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Abstract. Accurately estimating gross primary productivity
(GPP) in terrestrial ecosystems is essential for understand-
ing the global carbon cycle. Satellite-based light use effi-
ciency (LUE) models are commonly employed for simulat-
ing GPP. However, the variables and algorithms related to
environmental limiting factors differ significantly across var-
ious LUE models, leading to high uncertainty in GPP esti-
mation. In this work, we developed a series of FLAML-LUE
models with different variable combinations. These mod-
els utilize the Fast Lightweight Automated Machine Learn-
ing (FLAML) framework, using variables of LUE models,
to investigate the potential of estimating site-scale GPP. In-
corporating meteorological data, eddy covariance measure-
ments, and remote sensing indices, we employed FLAML-
LUE models to assess the impact of various variable com-
binations on GPP across different temporal scales, including
daily, 8 d, 16 d, and monthly intervals. Cross-validation anal-
yses indicated that the FLAML-LUE model performs excel-
lently in GPP prediction, accurately simulating both its tem-
poral variations and magnitude, particularly in mixed forests
and coniferous forests, with averageR2 values for daily-scale
simulations reaching 0.92 and 0.91, respectively. However,
the model performed less effectively in alpine shrubland and
typical grassland ecosystems, though it still outperformed
both MODIS GPP and PML GPP in terms of performance.
Furthermore, the model’s adaptability under extreme climate
conditions was evaluated, and the results showed that high
temperatures and high vapor pressure deficit (VPD) lead to a

slight decrease in model accuracy, thoughR2 remains around
0.8. Under drought conditions, the model’s performance im-
proved slightly in croplands and evergreen broadleaf forests,
although it declined at some sites. This study offers an ap-
proach to estimate GPP fluxes and evaluate the impact of
variables on GPP estimation. It has the potential to be applied
in predicting GPP for different vegetation types at a regional
scale.

1 Introduction

The global carbon budget mainly addresses the carbon re-
serves in the atmosphere, oceans, and terrestrial ecosystems
(Barbour, 2021), with terrestrial ecosystems being vital for
regulating the global carbon cycle (Gherardi and Sala, 2020;
Landry and Matthews, 2016). Terrestrial ecosystems primar-
ily absorb atmospheric carbon dioxide through the process
of plant photosynthesis, which is crucial for regulating cli-
mate and mitigating global warming (Sellers et al., 2018;
Beer et al., 2010; Cox et al., 2000). Gross primary productiv-
ity (GPP) is a critical measure of carbon exchange between
terrestrial ecosystems and the atmosphere (Menefee et al.,
2023). Accurate quantification of GPP is essential for evalu-
ating carbon balance and comprehending the response of ter-
restrial ecosystems to climate change (Sellers et al., 2018).

The primary method currently used for measuring CO2 ex-
change between ecosystems and the atmosphere is the eddy
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covariance technique (Chen et al., 2020; Yu et al., 2016).
This technique precisely measures net ecosystem exchange
(NEE), which is the difference between the carbon released
by ecosystem respiration (ER) and the carbon taken up by
photosynthesis (Bhattacharyya et al., 2013). While flux ob-
servation sites based on the eddy covariance (EC) technique
can dynamically monitor site-scale carbon fluxes, expanding
their findings to larger regional scales remains challenging,
mainly due to the sparse and spatially non-uniform distribu-
tion of flux sites (Xie et al., 2023; Jung et al., 2020). Re-
mote sensing data are widely used in ecosystem carbon cycle
research as they can provide information on the spatial dy-
namics of vegetation and climate at a larger scale (Xiao et
al., 2019). By extrapolating spatially using models that in-
corporate remote sensing and climate data, it is possible to
estimate global GPP based on observations of GPP at the site
level. Therefore, remote sensing has become a crucial data
resource for estimating GPP (Cai et al., 2021; Xiao et al.,
2019; Wang et al., 2011).

Light use efficiency (LUE) models based on satellite ob-
servations are commonly employed to simulate GPP (Zhang
et al., 2023b, 2015; Jiang et al., 2014). Such models include
Physiological Principles Predicting Growth using Satellite
data (3-PGS; Coops and Waring, 2001), the Carnegie-Ames-
Stanford Approach (CASA; Potter et al., 1993), the Eddy
Covariance–Light Use Efficiency Model (EC-LUE; Yuan et
al., 2010, 2007), the MODIS Global Terrestrial Gross and
Net Primary Production (MOD17; Running et al., 2004), the
Vegetation Photosynthesis Model (VPM; Xiao et al., 2003),
and the Vegetation Photosynthesis and Respiration Model
(VPRM; Mahadevan et al., 2008). Among all the forecasting
methods (Coops and Waring, 2001; Potter et al., 1993), the
LUE model is widely utilized for simulating the spatiotem-
poral dynamics of GPP due to its simplicity and strong theo-
retical foundation. Over the past few decades, numerous GPP
models utilizing LUE have been developed (Pei et al., 2022).

Despite significant advances in LUE theory for GPP esti-
mation, uncertainties persist in GPP models utilizing LUE.
Firstly, differences in environmental limiting factors among
various LUE models contribute significantly to the uncer-
tainty in GPP estimation. For example, Cai et al. (2014)
found a strong positive correlation between water effective-
ness and GPP estimate factors, while other studies found that
the LUE model estimates of GPP were strongly correlated
with the vegetation index, which affects the photosynthetic
capacity of vegetation through leaf nitrogen content (Pel-
toniemi et al., 2012; Ercoli, 1993).

Recently, with the massive accumulation of satellite data
and ground-based observations, more and more studies have
applied machine learning (ML) methods to model ecosystem
processes (Zhao et al., 2019; Alemohammad et al., 2017;
Chaney et al., 2016). ML is a modeling solution that dif-
fers from simple regression models and complex simula-
tion models in its approach. It is very effective in handling
large-scale multivariate data with complex relationships be-

tween predictors (Reichstein et al., 2019; Tramontana et
al., 2016). These data-driven models are particularly suited
for capturing nonlinear ecosystem dynamics but often re-
quire large training datasets and may lack explicit links to
real-world processes. However, their ability to uncover spa-
tial patterns without process-based constraints makes them
valuable for spatial predictions. Consequently, ML-based ap-
proaches have gained popularity in recent years. For exam-
ple, Kong et al. (2023) developed a hybrid model that com-
bines ML and the LUE model to estimate GPP. This hybrid
model improves the LUE model by integrating a machine
learning approach (MLP, multi-layer perceptron) and esti-
mates GPP using the MLP-based LUE framework along with
additional required inputs. Chang et al. (2023) constructed
RFR-LUE models that utilize the Random Forest Regression
(RFR) algorithm with variables of LUE models to assess the
potential of site-scale GPP estimation.

Lately, automated machine learning (AutoML) has
demonstrated significant potential in constructing data-
driven models automatically (Zheng et al., 2023). Numer-
ous sophisticated open-source AutoML frameworks have
been suggested by computer scientists, including Automated
WEKA (Auto-WEKA; Thornton et al., 2013), H2O AutoML
(H2O; LeDell and Poirier, 2020), Tree-based Pipeline Opti-
mization Tool (TPOT; Melanie, 2023), Automated Machine
Learning with Gluon (AutoGluon; Erickson et al., 2020),
Fast Lightweight Automated Machine Learning (FLAML;
Wang et al., 2021a), and AutoKeras (Rosebrock, 2019).
These frameworks are extensively used in finance, manufac-
turing, healthcare, and mobile communications, among other
fields (Adams et al., 2020), with FLAML being particularly
favored for its efficiency in rapid prototyping and deploy-
ment in research and production settings. FLAML is a pow-
erful framework for AutoML, known for its speed in iden-
tifying top-performing models and optimal hyperparameters
through parallel optimization and smart search algorithms.
FLAML integrates several effective search strategies, outper-
forming other leading AutoML libraries on large benchmarks
even with constrained budgets (Wang et al., 2021a).

In this research, a new model called FLAML-LUE was
created by combining the FLAML model with LUE-based
models; the latter provides the key variables of vegetation
growth for modeling. Such knowledge- and data-driven mod-
els aim to reduce the large uncertainty in estimating GPP. The
specific objectives of this study are as follows: (1) to evalu-
ate the overall performance of models using different input
variables, including the fraction of photosynthetically active
radiation absorbed by vegetation (fPAR) and various water
stress indicators, across multiple sites and vegetation types
based on eddy covariance observations, and (2) to assess
model performance under extreme climatic conditions, such
as high temperature, elevated vapor pressure deficit (VPD),
and drought.
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2 Materials and methods

2.1 Site description

Figure 1 displays the geographical locations of the 20 flux
sites selected for the study. These sites are situated in various
climatic zones and ecosystem types including forest, grass-
land, and cropland. The observation data for these sites come
from the Science Data Bank (SDB, https://www.scidb.cn/en/,
last access: 7 May 2025). Detailed information about the sites
is provided in Table 1.

2.2 Data

2.2.1 Eddy covariance data

EC data were collected at 20 sites, including 8 forests sites,
7 grasslands sites, and 5 cropland sites (Table 1). Flux and
meteorological data were collected every half hour from the
mentioned sites. The flux and meteorological data underwent
standardized quality control and corrections, ensuring high
reliability and making them suitable for validating various
GPP models and remote sensing observations. However, ER
data were missing at some sites (DLG, LCA, XLG). To ad-
dress this, the Lloyd & Taylor equation (Reichstein et al.,
2005; Lloyd and Taylor, 1994) was applied to estimate ER
based on nocturnal respiration data. Daytime and nighttime
periods were distinguished using shortwave radiation (Rg),
with a threshold of 10 Wm−2. The temperature–response re-
lationship derived from nighttime ER was extrapolated to es-
timate daytime ER. This is a commonly used method for pro-
cessing flux data at flux tower sites.

Reco = Reco.ref exp
(
E0

(
1

Tref− T0
−

1
Tair− T0

))
(1)

GPP= ER−NEE (2)

In Eq. (1), Reco is the nocturnal ecosystem respiration value;
Reco.ref is the ER value at the reference temperature; Tref
is the reference temperature (298.16 K); E0 is constant
(308.56 K); T0 is the minimum temperature at which respi-
ration stops, set at 227.13 K; and Tair is the air temperature
or soil temperature (K). Daytime GPP was then estimated by
subtracting NEE from the total daytime ER.

2.2.2 MODIS data

In this study, remote sensing data were primarily obtained
from the Moderate Resolution Imaging Spectroradiometer
(MODIS). MODIS data offer a spatial resolution of 500 m
and an 8 d temporal resolution. These datasets were sourced
from the Google Earth Engine (GEE) platform (Gorelick
et al., 2017). To align with the spatial and temporal scales
of flux tower observations and reduce the impact of miss-
ing data (Schmid, 2002), we applied the Savitzky–Golay
smoothing filter with a window size of 10 to process the veg-
etation indices. Vegetation and water indices derived from

MODIS data included the enhanced vegetation index (EVI),
normalized difference vegetation index (NDVI), and land
surface water index (LSWI), which were calculated using the
formulas presented in Table 2.

2.2.3 ERA5-Land

ERA5-Land (Hersbach et al., 2020) is a global high-
resolution reanalysis dataset produced by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) under
the Copernicus Climate Change Service (C3S). It provides
hourly land surface variables at a spatial resolution of 0.1°,
generated using a dedicated land surface model driven by the
ERA5 climate reanalysis. The dataset integrates advanced
land surface modeling and data assimilation techniques, of-
fering a wide range of variables such as air temperature,
soil moisture, precipitation, and snow depth. In this study,
site-specific variables including air temperature (T ), soil wa-
ter content (SW), precipitation (Pre), and leaf area index
(LAI) were extracted from ERA5-Land. In addition, photo-
synthetically active radiation (PAR), evapotranspiration frac-
tion (EF), VPD, and relative humidity (RH) were calculated
and derived from available ERA5-Land variables using GEE.

2.2.4 SPEI Database, Version 2.10

The SPEI Database, Version 2.10 (Vicente-Serrano et
al., 2010), provides global data of the Standardized
Precipitation-Evapotranspiration Index (SPEI) across tem-
poral scales from 1 to 48 months. Developed by the Cli-
matic Research Unit (CRU), this dataset combines precipita-
tion and potential evapotranspiration (PET) to assess drought
conditions. Negative SPEI values indicate drought, while
positive values signify wet periods. In this study, SPEI values
less than −1.5 were used to identify drought months at each
flux station, highlighting significant moisture deficits that af-
fect vegetation growth and ecosystem productivity (Qian et
al., 2024).

2.3 Model construction

Most LUE models typically incorporate four main groups of
variables: PAR, fPAR, temperature, and water-related stress
indicators. In previous studies, vegetation indices such as
EVI, NDVI, or LAI have been widely used as proxies for
fPAR, representing the fraction of PAR absorbed by the
plant canopy (Chang et al., 2023; Qian et al., 2024). In
this study, we selected six water-related indicators based
on their ecological relevance: plant-based indicators (LSWI
and EF), soil-based indicators (SW), and atmospheric indica-
tors (VPD, precipitation, and relative humidity). Previous re-
search has shown that plant-based indicators like LSWI and
EF effectively capture canopy-level drought stress (Ander-
son et al., 2007; Xiao et al., 2004). Soil moisture regulates
water availability at the root level, which strongly influences
photosynthetic activity, particularly under water-limited con-
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Figure 1. The location map of the flux site is based on the map approved by the National Surveying and Mapping Bureau of China (approval
no. GS (2019)1822). The topographic map is derived from data provided by Esri, Maxar, Earthstar Geographics, and the GIS User Community
(Service Layer Credits).

Table 1. Basic information on the 20 flux stations.

Site Longitude (° E) Latitude (° N) Ecosystem type Time range Classified

HZF 123.018 51.781 Forest 2014–2018 NF
MEF 127.668 45.417 Forest 2016–2018 DBF
CBF 128.096 42.403 Forest 2003–2010 MF
QYF 115.058 26.741 Forest 2003–2010 NF
ALF 101.028 24.541 Forest 2009–2013 EBF
DHF 112.534 23.173 Forest 2003–2010 MF
BNF 101.577 21.614 Forest 2003–2015 EBF
YJF 101.827 26.080 Forest 2013–2015 SAV
XLG 116.671 43.554 Grassland 2006–2014 GRA
NMG 116.404 43.326 Grassland 2003–2010 Grassland
DLG 116.284 42.047 Grassland 2006–2015 Grassland
DMG 110.328 41.644 Grassland 2015–2018 Grassland
HBG_G01 101.313 37.613 Grassland 2015–2020 MEA
HBG_S01 101.331 37.665 Grassland 2003–2013 SHR
DXG 91.066 30.497 Grassland 2003–2010 MEA
JZA 121.202 41.148 Cropland 2005–2014 SC
GCA 115.735 39.149 Cropland 2020–2022 DC
SYA 113.200 37.750 Cropland 2012–2014 SC
LCA 114.413 37.531 Cropland 2013–2017 DC
YCA 116.570 36.829 Cropland 2003–2010 DC

Note that vegetation types in the table are classified based on the land cover characteristics of each flux site and are used in
subsequent model simulations. NF: needle-leaved forest; DBF: deciduous broadleaf forest; MF: mixed forest; EBF:
evergreen broadleaf forest; SAV: savannas; GRA: typical grassland; MEA: alpine meadow; SHR: shrubs; SC: single
cropping; DC: double cropping.
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Table 2. Predictor variables for driving the FLAML models and their specifications.

Variable Acquired method (formula) Original spatial Data source
resolution

fPAR EVI 2.5× (Rnir−Rred)/(Rnir+ 6.0×Rred− 7.5×Rblue+ 1)
500 m MOD09GA

NDVI (Rnir−Rred)/(Rnir+Rred)
LAI – ∼ 10 km ERA5-Land

Water LSWI (Rnir−Rswir)/(Rnir+Rswir) 500 m MOD09GA
EF (%) EF= LE/(LE+H) ∼ 10 km ERA5-Land
SW (m3 m−3) – ∼ 10 km ERA5-Land
VPD VPD= es− e ∼ 10 km ERA5-Land

e = 6.112× exp((17.67× Td)+ (243.5+ Td))
es = 6.112× exp((17.67× T )+ (243.5+ T ))

Pre (mm) – ∼ 10 km ERA5-Land
RH (%) RH= (e/es)× 100 ∼ 10 km ERA5-Land

Radiation PAR (µmolm−2 s−1) – ∼ 10 km ERA5-Land

Temperature T (°C) – ∼ 10 km ERA5-Land

VT EBF, DBF, NF, One-hot encoding invariant –
MF, GRA, MEA,
SHR, SC, DC

Season Spring, summer, One-hot encoding invariant –
autumn, winter

EVI: enhanced vegetation index, NDVI: normalized difference vegetation index, LAI: leaf area index, LSWI: land surface water index, EF: evaporative fraction, SW: surface
soil moisture, VPD: vapor pressure deficit, Pre: precipitation, RH: relative humidity, PAR: photosynthetically active radiation, and T : air temperature. NF: needle-leaved forest;
DBF: deciduous broadleaf forest; MF: mixed forest; EBF: evergreen broadleaf forest; SAV: savannas; GRA: typical grassland; MEA: alpine meadow; SHR: shrubs; SC: single
cropping; DC: double cropping. In the formulas for EVI and NDVI, Rnir, Rred, Rblue, and Rswir represent the surface reflectance in the near-infrared (NIR), red, and blue
spectral bands, respectively. In the EF calculation formula, LE refers to latent heat flux, while H represents sensible heat flux. In the RH formula, e is the actual vapor pressure,
es is the saturation vapor pressure, Td is the dew point temperature, and T is the air temperature.

ditions (Vicca et al., 2014; Reichstein et al., 2007). Mean-
while, atmospheric indicators such as VPD, precipitation,
and RH influence stomatal conductance and transpiration by
altering the vapor pressure gradient between the leaf surface
and the surrounding air (Wang et al., 2018; Novick et al.,
2016). To assess the relative importance of these different
types of water stress indicators in estimating GPP, we devel-
oped machine learning models using each group individually.
This allowed us to identify the most effective type of water-
related variable for simulating GPP across diverse ecosys-
tems within the LUE modeling framework.

The flowchart of this study is shown in Fig. 2.

2.3.1 Data pre-processing and splitting strategy

The primary datasets for estimating GPP with FLAML-LUE
models include multi-year continuous EC flux data, satellite-
based observations, and ERA5-Land climate reanalysis data.
Prior research (Jung et al., 2011) has demonstrated notable
seasonal fluctuations in GPP; we divided the time series data
into four distinct seasons. Moreover, the vegetation cover
type, which varies across different ecosystems, greatly im-
pacts the accuracy of GPP simulation (Chang et al., 2023).
Hence, we integrate vegetation type as a factor in our model.

The pre-processed dataset was divided into training and
testing sets using the Blocked Time Series Split strategy.
Given the temporal dependency of the data, standard cross-
validation is not suitable for time series analysis (Reich-
stein et al., 2019). Instead, a block-based and non-continuous
split is applied to preserve the temporal structure. In this
approach, the time series is partitioned into several non-
overlapping continuous training blocks (e.g., 2003–2005,
2007–2009, 2011–2013, 2015–2017, 2019–2021), with inde-
pendent years reserved as the validation set following each
training block (e.g., 2006, 2010, 2014, 2018, 2022). This
strategy ensures that the temporal order is maintained, pre-
venting future data from leaking into the training process and
thus avoiding invalid predictions. Additionally, the method
incorporates validation over multiple periods, enabling the
assessment of model generalization across different climate
conditions, which is crucial for evaluating the model’s ro-
bustness under varying environmental scenarios.

2.3.2 Automated machine learning (AutoML)

Instead of applying a specific ML method like RF for build-
ing regression models, we utilize the lightweight Python
library “FLAML” version 2.3.3 (Wang et al., 2021a) for
the AutoML task (Metin and Bilgin, 2024). FLAML opti-
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Figure 2. Flowchart of this study. S-G smoothing filtering: Savitzky–Golay smoothing filtering method, L & T equation: Lloyd & Taylor
equation.

mizes the search process by balancing computational cost
and model error, iteratively selecting the learner, hyperpa-
rameters, sample size, and resampling strategy (Wang et al.,
2021a).

For our regression tasks, AutoML was configured with the
“auto” option for the estimator list, focusing on optimizing
the R2 metric and using a time budget of 120 s per run. Un-
der this “auto” setting, FLAML explores a variety of built-in
regression estimators, including the following:

1. LightGBM (Ke et al., 2017), a histogram-based gradient
boosting method designed for speed and scalability;

2. XGBoost (Chen and Guestrin, 2016), a regularized gra-
dient boosting framework known for its robustness and
accuracy;

3. CatBoost (Prokhorenkova et al., 2018), which effi-
ciently handles categorical features and reduces over-
fitting via ordered boosting;

4. Random Forest (Breiman, 2001), an ensemble method
utilizing bootstrap aggregation of decision trees;

5. Extra Trees (Geurts et al., 2006), which enhances ran-
domness in split point selection for tree construction;

6. Histogram-based Gradient Boosting (Brownlee, 2020),
which accelerates training through feature binning;

7. K-nearest neighbors (Cover and Hart, 1967), a non-
parametric distance-based algorithm relying on local
data density;

8. Transformer models (Vaswani et al., 2023), deep learn-
ing architectures leveraging self-attention mechanisms,
adapted here for structured data regression.

Collectively, these estimators span a broad algorithmic
spectrum, including ensemble learning, distance-based meth-
ods, and neural networks, enabling FLAML to automatically
identify the optimal model architecture for the dataset and
objective.

2.3.3 Model development

Eighteen FLAML-LUE model variations were constructed
for all sites by combining different permutations of six in-
put factor groups, as described in Eq. (3) and detailed in Ta-
ble 3. Technically, the term “FLAML-LUE” does not refer
to a direct implementation of a mechanistic LUE model. In-
stead, it reflects a hybrid modeling strategy, through which
we incorporate key explanatory variables that originate from
LUE theory – such as fPAR, light-use efficiency modifiers,
and environmental stress indicators (e.g., VPD, temperature,
and water stress indices) – into an automated machine learn-
ing framework (FLAML). These variables capture the main
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drivers of vegetation productivity in traditional LUE models.
Their integration enables FLAML to build models that are
both ecologically grounded and predictive, effectively bal-
ancing model interpretability and accuracy.

GPP= f (PAR,T , fPAR,Wj ,VT,season), (3)

where fPAR includes EVI, NDVI, and LAI; Wj denotes
moisture factors including LSWI, EF, SW, PDSI, Pre, and
RH; VT represents vegetation types, in which forest ecosys-
tems include EBF, DBF, NF, MF, and SAV, grassland ecosys-
tems include GRA, MEA, and SHR, and farmland ecosys-
tems include SC and DC; and season represents the season
in which the original data were acquired.

2.3.4 Model performance evaluation methods

To evaluate the simulation accuracy of the FLAML-LUE
model in estimating GPP, we employed a suite of widely
used statistical metrics to quantify the agreement between
modeled and observed values (Qian et al., 2024; Chang et
al., 2023; Tramontana et al., 2016). Specifically, we calcu-
lated the coefficient of determination (R2), Pearson correla-
tion coefficient (R), normalized unbiased root mean square
error (nuRMSE), and normalized standard deviation (NSD;
σ̂f), based on GPP observations from flux towers and model
simulations. The Taylor diagram (Taylor, 2001) was utilized
to provide a visual summary of the model’s performance, in-
corporating R, nuRMSE, and NSD.

R2
=

[∑T
t=1(ft − f )(ot − o)

]2

∑T
t=1(ft − f )

2
∑T
t=1(ot − o)

2
(4)

R =

1
T

∑T
t=1(ft − f )(ot − o)

σfσo
(5)

nuRMSE=
uRMSE
σo

=
1
σo

√
1
T

∑T

t=1

[
(ft − f )− (ot − o)

]2
(6)

σ̂f =
σf

σo
=

1
σo

√
1
T

∑T

t=1

(
(ft − f )

)2
(7)

σo =

√
1
T

∑T

t=1
((ot − o))

2, (8)

where ot represents the observed GPP from the flux tower, ft
denotes the simulated GPP from FLAML-LUE model, o rep-
resents the average of observed GPP from the flux tower, f
represents the average of estimated GPP from the GPP prod-
uct, t represents the corresponding ID for the GPP data, and
n represents the total count of GPP data for the site. σo repre-
sents the standard deviations of the observed GPP. A higher
R2 value indicates better consistency between the estimated
GPP and the flux GPP.

In addition, the Taylor skill score (TSS) was computed to
quantitatively assess the overall agreement between simula-

tions and observations, with higher values indicating better
performance.

TSS=
4(1+R)(

σ̂f+
1
σ̂f

)2
(1+R0)

, (9)

where σf represents the standard deviations of the model sim-
ulation, and R0 denotes the maximum possible correlation
coefficient (in this study, R0 = 1). The TSS ranges from 0 to
1, with a higher TSS indicating better overall model perfor-
mance relative to the observations.

To further investigate model bias across sites, the per-
cent bias (PBias) was introduced (Qian et al., 2024). Pos-
itive PBias values indicate overestimation by the model,
while negative values suggest underestimation. The closer
the PBias is to zero, the more accurate the model’s estima-
tions. The calculation formula is as follows:

PBias=
∑T
t=1(ft − ot )∑T

t=1ot
× 100%. (10)

To evaluate the model’s ability to capture GPP dynamics
under extreme climate conditions, we identified heat waves
and high-VPD events using the 95th percentile of histor-
ical meteorological records (Stefanon et al., 2012; Ander-
son and Bell, 2010). Drought events were defined as months
with SPEI less than −1.5 (Ayantobo et al., 2019; Gumus,
2023). These definitions enabled us to evaluate model per-
formance under extreme environmental stresses (Qian et al.,
2024, 2023).

CVRMSE =

√
1
T

∑T
t=1(ft − ot )

2

o
× 100% (11)

To determine whether model performance differed sig-
nificantly across temporal resolutions (daily, 8 d, 16 d, and
monthly), we conducted paired t tests at a 0.05 significance
level. All statistical analyses were performed in Python 3.9
using libraries including numpy, pandas, scipy, matplotlib,
sklearn, and flaml. Complementary visualizations were pro-
duced in R using ggplot2, ggpubr, and readxl.

3 Results

3.1 Overall model evaluation based on ground-based
observations

To evaluate the model performance at the site level, the accu-
racy of the 18 FLAML-LUE models was assessed using test
datasets from individual flux tower sites. The algorithms se-
lected by each FLAML-LUE model are listed in Table S1 in
the Supplement. Notably, the Extra Trees algorithm was most
frequently chosen as the best-performing model. Extra Trees
is an ensemble method that constructs multiple unpruned de-
cision trees and introduces high randomness in both feature
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Table 3. Input variable combinations of fPAR and water stress indicators.

Group Input variables Group Input variables Group Input variables

FLAML00 NDVI, LSWI FLAML10 EVI, LSWI FLAML20 LAI, LSWI
FLAML01 NDVI, EF FLAML11 EVI, EF FLAML21 LAI, EF
FLAML02 NDVI, SW FLAML12 EVI, SW FLAML22 LAI, SW
FLAML03 NDVI, VPD FLAML13 EVI, VPD FLAML23 LAI, VPD
FLAML04 NDVI, Pre FLAML14 EVI, Pre FLAML24 LAI, Pre
FLAML05 NDVI, RH FLAML15 EVI, RH FLAML25 LAI, RH

EVI: enhanced vegetation index, NDVI: normalized difference vegetation index, LAI: leaf area index, LSWI: land surface
water index, EF: evaporative fraction, SW: surface soil moisture, VPD: vapor pressure deficit, Pre: precipitation, RH: relative
humidity.

and threshold selection, which enhances generalization and
reduces overfitting, particularly in noisy or high-dimensional
datasets. The consistent selection of Extra Trees suggests that
FLAML tends to favor models with higher stochasticity and
ensemble structures under the given data and computational
constraints.

Figure 3 presents the R, nuRMSE, and NSD values for
the 18 models. As shown in Fig. 3u, the model performance
shows relatively small differences across different combina-
tions of input indicators. Specifically (Table 4), the overall
R2 of the different FLAML-LUE models ranged from 0.78
to 0.82, while nuRMSE values ranged from 0.4240 to 0.4670.

Among the fPAR-related indices, the model driven by EVI
performed slightly better (R2

= 0.82, nuRMSE= 0.4265)
than models driven by NDVI (R2

= 0.80, nuRMSE=
0.4524) and LAI (R2

= 0.79, nuRMSE= 0.4561). Regard-
ing moisture stress indicators, the model using LSWI
as input achieved the best performance (R2

= 0.82,
nuRMSE= 0.4298), followed by models using VPD (R2

=

0.80, nuRMSE= 0.4455) and RH (R2
= 0.80, nuRMSE=

0.4450). Models driven by EF (R2
= 0.80, nuRMSE=

0.4487), SW (R2
= 0.80, nuRMSE= 0.4505), and Pre

(R2
= 0.80, nuRMSE= 0.4503) performed slightly worse,

though the differences were minimal.
As shown in Table 5, the performance of the FLAML-LUE

model varies considerably across different sites, with the av-
erage R2 ranging from 0.17 at DXG to 0.92 at CBF and
HBG_G01. Notably, this variation was primarily attributed
to site-level differences rather than the combinations of input
indicators (Fig. 3), highlighting the influence of land cover
type and climatic conditions on model performance.

The best model performance was observed at the HZF,
MEF, CBF, and HBG_G01 sites (R2 > 0.85, TSS> 0.9), fol-
lowed by QYF, DLG, JZA, and SYA (R2 > 0.75, TSS>
0.88). Within forest ecosystems, the model performed better
in MF, NF, and DBF than in EBF (ALF, BNF) and savan-
nas (YJF). MF, which includes both evergreen conifers and
deciduous broadleaf species, exhibits distinct seasonal varia-
tions that can be effectively captured by satellite imagery. In
contrast, EBF shows minimal seasonal greenness variation,
leading to larger modeling bias in GPP estimation.

Table 4. Summary of evaluation metrics for FLAML-LUE model
performance across all validation sites.

FLAML R2 R NSD nuRMSE TSS

FLAML00 0.82 0.91 0.8806 0.4240 0.9378
FLAML01 0.82 0.90 0.8717 0.4301 0.9340
FLAML02 0.82 0.90 0.8810 0.4299 0.9365
FLAML03 0.82 0.91 0.8748 0.4250 0.9360
FLAML04 0.82 0.91 0.8763 0.4254 0.9363
FLAML05 0.82 0.91 0.8691 0.4244 0.9346
FLAML10 0.82 0.90 0.8638 0.4277 0.9323
FLAML11 0.79 0.89 0.8641 0.4620 0.9237
FLAML12 0.79 0.89 0.8686 0.4597 0.9256
FLAML13 0.79 0.89 0.8592 0.4539 0.9244
FLAML14 0.79 0.89 0.8629 0.4585 0.9243
FLAML15 0.80 0.89 0.8671 0.4525 0.9271
FLAML20 0.81 0.90 0.8610 0.4376 0.9291
FLAML21 0.79 0.89 0.8551 0.4542 0.9230
FLAML22 0.79 0.89 0.8597 0.4618 0.9225
FLAML23 0.79 0.89 0.8562 0.4577 0.9225
FLAML24 0.78 0.88 0.8543 0.4670 0.9194
FLAML25 0.79 0.89 0.8590 0.4582 0.9232

Statistics

EVI 0.82 0.90 0.8756 0.4265 0.9359
NDVI 0.80 0.89 0.8643 0.4524 0.9262
LAI 0.79 0.89 0.8576 0.4561 0.9233
LSWI 0.82 0.90 0.8685 0.4298 0.9330
EF 0.80 0.89 0.8636 0.4487 0.9269
SW 0.80 0.89 0.8698 0.4505 0.9282
VPD 0.80 0.90 0.8634 0.4455 0.9276
Pre 0.80 0.89 0.8645 0.4503 0.9267
RH 0.80 0.90 0.8650 0.4450 0.9283

Note that the statistics represent the mean values of R2, R, NSD, nuRMSE, and
TSS across all combinations in which the respective variable was involved. Bold
numbers indicate the highest values, while italic numbers represent the lowest
values.

In grassland ecosystems, the model performed better for
shrublands and typical steppe than for alpine meadows (Ta-
bles S4 and S5). Alpine meadows, characterized by short
growing seasons and harsh high-altitude climates, often ex-
perience strong environmental disturbances and large GPP
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Figure 3. Normalized Taylor diagrams showing the performance of the FLAML-LUE model at various sites based on observed GPP data.
Each point represents a specific combination of fPAR and water stress factor used in the model simulation. Different colors denote different
fPAR products: red for EVI, blue for NDVI, and green for LAI. Marker shapes indicate the type of water stress factor: “+” for LSWI, “×”
for EF, diamond for SW, circle for VPD, square for Pre, and star for RH. Points closer to the reference point (R = 1, NSD= 1) indicate
better agreement between simulated and observed GPP. Panels (a)–(h) correspond to eight forest sites, (i)–(o) to seven grassland sites, and
(p)–(t) to five cropland sites. Panel (u) presents an overall model evaluation on the validation dataset across all sites.
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Figure 4. Scatter plot of observed GPP vs. simulated GPP. Different colored dots represent different sites. Note that the simulated GPP values
represent the mean of FLAML00 to FLAML25.

fluctuations, making them more difficult to model accurately.
In contrast, typical steppe and alpine shrublands display
clearer phenological rhythms and stronger photosynthetic ac-
tivity, making their GPP dynamics easier to capture.

In cropland ecosystems, all sites demonstrated relatively
strong model performance (R2 > 0.6, TSS> 0.80). Com-
pared to natural grasslands or alpine meadows, croplands
are usually monocultures with stable phenology and simpler
canopy structures, which aid in more accurate GPP model-
ing.

Notably, at the DXG site, the model achieved a high TSS
(0.8326) but a relatively low R2 (0.17), primarily due to the
large performance variation among different index combi-
nations. As shown in Table S4, all six NDVI-driven mod-
els (FLAML10-FLMAL15) have negative R2 values, signif-
icantly reducing the overall model accuracy at this site.

From an ecosystem perspective, Fig. 4 and Table 7 indi-
cates that the FLAML-LUE model achieves the highest fit-
ting accuracy in forest ecosystems (R2

= 0.83, nuRMSE=
0.4162), followed by cropland ecosystems (R2

= 0.72,
nuRMSE= 0.5258) and the lowest in grassland ecosystems
(R2
= 0.71, nuRMSE= 0.5407). The slope of the fitted line

in Fig. 7 is less than 1 for all ecosystem types, indicating that
the FLAML-LUE model tends to underestimate GPP, partic-
ularly in croplands and grasslands.

Tables S2 and S3 and Table 6 collectively demonstrate
that the model’s performance varies across ecosystem types
depending on the choice of fPAR-related variables. In for-
est ecosystems, the model is relatively insensitive to dif-
ferent fPAR and water-related inputs, with the LAI-driven
model achieving the best performance. This can be attributed
to LAI’s ability to capture forest canopy structure, thereby
improving fPAR estimates. In contrast, the model’s perfor-
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Table 5. Mean evaluation metrics for different combinations of
fPAR and water stress indicators at each site. Bold numbers indi-
cate the highest values, while italic numbers represent the lowest
values.

Station name R2 R NSD nuRMSE TSS

HZF 0.85 0.93 0.9839 0.3685 0.9650
MEF 0.91 0.96 0.8989 0.2918 0.9679
CBF 0.92 0.97 0.8687 0.2716 0.9644
QYF 0.75 0.89 0.8171 0.4677 0.9057
ALF 0.64 0.83 0.6250 0.5950 0.7387
DHF 0.55 0.75 0.7831 0.6671 0.8224
BNF 0.37 0.67 0.8119 0.7540 0.8003
YJF 0.43 0.68 0.6702 0.7348 0.7130
XLG 0.49 0.75 0.9877 0.6980 0.8736
NMG 0.40 0.64 0.6334 0.7685 0.6673
DLG 0.78 0.89 0.9509 0.4543 0.9425
DMG 0.59 0.78 0.6941 0.6204 0.7742
HBG_G01 0.92 0.96 0.9040 0.2750 0.9715
HBG_S01 0.53 0.82 1.1390 0.6556 0.8945
DXG 0.17 0.83 1.3421 0.7631 0.8326
JZA 0.80 0.91 0.7697 0.4373 0.8916
GCA 0.62 0.82 0.9519 0.5950 0.9014
SYA 0.81 0.92 0.7606 0.4294 0.8854
LCA 0.64 0.80 0.7830 0.5898 0.8488
YCA 0.64 0.80 0.7117 0.5991 0.8043

All 0.80 0.90 0.8658 0.4450 0.9285

mance is more sensitive to the choice of input variables
in cropland and grassland ecosystems. In croplands, the
EVI-driven model performs best, followed by LAI and then
NDVI, although the performance differences are moderate.
In grasslands, however, the NDVI-driven model performs
worst, especially at the DXG site, likely due to NDVI’s sensi-
tivity to soil background and saturation in sparse and hetero-
geneous vegetation. EVI, with reduced saturation and higher
sensitivity to biomass, shows better performance in struc-
tured cropland areas. Overall, the EVI- and LSWI-driven
model (FLAML00) exhibits the best performance across all
ecosystem types.

To further investigate model accuracy across different land
cover types, Fig. 5 presents the R2 values of five forest types,
three grassland types, and two cropland types under different
models. In general, model performance varies little within
the same land cover type but differs substantially across
types. Specifically, DBF, NF, MF, and SC exhibit higher sim-
ulation accuracy, followed by GRA, SHR, and DC, while
EBF, SAV, and MEA perform the worst. These results are
consistent with the Taylor diagram in Fig. 3.

Regarding CVRMSE, SHR shows the largest error, fol-
lowed by MEA, GRA, SC, and DC, while the five forest
types show the smallest errors. This may be attributed to
the greater GPP variability in grassland and cropland ecosys-
tems, which are more strongly influenced by climatic vari-

Table 6. Summary of evaluation metrics for FLAML-LUE model
performance across all validation sites. Bold numbers indicate the
highest values, while italic numbers represent the lowest values.

FLAML R2 TSS

Forest Grass Crop Forest Grass Crop

FLAML00 0.83 0.73 0.77 0.9476 0.9241 0.9004
FLAML01 0.84 0.71 0.75 0.9472 0.9187 0.8946
FLAML02 0.84 0.70 0.75 0.9516 0.9167 0.8966
FLAML03 0.84 0.71 0.76 0.9485 0.9169 0.8971
FLAML04 0.84 0.72 0.76 0.9475 0.9157 0.8991
FLAML05 0.84 0.72 0.76 0.9487 0.9171 0.8927
FLAML10 0.83 0.72 0.76 0.9463 0.9213 0.8861
FLAML11 0.83 0.68 0.70 0.9464 0.9124 0.8696
FLAML12 0.84 0.67 0.70 0.9487 0.9091 0.8717
FLAML13 0.83 0.69 0.71 0.9459 0.9083 0.8696
FLAML14 0.83 0.69 0.70 0.9450 0.9060 0.8713
FLAML15 0.84 0.69 0.71 0.9486 0.9096 0.8746
FLAML20 0.85 0.73 0.73 0.9525 0.9219 0.8718
FLAML21 0.85 0.71 0.70 0.9531 0.9186 0.8575
FLAML22 0.86 0.70 0.68 0.9549 0.9150 0.8545
FLAML23 0.86 0.71 0.69 0.9539 0.9153 0.8535
FLAML24 0.85 0.72 0.67 0.9532 0.9145 0.8465
FLAML25 0.86 0.71 0.68 0.9542 0.9163 0.8561

Statistics

EVI 0.84 0.72 0.76 0.9485 0.9182 0.8968
NDVI 0.83 0.69 0.72 0.9468 0.9111 0.8738
LAI 0.85 0.71 0.69 0.9536 0.9169 0.8566
LSWI 0.84 0.73 0.75 0.9488 0.9224 0.8861
EF 0.84 0.70 0.72 0.9489 0.9166 0.8739
SW 0.84 0.69 0.71 0.9517 0.9136 0.8743
VPD 0.84 0.70 0.72 0.9495 0.9135 0.8734
Pre 0.84 0.71 0.71 0.9486 0.9121 0.8723
RH 0.84 0.70 0.72 0.9505 0.9143 0.8745

Table 7. Mean evaluation metrics for different combinations of
fPAR and water stress indicators across various ecosystems.

Ecosystem R2 R σ̂f nuRMSE TSS

ALL 0.80 0.90 0.8658 0.4450 0.9285
Forest 0.83 0.91 0.8958 0.4162 0.9431
Grassland 0.71 0.84 0.9187 0.5407 0.9154
Croplands 0.72 0.85 0.7893 0.5258 0.8757

Note that the evaluation metrics for all sites and different ecosystem types were
calculated based on the average of 18 simulation results.

ability and anthropogenic activities, leading to higher model
uncertainty. In contrast, forest ecosystems have more sta-
ble structures and continuous carbon exchange processes, re-
sulting in more robust model performance. Although alpine
meadow is classified as grassland ecosystems, their extreme
climatic conditions, short growing season, and high sensitiv-
ity to temperature and precipitation further increase the un-
certainty of GPP simulation, leading to higher errors.

In terms of PBias, SHR consistently shows a pronounced
overestimation across all models. Similarly, SAV and MEA
are also generally overestimated in all models, though to a
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Figure 5. Comparison of R2, CVRMSE, and PBias of GPP estimates from different FLAML-LUE models across various land cover types.
Note that F00 represents FLAML00 and so on.

lesser extent than SHR. EBF exhibits a slight overestimation
as well. Other vegetation types display only minor underes-
timation or overestimation. Overall, the models perform best
for DBF, NF, and MF, followed by EBF, MEA, SC, and DC,
while the simulation accuracy is relatively poor for SAV, SC,
and especially SHR.

Biases also differ among grassland ecosystems, especially
for typical grasslands, alpine meadows, and shrublands. Typ-
ical grasslands tend to be underestimated, while alpine mead-
ows and shrublands are often overestimated. These biases
may result from the model’s limited ability to capture sea-
sonal changes in water availability and its interaction with

temperature. Typical grasslands usually show high produc-
tivity when water is sufficient, especially in spring and sum-
mer. If the model fails to reflect these seasonal patterns,
it can lead to underestimation. In contrast, productivity in
alpine meadows is mainly limited by low temperatures and
a short growing season. If the model does not fully con-
sider these constraints, it may overestimate photosynthesis
and thus GPP. For shrublands, overestimation may be due to
high spatial heterogeneity, including a mix of shrubs, grasses,
and bare soil. This complexity is difficult to capture in remote
sensing data (e.g., fPAR) and model inputs, leading to possi-
ble overestimation of productivity.
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Figure 6. Asterisks indicate significant differences between the R2 at the four temporal resolutions (Kruskal–Wallis test): ∗∗∗∗ p values<
0.0001, ∗∗∗ p values< 0.001, ∗∗ p values< 0.01, and ∗ p values≤ 0.05. ns indicates no significance (p > 0.05).

Across the four temporal scales, the performance of the 18
FLAML-LUE models improves as the temporal resolution
becomes coarser. The average R2 across 20 sites increases
from 0.64 at the daily scale to 0.74 at the monthly scale (Ta-
ble S8), while the average nuRMSE decreases from 0.5518
to 0.4088. Paired t tests show that, except for YJF, NMG,
DMG, DXG, and YCA, the FLAML-LUE model exhibits
significantly lowerR2 at the daily scale than at longer tempo-
ral scales (p < 0.05, Fig. 6). For these five sites, model per-
formance remains relatively stable across different temporal
scales.

Furthermore, compared to the daily scale, the nuRMSE
decreases by 12.97 %, 16.52 %, and 25.92 % at the 8 d, 16 d,

and monthly scales, respectively, indicating that the uncer-
tainty of the FLAML-LUE model is significantly reduced at
coarser temporal resolutions.

Overall, the accuracy of FLAML-LUE models constructed
using different combinations of fPAR and water stress indi-
cators showed limited variation, with the FLAML00 model
(fPAR = EVI, water = LSWI) demonstrating the best per-
formance. However, the model exhibited considerable dif-
ferences in performance across ecosystem types, with the
highest accuracy observed in forest ecosystems, followed by
croplands and then grasslands. Further analysis by specific
vegetation cover types revealed that the model performed
best for DBF, NF, and MF, followed by GRA, MEA SC, and
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DC, while its performance was relatively poor for EBF, SAV,
and particularly SHR (PBias> 27 %, CVRMSE > 1, R2 <

0.6). In addition, evaluation across different temporal scales
indicated that model uncertainty decreased with increasing
time intervals, suggesting that the FLAML-LUE model ex-
hibits greater robustness and reliability at coarser temporal
resolutions.

3.2 Model evaluation under extreme climatic
conditions

Numerous studies have demonstrated that climate extremes
such as heat waves, droughts, and high atmospheric VPD can
substantially alter ecosystem dynamics and reduce carbon
uptake capacity (Frank et al., 2015; Reichstein et al., 2013).
These extreme events can suppress photosynthesis, increase
respiration, and disrupt the balance of carbon exchange be-
tween vegetation and the atmosphere. In order to evaluate the
robustness and reliability of the FLAML-LUE models under
such stress conditions, this study further investigates model
performance in simulating GPP under three types of climate
extremes: high temperature, high VPD, and drought. By an-
alyzing the response of model accuracy and bias under these
scenarios, we aim to assess its applicability and limitations
in extreme environmental conditions.

3.2.1 Performance under high-temperature events

Figure 7 shows the performance of 18 FLAML-LUE mod-
els under high-temperature and non-high-temperature condi-
tions. The results indicate a significant decline in model accu-
racy under high-temperature conditions. As shown in Fig. 7a,
the models perform well under non-high-temperature con-
ditions, with the R values of all 18 FLAML-LUE models
exceeding 0.9. However, under high-temperature conditions,
the Taylor diagram reveals a significant decrease in model
performance, with correlation coefficients dropping and a
substantial increase in nuRMSE, indicating a reduced abil-
ity to capture GPP dynamics.

Interestingly, as shown in Fig. 7b, the CVRMSE values
under non-high-temperature conditions are generally higher
than under high-temperature conditions. This may be due
to higher observed GPP values under high temperatures, re-
sulting in a larger denominator for CVRMSE, which can re-
duce the CVRMSE despite larger prediction errors. Overall,
the difference in prediction bias between high-temperature
and non-high-temperature conditions is minimal.

Figure 7c shows that, under high-temperature condi-
tions, the PBias fluctuates more significantly, with more
stations showing severe overestimation or underestimation.
Specifically, some models (e.g., FLAML00, FLAML01,
FLAML11, FLAML15, FLAML21) overestimate GPP at
certain sites under high-temperature conditions, while all
models show more severe underestimation at other sites.
Models driven by LAI (FLAML20 – FLAML25) exhibit

smaller bias variations under non-high-temperature condi-
tions, with PBias mainly ranging from −0.3 to 0.3.

In conclusion, high-temperature conditions increase
model uncertainty, with all models exhibiting varying de-
grees of overestimation or underestimation across sites.
Models incorporating VPD, precipitation, and relative hu-
midity as water stress factors perform better overall, indicat-
ing greater robustness under high-temperature stress.

Differences in model performance under high-temperature
and non-high-temperature conditions are pronounced across
various land cover types. Figure 8 compares the estimation
accuracy of different land cover types under both condi-
tions. Overall, model accuracy in simulating GPP is signifi-
cantly lower under high-temperature conditions, withR2 val-
ues showing a notable decline. Specifically, for the NF type,
the R2 under high temperatures approaches a negative value,
indicating very low explanatory power, whereas under non-
high-temperature conditions, R2 ranges from 0.83 to 0.87.
Notably, the FLAML13 model for savannas shows a drastic
decrease in R2 from 0.38 under non-high-temperature condi-
tions to −1.46 under high-temperature conditions, perform-
ing even worse than the mean of the data during high tem-
peratures.

Corresponding to Fig. 7, CVRMSE is generally lower
under high-temperature conditions than under non-high-
temperature conditions. The SHR type exhibits a higher co-
efficient of variation, while PBias shows more pronounced
fluctuations. For SHR and EBF, the models tend to overes-
timate GPP under both temperature conditions, with overes-
timation more pronounced under high temperatures. In con-
trast, MEA shows underestimation under high-temperature
conditions but overestimation under non-high-temperature
conditions. Overall, most land cover types exhibit a greater
degree of underestimation under high-temperature condi-
tions. Nevertheless, the MF type maintains relatively high
simulation accuracy. In contrast, the DBF, NF, and SC
types are more strongly affected by high temperatures,
with NF showing negative simulation accuracy under high-
temperature conditions and SC exhibiting marked variations
in PBias.

3.2.2 Performance under high VPD

Figure 9 shows the performance of the 18 FLAML-LUE
models under high- and non-high-VPD conditions. Unlike
the high-temperature scenario, the statistical metrics of all
models exhibit only a slight decline under high VPD, in-
dicating a less pronounced impact on model performance.
As shown in Fig. 9a, the variability in model performance
increases under high-VPD conditions. However, Fig. 9b re-
veals that CVRMSE values are generally higher under non-
high-VPD conditions, a trend consistent with the results ob-
served under high-temperature conditions.

Under high VPD, PBias exhibits significant fluctuations
compared to non-high-VPD conditions (Fig. 9c). Specifi-
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Figure 7. The comparison of GPP products performance under high temperature and non-high temperature (in the Taylor diagram, 1 repre-
sents high temperature, and 2 represents non-high temperature).

cally, the average PBias across sites is higher under high
VPD, whereas it is lower under non-high VPD. In high-VPD
conditions, models driven by EVI show smaller differences
in PBias across sites, with values primarily ranging from
−0.4 to 0.5. In contrast, FLAML05 shows larger differences
in PBias between sites under non-high VPD, with overes-
timations at some sites. Overall, model performance under
high VPD shows greater uncertainty, with both overestima-
tions and underestimations occurring across different sites. In
general, EVI-driven models perform more consistently under
both high- and non-high-VPD conditions.

Model performance also differs across land cover types
under high- and non-high-VPD conditions. Figure 10 com-
pares the estimation accuracy for various land cover types
under both conditions. Overall, GPP simulation accuracy for
certain cover types (e.g., DBF, MF, MEA, SC, DC) shows lit-
tle difference between high- and non-high-VPD conditions.
Although R2 values for some land cover types are signifi-
cantly lower under high VPD than under non-high VPD, the
impact of high VPD on model performance is smaller com-
pared to high temperature. The most notable example is the
FLAML13 model for savannas, where R2 drops significantly
from −1.46 under non-high VPD to −0.39 under high VPD,
performing worse than the mean data value under high VPD.

Similar to high-temperature conditions, CVRMSE under
high VPD is generally lower than under non-high VPD.
MEA shows a larger coefficient of variation, and PBias ex-
hibits more noticeable fluctuations. For the EBF and SHR
type, models tend to overestimate GPP in both high- and non-
high-VPD conditions, with the overestimation being more
pronounced under high VPD. SC and GRA models show sig-
nificant underestimation under high VPD. DBF, NF, and MF
perform relatively well under high VPD, while SC underes-
timates GPP under both conditions, and DC overestimates
GPP under high VPD but underestimates it under non-high
VPD. Overall, compared to high-temperature conditions, the
effect of high VPD on estimation errors is smaller across dif-
ferent land cover types.

3.2.3 Performance under drought conditions

Figure 11 presents the simulation performance of the 18
FLAML-LUE models under drought and non-drought con-
ditions. Unlike the decline in performance under high-
temperature and high-VPD conditions, the model shows sim-
ilar or even slightly better accuracy under drought compared
to non-drought conditions. This may be attributed to an over-
all reduction in GPP and its variability during drought pe-
riods, which potentially makes it easier for the models to
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Figure 8. Comparison of statistical indicators (R2, CVRMSE, PBias) of the FLAML-LUE model under high-temperature conditions and
non-high-temperature conditions for different land cover types (1 represents high temperature, and 2 represents non-high temperature).

capture the general trend and thereby improves simulation
accuracy.

Compared to the box plots under non-drought conditions,
drought notably increases the variability in PBias across sites
for all models, particularly due to substantial overestimation
at certain sites. In contrast, the degree of underestimation re-
mains similar to that under non-drought conditions. Among
the models, those driven by EVI exhibit the best overall per-
formance, followed by those using LAI as the vegetation in-
dicator.

Figure 12 shows that drought substantially affects GPP
estimation accuracy across most land cover types. For cer-
tain types, such as savannas and deciduous broadleaf forests,
no data were available during drought months, making per-
formance evaluation under drought impossible. For other
land cover types, the impact of drought varies significantly.
Specifically, EBF, MEA, and DC show higher R2 values un-
der drought, while NF, MF, GRA, SHR, and SC perform
better under non-drought conditions. Among them, MF and
SHR have the lowest simulation accuracy under drought but
perform relatively well during non-drought periods.

Regarding CVRMSE, all land cover types except MEA and
NF exhibit lower values under drought conditions, consistent
with the results in Fig. 11a. MEA shows the largest coeffi-
cient of variation, indicating greater variability in model per-
formance under drought. In terms of PBias, NF, MEA, and
SHR exhibit the highest errors. On average, model errors in-
crease under drought across most land cover types. Except
for EBF and GRA, most types show severe overestimation
or underestimation during drought periods.

4 Discussion

Model performance is highly influenced by the algorithms
used, the underlying processes, and how GPP responds to
varying environmental conditions (Chang et al., 2023). A de-
tailed comparison of the FLAML-LUE models across dif-
ferent ecosystems showed that performance varied depend-
ing on the input variables, vegetation types, and timescales
(Chang et al., 2023; Harris et al., 2021).
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Figure 9. The comparison of GPP products performance under high VPD and non-high VPD (in the Taylor diagram, 1 represents high VPD,
and 2 represents non-high VPD).

4.1 Performance comparison of FLAML-LUE models
for different ecosystems

In this study, FLAML-LUE models were constructed for
different combinations of variables and different timescales
based on AutoML algorithms. On the whole, the modeled
GPP values agree well with the GPP estimated based on the
EC tower, and the FLAML-LUE models performed better in
capturing the magnitude and seasonal dynamics of the GPP,
which indicated that it was feasible to estimate the GPP using
AutoML algorithms. Further, all three ecosystems showed
good model performance driven by observational data. Com-
parisons across various ecosystems indicate that the model
exhibited superior performance over forest ecosystems com-
pared to grassland and agricultural ecosystems, as evidenced
by the average R2 values.

Although model performance differences across indicator
combinations were minimal, EVI-driven FLAML-LUE mod-
els slightly outperformed those driven by NDVI. This high-
lights the key role of EVI in GPP estimation, as it offers more
comprehensive atmospheric correction and is less suscepti-
ble to saturation from green reflectance compared to NDVI.
Additionally, model performance varied significantly across
sites.

Based on the evaluation metrics, the optimal model se-
lected was FLAML00 (EVI+LSWI). Under this combina-
tion of indicators, the FLAML-LUE model demonstrated
the best performance in mixed forests at CBF, deciduous
broadleaf forests at MEF, and alpine meadows at HBG_G01,
with R2 values of 0.92, 0.92, and 0.93, respectively. The
next best performances were observed in coniferous forests
at QYF and HZF, single-cropping farmland at JZA and
SYA stations, double-cropping farmland at YCA, and typi-
cal grasslands at DLG and DMG sites. In contrast, the model
performed poorly in alpine shrub and alpine ecosystems,
with an R2 of 0.54, and the worst performance was observed
at the BNF site, with an average R2 of only 0.28. Mixed
forests exhibit distinct seasonal variations that satellite im-
agery can effectively capture, while evergreen broadleaf
forests (ALF and BNF) show minimal seasonal changes in
vegetation cover or greenness, making accurate predictions
challenging. Alpine shrublands have more complex vegeta-
tion structures and less distinct seasonal variations in veg-
etation cover, which makes it harder for the model to cap-
ture the dynamics accurately. In contrast, alpine meadows
exhibit more pronounced seasonal variations in vegetation
cover, which makes the model more effective in capturing
GPP dynamics. For non-forest ecosystems, the highest R2
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Figure 10. Comparison of statistical indicators (R2, CVRMSE, PBias) of the FLAML-LUE model under high-VPD conditions and non-high-
VPD conditions for different land cover types (1 represents high VPD, and 2 represents non-high VPD).

values were observed in agricultural fields and typical grass-
lands, followed by alpine meadows and alpine shrublands.

Mixed forests display clear seasonal variations that satel-
lite imagery can effectively capture. However, evergreen
broadleaf forests (ALF) have slight seasonal variations in
vegetation cover or greenness, making it difficult for the
model to predict. For non-forest ecosystems, the highest R2

was found in agricultural fields and typical grasslands, fol-
lowed by alpine meadows and alpine scrub. In addition, the
differences in model performance were also reflected in dif-
ferent temporal scales. In general, the model simulation per-
formance at the 16 d and monthly scales was better than that
at the daily scale, and the performances of different temporal
scales for forest, grassland, and cropland ecosystems were
consistent with previous studies.

This study did not distinguish between rainfed and irri-
gated agricultural systems, considering only the crop rotation
types. Specifically, JZA and SYA represent rainfed systems,
whereas GCA, LCA, and YCA are irrigated. Future research
could incorporate this distinction to improve the accuracy of
carbon flux estimates in cropland ecosystems. This distinc-

tion is important for interpreting model results under water-
limited conditions.

In addition, our results indicate that forest and agricultural
fields have greater carbon sequestration capacity and higher
annual fluxes than grasslands (Tables S9–S11), aligning with
previous research outcomes (Wang et al., 2021b; Zhang et al.,
2007). However, due to the annual harvest of crops, approx-
imately 76 % of the on-farm biomass is removed, resulting
in limited long-term carbon storage capacity (Zhang et al.,
2007). With the exception of tropical rainforests (i.e., BNF),
the annual carbon production of planted forests (i.e., QYF)
is higher than that of natural forests (i.e., CBF, DHF), which
implies that planted forests possess significant potential for
carbon assimilation, functioning as robust carbon sinks.

4.2 Model performance variations under extreme
conditions

In the context of global warming and the increasing fre-
quency of extreme climate events, the adaptability and sta-
bility of GPP estimation models in extreme environments
have become crucial. This study systematically evaluated
the performance of the FLAML-LUE model under high-
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Figure 11. The comparison of GPP products performance under drought and non-drought (in the Taylor diagram, 1 represents drought, and
2 represents non drought).

temperature, high-VPD, and drought scenarios by grouping
the validation set. The results showed a general decline in
the model’s accuracy across all three extreme climate condi-
tions, with varying performance depending on the scenario,
highlighting the complexity of vegetation carbon absorption
responses to climate stress.

In high-temperature conditions, the model generally un-
derestimated GPP. This could be due to the suppression of
photosynthesis caused by high temperatures. High tempera-
tures increase transpiration stress, causing stomatal closure
to reduce water loss, which limits CO2 input and lowers pho-
tosynthetic rates (Qu et al., 2020; Reichstein et al., 2013).
Additionally, high temperatures can cause leaf damage and
senescence, reducing LAI and overall photosynthetic po-
tential (Chen et al., 2021a, b). Although the FLAML-LUE
model accounts for fPAR and water stress factors, it may
not fully capture rapid responses such as leaf damage or
sudden declines in LAI, which likely contribute to the re-
duced accuracy under high-temperature conditions. More-
over, the model does not explicitly account for the lag effect
of leaf senescence, which may further worsen estimation bias
(Frank et al., 2015).

Under high-VPD conditions, the model showed significant
uncertainty, with some areas overestimating GPP and others
underestimating it. This inconsistency likely arises from the

diverse water stress mechanisms induced by high VPD. Guo
et al. (2015) noted that high VPD does not always reflect
the true level of water stress in plants, leading to the poten-
tial overestimation of GPP. Conversely, in extreme VPD sce-
narios, where stomata close to reduce carbon absorption, the
model may underestimate GPP if it fails to recognize this reg-
ulatory behavior (Li et al., 2016). Additionally, the FLAML-
LUE model does not explicitly consider leaf energy load or
light inhibition, which may contribute to the model’s higher
errors under high-VPD conditions (Rigden et al., 2020).

Although the model’s performance decreased at some sites
under drought conditions, its overall accuracy improved un-
der these scenarios. This improvement may be due to the
stronger limiting effect of drought on vegetation growth, al-
lowing the model to more accurately capture the suppressive
impact of water stress on photosynthesis. In drought condi-
tions, water scarcity limits carbon absorption, leading to a
substantial reduction in GPP (McDowell et al., 2008). As a
result, the model’s estimates are more likely to align with the
actual limitation of carbon absorption. Thus, under drought
conditions, the model may underestimate GPP, which can be
more accurate, while in wetter environments, where water
stress is less pronounced, the model may overestimate GPP,
reducing its accuracy. Additionally, under drought, the model
is likely better at capturing the direct effects of water short-
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Figure 12. Comparison of statistical indicators (R2, CVRMSE, PBias) of the FLAML-LUE model under drought conditions and non-drought
conditions for different land cover types (1 represents drought, and 2 represents non-drought).

age on plant physiology, reducing interference from other
environmental variables and improving prediction accuracy
(Zhou et al., 2019).

Although the FLAML-LUE model demonstrates strong
predictive capabilities under normal climate conditions, there
is still room for improvement under extreme scenarios. One
potential limitation is the insufficient representation of rapid
plant response mechanisms (e.g., leaf damage and sudden
declines in LAI) in the current input features (Frank et al.,
2015; Reichstein et al., 2013). Future research could incor-
porate high-temporal-resolution vegetation indices, such as
solar-induced chlorophyll fluorescence (SIF), to better cap-
ture dynamic changes in plant metabolic activity and stress
responses under extreme conditions (Yi et al., 2024; Pagán
et al., 2019). Including lag variables or cumulative stress in-
dices could also enhance the model’s ability to handle de-
layed physiological responses after stress events (Frank et al.,
2015). Furthermore, future studies should expand the scope
to include a broader range of climate events that affect GPP,
such as floods and low temperatures, in addition to high tem-
perature, high VPD, and drought (Wang et al., 2023). Vegeta-
tion in different regions responds differently to these events,

with low temperatures and frost being especially important
for high-latitude ecosystems.

4.3 Advantages of FLAML-LUE framework

In this study, FLAML (Wang et al., 2021a) selected the Extra
Trees algorithm as the best-performing model for GPP simu-
lation in China. Extra Trees is an ensemble learning method
that builds multiple unpruned decision trees and incorporates
randomization in features selection and split thresholds de-
termination. Compared to traditional decision tree ensembles
such as Random Forests, Extra Trees typically achieves mini-
mal variance while maintaining low bias, which makes it par-
ticularly well suited for complex, high-dimensional datasets
(Geurts et al., 2006).

The adoption of FLAML provides several significant ad-
vantages. First, it automates the model selection and hyper-
parameter tuning process, eliminating the need for extensive
manual trial and error and reducing reliance on domain ex-
pertise (Nakano and Liu, 2025; Wang et al., 2022). Instead of
manually evaluating various algorithms and their configura-
tions, FLAML efficiently explores a broad search space and
identifies the most appropriate model for the dataset.

Geosci. Model Dev., 18, 5115–5142, 2025 https://doi.org/10.5194/gmd-18-5115-2025



J. Lai et al.: FLAML version 2.3.3 model-based assessment of gross primary productivity 5135

Moreover, FLAML employ a cost-aware hyperparameter
optimization strategy, enabling it to find high-performing
models with relatively low computational cost (Zhang et
al., 2023a; Wang et al., 2021a). This feature is particularly
advantageous in scenarios with limited computational re-
sources or the need for rapid prototyping.

Compared to conventional machine learning workflows,
FLAML significantly reduces human bias in model selection,
improves reproducibility, and lowers the barrier to applying
advanced modeling techniques (He et al., 2021). Overall, the
use of FLAML in this study not only improved model perfor-
mance but also streamlined the modeling process, supporting
its broader applicability in ecological and climate-related re-
search.

4.4 Comparison with other products

This study attempted to predict the GPP of different sites us-
ing the FLAML model based on the LUE model variables.
The results showed that the AutoML algorithm is a promising
GPP estimation method, which explains on average 75 %–
98 % of the GPP variation.

Compared to two GPP products (MODIS GPP and PML
GPP), the GPP from this study showed the highest precision
(Table 8 and Fig. 13) and better consistency with flux-tower-
based GPP under different ecosystems. Overall, the FLAML-
LUE model used in this study had the best simulation perfor-
mance. These findings highlight the potential of the FLAML
algorithm for accurately estimating GPP. The FLAML-LUE
model is a data-driven ML approach that builds relationships
based on dependent and explanatory variables. This enables
it to effectively simulate the complex nonlinear interactions
across diverse ecosystems (Tramontana et al., 2016). This
advantage is even more prominent at the global scale, con-
sidering that more flux tower data are available for model
construction.

However, further work is needed to evaluate the FLAML-
LUE model’s suitability and accuracy, considering its limi-
tations. In particular, it tends to underestimate high GPP and
overestimate low GPP. In addition, the model performance in
GPP estimation is highly dependent on ecosystem type. Our
findings indicated that mixed forests, deciduous broadleaf
forests, and agricultural lands had higher prediction accura-
cies, while grass sites such as alpine scrub and alpine mead-
ows were predicted with large uncertainties, consistent with
results from other studies (Wang et al., 2021b; Yuan et al.,
2014). This is still a big challenge in accurately estimating
GPP.

In general, satellite imagery accurately captures the sea-
sonal leaf phenology of DBF and MF canopies (e.g., spring
leaf unfolding and fall senescence). Additionally, the key en-
vironmental factors influencing vegetation production during
different phenological phases are well defined (Yuan et al.,
2014), making them well suited for FLAML-LUE modeling.
In contrast, the ambiguous seasonal leaf area changes in EBF

and the low variability of GPP in NMG ecosystems result in
poorer model performance, and empirical methods struggle
to estimate GPP variability in these areas (Tramontana et al.,
2016).

Model performance is heavily influenced by the quality of
the driver data and the typicality of the flux towers. In this
study, meteorological indices are obtained directly from spa-
tially explicit reanalysis products. Remotely sensed variables
(e.g., NDVI and EVI, LSWI) serve as proxies for vegetation
growth and seasonal changes and are crucial for scaling sim-
ulations from site to regional levels. These gridded indices
are directly derived from satellite reflectance bands. Large-
area EFs can be obtained using LE and H calculations from
ERA5 reanalysis data or can be derived using NDVI temper-
ature triangulation (Venturini et al., 2004). LAI, VPD, Pre,
and RH can be obtained from ERA5 reanalysis data. Thus,
the model can be extended from the site scale to the regional
and even global scale. Building on this foundation, we will
develop a long-term gridded GPP dataset for China using the
FLAML-LUE framework to analyze its spatiotemporal vari-
ations over multiple years. This dataset will allow us to inves-
tigate long-term GPP trends across different climate zones
and vegetation types, as well as their responses to key envi-
ronmental drivers. By comparing GPP estimates across re-
gions and years, we will also assess model uncertainties and
identify potential areas for improvement.

5 Conclusion

In this study, the FLAML-LUE model was developed based
on data from 20 flux observation sites across China, inte-
grating the FLAML algorithm with key variables from the
LUE model. The results demonstrate that the FLAML-LUE
model performs excellently in GPP prediction, accurately
simulating both its temporal variations and magnitude, par-
ticularly in mixed forests and coniferous forests. The aver-
age R2 for daily-scale simulations reached 0.92 and 0.91, re-
spectively. Further analysis showed that extending the tem-
poral scale of input data significantly improves model accu-
racy. In a comparison of models with different variable com-
binations, it was found that the model driven by EVI out-
performed models driven by NDVI and LAI. The model us-
ing LSWI as the driving variable performed better than the
models with EF, SW, VPD, Pre, and RH as primary vari-
ables, with the EVI+LSWI combination yielding the best
performance. Additionally, the model’s prediction accuracy
decreased under high-temperature and high-VPD conditions.
However, under drought conditions, the overall prediction
accuracy increased, although it decreased at some sites.

In summary, the FLAML-LUE model demonstrates strong
applicability and potential for wider application in GPP es-
timation. It holds promise for scaling from site level to re-
gional or even global levels, contributing to a deeper under-
standing of carbon cycling processes. However, the model’s
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Figure 13. Comparing 8 d GPP from FLAML-LUE, PML, and MOD17 models and EC observations.

Table 8. R2 of 8 d GPP simulated by FLAML-LUE, PML, and MOD17 at different ecosystem validation sites.

Ecosystem Station R2 TSS

FLAML MOD PML FLAML MOD PML

ALL ALL 0.93 0.71 0.78 0.9657 0.2677 0.5675

Forest HZF 0.95 0.88 0.91 0.9843 0.9672 0.9569
MEF 0.98 0.78 0.95 0.9868 0.7664 0.9571
CBF 0.98 0.78 0.93 0.9903 0.8860 0.9567
QYF 0.95 0.54 0.74 0.9833 0.8634 0.9231
ALF 0.87 0.24 0.34 0.9054 0.2455 0.1812
DHF 0.83 0.27 0.45 0.9527 0.3030 0.5851
BNF 0.81 0.05 0.02 0.9025 0.3370 0.3337
YJF 0.75 0.31 0.42 0.9334 0.7759 0.5820

Grass XLG 0.92 0.76 0.79 0.9651 0.9343 0.9008
NMG 0.67 0.48 0.41 0.8288 0.8340 0.7436
DLG 0.92 0.76 0.77 0.9787 0.9349 0.9320
DMG 0.82 0.68 0.57 0.9537 0.9080 0.8611
HBG_S01 0.89 0.78 0.81 0.9718 0.9284 0.7175
HBG_G01 0.99 0.91 0.97 0.9947 0.7546 0.9911
DXG 0.90 0.75 0.82 0.9737 0.9134 0.9105

Crop JZA 0.95 0.84 0.85 0.9786 0.6009 0.9582
GCA 0.89 0.33 0.19 0.9708 0.4889 0.6748
SYA 0.96 0.92 0.92 0.9666 0.3708 0.3948
LCA 0.94 0.57 0.48 0.9731 0.2433 0.3959
YCA 0.93 0.71 0.78 0.9657 0.2677 0.5675

Note that bold numbers indicate the highest values, while italic numbers represent the lowest values.
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applicability in unique ecosystems, such as alpine shrub-
lands, remains limited, and its ability to adapt to extreme
climate events requires further enhancement. Future work
should focus on optimizing the model structure and param-
eter settings to improve its robustness and generalization
across diverse ecological environments.

Code and data availability. The Fast Library for Automated Ma-
chine Learning & Tuning (FLAML) is a Python library, and de-
tailed documentation about FLAML can be found on GitHub.
We have uploaded the related source code and documentation to
Zenodo (https://doi.org/10.5281/zenodo.14874754, Laijie, 2025b).
The flux observation data and the Python source code of the
FLAML-LUE used in this paper are also archived on Zenodo
(https://doi.org/10.5281/zenodo.15477703, Laijie, 2025a).
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