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Abstract. Significant wave height (SWH) is crucial for many
human activities, such as marine navigation, offshore op-
erations, and coastal management. Traditionally, SWH is
modeled using numerical wave models, which, while accu-
rate, are computationally intensive and constrained by in-
complete physical representations of wave spectral evolution.
This study introduces a simple global deep-learning-based
model for SWH, which uses the current SWH field and the
wind field at the next time step as inputs to predict the SWH
field at the next time step. This approach mirrors the rolling
prediction strategy of numerical wave models. After training
on a reanalysis dataset, the errors of the model accumulate
lightly with time when given a good initial field because no
spectral information is used. However, after accumulating for
∼ 200 h, the errors stabilize, remaining comparable to those
of state-of-the-art numerical wave models. Additionally, the
error accumulation can be mitigated through the assimilation
of altimeter measurements. This deep learning model can not
only serve as an efficient surrogate for traditional numerical
wave models with respect to SWH but also provide a baseline
for statistical modeling of global SWH due to its simplicity
in inputs and outputs.

1 Introduction

Wind-generated surface gravity waves (hereafter, waves) are
one of the most common physical phenomena on the sea
surface. These waves impact nearly all human activities in
the ocean, including ocean engineering, maritime navigation,
fisheries, and port operations. Moreover, ocean waves play a
crucial role in many geophysical processes at the sea surface,
such as the exchange of mass, momentum, and energy within
the wave boundary layer. Thus, it is essential to keep improv-
ing our ability to model ocean waves.

Numerical wave models (NWMs) are the most widely
used tool for forecasting and hindcasting waves. These mod-
els apply numerical methods to solve wave action balance
equations, thereby representing the evolution of wave spec-
tra. Over years of development, widely used NWMs like
WAVEWATCH III (WW3) (Tolman, 1991; Tolman et al.,
2002) and SWAN (Simulating Waves Nearshore) (Booij et
al., 1999) have demonstrated the capability to provide spa-
tiotemporal distributions of wave parameters, such as signif-
icant wave height (SWH), given reliable wind forcing fields
(e.g., Alday et al., 2021; Liu et al., 2021).

However, NWMs have certain limitations. While they
have been successfully providing operational wave forecasts
for decades, their computational cost can still be a challenge,
particularly for high-resolution simulations. The evolution
of wave spectra in NWMs occurs within a five-dimensional
space (two spatial dimensions, time, frequency, and direc-
tion), which increases the complexity of numerical computa-
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tions. Additionally, the accuracy of NWMs is constrained by
incomplete physical representations and numerical effects.

The rapid development of artificial intelligence (AI) offers
potential solutions to the limitations of traditional NWMs.
Recent advancements in AI weather forecasting have demon-
strated that AI-based models can achieve better accuracy
than numerical models with much lower computational costs
(e.g., Lam et al., 2023; Bi et al., 2023), providing the confi-
dence for developing AI-based wave models. Consequently,
some studies have already explored AI applications in wave
modeling. Some have attempted to replicate the AI weather
forecasting approach by treating wave modeling as a purely
nonlinear auto-regression problem of spatiotemporal series
(e.g., Zhou et al., 2021; Ouyang et al., 2023). However, this
approach overlooks the fact that phase-averaged wave mod-
eling should not be treated as an initial value problem. With-
out a wind field driving the model, it is physically impossible
to accurately simulate waves directly from past wave evolu-
tion alone. While initial conditions do play a role in short-
term prediction, these auto-regression models cannot even
run without the initial conditions provided by an NWM.

Recent studies have adopted a rolling SWH prediction
strategy similar to NWMs, utilizing both initial SWH fields
(past and present) and forcing wind fields (future winds) as
inputs, with future SWHs as outputs. However, most of these
studies have focused on wind-sea-dominated nearshore areas
(e.g., Cao et al., 2023; Gao et al., 2023), where swell prop-
agation is not a dominant factor in wave modeling. These
studies have found that the error in these AI models increases
over time compared to NWM hindcasts. This is not surpris-
ing because the models do not account for spectral informa-
tion, and different spectra with the same SWH respond dif-
ferently to the same forcing. If such an error accumulation is
too large, the AI model will not be able to run independently
without the initial SWH field from NWMs. Conversely, if the
error accumulation is minor, the model may still be valuable
for various applications. However, to the best of our knowl-
edge, no study has yet discussed whether such a model of
combined wind and SWH inputs can operate effectively us-
ing a rolling strategy without relying on NWM data.

One potential solution to solving this problem in AI wave
modeling is straightforward, that is, to incorporate the full
directional wave spectrum, allowing the AI to approximate
the solution of the wave action balance equation. However,
applying this method to global SWH modeling presents sig-
nificant challenges. The global directional wave spectra at
any given moment form a very large 4-D matrix. When us-
ing these 4-D matrices as inputs and outputs of an AI model,
the training will require an enormous dataset and a complex
model architecture.

From an engineering perspective, the accumulation in
model simulation errors can be mitigated through data as-
similation. In NWMs, the assimilation of altimeter-measured
SWH does not always yield positive outcomes because al-
timeters provide only wave height information without de-

tailed wave spectra (e.g., Ardhuin et al., 2019; Jiang et al.,
2022). However, it is worth investigating whether the assimi-
lation of altimeter data can enhance the accuracy of AI-based
SWH modeling.

In this study, we propose a global-scale deep-learning-
based model for SWH. The model utilizes a rolling predic-
tion strategy, similar to NWMs, by taking the current SWH
field and the wind field at the next time step as inputs and
predicting the SWH field at that next time step. This model
is designed to address two key questions. (1) How does a sim-
plified global AI wave model, using an input–output frame-
work similar to NWMs but without incorporating spectral
data, handle error accumulation? (2) Can the assimilation of
altimeter data help reduce error accumulation and improve
the reliability of SWH modeling?

After training the model on a reanalysis dataset, it was ob-
served that, as expected, the AI model experiences a slight
accumulation in error over time when provided with a good
initial field. However, after approximately 200 h, the error
stabilizes, and the stabilized errors are not significantly larger
than those of state-of-the-art NWMs, which is somewhat sur-
prising. Additionally, we demonstrate that the issue of error
accumulation can be partially mitigated through the assimila-
tion of altimeter measurements. Although good results have
been obtained by the AI model presented in this study, it is
noted that we do not intend to suggest that the AI model is
superior to traditional NWMs or that it could replace NWMs.
NWMs still retain numerous advantages over AI approaches,
such as their ability to provide parameters beyond SWH
and their stronger physical interpretability, among other mer-
its. The AI model we have developed should be more re-
garded as a model surrogate specifically for time-sensitive or
computation-resource-sensitive scenarios. The remainder of
this paper is organized as follows: Sect. 2 describes the data
and methodologies employed in this study. Section 3 presents
the results from the AI model and their evaluation, followed
by discussions and conclusions in Sect. 4.

2 Materials and methods

2.1 Data

2.1.1 ERA5 wind and wave data

The ERA5 is a comprehensive global climate reanalysis
dataset, covering the period from 1950 to the present, with
hourly data on a wide range of atmospheric and wave param-
eters (Hersbach et al., 2020). This dataset is based on state-
of-the-art modeling technology and has assimilated global
historical observations to produce global estimates of these
parameters. The wave data in ERA5 are derived from the
Wave Model (WAM) hindcast and have assimilated SWH
data from various altimeters, including ERS-1/2, ENVISAT,
JASON-1/2, CRYOSAT-2, and SARAL, using an optimal
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interpolation scheme. This assimilation enhances the accu-
racy of SWH data, particularly in the open ocean, making
ERA5 more reliable compared to other NWM hindcasts. Due
to its accuracy and consistency, ERA5 data products have
been widely utilized in wave-related research (e.g., Jiang and
Mu, 2019; Jiang, 2020). The dataset is available through the
Climate Data Store, with pre-interpolated resolutions up to
0.25°× 0.25° for atmospheric parameters and 0.5°× 0.5° for
wave parameters.

In this study, we utilized the global SWH and 10 m lon-
gitudinal and latitudinal components of neutral wind (U10
and V10) from the ERA5 dataset for the period 2000–2017
to train the global AI SWH model. The corresponding data
in the year 2022 were used for validation to alleviate over-
fitting, while the model testing was conducted with data in
the year 2020. In addition, we used the swell SWH data also
from ERA5 to analyze the impact of swells on the model
performance. Both the wind and wave data used here are at a
0.5°× 0.5°× 1 h spatiotemporal resolution.

2.1.2 CCI Sea State dataset

The altimeter dataset used in this study for data assimila-
tion experiment and model evaluation is the Climate Change
Initiative (CCI) Sea State dataset version 3 (Dodet et al.,
2020). This dataset provides accurate and consistent global
SWH data. The SWH data have undergone rigorous quality
control and joint calibration to minimize systematic errors
across altimeters. Additionally, a non-parametric empirical
mode decomposition technique has been employed for data
de-noising, effectively reducing random measurement errors.
As shown by Jiang (2023), after reducing random noise, the
typical error of SWH from the CCI Sea State dataset is only
∼ 0.15 m in the open ocean, making the dataset well suited
for calibrating and evaluating SWHs from NWMs. To min-
imize land contamination, altimeter measurements within
50 km offshore were excluded from the dataset.

2.1.3 WAVEWATCH-III hindcast

The SWH data from the WAVEWATCH-III model hindcast
with the physical parameterizations by Liu et al. (2021),
hereafter referred to as WW3-ST6, were utilized as a bench-
mark to evaluate the performance of the AI model. This
hindcast is driven by ERA5 10 m surface winds and has a
spatiotemporal resolution of 0.25°× 0.25°× 3 h. Although
it does not assimilate wave observations, the The WW3-
ST6 hindcast shows good agreement with observational data,
achieving an overall root mean square error (RMSE) of ap-
proximately 0.35 m (or 5 %–15 % of SWH) compared to al-
timeter data in the open ocean. Detailed information and ac-
cess to the dataset can be found in Liu et al. (2021).

2.1.4 NDBC buoy dataset

To further validate the proposed model, we utilize indepen-
dent in situ observations from the NDBC (National Data
Buoy Center) buoy dataset. These buoys provide accurate
in situ SWH measurements at specific ocean locations, serv-
ing as a reliable reference for model evaluation. Similar to
the selection criteria for altimeter measurements, we mitigate
coastal effects by using several NDBC buoys located at least
100 km offshore.

2.2 Deep learning model

2.2.1 Model inputs and outputs

The deep learning model for SWH in this study employs an
input–output structure similar to NWMs. The SWH field at
any time point Ti (initial SWH field) and the wind field (U10
and V10) at the next time point (1 h later in this case) Ti+1 are
used to predict the SWH field at Ti+1. The model can then
further predict the SWH field at Ti+2 using the SWH field
at Ti+1 and the wind field at Ti+2, which is a rolling predic-
tion strategy. We understand that adding historical wind in-
formation might enhance the accuracy of the AI SWH model.
In particular, if a long series of wind fields are used as in-
puts, the model can work in a different way so that the initial
SWH field is not needed (e.g., Song and Jiang, 2023; Wang
and Jiang, 2024). However, one of our aims at this stage is
to maintain the model’s similarity to NWMs to test the ef-
fectiveness of this straightforward and simple input–output
structure.

2.2.2 Model structure

This study employs a U-Net architecture for the AI mod-
eling of global-scale SWH. U-Net is a convolutional neu-
ral network (CNN) originally designed for biomedical image
segmentation. It is characterized by its U-shaped structure,
which combines an encoder and a decoder through skip con-
nections (Ronneberger et al., 2015). The encoder progres-
sively extracts features from the input through convolution
and pooling, while the decoder reconstructs spatial resolution
using deconvolution and up-sampling. Skip connections link
corresponding layers of the encoder and decoder, preserv-
ing high-resolution details. Such a CNN-based deep learn-
ing model is well suited for wave statistical modeling using
our input–output structure, and the effectiveness of U-Net in
wave modeling has been shown in previous studies (e.g., Gao
and Jiang, 2024; Wang and Jiang, 2024). The processes of
both local wave generation by wind and wave propagation in
space can be captured by convolutional kernels at different
scales.

Figure 1 presents a schematic of the U-Net architecture
used in this study. The input matrix consists of three chan-
nels: the global SWH field at Ti and the U10 and V10 fields at
Ti+1. To handle the wraparound at the −180 and 180° longi-
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tude boundary, we employed an engineering trick extending
the input fields from −180 to 180° (720 longitudes) to −190
to 190° (760 longitudes). Specifically, the data from −180 to
−170° were duplicated and appended to 180 to 190°, and a
similar treatment was applied to the opposite boundary. This
effectively connects the two boundaries and avoids discon-
tinuities during the modeling process. The final output, the
SWH field at Ti+1, also spans −190 to 190°, but only data
from −180 to 180° were retained in the computation of the
cost function for training.

2.2.3 Model training

For model training, the training set was randomly shuffled,
and the model was then trained to minimize the mean squared
error (MSE) between the model output and the target output:

Loss=
1
n

Lat∑
j=1

Lon∑
i=1

[(
yi,j − xi,j

)
cosθj

]2
, (1)

where x and y denote the SWH from the AI SWH model
and ERA5, respectively; the subscripts i and j denote the
ith longitudinal and j th latitudinal grid point; and θj de-
notes the latitude of the j th latitudinal grid point. This co-
sine term was introduced to account for the area change of
grid points with latitudes. We used six batches for training
and trained the model for up to 30 epochs at a learning rate
of 0.0001 using the AdamW optimizer. To alleviate overfit-
ting, we implemented a commonly used deep learning tech-
nique where training is halted when the loss in the valida-
tion set does not decrease for four epochs. Using our train-
ing samples (data from 2000 to 2017), training took approx-
imately 1 h per epoch on an NVIDIA RTX 4090 GPU. It is
also tested whether the model’s performance will be slightly
worse if the training samples are significantly reduced. Once
trained, the model requires less than 10 min to compute (in-
fer) the global SWH for 1 year at a spatiotemporal resolution
of 0.5°× 0.5°× 1 h on an NVIDIA RTX 3060 GPU.

2.2.4 Epoch ensemble method

To further improve the accuracy and stability of the model
predictions, this study employs the epoch ensemble method.
This approach mitigates potential issues like overfitting or
underfitting, which can arise from relying on a single model,
by leveraging the diversity of models trained across dif-
ferent epochs. The simplest way of using this method is
to retain several models obtained in different epochs dur-
ing the training process and average their outputs dur-
ing inference. This straightforward yet effective strategy
enhances model performance without requiring additional
training. In this study, the ensemble size was set to four,
and the ensemble mean reduced the RMSE by ∼ 30 % com-
pared to individual models. The final AI models established
in this study are available from the Zenodo repository at
https://doi.org/10.5281/zenodo.14244061 (Wang, 2024).

2.3 Error metrics

The bias, RMSE, correlation coefficient (CC), and scatter in-
dex (SI) are used as the error metrics to evaluate the perfor-
mance of the AI SWH model, which are defined as

bias=
1
n

n∑
i=1

(yi − xi) , (2)

RMSE=

√√√√1
n

n∑
i=1

(yi − xi)
2, (3)

CC=
n∑
i=1

(yi − y)(xi − x)

/√√√√ n∑
i=1

(yi − y)
2

√√√√ n∑
i=1

(xi − x)
2

, (4)

SI= RMSE/y, (5)

where x and y denote the SWH from the AI models and ref-
erence data (which can be either ERA5 or CCI Sea State al-
timeter data), respectively; n is the sample size; and the bars
over x and y denote their mean values. These error metrics
were also used to monitor the training process of the model.

2.4 Data assimilation

To reduce error accumulation in the long-term operation of
the rolling prediction, we tried to incorporate data assimi-
lation techniques by integrating altimeter measurements to
correct the model’s initial SWH field. It is noted that in our
input–output setting, the outputs of the last time step will be
the initial SWH field of the next time step. In the assimi-
lation of NWMs, spectral information is used so that it re-
quires a method to transform observations of SWH or other
integrated wave parameters into wave spectra. However, in
our case, only SWH fields and wind fields are used as the
model inputs, without involving spectral information. Thus,
the assimilation of this model also does not need to involve
the spectral information, which simplifies the assimilation.

We employed a simple objective analysis (OA) method,
which is a form of optimum interpolation (OI), for data as-
similation:

A(i,j, t)=M(i,j, t)+

N∑
k=1

w(i,j, t)k · (Ok −Mk) , (6)

w(i,j, t)k = exp
[
−d2

k (i,j, t)/2R(i,j, t)
2
]/

N∑
k=1

exp
[
−d2

k (i,j, t)

/
2R(i,j, t)2

]
, (7)

R(i,j, t)=min
[
dk (i,j, t)

]
(k = 1,2,3, . . .,N), (8)

dk (i,j, t)=

√
(Sk/S1)

2
+ (Tk/T1)

2

(Sk < 1500km,Tk < 48h), (9)

where i, j , and t represent longitude, latitude, and time,
respectively; M (model) and A (assimilated) represent the
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Figure 1. An illustration of the U-Net architecture used in this study. Each cube represents a feature map, with the numbers on the sides
indicating the number of channels. The legend on the lower-right panel explains the meaning of the different arrows used in the schematic
diagram.

model outputs before and after assimilation, respectively;
k ∈ {1,2, . . .,N} represents the number of observations to be
assimilated at a given time; Ok and Mk represent the val-
ues of observed and corresponding modeled SWH at the spa-
tiotemporal location of the kth observation;wk represents the
weight factor for correction at location (i, j , t) for the kth ob-
servation; dk represent the spatiotemporal distance from lo-
cation (i, j , t) to the kth observation; and R(i,j, t) represent
the distance from location (i, j , t) to its nearest observation.
Sk and Tk are the spatial and temporal differences between
the location (i, j , t) and the kth observation, respectively, and
S1 and T1 are tuning coefficients to combine spatial and tem-
poral distances. Previous studies often used a 30 min–50 km
window to collocate SWH from altimeters and other sources
(e.g., Jiang, 2020); thus, S1 and T1 are set to 50 km and 0.5 h,
respectively.

Here the simple OA method is used instead of the more
complex variational methods primarily because OA is sig-
nificantly less computationally demanding than variational
methods. One of the advantages of the AI model is its effi-
ciency and lightweight nature. Introducing variational meth-
ods for assimilation would increase computational demands
by several orders of magnitude, rendering the AI model inef-
ficient and impractical. Furthermore, OI enables incremental
assimilation of observations, allowing for continuous updates
as new data become available. In contrast, variational meth-
ods typically require a complete assimilation cycle, which
may not be feasible for fast-paced AI applications. Besides, it
is noted that there is no clear evidence that variational meth-
ods outperform OI in wave modeling.

In our data assimilation experiment, assimilation was con-
ducted every 6 h (i.e., every six time steps, observations
are used to correct the outputs of the rolling model, and
the updated outputs are used as the new inputs at the next
time step), beginning after the first 24 h of the model run.
Of course, the frequency of data assimilation can be user-
defined. A higher assimilation frequency generally leads to

more accurate results but also entails increased computa-
tional costs, and vice versa. During each assimilation, the
SWH data from the CCI Sea State dataset were used to cor-
rect the AI model’s hindcasts using Eqs. (6)–(9). It is noted
that in Eq. (9), the upper limits of Sk and Tk mean that only
observations within 1500 km can influence the value of the
target grid point. Only observations from the past 48 h were
used to correct the current SWH field. After assimilation, the
prediction for the next time step used the assimilated SWH
field as inputs for the AI model.

3 Results

3.1 Temporal stabilization of model

The performance of the proposed rolling AI model for SWH
was evaluated on the 2020 test dataset. We selected ini-
tial SWH fields every 36 h from 00:00:00 UTC on 1 Jan-
uary 2020 (i.e., the 0th, 36th, 72nd, . . . , 8460th hours of
2020, totaling 236 sets of experiments). For each initial
SWH field, a 300 h rolling modeling was conducted. Figure 2
shows the variation of global overall error metrics compared
to ERA5 SWH with simulation time. The orange and blue
lines represent the mean values of the error metrics for the
236 experiments before and after assimilation, respectively,
with the shaded areas indicating the range of these metrics
across different starting times. Note that evaluating against
other untrained years yields similar results, with differences
in correlation coefficient (CC) and root mean square error
(RMSE) being less than 0.003 and 0.03, respectively.

For the condition without assimilation, the curves for all
four error metrics show that the errors of the AI SWH model
increase rapidly within the initial 48 h of simulation time. As
mentioned in the introduction, this trend is expected given
the absence of spectral information. However, as simulation
time progresses, the rate of error growth diminishes, and the
model stabilizes after∼ 240 h. This means the model can still

https://doi.org/10.5194/gmd-18-5101-2025 Geosci. Model Dev., 18, 5101–5114, 2025



5106 X. Wang et al.: Data-driven rolling model for global wave height

Figure 2. The variation of global overall error metrics between the AI SWH model outputs and ERA5 with simulation time: (a) CC, (b) bias,
(c) RMSE, and (d) SI. The orange and blue lines represent the mean values of the error metrics for the 236 experiments starting from different
initial SWH fields, before and after assimilation, respectively. The shaded areas around the lines indicate the range of error metrics across
different experiments with varying initial SWH fields.

capture some aspects of SWH evolution over time. Remark-
ably, the global overall mean values for CC, bias, RMSE, and
SI are around 0.985, 0.06 m, 0.23 m, and 0.09, respectively,
comparable to state-of-the-art NWMs. This suggests that the
simple AI model can work without the assimilation of obser-
vation and the information from NWMs, at least, in some ap-
plications such as modeling the SWH in wind-sea-dominated
regions (see Sect. 3.2.2).

When data assimilation is applied, the errors are signifi-
cantly reduced across all metrics, except for bias before the
∼ 100th hour. The increase in bias is likely due to minor in-
consistencies between ERA5 and CCI Sea State dataset, and
the bias remains less than 0.06 m. For the other error met-
rics, assimilation reduces the time required for error stabi-
lization to ∼ 72 h while also lowering the final converged er-
rors of the AI model. When stabilized, the global overall CC,
bias, RMSE, and SI reach 0.992, 0.05 m, 0.17 m, and 0.07,
respectively. Although these metrics are calculated relative
to ERA5 data rather than direct observations, these values
seem to be completely acceptable for most operational wave
modeling applications.

To further test whether such a model can operate indepen-
dently, we conducted a “cold start” experiment using an ini-
tial SWH field of zero. The results, shown in Fig. 3, are com-
pared with the “hot start” results from Fig. 2. Although the
initial SWH fields are the same (zeros) in the cold start ex-
periment, varying wind fields at different starting times lead
to differences in error metrics (depicted by blue shadows in
Fig. 3). As expected, the cold start experiment shows larger
errors initially, but these errors diminish over time, converg-

ing to values similar to those from the hot start after approxi-
mately 240 h. This convergence demonstrates the robustness
of the model.

3.2 Spatial distributions of model errors

To further identify and understand conditions where the AI
model performs well, we compare the SWH produced by the
AI model against different sources of SWH and show the
geographical distributions of the four aforementioned error
metrics for results with and without data assimilation. The
results for 6, 24, 72, and 240 h simulations without data as-
similation are shown in Figs. S1, S2, and S3 of the Supple-
ment and Fig. 4, respectively. Although errors increase with
simulation time, as shown in Fig. 2, these results indicate
that the spatial error patterns remain consistent across differ-
ent simulation time. Our primary focus is on the 240 h hind-
cast results in Fig. 4, where the errors have stabilized. Also,
since a high-quality SWH initial field like ERA5 is not al-
ways easily available, the stabilized error is more typical and
meaningful as the reference when the AI SWH model is run
independently.

3.2.1 Evaluated against ERA5

The scatter plot in Fig. 4a shows a good overall agreement
between the SWHs generated by the AI model and those
from ERA5, with most points closely aligning with the 1 : 1
line. The SI of 0.093, the CC of 0.986, and the RMSE of
0.23 m are already better than those typically observed be-
tween contemporary global NWM hindcasts and altimeter
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Figure 3. The variation of global overall error metrics between the AI SWH model outputs and ERA5 with simulation time: (a) CC, (b) bias,
(c) RMSE, and (d) SI. The orange lines and shaded areas are the same as those in Fig. 2. The blue lines and shaded area are the corresponding
results for the cold start with an initial field of zero SWH. These results do not use data assimilation.

data. Although such a direct comparison might not be en-
tirely fair or reasonable, these values indicate that this simple
AI SWH model is capable of effectively modeling the distri-
bution and variability of global SWHs.

Regarding the spatial distributions of errors, the CCs
(Fig. 4b) are close to 0.99 in the westerlies of both hemi-
spheres and in marginal and (semi-)enclosed seas where
wind seas are predominant. However, in the tropical oceans,
especially along their eastern coasts where swells are pre-
dominant (“swell pools”, Chen et al., 2002), the CCs are be-
low 0.9 (∼ 0.85 in the Indian Ocean, ∼ 0.8 in the Atlantic
Ocean, and ∼ 0.7 in the Pacific Ocean). To further examine
whether these results are related to the presence of swells,
we examined the relationship between the swell energy pro-
portion (i.e., the ratio of the square of the swell SWH to the
square of the total SWH) and the CC across the global ocean
(the orange line in Fig. 5). The results show a clear trend: the
smaller the swell energy proportion, the higher the CC. In
particular, when the proportion is below 0.7, the CC values
are consistently above 0.99, indicating robust model perfor-
mance in wind-sea-dominated regions. However, when the
swell energy proportion exceeds 0.7, the CC values for the
model without data assimilation drop significantly, corrobo-
rating its lower performance in swell-dominated regions.

Three main factors contribute to these lower CC values
in the swell pools. First, the wind-sea growing process can
be regarded as a forcing problem, while swell propagation is
more of an initial value problem. This difference is evident in
the CCs observed over different simulation times. For exam-
ple, in regions of westerlies, the CCs remain stable at around
0.99 across 6, 24, 72, and 240 h hindcasts (Figs. S1b–S3b

and 4b). Conversely, in the Pacific swell pool, CCs decrease
significantly with simulation time: from 0.98 at 6 h to 0.92 at
24 h, to 0.8 at 72 h, and finally to 0.7 at 240 h. Compared to
the wind-sea growth, it is far more challenging, if not phys-
ically impossible, for the AI model to accurately learn the
swell propagation process using only the evolution of SWH
spatial patterns without directional wave spectra. Despite this
limitation, the AI model still manages to capture some rough
characteristics of swell energy propagation from the SWH
data, which is why its performance is still reasonable in these
swell-dominated regions.

Second, SWHs in swell pools typically vary within a nar-
row range of approximately 0.5–3.5 m. This limited variabil-
ity means that even if absolute RMSEs are relatively low, the
CC values may still be low, making it challenging to achieve
high CC values. These regions also exhibit the lowest CCs in
the comparisons between other global SWH data, i.e., NWM
hindcast versus altimeter observations. For reference, com-
parisons between SWHs from WW3-ST6 and CCI Sea State
are shown in Fig. S4, where CCs in these swell pools are also
lower than 0.8.

Third, the Garden Sprinkler Effect (GSE), a numerical er-
ror associated with swell propagation, can introduce random
errors into SWHs when swells have propagated over large
distances. Such swells are very common in swell pools, and
it is probably impossible for the AI model to learn how these
numerical errors evolve using the ERA5 SWH data.

Regarding the bias, the values vary in the range of
±0.15 m in most parts of the ocean but can reach 0.3 m to
the southwest of South America and 0.2 m to the southeast
of Africa. These relatively large biases are related to the ac-
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Figure 4. Comparison of SWHs from the AI model (without data assimilation) at 240 h hindcast time (when the errors are stable) with ERA5
for the year 2020. (a) Scatter plot between the SWHs from the two datasets. (b–e) Global spatial distributions of CC, bias, RMSE, and SI,
respectively.

Figure 5. Correlation coefficient between AI model and ERA5 data
as a function of swell energy proportion of the global ocean in the
year 2020. The orange and blue lines represent the AI model before
and after data assimilation, respectively, and the gray bars indicate
the variation in sample size as a function of swell energy proportion.

cumulation of error with simulation time. It is not clearly
known why the bias has such a distribution. We also plot-
ted the distribution of bias in other years and found that the
regions with the largest bias are slightly different in different
years, but the overall patterns are similar. For example, the
results in the year 2000 are shown in Fig. S5, where the error
maps look similar to those in Fig. 4. It is noted that although
the data from the year 2000 are used in the model training,
the training is only based on 1 h simulations without rolling,

so the AI model has never “seen” the exact input for the sim-
ulation time of more than 2 h. It is not a wrong way to use
the data in the training set to do a long-term rolling test (of
course, using an independent testing set should be better).
In all years, these biases are not significant compared to the
typical annual mean SWH in the corresponding regions. Be-
sides, these biases can largely be corrected by some simple
post-process methods such as point-by-point linear regres-
sion.

The RMSE pattern in Fig. 4d shares some similarities
with the bias pattern, with the largest RMSE values also
found southwest of South America, indicating that bias sig-
nificantly contributes to the overall error. However, the swell
pools with relatively low CCs are not prominently visible in
the maps of bias, RMSE, and SI. In terms of SI, apart from
the regions with relatively large RMSE, high SI values are
also observed near small islands and archipelagos such as
Indonesia. The annual mean SWHs in these areas are lower
than in the open ocean, so even a small RMSE can lead to
a relatively large SI. Moreover, these areas represent only a
small portion of the global ocean, so their contributions to
the overall loss function are minimal. However, wave behav-
ior in these regions differs significantly from that in the open
ocean, leading to a different input–output relationship for the
model, which complicates the training process. Additionally,
NWMs also encounter numerical errors when handling these
small islands. These factors make it more challenging for the
AI model to effectively learn from data near small islands.
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The AI model does not directly incorporate ice informa-
tion, treating ice-covered regions simply as land. As a result,
higher errors are expected in polar regions. However, this is
not evident in Fig. 4. In contrast, Fig. S1 shows that errors
in polar regions increase rapidly at first but then stabilize
with simulation time. This pattern may be due to the vari-
ability of sea ice, which leads the model to primarily learn
the rapid response of SWHs to wind forcing in polar regions.
Consequently, SWHs in polar regions are less sensitive to
the initial field compared to other areas. It is also noted that
only the data outside the marginal ice zone are used, mean-
ing waves that propagate into these regions are not consid-
ered. For waves generated in the marginal ice zone and prop-
agating out, they contribute minimally to the overall SWH
energy, so they are neglected by the AI model.

The distributions of these error metrics suggest that the
AI model performs well across global oceans in general.
To provide a more intuitive understanding of the AI SWH
model’s performance, an animation comparing the global
SWH distributions from ERA5 and our AI model is pre-
sented in Movie S1 in the Video Supplement. Slightly dif-
ferent from the 240 h hindcast results in Fig. 4, the results in
Movie S1 are generated by continuously rolling the AI model
from 1 January 2020, 00:00:00. A simple visual inspection
of the movie indicates that the AI model effectively captures
SWH evolution, suggesting that the AI model could serve as
an effective surrogate for NWMs, at least for some wind-sea-
dominated regions. Moreover, we also verified that the spa-
tial distribution of error metrics varies with season, which re-
flects seasonal differences in wave climate. Such variability
is consistently observed across statistical models, AI-based
models, and traditional numerical wave models (NWMs).

3.2.2 Evaluated against altimeter and buoy data

In addition, we compared the SWHs from the 240–272 h
hindcasts of the AI model with those from the CCI Sea
State dataset to evaluate the model performance, with the re-
sults shown in Fig. 6. This direct comparison with altimeter-
measured SWHs provides an independent and commonly
used method for wave model evaluation. To ensure suffi-
cient collocation between the altimeter and model data, we
extended the simulation period by 36 h, making sure that ev-
ery altimeter data record in the open ocean can be collocated
with a model grid point.

The comparison shows that the AI model also aligns well
with the altimeter data. In Fig. 6a, most data points lie along
the 1 : 1 line, with a bias close to zero, an RMSE of 0.336 m, a
CC of 0.968, and an SI of 0.123. These overall error metrics
are comparable to those observed between WW3-ST6 and
CCI Sea State in Fig. S4, where the bias, RMSE, CC, and SI
are 0.032 m, 0.326 m, 0.972, and 0.119, respectively.

Regarding the spatial patterns of errors, Fig. 6b–e are sim-
ilar to Fig. 4b–e, though the magnitudes of errors are gener-
ally larger in Fig. 6. The CCs in Fig. 6b are ∼ 0.98 in the
westerlies but are only ∼ 0.6 in the Pacific swell pool. In
contrast, the two corresponding CCs are ∼ 0.97 and ∼ 0.7,
respectively, in Fig. S4. For other error metrics, the differ-
ences between the two models are even smaller. The biases
vary in a similar range, and the RMSEs and SIs show simi-
lar patterns in Figs. 6 and S4. Notably, in the westerlies the
RMSE and SI values from the AI model are even slightly
lower than those from WW3-ST6, a state-of-the-art NWM
hindcast. These findings further demonstrate the strong per-
formance of the AI SWH model, particularly in open-ocean
regions that are not always predominated by swells.

For a more independent and objective assessment of the
AI model, we further compared its results with independent
in situ observations from NDBC buoys (Fig. 7). Similar to
the comparison with altimeter data, most points align well
along the 1 : 1 line, with bias, RMSE, CC, and SI values
of −0.002 m, 0.306 m, 0.959, and 0.161, respectively. For
reference, Fig. S6 presents the comparison between WW3-
ST6 and NDBC data, where the corresponding bias, RMSE,
CC, and SI values are −0.004 m, 0.291 m, 0.963, and 0.153.
These results are consistent with the comparison against CCI
Sea State data, further confirming the reliability of the AI
model.

For the 240 h rolling hindcast results of the AI model with
data assimilation every 6 h, the corresponding comparisons
with ERA5 and CCI Sea State are shown in Figs. S7 and
S8, respectively. Compared to the results without assimila-
tion in Fig. 4, all the error metrics of the model improve
significantly with data assimilation in Fig. S7. Specifically,
the CCs in the Pacific, Atlantic, and Indian Ocean swell
pools increase from ∼ 0.7, ∼ 0.8, and ∼ 0.85 in Fig. 4 to
∼ 0.88, ∼ 0.92, and 0.95 in Fig. 7, respectively. The magni-
tudes of bias, RMSE, and SI also decrease across the oceans
with assimilation, although the bias and RMSE remain rel-
atively high in regions to the southwest of South America
and southeast of Africa. The comparison between Figs. 6
and S8 shows a similar result: the overall errors become
significantly smaller, particularly in the swell-dominated re-
gions, with assimilation. These results are further supported
by Fig. 5, where the model with data assimilation consis-
tently maintains substantially higher CC values, even when
the swell energy proportion exceeds 0.7. Similar to Movie S1
in Wang (2025), the comparison animation of the results
with assimilation is placed in Movie S2 in Wang (2025),
where the AI model better captured the SWH evolution. The
comparison between NDBC buoy data and the AI model
with data assimilation is shown in Fig. S9, where improve-
ments in all error metrics (bias= 0.033 m, RMSE= 0.279 m,
SI= 0.147, CC= 0.967) compared to those in Fig. 7 can
also be observed, showing the effectiveness of the assimi-
lation. For reference, comparing ERA5 against NDBC buoy
data shows that ERA5 still performs slightly better than our
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Figure 6. The same as Fig. 4, but the comparison is between the 240 h SWH hindcasts of the AI model and the CCI Sea State dataset.

Figure 7. The same as Fig. 4, but the comparison is between the 240 h SWH hindcasts of the AI model and NDBC buoy dataset.

AI model (Fig. S10, with bias= 0.027 m, RMSE= 0.266 m,
SI= 0.140, and CC= 0.971).

4 Discussion

The results demonstrate that it is feasible to develop a us-
able AI SWH model using only an initial SWH field and the

wind field at the next time step as inputs. These are likely the
minimum requirements for the inputs of an AI SWH model.
As noted in the introduction, relying solely on SWH fields
as inputs is insufficient since wind seas cannot be accurately
modeled without wind information. Similarly, one can ex-
pect that if the initial SWH field is excluded from the inputs,
the AI model would struggle to simulate ocean swells using
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only the input of the current wind field. To confirm this, we
trained an AI model using only the wind field as input, with
SWH at the same time step as the output, with the results
shown in Fig. 8. The model performance in Fig. 8 is signifi-
cantly worse than that in Fig. 4, in both wind-sea- and swell-
dominated regions. In areas with frequent wind seas, such as
the westerlies, although the CCs exceed 0.95, the RMSEs can
also surpass 0.4 m in both hemispheres – much higher than
the values in Fig. 4. In the Pacific and Atlantic swell pools,
the CCs are even lower than 0.4. These results underscore the
critical importance of including both the initial SWH field
and the forcing wind field as inputs for the AI SWH model.

From a physical perspective, the SWH at a given loca-
tion is influenced by the wind speed, fetch, and duration in
wind-sea conditions. The wind input provides information on
both wind speed and fetch. Meanwhile, duration (or histor-
ical wind) information is partially and implicitly conveyed
by the SWH input, as it is computed in a rolling simulation
using a recursive method that incorporates past wind data.
Although the implicit information provided by global SWHs
is not as comprehensive as that from global directional wave
spectra, the spatial distribution of SWHs still contains sig-
nificant historical wind information. This explains why in-
cluding the SWH input is beneficial for modeling wind-sea-
dominated regions and why the AI model can slightly out-
perform the NWM in these areas.

In swell-dominated regions, where local wind speeds re-
main low in almost all years, using only the wind input fails
to provide any meaningful information about the SWH, as il-
lustrated in Fig. 8. However, as previously mentioned, the AI
model can still learn some rough statistical characteristics of
swell energy propagation from the data, especially in regions
like swell pools. This is also demonstrated in Movie S1,
where the propagation of swells generated by extra-tropical
storms into tropical regions is distinctly observable.

Although the above analysis underscores the importance
of including SWH input for the AI model, the quality of the
initial SWH is not important if the model is run in a rolling
way for a relatively long time. The cold start experiment has
demonstrated that the model error can stabilize within 240 h,
even without an initial SWH field. However, we do not rec-
ommend using such a cold start in practice because a bet-
ter initial field or data assimilation can greatly accelerate the
speed of error convergence, and such a better initial field is
almost always available (e.g., using the output of the model
in Fig. 8).

Regarding data assimilation, the assimilation of altimeter
SWH measurements is sometimes believed not to be always
helpful in NWMs and may even have negative effects in some
cases. This is because there are different approaches to using
SWH data to correct directional wave spectra, and improper
corrections can adversely affect the model results. However,
in this AI model, the spectral information is encapsulated
within the SWH, and both the computation and assimilation
are directly based on the SWH. Consequently, if the assimi-

lated SWH data are more accurate than the output of the AI
model, the assimilation will positively impact the results.

It is not surprising that data assimilation can significantly
improve the performance of the AI model, but it is noted that
the computational cost of assimilation in this AI model is
low. In the assimilation of NWMs, SWH observations are
used to correct the spectral densities of directional wave
spectra, a four-dimensional array (latitude, longitude, fre-
quency, direction) at a given time step, using empirical re-
lations. In contrast, the assimilation process in the AI model
bypasses the need for wave spectral information, requiring
corrections only to a two-dimensional SWH array at a given
time, also significantly reducing the complexity of the model.

5 Concluding remarks

In this study, a global-scale AI model for SWH is proposed.
The model takes the current SWH field and the wind field at
the next time step as inputs, and it produces the SWH field at
the subsequent time step. Such a rolling computation method
is similar to that used in NWMs, but the spectral informa-
tion is not used. As expected, the lack of spectral data leads
to an increase in model error during the early stages of the
rolling simulation when given a good-quality initial SWH
field. However, the rate of error growth slows as the simu-
lation progresses, nearly halting after ∼ 200 h. More surpris-
ingly, once the error stabilizes, its overall magnitude is not
significantly larger than that of state-of-the-art NWMs, par-
ticularly under wind-sea-dominated conditions. Although the
performance of the AI model in swell-dominated regions is
somewhat inferior to that of NWMs, it still produces mean-
ingful outputs, with a correlation coefficient (CC) exceeding
0.7. This suggests that a simple AI model, using only the
current SWH field and the wind field at the next time step
as inputs, can be practical for many applications, including
operational forecasting, at least in regions outside of swell
pools.

Additionally, this study demonstrates that the issue of error
accumulation can be partially mitigated through the assimi-
lation of altimeter measurements. By using a simple objec-
tive analysis method, the assimilation helps the error of the
model to stabilize more rapidly and reduces the magnitude
of the stabilized error, resulting in a more reliable AI SWH
model.

An important advantage of the AI SWH model pro-
posed here is its low computational cost compared to tradi-
tional NWMs. For example, on a personal laptop equipped
with a single RTX 3060 GPU, the AI model can perform
a 1-year global SWH rolling simulation at a resolution
of 0.5°× 0.5°× 1 h in just 10 min. In contrast, traditional
NWMs, such as the WAVEWATCH III model, typically re-
quire several days to complete a simulation with the same
output, even on supercomputing facilities. This makes the AI
model particularly valuable in time-sensitive and resource-
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Figure 8. The same as Fig. 4, but the AI model is trained only using the wind field at the corresponding time as the input.

constrained scenarios, where it can be used as a surrogate for
the NWMs. One potential application of this model is en-
semble modeling, both in operational wave forecasting and
in wave climate studies. In these applications, it is challeng-
ing to run NWMs multiple times using wind fields from dif-
ferent ensemble members of weather forecast models (for
wave forecasting) or of various climate scenarios for long-
term projection (for wave climate projection) due to the lim-
itation of computational resources. In contrast, these tasks
can be efficiently completed using the AI model, even on a
standard laptop.

At this stage, the AI model is trained only on SWH data,
limiting its applicability to other wave parameters, such as
mean wave periods. Developing an AI model for additional
wave parameters would require training from scratch with
the relevant data. Whether the current model framework, us-
ing the corresponding wave parameter at the current time step
and the wind field at the next time step as inputs, can be ex-
tended to these parameters remains to be tested, which can
be one future direction. While we acknowledge the potential
for a more refined deep learning architecture to marginally
improve model performance, we believe the bottleneck of
the current AI model lies in the physics of the input–output
relationship. Therefore, it is difficult to further improve the
model performance without changing the model inputs.

We have demonstrated that the current SWH field and the
wind field at the next time step are minimum requirements
for the inputs of an AI SWH model. Such simplicity of model
inputs and outputs makes this model a potential baseline for
AI-based modeling of global SWH. A promising future di-
rection of this work involves incorporating additional inputs,

such as ocean currents and sea ice, into the model. The ulti-
mate goal of this approach, as mentioned in the introduction,
would involve using global directional wave spectra at the
current time step and the wind field at the next time step as in-
puts, with the global directional wave spectra at the next time
step as the output. Training such a model would be challeng-
ing due to the complexity of the task, but ongoing advance-
ments in AI methodologies, particularly in deep learning, are
continuously improving the possibility of achieving this goal.

Code and data availability. The ERA5 data are downloaded from
Copernicus Climate Data (https://cds.climate.copernicus.eu/,
ERA5, 2024). The CCI Sea State dataset is down-
loaded from the Centre for Environmental Data Analysis
(https://archive.ceda.ac.uk/, CCI, 2024). The NDBC buoy data
are available from the NDBC website (https://ndbc.noaa.gov/,
NDBC, 2024). The WW3-ST6 dataset is available from Liu et
al. (2021), and the subset used in this study is available in the
Zenodo repository (https://doi.org/10.5281/zenodo.14244061,
Wang, 2024). The AI models established in this study and rele-
vant test data have also been archived in the Zenodo repository
(https://doi.org/10.5281/zenodo.14244061) (Wang, 2024).

Video supplement. Movies S1 and S2 are available at
https://doi.org/10.5281/zenodo.15612386 (Wang, 2025).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-5101-2025-supplement.
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