paracou and Tapajos, expressed in terms of individual tree growth rate (a, b) and death rate (c, d) both per 5 cm
dbh classes across 10 years. The figures compare distributions simulated by TROLL 4.0 in blue and multiple field inventory observations
from six 6.25 ha plots in Paracou from 2003 to 2013 in black. Simulated values and their confidence intervals correspond to 10 repetitions of
10-year simulations starting from the end state of 600-year regeneration from bare ground with calibrated parameters at each site. Confidence
intervals at 95 % are shown with shaded areas and are based on variations among plots (six plots of 6.25 ha) for the observations.

compared with eddy flux estimates at Paracou and Tapajos,
respectively. The partitioning of evapotranspiration between
canopy evaporation, soil evaporation, and tree transpiration
(Fig. A9) showed that most of the evapotranspiration is due
to tree transpiration in the dry season, while canopy evapora-
tion is an important part of the total evapotranspiration in the
wet season (Kunert et al., 2017). TROLL 4.0 also captured
the seasonality in RSWC of the topsoil layer at Paracou and
Tapajos (Fig. A10, Table A2; see Fig. A11 for absolute vari-
ation with varying depth), with a high RSWC in the wet sea-
son close to 100 % and a sharp decrease in RSWC in the dry
season, although it is overall smoother in simulations than
field estimates.

Both eddy-flux-derived and simulated GPP showed a pos-
itive logarithmic relationship with cumulative incoming PAR
and maximum VPD, as well as a positive linear relation-
ship with mean temperature at daily scale (Fig. 12). Simi-
larly, controlling for absorbed light, both eddy-flux-derived
and simulated LUE showed a negative logarithmic relation-
ship with maximum VPD and a negative linear relationship
with mean temperature at daily scale (Fig. A12). Limita-
tions of LUE at high VPD and T values were, however,
lower in simulations than in eddy-flux- or SIF-derived esti-
mates. TROLL 4.0 predicted a higher PAR conversion to car-
bon under high-irradiance, high-VPD, and high-temperature
conditions when compared to eddy flux estimates, consistent

with the higher dry-season GPP in simulations (Fig. 10). Re-
sponses of SIF-derived GPP to climatic variables were weak
in comparison to simulated and eddy-flux-derived GPP. Sim-
ulated ET was positively correlated with maximum VPD,
cumulative PAR, and mean temperature, similarly to eddy-
flux-derived ET (Fig. 13). At Paracou, the relationships
between environmental drivers and simulated ET closely
aligned with the ones obtained from eddy flux estimates.
However, at Tapajos, simulated ET was overestimated un-
der high-irradiance, high-VPD, high-temperature, and windy
conditions in comparison to eddy flux estimates. Simulated
GPP and ET at both sites were more strongly controlled
by environmental variables (higher R2 in Figs. 12–13) than
eddy-flux-derived GPP and ET.

4 Discussion

Here we tested the performance of TROLL 4.0 in reproduc-
ing observed forest structure and diversity, water and carbon
fluxes, and leaf dynamics. We conducted a detailed model
evaluation for two Amazonian rainforest sites, Paracou and
Tapajos, presenting contrasting climate and soil properties.
Both sites have been intensively monitored over the past
decades, and we compared the model outputs with available
data. We now discuss the consistencies and discrepancies be-
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Figure 7. Litterfall annual cycle from fortnightly litterfall fluxes at
Paracou and Tapajos. Each thin line represents 1 year, with points
showing values at sampling dates. The thick lines represent poly-
nomial smoothing among years, and the vertical yellow bands in
the background correspond to the site’s climatological dry season.
Simulated values correspond to the last 10 years of 20-year simula-
tions starting from the end state of 600-year regeneration from bare
ground with calibrated parameters at each site.

tween simulated and observed patterns, potential uncertain-
ties in our results, and the advantages and possible improve-
ments of TROLL 4.0.

4.1 Forest structure, composition, and dynamics

TROLL 4.0 was found to jointly simulate realistic forest
structure and species composition (Maréchaux and Chave,
2017). The calibration of three global parameters led to a
simulated number of stems across size classes and basal area
or aboveground biomass in good agreement with observa-
tions from forest inventories above 10 cm dbh. Also, aerial
lidar data allowed forest structure to be assessed indepen-
dently of calibration data. This revealed a good ability of
TROLL 4.0 to simulate the horizontal and vertical structure
of both forests, which is promising for various applications,
including biomass estimation (Knapp et al., 2018). Similarly,
the multiple inventories at Paracou from 2003 to 2013 re-
vealed a good ability of TROLL 4.0 to simulate forest dy-
namics with both a bell-shaped growth–size relationship and
tree mortality. Comparing the different sources of mortality
with tree size between observations and simulations would
be useful to assess the representation of mortality processes,
although documenting mortality sources is often challenging
(McDowell et al., 2018). Understorey inventories at Paracou
also allowed us to independently evaluate TROLL 4.0’s abil-

ity to simulate tree community structure in the 1 to 10 cm
tree diameter range. TROLL 4.0 simulated the distribution of
smaller trees reasonably well, although it underestimated in-
dividuals from the smallest cohorts. This underestimation of
the density of small trees may be partly explained by the fact
that the 1 m resolution of the voxel grid used in TROLL 4.0
only allows for one tree per square metre of ground, whereas
smaller trees may be squeezed into certain areas of the un-
derstorey. However the number of simulated small stems re-
mains lower than the maximum potential number in simula-
tions. Another explanation could be a lack of light hetero-
geneity and associated trait variation in the understorey in
simulations in comparison with observations (Montgomery
and Chazdon, 2001), thus limiting the opportunities for re-
cruitment and survival of small stems. Explorations of sim-
ulated micro-environmental variations within the canopy (de
Frenne et al., 2019) and inclusion of trait ontogenetic shifts
(Fortunel et al., 2020) and trait plasticity (Xu et al., 2017;
Lamour et al., 2023) could further help us understand and im-
prove TROLL’s ability to simulate forest structure and com-
position in the understorey.

TROLL 4.0 attributes individual trees to botanical species,
and it permits tree functional traits to vary within species.
It thus provides a finer-grained description of biodiversity
compared to models based on plant functional types (e.g.
Longo et al., 2018) and uses a description matching the one
of ecologists, in contrast with taxonomy-free continuous trait
spectrum approaches (e.g. Sakschewski et al., 2015). The
simulated species composition presented the classically ob-
served L-shaped profile of species rank abundance distri-
bution in the two sites, but with an overestimated species
evenness, resulting in under-abundant dominant species and
over-abundant rare species, as already observed in previous
versions of the model (Maréchaux and Chave, 2017). Sev-
eral simulation factors could have resulted in the overesti-
mation of species evenness. The species trait values were
extracted from global databases and partially imputed and
may therefore not represent the true trait values for the re-
gion concerned, which could affect the behaviour of individ-
ual species in the model. However, as this noise is random,
it seems unlikely that the global values and imputation led to
the skewed species abundance. More likely, the simulations
used an external seed rain representing immigration from a
continuous forest matrix. We implemented a homogeneous
seed rain, in which all species are equally abundant, as a con-
servative test of the model’s ability to represent community
assembly. Here, the simulated composition after regeneration
from bare ground is determined by species traits and their
simulated effect on demographic processes and species fit-
ness rather than prescribed differences in seed rain. However,
this homogeneous, and therefore unrealistic, seed rain main-
tains diversity in the simulated forest with a rescue effect and
can dampen species dominance by promoting less dominant
species through high immigration. The effects of the repre-
sentation of seed production, dispersal, and recruitment on
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Figure 8. Mean annual cycle of leaf area index (LAI) at Paracou and Tapajos, derived from fortnightly means, from different sources (see
the Methods section). Bands are the intervals of means across years, and the vertical yellow bands in the background correspond to the site’s
climatological dry season. Simulated values correspond to 10 years of simulations starting from the end state of 600-year regeneration from
bare ground with calibrated parameters at each site.

Figure 9. Mean annual cycle of normalized leaf area index per leaf age cohort, derived from fortnightly means, at Paracou and Tapajos. Note
that the three leaf age cohorts (young, mature, and old leaves) are not defined the same way in the three independent sources. Leaf age per
cohort depends on the individual leaf lifespan in TROLL 4.0 (see Maréchaux et al., 2025), while the transitions from young to mature and
mature to old are respectively fixed to 1.71 and 5.14 months in Yang et al. (2023) and fitted to 1 and 3 months in Wu et al. (2016). The
vertical yellow bands in the background correspond to the site’s climatological dry season. See Fig. A6 for absolute variation per cohort, site,
and dataset. Simulated values correspond to 10 years of simulations starting from the end state of 600-year regeneration from bare ground
with calibrated parameters at each site.
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Figure 10. Mean annual cycle of gross primary productivity for Paracou and Tapajos, derived from fortnightly means. The red lines represent
the gross primary productivity estimated from TROPOMI SIF, while the black lines represent the one derived from eddy flux measurements,
and the blue lines the simulated gross primary productivity with TROLL 4.0. Bands are the intervals of means across 10 years, and the vertical
yellow bands in the background correspond to the site’s climatological dry season. Simulated values correspond to 10 years of simulations
starting from the end state of 600-year regeneration from bare ground with calibrated parameters at each site. Interannual variations are
shown in Fig. A7.

Figure 11. Mean annual cycle of evapotranspiration for Paracou and Tapajos, derived from fortnightly means. The black lines represent
the evapotranspiration derived from eddy flux measurements and the blue lines the evapotranspiration simulated with TROLL 4.0. Bands
are the intervals of means across years, and the yellow vertical bands in the background correspond to the site’s climatological dry season.
Simulated values correspond to 10 years of simulations starting from the end state of 600-year regeneration from bare ground with calibrated
parameters at each site. Interannual variations are shown in Fig. A8.
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Figure 12. Daily averages of gross primary productivity as a function of daily maximum vapour pressure deficit, total incoming photosyn-
thetically active radiation, average temperature, and average wind speed for model-, satellite-, and eddy-flux-based estimates at Paracou (top)
and Tapajos (bottom). Lines illustrate the linear regression of the form y∼ log(x) and text the squared Pearson’s correlation coefficient R.

simulated communities should be further explored in the fu-
ture, especially for projections under disturbance scenarios
where forest regeneration is key (Díaz-Yáñez et al., 2024;
Hanbury-Brown et al., 2022).

TROLL 4.0 also explicitly simulates forest functional di-
versity in the community. Simulated functional trait dis-
tributions matched the observed distributions well at both
sites, as already observed in previous versions of the model
(Maréchaux and Chave, 2017). In Paracou, the main dis-
crepancies were the lack of individuals with high LMA (be-
tween 120 and 150 g m−2), low wood specific gravity (below
0.4 g cm−3), and/or high leaf area (above 100 cm2). In con-
trast, in Tapajos, the model tended to simulate lower LMA
and less negative turgor loss points on average. Since trait
combinations are structured at the species level, and trait
integration is high-dimensional in tropical forests, with de-
coupled leaf and wood economic spectra (Baraloto et al.,
2010a) and weak associations between leaf turgor loss point
and other leaf traits (Maréchaux et al., 2019), these discrep-
ancies can be more easily interpreted at Paracou where the
trait distributions are built on species-level (and not genus-
level) information. Regarding the lack of high-LMA individ-
uals, TROLL 4.0 underestimated the abundance of common
species such as Lecythis persistens and Licania alba, which
present high LMA. These species come from genera that are

hyperdominant across the Amazon basin (ter Steege et al.,
2013) but may be underrepresented in the simulations due
to the overestimation of species evenness in TROLL 4.0 as
discussed above. The lack of light-wood and high-leaf-area
individuals can be related to the underestimated abundances
of light-demanding and pioneer species with fast growth
(Chave et al., 2010), such as the ones of the genus Cecropia.
These species are known to quickly colonize forest gaps un-
der high-light conditions, thanks to fast carbon assimilation
and growth and the dispersal of a high number of small,
potentially dormant, seeds, leading to an omnipresence of
these species in the forest seed bank (Holthuijzen and Boer-
boom, 1982; Alvarez-Buylla and Martínez-Ramos, 1990).
In TROLL 4.0, the seed-size-mediated tolerance–fecundity
trade-off (Muller-Landau et al., 2010) is assumed to be per-
fectly equalizing, and all species present in the local seed
bank and able to thrive under the local light availability have
the same probability of being recruited per seed. However,
this assumption likely disadvantages gap-affiliated species
with a colonization strategy and could easily be revisited in
future model developments.
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Figure 13. Daily total evapotranspiration as a function of daily maximum vapour pressure deficit, total incoming photosynthetically active
radiation, average temperature, and average wind speed for model and eddy flux estimates at Paracou and Tapajos. Lines illustrate the linear
regression of the form y∼ log(x) and text the squared Pearson’s correlation coefficient R.

4.2 Leaf phenology

We calibrated and evaluated the new phenology module of
TROLL 4.0. The calibration of the three module parameters
(aT,o, bT,o, and δo), which together control the variation of
old-leaf fall under drying conditions, was conducted using
litterfall trap data. This resulted in a realistic litterfall sea-
sonality with a peak during the dry season as already doc-
umented (Manoli et al., 2018; Chave et al., 2010; Van Lan-
genhove et al., 2020). Interestingly, the calibration resulted
in the same values for two parameters at the two sites (aT,o,
bT,o) and close values for the third one (δo) to which the sim-
ulated litterfall pattern is less sensitive (Fig. A5). At both
sites, simulations with the mean value of the third parame-
ter resulted in similar evaluations (not shown). This suggests
a good transferability of the phenology module across sites
without the need for site-specific calibration, although this
remains to be further tested at additional sites and in contrast-
ing conditions (e.g. Restrepo-Coupe et al., 2016). A faster
shedding of old leaves was assumed to depend on soil wa-
ter potential in the root zone rather than soil water content,
on individual leaf water potential at turgor loss point, and
on tree size. These are biologically reasonable hypotheses
and this supports a good generality of the module. However,
the current implementation of leaf dynamics in TROLL 4.0

leads to an underestimation of the flux of litterfall in wet and
dry seasons and, as a result, of total annual litterfall at both
sites. In TROLL 4.0, leaf lifespan was parameterized based
on an empirical relationships with leaf structure (leaf mass
per area; Maréchaux et al., 2025). Previous relationships pro-
vided in the literature (Reich et al., 1991, 1998; Wright et al.,
2004) provided contrasting leaf lifespan estimates, with the
one implemented in TROLL 4.0 providing estimates among
the highest values, calling for a more in-depth exploration of
the reliability and transferability of these empirical relation-
ships. Alternative representations, such as the ones based on
optimality principles (Kikuzawa 1991; Franklin et al., 2020;
Manzoni et al., 2015), and their combination with the en-
vironmentally driven old-leaf shedding acceleration imple-
mented in the new module could be explored in the future.

The evaluation of leaf area index (LAI) and its dynamics
was difficult due to the number of products that yield incon-
sistent time series. Remotely sensed MODIS LAI showed a
very small seasonal variation with a slight increase in LAI
starting at the beginning of the dry season at both sites. How-
ever, MODIS LAI data products are known to be susceptible
to the uncertainty affecting the bidirectional reflectance and
to saturate at high LAI values (Petri and Galvão, 2019). Lo-
cal measurements of LAI through UAV-borne lidar in Para-
cou showed a stronger increase in total LAI of 0.5 m2 m−2
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starting at the beginning of the dry season, leading to a max-
imum in the dry season. This pattern of variation was in
strong agreement with that simulated for LAI by TROLL
4.0. Similarly, local measurements of top canopy LAI de-
rived from phenological cameras in Tapajos (Wu et al., 2016)
also showed a high increase in total LAI in the dry season,
above 0.5 m2 m−2, also in good agreement with the seasonal
LAI variation simulated by TROLL 4.0 at that site. By con-
trast, the LAI derived from terrestrial vertical lidar in Tapajos
showed almost no variations (Smith et al., 2019), and such
differences with both the patterns derived from phenologi-
cal cameras and simulations need to be further scrutinized.
Among potential explanations, LAI from TLS in Tapajos was
adjusted to the annual mean of 5.7 (Stark et al., 2012), lead-
ing to lower absolute variations than what was obtained else-
where, and used coarse spatial and temporal resolutions over
small spatial and temporal extents (see the Methods section).
The discrepancy with simulated patterns could also be linked
to uncertainties in LAI variations in the understorey in our
simulations. Recent studies have suggested opposite varia-
tions in LAI between the canopy and the understorey (Nunes
et al., 2022), which should be further explored with TROLL
4.0. Overall, while obtaining a robust estimate of LAI tempo-
ral variation in tropical forests remains a challenge (Vincent
et al., 2023; Bai et al., 2024), the relative variation of LAI
simulated by TROLL 4.0 matched the most reliable prod-
ucts at each site, providing an encouraging assessment of
this model’s ability. Importantly, while total LAI variation re-
mains limited on average within a year in tropical rainforests,
this hides important turnover across leaf ages and species,
and to ensure robust predictions models should endeavour to
represent such turnover and its underlying processes (Wu et
al., 2017a).

The dry-season increase in total LAI simulated in TROLL
4.0 corresponds to a rejuvenation of the canopy leaf cover
associated with a decrease in the LAI of old leaves at the be-
ginning of the dry season, directly followed by an increase in
the LAI of young leaves during the dry season. This turnover
is in very good agreement with the one captured by pheno-
logical cameras at Tapajos (Wu et al., 2016) and documented
in other studies (Yang et al., 2021; Doughty and Goulden,
2008), while the SIF-derived young-LAI pattern (Yang et
al., 2023) showed an opposite pattern at this site. The main
difference in simulated cohorts between the two sites is the
continuous dominance of old LAI in Tapajos, while mature
leaves dominated at the end of the dry season in Paracou.
This dominance of older (and less efficient) leaves in Tapa-
jos simulations may be linked to the underestimated litterfall
flux and soil water depletion during the dry season at this
site. However, the relative proportion of leaf area across the
different leaf age pools within and across datasets strongly
depends on the definition of the leaf age pools themselves.
These pools depend on the individual leaf lifespan in TROLL
4.0 (see Sect. 2.6.2 in Maréchaux et al., 2025), while the tran-
sitions from young to mature and mature to old are respec-

tively fixed to 1.71 and 5.14 months in Yang et al. (2023) and
fitted to 1 and 3 months in Wu et al. (2016). These contrast-
ing approaches may explain the higher relative importance of
old leaves in Wu et al. (2016) compared to Yang et al. (2023)
and the intermediate values of TROLL 4.0 (Fig. 9). The sea-
sonal dynamics of leaf cohorts remain poorly known in trop-
ical forests and additional high-resolution optical imagery,
e.g. by drones or phenological cameras, would be extremely
useful to better document these patterns.

4.3 Water and carbon fluxes

At Tapajos, DGVMs simulated opposite seasonal trends in
carbon and water fluxes compared to the observed ones (e.g.
Fig. 1 in Chen et al., 2020; Fig. 5 in Longo et al., 2019b;
Fig. 3 in Restrepo-Coupe et al., 2016). In contrast, TROLL
4.0 showed a good ability to represent the dynamics of both
carbon and water fluxes estimated with eddy covariance data.
In particular, TROLL 4.0 captures the dry-season increase
in gross primary productivity (GPP) and evapotranspiration
(ET) documented for light-limited forests (Guan et al., 2017;
Wagner et al., 2016; Aguilos et al., 2018). Simulated GPP
and ET also presented realistic daily responses to environ-
mental drivers, namely vapour pressure deficit (VPD), tem-
perature, incident radiation, and wind speed in both direction
and relative magnitude.

However, at Tapajos, we found that TROLL 4.0 overes-
timated ET during the dry season in comparison to eddy-
flux-derived ET values under high irradiance, high VPD, and
high temperature. Simulated ET consists of tree transpiration
summed over simulated individuals, water evaporation from
the topsoil layer, and the direct evaporation of the rainfall in-
tercepted by the canopy (Kunert et al., 2017). TROLL 4.0
may underestimate the stomatal control of transpiration dur-
ing the dry season at Tapajos. Accordingly, the control of ET
by atmospheric conditions in Tapajos was overestimated in
simulated data in comparison to observations, suggesting a
stronger coupling of vegetation and the atmosphere at that
site than simulated (De Kauwe et al., 2017). Underestima-
tion of stomatal control can result from the representation
of stomatal conductance and its responses to atmospheric
dryness and soil water availability. In particular, the use of
daily leaf pre-dawn water potential to control leaf-level gas
exchange, and not hourly variation of leaf water water po-
tential (see Eqs. 39 and 40 in Maréchaux et al., 2025), can
explain the overestimated ecosystem-level fluxes during the
dry season. More generally, leaf- to ecosystem-level fluxes
are active areas of research and alternative representations
could be considered in the future as availability of data in-
creases (Wolf et al., 2016; Anderegg et al., 2018; Sabot et
al., 2019; Lamour et al., 2022; see Sects. 2.5.2 and 2.5.3
and 4.1, and Appendix B in Maréchaux et al., 2025). Alter-
natively and/or concurrently, during the dry season, a lack
of stomatal control can be due to an overestimation of soil
water availability in the model. Soil water content dynam-
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ics depend on both the soil depth (Fig. A11) and the soil hy-
draulic properties. The two sites are known to present hetero-
geneity in soil properties, but here we performed simulations
with homogenous soil properties, both horizontally and ver-
tically. For instance, in Paracou, the topsoil layer is sandier
than the 15–30 cm layer (Van Langenhove et al., 2021). Al-
though TROLL 4.0 quantitatively captures the soil water de-
pletion observed during the dry season, it appears to underes-
timate this depletion compared to empirical estimates at both
sites (Fig. A10). This underestimation occurs in spite of the
agreement between simulated and eddy-covariance-derived
ET during the dry season in Paracou and of the higher sim-
ulated than eddy-covariance-derived ET during the dry sea-
son at Tapajos. Testing the model’s sensitivity to soil layer
thickness and properties will be important to perform prior
to forest projections under drier future conditions and model
spatial up-scaling (Meunier et al., 2022). For example, sim-
ulations with the ED2 model suggested that forest responses
to drier conditions at Tapajos strongly depended on soil tex-
ture (Longo et al., 2018). Overall, it would be valuable to
evaluate the model under drier conditions than the natural
climate variation at the two sites we focused on in this study,
such as under a throughfall exclusion experiment (Powell et
al., 2013; Yao et al., 2022). This would allow us to tease
out potential model limitations and further test its forecast-
ing capacity, and we hope to address this in a future con-
tribution. Finally, the greater disagreement between simu-
lated and eddy-covariance-derived ET at Tapajos than Para-
cou also calls for an in-depth evaluation of the global reanal-
ysis precipitation data at this site. More generally, the climate
of the Amazon is notoriously challenging for models and it
is important to further explore climate forcings in vegetation
models.

TROLL 4.0 tended to overestimate empirical GPP esti-
mates, particularly during the dry season, in comparison to
both eddy-covariance- and SIF-derived GPP. GPP is driven
by the photosynthetic activity of the canopy, which depends
on multiple processes (Diao et al., 2024; Slot et al., 2024) and
further work would be needed to discriminate among them,
while accounting for eddy covariance uncertainties (Cui and
Chui, 2019). Absorbed light typically has an overriding ef-
fect on the variation of GPP across seasons in these light-
limited rainforests (Yang et al., 2023; Guan et al., 2015),
and simulated GPP is sensitive to the parameters that con-
trol light transmission and absorbance (light extinction co-
efficient, apparent quantum yield; Maréchaux and Chave,
2017). Both are assumed to be fixed and constant in simu-
lations but are known to vary with leaf angle distribution and
leaf optical properties, depending on micro-environmental
conditions and species (Long et al., 1993; Poorter et al.,
1995; Meir et al., 2000; Kitajima et al., 2012). In addition,
after removing the effect of absorbed light, simulated GPP
showed less limitation to high values of VPD and temper-
ature compared to eddy-flux- or SIF-derived estimates. The
response of leaf-level gas exchanges to the joint effect of at-

mospheric dryness and soil water availability shows no clear
consensus across models (Powell et al., 2013; Trugman et al.,
2018) and could be underestimated during the dry season in
TROLL 4.0 simulations as discussed above for transpiration.
Simulated GPP was higher than inferred from eddy covari-
ance data, which was itself higher than GPP inferred from
SIF satellite data (Chen et al., 2022). The eddy-covariance-
derived GPP was obtained from the net ecosystem exchanges
using the nighttime partitioning method (Reichstein et al.,
2005). This method was developed for temperate forests with
greater temperature variations than tropical forests, which
could therefore bias the empirical estimates. In addition, the
eddy flux method has long been reported to underestimate
CO2 fluxes (Baldocchi, 2003; Gao et al., 2019). Similarly,
even though solar-induced fluorescence offers great potential
for the evaluation or the calibration of seasonal carbon fluxes
in vegetation models, especially as the tropics are underrep-
resented by eddy flux tower networks (Villarreal et Vargas,
2021), current SIF products should be used with care (Marrs
et al., 2020).

5 Conclusions

Here we evaluated the TROLL 4.0 individual-based forest
dynamics model, which is capable of jointly simulating for-
est structure, diversity, dynamics, and functioning. To this
end, we assembled data from forest inventories, eddy flux
towers, litterfall traps, UAV-borne and terrestrial lidar, phe-
nological cameras, and satellite products at two Amazonian
forest sites and found that TROLL 4.0 was able to realisti-
cally simulate the forest structure, composition, and dynam-
ics, water and carbon fluxes, and leaf area dynamics. In us-
ing data of different nature and under the control of different
processes, we limited the emergence of equifinality issues
(Medlyn et al., 2005), suggesting a good transferability and
robustness of TROLL 4.0.

Comparison with field inventories and aerial and satellite
data confirms TROLL 4.0’s ability to realistically simulate
the structure, composition, and dynamics of tropical forests,
without imposing constraints beyond the species pool and
calibrating more than three parameters. Discrepancies be-
tween the observed and simulated number of stems in small
size classes and the abundance of trait values specific to col-
onizing species suggest that further developments of regen-
eration processes are needed, a worthy endeavour in the con-
text of increased disturbance regimes. TROLL 4.0 was fur-
ther able to simultaneously simulate the seasonality of pro-
ductivity, evapotranspiration, and leaf area in these two light-
limited forests, as opposed to many current DGVMs (Chen et
al., 2020; Restrepo-Coupe et al., 2016; Longo et al., 2019b).
The model’s ability to simulate ecosystem fluxes is further
shown by the responses of carbon and water fluxes to en-
vironmental drivers, whose direction and relative importance
were well aligned with observations at both sites despite con-
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trasting climate and soil properties. Additionally, the dynam-
ics of total leaf area appeared to be realistically partitioned
into different leaf pools, as shown by the leaf rejuvenation
during the dry season in these systems (Wu et al., 2016; Yang
et al., 2021). However, further inspection of the leaf area dy-
namics across the canopy vertical profile would be useful.
Also, the model overestimation of productivity and evapo-
transpiration during the dry season calls for a more in-depth
exploration of the model representation of respiration, plant
hydraulics (e.g. stomatal control), and soil hydrology.

Overall, our analyses establish the suitability of TROLL
4.0 for simulating forest structure, diversity, dynamics, and
ecosystem functioning in short- and long-term studies of
tropical forest dynamics, paving the way for multiple appli-
cations (Maréchaux et al., 2021). TROLL 4.0 could thus be
used for projections of the effects of climate change on trop-
ical forests and exploration of the effect of biodiversity on
forest resilience to these changes (Sakschewski et al., 2015).
Similarly, as TROLL 4.0 retains the species-level taxonomic
description, it can also help explore the effects of manage-
ment practices such as timber production, for which half of
tropical forests are designated (Blaser and Küchli, 2011).
While the development of TROLL 4.0 will continue, in light
of knowledge improvement, novel data collection, and iden-
tification of uncertainties and discrepancies, we believe it
represents a valuable tool for addressing the major challenges
tropical forests are currently facing.
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Appendix A

Table A1. TROLL 4.0 global parameters.

Abbreviation Definition Units Value Nature∗ Reference

ca Carbon-free air concentration µmol mol−1 375 Constant

Press Atmospheric pressure kPa 101 Constant

kgeom Light extinction coefficient,
reflecting leaf geometric
arrangement

unitless 0.5 Constant Ross (1981)

absorptanceleaves Leaf absorptance unitless 0.83 Literature Long et al. (1993);
Poorter et al. (1995)

θ Curvature factor (Farquhar
model parameter)

unitless 0.7 Literature Farquhar et al. (1980)

g0 Leaf minimum conductance for
water vapour

mmol H2O m−2 s−1 5 Literature Duursma et al. (2018)

aT,o Phenological parameter that
modulates old leaf drought
tolerance

unitless Calibrated

bT,o Phenological parameter that
modulates the height
dependence of leaf
susceptibility to drought

MPa Calibrated

δo Phenological parameter that
controls the pace of old leaf
shedding acceleration

unitless Calibrated

fwood Fraction of carbon allocated to
wood

unitless 0.35 Literature Aragão et al. (2019);
Malhi et al. (2011)

fcanopy Fraction of carbon allocated to
canopy

0.25 Literature Aragão et al. (2019);
Malhi et al. (2011)

fgap Fraction of gaps in the tree
crown

0.15 Literature Fischer et al. (2019)

aCR Crown radius intercept unitless Calibrated

bCR Crown radius slope unitless Calibrated

aCD Crown depth intercept m 0 Literature Chave et al. (2005)

bCD Crown depth slope unitless 0.2 Literature Chave et al. (2005)

shapecrown Crown shape parameter 0.72 Calibrated

Ntot Intensity of the external seed
rain

seeds ha−1 50 000 Assumed

ns Number of reproduction
opportunities per mature tree

seeds tree−1 10 Assumed

m Reference background
mortality rate

death yr−1 Calibrated

vT Variance of the flexion moment
for tree fall

0.021 Calibrated

σh Intraspecific variation in height
(log scale)

m 0.19 Inferred Baraloto et al. (2010b)
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Table A1. Continued.

Abbreviation Definition Units Value Nature∗ Reference

σcr Intraspecific variation in crown
radius (log scale)

m 0.29 Calibrated Fischer et al. (2019)

σcd Intraspecific variation in crown
depth (log scale)

m 0

σdbhthres Intraspecific variation in
maximum diameters (log scale)

m 0.05 Inferred Baraloto et al. (2010b)

corrcr-h Intraspecific correlation
between crown radius and
height

0

σP Intraspecific variation in
phosphorus (log scale)

g g−1 0.24 Inferred Baraloto et al. (2010b)

σN Intraspecific variation in
nitrogen (log scale)

g g−1 0.12 Inferred Baraloto et al. (2010b)

σLMA Intraspecific variation in leaf
mass per area (log scale)

g m−2 0.24 Inferred Baraloto et al. (2010b)

σwsg Intraspecific variation in wood
specific gravity

g cm−3 0.06 Inferred Baraloto et al. (2010b)

σLA Intraspecific variation in leaf
area (log scale)

cm2 0.48 Inferred Schmitt and Boisseaux
(2023)

σtlp Intraspecific variation in turgor
loss point (log scale)

MPa 0.10 Inferred Schmitt and Boisseaux
(2023)

corrN-P Intraspecific correlation
between nitrogen and
phosphorous

0.65 Inferred Baraloto et al. (2010b)

corrN-LMA Intraspecific correlation
between nitrogen and leaf mass
per area

−0.43 Inferred Baraloto et al. (2010b)

corrP-LMA Intraspecific correlation
between phosphorus and leaf
mass per area

−0.39 Inferred Baraloto et al. (2010b)

∗ “Assumed” indicates a value that is supposed; “calibrated” indicates a value that was previously calibrated; “constant” indicates a physical constant;
“inferred” indicates a value that has been derived from an existing dataset; “literature” indicates a value prescribed from the literature.
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Table A2. Evaluation of forest structure, composition, and fluxes explored at Paracou and Tapajos. Evaluations include the goodness of fit
R2 from the linear regression with a null intercept, the Pearson’s r correlation coefficient (CC), the root mean square error of prediction
(RMSEP), and the standard deviation of the error of prediction (SD).

Site Variable Unit Observations Temporal
resolution

R2 CC RMSEP SD

Paracou height % Plane single 0.93 0.95 0.76 0.76
Tapajos height % Plane single 0.94 0.94 0.56 0.55

Paracou height % Satellite single 0.95 0.96 0.55 0.55
Tapajos height % Satellite single 0.92 0.91 0.69 0.62

Paracou BA understorey m2 ha−1 Inventory single 0.94 0.90 0.12 0.08

Paracou Number of stems in
understorey

ha−1 Inventory single 0.99 1.00 342.15 309.81

Paracou Rank abundance ha−1 Inventory single 0.89 0.88 0.59 0.44
Tapajos Rank abundance ha−1 Inventory single 0.47 0.96 1.10 0.68

Paracou GPP kgC m−2 yr−1 eddy flux day 0.97 0.60 0.75 0.67
Tapajos GPP kgC m−2 yr−1 eddy flux day 0.97 0.45 1.12 0.67

Paracou GPP kgC m−2 yr−1 Satellite day 0.95 0.45 1.18 0.80
Tapajos GPP kgC m−2 yr−1 Satellite day 0.96 0.22 1.54 0.28

Paracou LAI m2 m−2 Satellite 15 d 1.00 0.69 0.29 0.13
Tapajos LAI m2 m−2 Satellite 15 d 1.00 0.55 0.26 0.17

Paracou LAI m2 m−2 Drone 15 d 1.00 0.84 0.11 0.11
Tapajos LAI m2 m−2 Terrestrial 15 d 1.00 0.25 0.32 0.20
Tapajos LAI m2 m−2 PhenoCam 15 d 1.00 0.91 0.11 0.08

Paracou ET mm d−1 eddy flux day 0.96 0.69 0.60 0.60
Tapajos ET mm d−1 eddy flux day 0.96 0.75 0.75 0.63
Paracou RSWC % eddy flux day 0.97 0.77 0.24 0.13

Tapajos RSWC % eddy flux day 0.99 0.39 0.20 0.11

Table A3. Comparisons of forest structure and phenology parameter values from the five best fits, including minimum, maximum, and
median values, as well as the one of the best fit. Note that the median of the parameter values of the five best fits always equal the value of
the best fit, except for m at Paracou with a small difference of 0.0025 and δ0 in both sites.

Site Parameter Minimum Median Best Maximum

Paracou aCR 1.80 1.80 1.80 1.90
Paracou bCR 0.386 0.386 0.386 0.443
Paracou m 0.0325 0.0325 0.0350 0.0375
Paracou aT,0 0.2 0.2 0.2 0.2
Paracou bT,0 0.015 0.02 0.015 0.02
Paracou δ0 0.1 0.4 0.1 0.5
Tapajos aCR 2.35 2.45 2.45 2.50
Tapajos bCR 0.6994 0.7565 0.7565 0.7850
Tapajos m 0.0300 0.0400 0.0400 0.0500
Tapajos aT,0 0.2 0.2 0.2 0.3
Tapajos bT,0 0.015 0.015 0.015 0.015
Tapajos δ0 0.2 0.3 0.2 0.5
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Figure A1. Representativity of imputed functional trait values (red)
against raw functional trait values (blue) from various datasets (see
the Methods section). Traits were imputed using predictive mean
matching for ah, dbhthres, hlim, and πtlp only. The number in each
panel represents the number of species with a trait value in the raw
data and after imputation, respectively, composing the blue and red
curves.

Table A4. Calibrated parameter intervals for the five best simulations for stem distribution, number of stems, basal area, and aboveground
biomass, as well as the one with equal weighing among them. Values show the median first followed by minimum and maximum values in
brackets.

Site Metric RMSEP aCR bCR m

Paracou Number of stems 5.75 [2–7.75] 1.75 [1.75–1.8] 0.3575 [0.3575–0.386] 0.0475 [0.0375–0.05]
Paracou Basal area 0.04 [0.03–0.07] 1.85 [1.65–2] 0.4715 [0.3505–0.5075] 0.0325 [0.03–0.05]
Paracou Stem distribution 2.4 [1.38–2.7] 1.85 [1.8–1.9] 0.4145 [0.386–0.443] 0.0425 [0.0325–0.05]
Paracou All equally weighted 0.16 [0.13–0.17] 1.8 [1.8–1.9] 0.386 [0.386–0.443] 0.0325 [0.0325–0.0375]
Tapajos Number of stems 3 [0–3.5] 2.5 [2.4–2.65] 0.785 [0.728–0.9205] 0.035 [0.03–0.04]
Tapajos Aboveground biomass 0.13 [0.04–0.19] 2.45 [2.35–2.5] 0.835 [0.6495–0.885] 0.045 [0.03–0.05]
Tapajos Stem distribution 2.54 [2.38–2.74] 2.35 [2.3–2.35] 0.6995 [0.671–0.6995] 0.045 [0.0375–0.05]
Tapajos All equally weighted 0.25 [0.18–0.25] 2.45 [2.35–2.5] 0.7565 [0.6995–0.785] 0.04 [0.03–0.05]
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Figure A2. Comparisons of CHIRPS (red) and ERA5-Land (blue) precipitation products against local eddy flux tower measurements re-
trieved from FLUXNET 2015 in Paracou at daily, 5 d, 15 d, and monthly resolutions. CHIRPS and ERA5-Land had similar agreement
to locally measured precipitations, with even higher correlations for ERA5-Land than CHIRPS. However, they both overestimated low-
precipitation events and underestimated high-precipitation events, resulting in low agreement for daily variations (R2 of 0.10 and 0.22),
which quickly increases for 5 d (R2 of 0.39 and 0.53) and 15 d variations (R2 of 0.63 and 0.73). Although a similar assessment was not
possible in Tapajos due to a lack of local reliable rainfall data, we decided to keep ERA5-Land for filling the precipitation data gaps in
Tapajos.

Figure A3. 600-year spin-up simulations from bare ground with calibrated parameters showing equilibrium reached by the number of
stems (b) and aboveground biomass (AGB) (a) at Paracou (red) and Tapajos (blue).
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Figure A4. Sensitivity of forest structure (a) and forest litterfall (b) to calibrated parameters. Forest structure and forest litterfall sensitivity
to each parameter was assessed with partial correlation coefficients (PCCs) using the function pcc of the R package sensitivity with 1000
bootstrap draws to assess confidence intervals. The intercept and slope of the crown radius allometry aCR and bCR had a strong effect on
forest structure, i.e. number of stems (red), aboveground biomass (AGB, light green), and basal area (BA, green). Basal mortality m also had
a strong effect on aboveground biomass (AGB) and basal area (BA) but little to no effect on the number of stems. aT,0 and bT,0 had a strong
positive effect on the peak day of litterfall (blue) and a negative effect on the ratio of the peak of litterfall (purple), but delta0 had only a weak
effect on the peak of litterfall. The forest structure variables, namely number of stems, aboveground biomass (AGB), and basal area (BA),
showed little to no partial correlations with aT,0, bT,0, and delta0.
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Figure A5. Effect of each parameter of the new leaf shedding module on the simulated timing and intensity of the litterfall peak during the
dry season. Top panels illustrate simulated variations of litterfall at both sites for varying aT,0, bT,0, and δ0 with the other parameters fixed to
a calibrated value. Bottom panels illustrate the corresponding timing and intensity of the dry-season litterfall peak: (i) the day of the litterfall
peak as the Julian day of the maximum annual value (day) and (ii) the ratio between the peak value (computed as the average of litterfall
flux over the two consecutive time intervals before and after the peak day) and the basal flux (computed as the average between January
and April). aT,0 mainly limited the intensity of the peak, with a peak up to 60 times the wet-season base litter flux with small parameter
values close to 0.01 and no peak with values greater than 0.3 when bT,0 = 0.02 and δ0 = 0.2. Values of aT,0 greater than 0.1 also resulted in
a later peak during the dry season. bT,0 mainly influenced the date of the simulated peak during the dry season, as well as the intensity of
the simulated peak for values greater than 0.1. Indeed, low values of bT,0, close to 0.01, resulted in a peak starting in September, while high
values showed a peak starting in December when aT,0 = 0.2 and δ0 = 0.2. Finally, δ0 appeared to have a smaller influence on the intensity
and timing of the simulated litter peaks. Higher values of δ0 increased the duration of the simulated peaks or the litter flux between two peaks
during the same dry season.

Figure A6. Mean annual cycle of leaf area index per leaf age cohort, derived from fortnightly means, at Paracou and Tapajos. Note that the
three leaf age cohorts (young, mature, and old leaves) are not defined the same way in the three sources. Leaf age per cohort depends on
the individual leaf lifespan in TROLL 4.0 (see Maréchaux et al., 2025), while the transitions from young to mature and mature to old are
respectively fixed to 1.71 and 5.14 months in Yang et al. (2023) and fitted to 1 and 3 months in Wu et al. (2016). Bands are the intervals of
means across years, and the vertical yellow bands in the background correspond to the site’s climatological dry season.
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Figure A7. Daily and monthly means of gross primary productivity for Paracou and Tapajos. Dark lines are the monthly means, and semi-
transparent lines are the daily mean variations with the exception of satellite data, for which data are available only every 8 d.

Figure A8. Daily and monthly total of evapotranspiration for Paracou and Tapajos. Dark lines are the monthly means, and semi-transparent
lines are the daily mean variations.
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Figure A9. Mean annual cycle of evapotranspiration partitioning between canopy evaporation (red), soil evaporation (green), and tree tran-
spiration (blue) for Paracou (a) and Tapajos (b), derived from fortnightly means simulated with TROLL 4.0. Bands are the intervals of means
across years, and the yellow vertical bands in the background correspond to the site’s climatological dry season. Simulated values correspond
to 10 years of simulations starting from the end state of 600-year regeneration from bare ground with calibrated parameters at each site.

Figure A10. Mean annual cycle from daily means of relative soil water content for Paracou and Tapajos for the topsoil layer up to 10 cm. Dark
lines are the daily mean across years, and semi-transparent lines are the daily means per year. The vertical yellow bands in the background
correspond to the site’s climatological dry season.
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Figure A11. Mean annual cycle from daily means of soil water content for Paracou and Tapajos at different depths. The depth value indicates
the maximum depth of the layer. Dark lines are the daily means across years, and bands are the intervals of means across 10 years; the vertical
yellow bands in the background correspond to the site’s climatological dry season.

Figure A12. Daily averages of light use efficiency as a function of daily maximum vapour pressure deficit, average temperature, and average
wind speed for model-, satellite-, and eddy-flux-based estimates at Paracou (a, b, c) and Tapajos (d, e, f). Lines illustrate the linear regression
of the form y∼ log(x), and text indicates the squared Pearson’s correlation coefficient R. The light use efficiency (LUE) was obtained by
normalizing gross primary productivity (GPP) by photosynthetic photon flux density (PPFD) and the fraction of absorbed photosynthetically
active radiation (fAPAR), itself derived from leaf area index (LAI).
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Figure A13. Magnitude of the sensitivity of forest structure to calibrated parameters. For each forest structure variable, the magnitude of
the sensitivity to each parameter was assessed with regression assuming linear and monotonic relationships. The intercept (aCR, a, d, g) and
slope (bCR, b, e, h) of the crown radius allometry as well as the basal mortality rate (m, c, f, i) had a strong effect on aboveground biomass
(AGB, mg ha−1, top line), basal area (BA, m2 ha−1, middle line), and number of stems (N , trees ha−1, bottom line). Parameters on the
x axis are expressed in standard values to ease their comparisons. The blue line and equation represent the linear regression independently
relating each variable to each parameter.

Code and data availability. TROLL version 4.0 and fur-
ther developments are publicly available on GitHub as a
C++ standalone at https://doi.org/10.5281/zenodo.14013147
(Maréchaux et al., 2024) or wrapped into an R package at
https://doi.org/10.5281/zenodo.14012116 (Schmitt et al., 2024).
All the codes associated with the analyses described in this
paper are available at https://doi.org/10.5281/zenodo.14012085
(Schmitt, 2024), with a corresponding analysis notebook
at https://sylvainschmitt.github.io/troll_eval/ (last access:
21 July 2025). Inventory data for Paracou trees over
10 cm are available by request on the CIRAD data verse:
https://dataverse.cirad.fr/dataverse/paracou (Derroire et al., 2022).
Paracou understorey trees are available by request from PIs GS,
GD, and JC. Aerial lidar scanning data from Paracou are available
by request (PI: GV) from dos-Santos et al. (2019) for Tapajos.
Species data are available from Jucker et al. (2022), Maréchaux
et al. (2015), Guillemot et al. (2022), Vleminckx et al. (2021),
Maréchaux et al. (2019), Schmitt and Boisseaux (2023), Boisseaux
et al. (2025), Ziegler et al. (2019), Baraloto et al. (2010), and
TRY (Kattge et al., 2020). Soil data have been collected from
Van Langenhove et al. (2021), Silver et al. (2000), Quesada et
al. (2010), Sabatier et al. (1997), and Nepstad et al. (2002). Eddy

covariance data from the Paracou and Tapajos sites are
available on FLUXNET at https://fluxnet.fluxdata.org (Pas-
torello et al., 2020b). ERA5-Land data are available on
the Climate Data Store: https://doi.org/10.24381/cds.e2161bac
(Muñoz Sabater, 2019) TROPOMI SIF satellite data are avail-
able in Chen et al. (2022). Litterfall data at Tapajos are
available online through the Oak Ridge National Labora-
tory (ORNL) Distributed Active Archive Center (DAAC) at
https://doi.org/10.3334/ORNLDAAC/862 (Rice et al., 2008) and
upon request at Paracou from PI DB. MODIS LAI data are
available online and were extracted from PLUMBER2 on Re-
search Data Australia: https://doi.org/10.25914/5FDB0902607E1
(Ukkola, 2020). Terrestrial LAD data from Tapajos are available
in Smith et al. (2019). Lidar PAD data from Paracou are available
upon request from PIs NB and GV. LAI variations among young,
mature, and leaf cohorts are available from the reanalysis of Yang
et al. (2023) at https://doi.org/10.6084/m9.figshare.21700955.v4
(Yang et al., 2022) and from the phenological camera of Wu et
al. (2016) at https://doi.org/10.5061/dryad.8fb47 (Wu et al., 2017b).
Tapajos soil moisture data from Restrepo-Coupe et al. (2024) are
available at https://doi.org/10.5061/dryad.d51c5b08g (Restrepo-
Coupe et al., 2023).
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Brůna, J., Fischer, R., Fischer, S. M., Hetzer, J., Hickler, T.,
Hochauer, C., Lexer, M. J., Lischke, H., Mairota, P., Merganič,
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