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Supplementary Texts 

Text S1: Modifications made based on ORCHIDEE r8240 

Text S1.1 NPP allocation 

This ORCHIDEE version (r8240) is not well calibrated in the tropical region. Previous 

study mainly focuses on the calibration of NEE or GPP, but ignore the carbon allocation 

(Bastrikov et al., 2018; Raoult et al., 2024). The NPP allocation scheme in the 

ORCHIDEE model follows the pipe model theory (Shinozaki et al., 1964; Naudts et al., 

2015), which assumes that the production of one unit of leaf mass requires a 

proportional amount of sapwood for water transport from roots to leaves, along with a 

corresponding proportion of roots for water uptake from the soil. The pipe model 

follows the following formulas (Naudts et al., 2015): 

𝑀𝑙 =
𝑓𝐾𝐹 × 𝑀𝑠

𝑑ℎ
 (𝑠1) 

𝑀𝑟 =
𝑀𝑠

𝑘𝑠𝑎𝑟 × 𝑑ℎ
 (𝑠2) 

where Ml, Ms and Mr are leaf, sapwood, and root carbon mass, dh is the tree height, fKF 

is the scaling factor to convert sapwood mass into leaf mass, ksar is the scaling factor to 

convert sapwood mass into root mass. fKF and ksar are calculated as: 

𝑓𝐾𝐹=
𝑘𝑙𝑠𝑚𝑖𝑛 + 𝑓𝑃𝑔𝑎𝑝 × (𝑘𝑙𝑠𝑚𝑎𝑥 − 𝑘𝑙𝑠𝑚𝑖𝑛)

𝑘𝑠𝑙𝑎 × 𝑘𝜌𝑠 × 𝑓𝑡𝑟𝑒𝑒
 (𝑠3) 

𝑘𝑠𝑎𝑟 = √(
𝑘𝑟𝑐𝑜𝑛

𝑘𝑠𝑐𝑜𝑛
) × (

𝑘𝜏𝑠

𝑘𝜏𝑟
) × 𝑘𝜌𝑠 (𝑠4) 
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where klsmin is the minimum observed leaf area to sapwood area ratio, klsmax is the 

maximum observed leaf area to sapwood area ratio, fPgap is the gap fraction calculated 

from the gap model, krcon is the hydraulic conductivity of roots, kscon is the hydraulic 

conductivity of sapwood, kτs is the longevity of sapwood, and kτr is the root longevity. 

Because of the different turnover rates in different biomass pools at each time step, the 

NPP allocation first ensures that the model adheres to the allometric relationships. The 

remaining NPP is then allocated for vegetation growth. To achieve the appropriate NPP 

allocation fraction for each biomass pool, we adjusted both the turnover rates and the 

allometric relationships. 

Chave et al. (2010) collected leaf litterfall data from 81 sites across South America. 

After excluding data from short-statured, montane, and secondary tropical forests, we 

used the remaining 61 sites to calibrate the leaf turnover parameter in the model. Leaf 

turnover (ΔMc,l) is calculated at each time step (Δt) as a function of leaf age (Krinner 

et al., 2005): 

∆𝑀𝑐,𝑙 = 𝑀𝑐,𝑙 × min (0.99, 𝑓𝜏𝑙 ×
∆𝑡

𝑘𝜏𝑙
× (

𝑘𝑙𝑎

𝑘𝜏𝑙
)

4

) (𝑠5) 

where kla is the mean leaf age, kτl is the critical leaf age, and fτl is an empirical 

coefficient. After calibrating the model with the leaf litterfall data, the parameter fτl 

changed from 1 to 16. We also modified the relationship between leaf efficiency and 

leaf age following Chen et al. (2020). 

We further adjusted the pipe model parameters to match the observed fractions of NPP 

allocation to leaves and wood from Yang et al. (2021). They developed a data 

assimilation model CAT (Carbon Assimilation in the Tropics) based on Bayesian 

formalism, which estimated NPP allocation fractions to leaves and wood, constrained 

by NPP, LAI, biomass, and SLA from both satellite and inventory data.  

Initially, the modeled fraction of NPP allocated to leaves from the ORCHIDEE model 
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was 13.7% ± 0.3% (mean ± standard deviation), which was underestimated compared 

to observations (27.9% ± 3.1%, Fig. S6a). This underestimation is primarily due to the 

model's low estimation of leaf litterfall, with observed values of 3.0 ± 0.5 MgC/ha 

compared to 1.0 ± 0.2 MgC/ha in the ORCHIDEE model (Fig. S6b). After calibration, 

the modeled leaf litterfall increased to 3.1 ± 0.2 MgC/ha, aligning more closely with 

observations. Meanwhile, the modeled fraction of NPP allocated to leaves also 

increased to 29.2% ± 2.6%, close to the observation level. The modeled fraction of NPP 

allocated to wood remained consistent with observations, both before and after 

adjustment (Fig. S6c). All adjustments of parameters are summarized in Table S1. 

Text S1.2 Wood density 

In the ORCHIDEE model, wood density is a prescribed trait/parameter that influences 

both carbon allocation and tree diameter. A higher wood density leads to a lower value 

of the stem-to-leaf allocation factor fKF (Eq. S3), which reduces leaf biomass and 

consequently lowers photosynthetic capacity. In addition, higher wood density results 

in smaller tree diameters and increased stem density (Eq. 2). Although empirical studies 

have shown that higher wood density is often associated with lower mortality rates 

(Esquivel-Muelbert et al., 2020), this relationship is not currently represented in the 

ORCHIDEE model. 

Previously, the model applied a uniform wood density value for each PFT across all 

land areas. However, in the Amazon rainforest, wood density varies considerably, 

ranging from 0.4 gC/cm3 to 0.8 gC/cm3 (Mitchard et al., 2014). To account for this 

variation, we updated the model by incorporating a spatially explicit wood density map 

at a 1 km resolution, derived from four machine learning models, using the largest 

available wood density measurements (Yang et al., 2024). 

Text S1.3 Hydraulic architecture and drought mortality 

We merged ORCHIDEE-CAN-NHA r7236 into ORCHIDEE r8240. ORCHIDEE-

CAN-NHA r7236 includes a plant hydraulic module that simulates leaf, stem, and root 
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water potential for each circumference class, and models tree mortality due to hydraulic 

failure by explicitly simulating the percentage loss of conductance (Yao et al., 2022). 

Although this drought-induced tree mortality differs from self-thinning mortality, 

during 2011-2020, it only impacted 25.2% of the grids in our analysis, leading to a 6.1% 

reduction in where it lowered the average biomass and a 10.1% reduction in mortality 

rates in these areas by 6.1% and 10.1%, respectively (Fig. S2). Overall, the AGB and 

biomass mortality rates are still predominantly controlled by α rather than drought-

induced mortality during our study period. 

Text S2: Active nitrogen content in the leaves 

Given the limited observations available for accurately calibrating the nitrogen cycle in 

the Amazon rainforest, and the fact that tropical forests are generally not nitrogen-

limited (Brookshire et al., 2012), we prescribed a leaf C/N ratio (rc/n) of 25 (Sitch et al., 

2003). We assumed that 10% of this nitrogen is allocated to structural tissues that do 

not contribute to Vcmax, and that the leaf nitrogen concentration profile within the 

canopy follows the distribution of light. The Mn,active is calculated as: 

𝑀𝑛,𝑙
𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑀𝑛,𝑙 − 𝑀𝑛,𝑙

𝑠𝑡𝑟𝑢𝑐 =
𝑀𝑐,𝑙

𝑟𝑐/𝑛
− 𝑀𝑐,𝑙 × 0.4% (s6)  

where Mn,l is the leaf nitrogen mass (gN m-2), Mc,l is the leaf carbon mass (gC m-2), and 

𝑀𝑛,𝑙
𝑠𝑡𝑟𝑢𝑐 (gC m-2) is the structural leaf nitrogen mass. 

Text S3: Temporal variation and trend of AGB, GPP and biomass mortality rates 

Our parameter optimization framework is not designed to capture interannual variation 

or long-term trends of GPP, AGB, or mortality. Here, we present the temporal dynamics 

of these variables for the period of 2001–2020 (Fig. S24). Currently, due to a lack of 

reliable observational data on the temporal variation or long-term trends of mortality 

and AGB, it’s difficult to evaluate the model’s performance on the temporal dynamics 

of mortality and AGB.  

We compared the simulated GPP from the ORCHIDEE model with GPP from GOSIF 
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during this period. With spatially constant parameters and spatially varying parameters, 

the simulated multi-year regional mean GPP values from the ORCHIDEE model are 

33.36±0.38 and 33.16±0.38 MgC ha-1 yr-1 (mean±standard deviation), respectively. The 

corresponding linear trends are 0.035 and 0.034 MgC ha-1 yr-2 (p<0.05), respectively 

(Fig. S24b). In comparison, the GOSIF-based multi-year regional mean GPP is 

33.54±0.45 MgC ha-1 yr-1 with a trend of 0.049 MgC ha-1 yr-2 (p<0.05, Fig. S24b). The 

correlation coefficients between annual regional mean GPP from the GOSIF data and 

the ORCHIDEE model are 0.58 and 0.57 for spatially constant parameters and spatially 

varying parameters, respectively. These results suggest that the model can roughly 

capture the interannual variation and long-term trend of GPP from GOSIF, and our 

parameterization framework has only a minor influence on these temporal dynamics. 

The linear trends of AGB from the ORCHIDEE model are also similar between the two 

configurations: 0.055 MgC ha-1 yr-1 (p < 0.05) for spatially constant parameters and 

0.054 MgC ha-1 yr-1 (p < 0.05) for spatially varying parameters (Fig. S24a). The 

increasing trend in AGB is consistent with field observations, which indicate that intact 

Amazon forests continue to act as carbon sinks (Pan et al., 2024). No significant trend 

was found for biomass mortality rates over the same period (p=0.65 for simulations 

with spatially constant parameters and p=0.67 for simulations with spatially varying 

parameters; Fig. S24c), and there is no regional and long-term observational data of 

mortality for comparison. 
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Supplementary Figures 

 

Figure S1. Soil texture map from Harmonized World Soils Database version 2.0 

(HSWD2).  

  



7 

 

 

Figure S2. Spatial pattern of AGB (a) and biomass mortality rates (b) difference 

between simulations with and without drought mortality. 25.2% of grids are shown in 

the figure where the difference in AGB exceeds 1 MgC ha-1. 
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Figure S3. Five different GPP products in the Amazon basin (a) and their Pearson 

correlation coefficients (b). Red dashed lines represent GPP observations (Table S4) in 

the Amazon forest from Marthews et al. (2012) and Malhi et al. (2015). Sites with 

temperature lower than 18°C and annual mean precipitation below 1,500 mm were 

excluded from the GPP observations to be consistent with our study area. 
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Figure S4. Relationship between above ground biomass (AGB) from field observations 

and AGB from remote sensing data at the resolution of 0.1° based on (a) Yu et al. (2023); 

(b) Santoro and Cartus (2024); (c) Avitabile et al. (2016); (d) Baccini et al. (2012). The 

size of the dots indicates the plot area. The dashed red line is the 1:1 line. The black 

solid line is the best fit between remote sensing data and observations weighted by plot 

area. 
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Figure S5. Relationship between mortality from field observations and mortality from 

remote sensing data at the resolution of 0.1°. The size of the dots indicates the plot area. 

The dashed red line is the 1:1 line. The black solid line is the best fit between remote 

sensing data and observations weighted by plot area. 

  



11 

 

 

Figure S6. Calibration of carbon allocation. (a) Leaf litterfall; (b) Fraction of NPP 

allocated to leaf; (c) Fraction of NPP allocated to wood. Boxplots show the median, 

25th, and 75th quantiles, with whiskers representing the maximum and minimum 

values excluding any outliers. Individual points are outliers. 
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Figure S7. 20 sets of parameter values generated by Latin hypercube sampling. 
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Figure S8. The schematic diagram for the interpolation method. We first collected the 

results of modeled AGB, GPP, and mortality rates based on the simulations from 20 sets 

of parameter values. Then we did the interpolation using quadratic splines over the 

whole parameter space. We finally found the optimal α and η based on the results from 

the interpolation and a loss function. 
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Figure S9. Maps of 8 explanatory variables at its original resolution. (a) Temperature; 

(b) precipitation; (c) maximum cumulative water deficit (MCWD); (d) downward 

shortwave radiation (SWdown); (e) wood density; (f) clay fraction; (g) total available 

phosphorous; (h) water table depth. The detailed information for each variable is listed 

in Table S3. 
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Figure S10. Correlation matrix for 8 explanatory variables. 
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Figure S11. Spatial patterns of optimized spatially varying parameter maps of α (a) and 

η (b). 
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Figure S12. Comparison of model-simulated AGB, GPP, and biomass mortality rates 

with observations. Results from model simulation with spatially varying α and spatially 

constant η (a-c), and model with spatially varying η and spatially constant α (d-f). The 

dashed red line is the 1:1 line. The black solid line is the best fit between modeled 

results and observations. The color of the dots represents the value of MCWD to show 

its correlation with AGB, GPP, and biomass mortality rates. 
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Figure S13. Relationship between spatially varying parameters and observations. (a-c) 

Spatially varying α versus AGB from Yu-Biomass (a), GOSIF GPP (b) mortality rates 

from Sassan (c). (d-f) Spatially varying η versus AGB from Yu-Biomass (d), GOSIF 

GPP (e) mortality rates from Sassan (f). The solid line is the best fit between 

observations and spatially varying parameters. The shaded area is the 95% confidence 

interval of the linear regression. 
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Figure S14. Spatial pattern of the differences between model-simulated results and 

observations. (a) Model-simulated AGB compared to AGB from Yu-Biomass, (b) 

Model-simulated GPP compared to GPP from GOSIF, and (c) Model-simulated 

biomass mortality rates compared to biomass mortality rates from Planet. The red circle 

highlights an example of grids where observational inconsistencies result in biases. In 

these grids, GPP is underestimated, while AGB and mortality rates are overestimated. 

If the model simulates higher GPP, the overestimation of mortality rates and AGB 

would increase further. These results reflect a trade-off during the optimization process. 
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Figure S15. Relationship between model simulated GPP and AGB multiplied by 

biomass mortality rates. 
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Figure S16. Spatial distributions of five GPP products used in this study: (a) GOSIF; 

(b) FLUXCOM_RS; (c) FLUXCOM_RS+METEO; (d) BESSv2; (e) FORMIND. 
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Figure S17. Same as Figure 3 but used different GPP observation datasets during the 

optimization. (a, f, k) Same as figure 2d-2f; (b, g, l) optimization results using 

FLUXCOM_RS GPP; (c, h, m) optimization results using FLUXCOM_RS+METEO 

GPP; (d, i, n) optimization results using BESSv2 GPP; (d, i, n) optimization results 

using FORMIND GPP. The dashed red line is the 1:1 line. The black solid line is the 

best fit between modeled results and observations. 
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Figure S18 Impact of 8 explanatory variables on optimized parameters α using different 

GPP datasets: (a) temperature; (b) precipitation; (c) maximum cumulative water deficit 

(MCWD); (d) downward shortwave radiation (SWdown); (e) wood density; (f) clay 

fraction; (g) total available phosphorous; (h) water table depth. The solid line is the best 

fit between influencing factors and optimized parameters. The shaded area is the 95% 

confidence interval of the linear regression.  
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Figure S19. Same as Fig. S18 but for η. 
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Figure S20. Relationship between MCWD from CRUJRA and GPP from GOSIF. 
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Figure S21. Impact of clay fraction on runoff. (a) Correlation between clay fraction and 

precipitation. (b) Correlation between clay fraction and the fraction of runoff relative 

to precipitation.  
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Figure S22. Relationship between total available phosphorus from CRUJRA and GPP 

from GOSIF. 
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Figure S23. Same as Figure 3d-3f but using parameters α and η predicted by random 

forest regression to run the ORCHIDEE model. 
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Figure S24. Temporal variation of regional mean AGB (a), GPP (b), and biomass 

mortality rates (c) from the ORCHIDEE model during 2001-2020. GPP from the 

GOSIF data is shown for comparison. 
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Supplementary Tables 

Table S1 Modified parameters in the model 

Symbol in the text 

(Symbol in 

ORCHIDEE model) 

Unit 
Default 

value 

After 

modification 
Description Reference 

krcon (k_belowgroud) m3/kg/s/Mpa 
8.944E-

08 
4E-07 

Belowground (roots + soil) 

specific conductivity 

Yang et al., 

2021 

klsmin (k_latosa_min) - 7500 10000 
Minimum leaf-to-sapwood area 

ratio 

Yang et al., 

2021 

fτl (turnover_C3) - 1 16 
Empirical coefficient for leaf 

turnover 

Chave et al., 

2010 

α 

(alpha_self_thinning) 
m 1941 

spatially 

varying map 

Coefficient of the self-thinning 

relationship 

Santoro et al., 

2023; Li et al., 

2019; Yu et al., 

2024 

η (nue_opt) μmolCO2/gN/s 14.08 
spatially 

varying map 

Nitrogen use efficiency of 

Vcmax 

Santoro et al., 

2023; Li et al., 

2019; Yu et al., 

2024 

Wood density 

(pipe_density) 
gC/m3 287458 

spatially 

varying map 
Wood density 

Yang et al., 

2024 

rc/n (cn_leaf) gC/gN 16-45.5 25 CN ratio of leaves 
Sitch et al., 

2003 
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Table S2 Look-up table for 12 soil class properties defined by the United States 

Department of Agriculture (USDA). Ks: hydraulic conductivity at saturation; VG_n: 

Van Genuchten coefficients n; VG_a: Van Genuchten coefficients a; mcr: residual 

volumetric water content; mcs: saturated volumetric water content. 

 
Clay 

(%) 

Silt 

(%) 

Sand 

(%) 

Ks 

(mm d-1) 

VG_

n (-) 

VG_a  

(mm-1) 

mcr 

(m3 m-3) 

mcs  

(m3 m-3) 

Sand 3 4 93 7128.0 2.68 0.0145 0.045 0.43 

Loamy Sand 6 13 81 3501.6 2.28 0.0124 0.057 0.41 

Sandy Loam 11 26 63 1060.8 1.89 0.0075 0.065 0.41 

Silt Loam 19 64 17 108.0 1.41 0.0020 0.067 0.45 

Silt 10 84 6 60.0 1.37 0.0016 0.034 0.46 

Loam 20 40 40 249.6 1.56 0.0036 0.078 0.43 

Sandy Clay 

Loam 
27 19 54 314.4 1.48 0.0059 0.1 0.39 

Silty Clay 

Loam 
33 59 8 16.8 1.23 0.0010 0.089 0.43 

Clay Loam 33 37 30 62.4 1.31 0.0019 0.095 0.41 

Sandy Clay 41 11 48 28.8 1.23 0.0027 0.1 0.38 

Silty Clay 46 48 6 4.8 1.09 0.0005 0.07 0.36 

Clay 55 30 15 48.0 1.09 0.0008 0.068 0.38 
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Table S3 List of the independent variables  

Variable name Unit  Original 

Resolution 

Time  Data source 

Mean annual temperature 

(MAT) 

K 0.5° 2001-

2020 

CRUJRA2.4 

Mean annual 

precipitation (MAP) 

mm 0.5° 2001-

2020 

CRUJRA2.4 

Maximum cumulative 

water deficit (MCWD) 

mm 0.5° 2001-

2020 

CRUJRA2.4 

Downward shortwave 

radiation (SWdown) 

W/m2 0.5° 2001-

2020 

CRUJRA2.4 

Wood density gC/cm3 ≈1 km Historical Yang et al., 2024 

Clay fraction % ≈1 km Historical HWSD2 

Soil total phosphorus mg/kg ≈10 km Historical Darela-Filho et 

al., 2024 

Water table depth m ≈1 km Historical Fan et al., 2013 
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Table S4 List of the GPP observation values used in Figure S3 

Site name 

 

GPP  

(MgC ha-1 yr-1) 

Latitude Longitude Data source 

San Pedro plot 1 

(SPD-01) 

30.03 13°2′ 56.89″ 

S 

71°32′ 12.6″ W Marthews et 

al., 2012 

San Pedro plot 2 

(SPD-02) 

38.31 13°2′ 56.89″ 

S 

71°32′ 12.6″ W Marthews et 

al., 2012 

Tambopata plot 3 

(TAM-05) 

37.11 12°50′18.59″ 

S 

69°17′45.65″ W Marthews et 

al., 2012 

Tambopata plot 4 

(TAM-06) 

34.69 12°50′18.59″ 

S 

69°17′45.65″ W Marthews et 

al., 2012 

Manaus, K34 Tower 30.4 2º35′21.08″ S 60º6′53.63″W Marthews et 

al., 2012 

Caxiuanã Tower plot 

(CAX-06) 

38.2 1º43′11.26″ S 51º27′29.45 W Marthews et 

al., 2012 

Caxiuanã Tower plot 

(CAX-06) 

33.0 1º43′11.26″ S 51º27′29.45 W Marthews et 

al., 2012 

Caxiuanã Tower plot 

(CAX-06) 

32.0 1º43′11.26″ S 51º27′29.45 W Marthews et 

al., 2012 

Allpahuayo A 

(ALP11/ALP12) 

39.05 3°57'0" S 73°26'0" W Malhi et al., 

2015 

Allpahuayo C 

(ALP30) 

41.88 3°57'15.48" S 73°25'36.12" W Malhi et al., 

2015 

Caxiuanã Control 

plot (CAX-04) 

34.37 1°42'57.60" S 51°27'25.20" W Malhi et al., 

2015 

 

References 

Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. 

P., Armston, J., Ashton, P. S., Banin, L. F., Bayol, N., Berry, N. J., Boeckx, P., de 

Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopez-

Gonzalez, G., Lucas, R., Malhi, Y., Morel, A., Mitchard, E. T. A., Nagy, L., Qie, 

L., Quinones, M. J., Ryan, C. M., Ferry, S. J. W., Sunderland, T., Laurin, G. V., 

Gatti, R. C., Valentini, R., Verbeeck, H., Wijaya, A., Willcock, S., Asthon, P., Banin, 

L. F., Bayol, N., Berry, N. J., Boeckx, P., de Jong, B. H. J., DeVries, B., Girardin, 

C. A. J., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y., 

Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan, C. M., Slik, 

F., Sunderland, T., Vaglio Laurin, G., Valentini, R., Verbeeck, H., Wijaya, A., and 

Willcock, S.: An integrated pan-tropical biomass map using multiple reference 

datasets, Global Change Biology, 22, 1406-1420, 10.1111/gcb.13139, 2016. 

Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., 



34 

 

Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., and Houghton, 

R. A.: Estimated carbon dioxide emissions from tropical deforestation improved 

by carbon-density maps, Nature Climate Change, 2, 182-185, 

10.1038/nclimate1354, 2012. 

Bastrikov, V., MacBean, N., Bacour, C., Santaren, D., Kuppel, S., and Peylin, P.: Land 

surface model parameter optimisation using in situ flux data: comparison of 

gradient-based versus random search algorithms (a case study using ORCHIDEE 

v1.9.5.2), Geosci. Model Dev., 11, 4739-4754, 10.5194/gmd-11-4739-2018, 2018. 

Brookshire, E. N. J., Gerber, S., Menge, D. N. L., and Hedin, L. O.: Large losses of 

inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation, 

Ecology Letters, 15, 9-16, https://doi.org/10.1111/j.1461-0248.2011.01701.x, 

2012. 

Chave, J., Navarrete, D., Almeida, S., Álvarez, E., Aragão, L. E. O. C., Bonal, D., 

Châtelet, P., Silva-Espejo, J. E., Goret, J. Y., von Hildebrand, P., Jiménez, E., 

Patiño, S., Peñuela, M. C., Phillips, O. L., Stevenson, P., and Malhi, Y.: Regional 

and seasonal patterns of litterfall in tropical South America, Biogeosciences, 7, 43-

55, 10.5194/bg-7-43-2010, 2010. 

Chen, X., Maignan, F., Viovy, N., Bastos, A., Goll, D., Wu, J., Liu, L., Yue, C., Peng, 

S., Yuan, W., da Conceição, A. C., O'Sullivan, M., and Ciais, P.: Novel 

Representation of Leaf Phenology Improves Simulation of Amazonian Evergreen 

Forest Photosynthesis in a Land Surface Model, Journal of Advances in Modeling 

Earth Systems, 12, e2018MS001565, https://doi.org/10.1029/2018MS001565, 

2020. 

Esquivel-Muelbert, A., Phillips, O. L., Brienen, R. J. W., Fauset, S., Sullivan, M. J. P., 

Baker, T. R., Chao, K.-J., Feldpausch, T. R., Gloor, E., Higuchi, N., Houwing-

Duistermaat, J., Lloyd, J., Liu, H., Malhi, Y., Marimon, B., Marimon Junior, B. H., 

Monteagudo-Mendoza, A., Poorter, L., Silveira, M., Torre, E. V., Dávila, E. A., del 

Aguila Pasquel, J., Almeida, E., Loayza, P. A., Andrade, A., Aragão, L. E. O. C., 

Araujo-Murakami, A., Arets, E., Arroyo, L., Aymard C, G. A., Baisie, M., Baraloto, 

C., Camargo, P. B., Barroso, J., Blanc, L., Bonal, D., Bongers, F., Boot, R., Brown, 

F., Burban, B., Camargo, J. L., Castro, W., Moscoso, V. C., Chave, J., Comiskey, 

J., Valverde, F. C., da Costa, A. L., Cardozo, N. D., Di Fiore, A., Dourdain, A., 

Erwin, T., Llampazo, G. F., Vieira, I. C. G., Herrera, R., Honorio Coronado, E., 

Huamantupa-Chuquimaco, I., Jimenez-Rojas, E., Killeen, T., Laurance, S., 

Laurance, W., Levesley, A., Lewis, S. L., Ladvocat, K. L. L. M., Lopez-Gonzalez, 

G., Lovejoy, T., Meir, P., Mendoza, C., Morandi, P., Neill, D., Nogueira Lima, A. 

J., Vargas, P. N., de Oliveira, E. A., Camacho, N. P., Pardo, G., Peacock, J., Peña-

Claros, M., Peñuela-Mora, M. C., Pickavance, G., Pipoly, J., Pitman, N., Prieto, 

A., Pugh, T. A. M., Quesada, C., Ramirez-Angulo, H., de Almeida Reis, S. M., 

Rejou-Machain, M., Correa, Z. R., Bayona, L. R., Rudas, A., Salomão, R., Serrano, 

J., Espejo, J. S., Silva, N., Singh, J., Stahl, C., Stropp, J., Swamy, V., Talbot, J., ter 

Steege, H., Terborgh, J., Thomas, R., Toledo, M., Torres-Lezama, A., Gamarra, L. 



35 

 

V., van der Heijden, G., van der Meer, P., van der Hout, P., Martinez, R. V., Vieira, 

S. A., Cayo, J. V., Vos, V., Zagt, R., Zuidema, P., and Galbraith, D.: Tree mode of 

death and mortality risk factors across Amazon forests, Nature Communications, 

11, 5515, 10.1038/s41467-020-18996-3, 2020. 

Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., 

Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for 

studies of the coupled atmosphere-biosphere system, Global Biogeochemical 

Cycles, 19, 10.1029/2003GB002199, 2005. 

Malhi, Y., Doughty, C. E., Goldsmith, G. R., Metcalfe, D. B., Girardin, C. A. J., 

Marthews, T. R., del Aguila-Pasquel, J., Aragão, L. E. O. C., Araujo-Murakami, 

A., Brando, P., da Costa, A. C. L., Silva-Espejo, J. E., Farfán Amézquita, F., 

Galbraith, D. R., Quesada, C. A., Rocha, W., Salinas-Revilla, N., Silvério, D., Meir, 

P., and Phillips, O. L.: The linkages between photosynthesis, productivity, growth 

and biomass in lowland Amazonian forests, Global Change Biology, 21, 2283-

2295, https://doi.org/10.1111/gcb.12859, 2015. 

Marthews, T. R., Malhi, Y., Girardin, C. A. J., Silva Espejo, J. E., Aragão, L. E. O. C., 

Metcalfe, D. B., Rapp, J. M., Mercado, L. M., Fisher, R. A., Galbraith, D. R., 

Fisher, J. B., Salinas-Revilla, N., Friend, A. D., Restrepo-Coupe, N., and Williams, 

R. J.: Simulating forest productivity along a neotropical elevational transect: 

temperature variation and carbon use efficiency, Global Change Biology, 18, 

2882-2898, https://doi.org/10.1111/j.1365-2486.2012.02728.x, 2012. 

Mitchard, E. T. A., Feldpausch, T. R., Brienen, R. J. W., Lopez-Gonzalez, G., 

Monteagudo, A., Baker, T. R., Lewis, S. L., Lloyd, J., Quesada, C. A., Gloor, M., 

Ter Steege, H., Meir, P., Alvarez, E., Araujo-Murakami, A., Aragão, L. E. O. C., 

Arroyo, L., Aymard, G., Banki, O., Bonal, D., Brown, S., Brown, F. I., Cerón, C. 

E., Chama Moscoso, V., Chave, J., Comiskey, J. A., Cornejo, F., Corrales Medina, 

M., Da Costa, L., Costa, F. R. C., Di Fiore, A., Domingues, T. F., Erwin, T. L., 

Frederickson, T., Higuchi, N., Honorio Coronado, E. N., Killeen, T. J., Laurance, 

W. F., Levis, C., Magnusson, W. E., Marimon, B. S., Marimon Junior, B. H., 

Mendoza Polo, I., Mishra, P., Nascimento, M. T., Neill, D., Núñez Vargas, M. P., 

Palacios, W. A., Parada, A., Pardo Molina, G., Peña-Claros, M., Pitman, N., Peres, 

C. A., Poorter, L., Prieto, A., Ramirez-Angulo, H., Restrepo Correa, Z., Roopsind, 

A., Roucoux, K. H., Rudas, A., Salomão, R. P., Schietti, J., Silveira, M., de Souza, 

P. F., Steininger, M. K., Stropp, J., Terborgh, J., Thomas, R., Toledo, M., Torres-

Lezama, A., van Andel, T. R., van der Heijden, G. M. F., Vieira, I. C. G., Vieira, 

S., Vilanova-Torre, E., Vos, V. A., Wang, O., Zartman, C. E., Malhi, Y., and Phillips, 

O. L.: Markedly divergent estimates of Amazon forest carbon density from ground 

plots and satellites, Global ecology and biogeography : a journal of macroecology, 

23, 935-946, 10.1111/geb.12168, 2014. 

Naudts, K., Ryder, J., McGrath, M. J., Otto, J., Chen, Y., Valade, A., Bellasen, V., 

Berhongaray, G., Bönisch, G., Campioli, M., Ghattas, J., De Groote, T., Haverd, 

V., Kattge, J., MacBean, N., Maignan, F., Merilä, P., Penuelas, J., Peylin, P., Pinty, 



36 

 

B., Pretzsch, H., Schulze, E. D., Solyga, D., Vuichard, N., Yan, Y., and Luyssaert, 

S.: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and 

the modifications to the energy, water and carbon fluxes, Geoscientific Model 

Development, 8, 2035-2065, 10.5194/gmd-8-2035-2015, 2015. 

Pan, Y., Birdsey, R. A., Phillips, O. L., Houghton, R. A., Fang, J., Kauppi, P. E., Keith, 

H., Kurz, W. A., Ito, A., Lewis, S. L., Nabuurs, G.-J., Shvidenko, A., Hashimoto, 

S., Lerink, B., Schepaschenko, D., Castanho, A., and Murdiyarso, D.: The 

enduring world forest carbon sink, Nature, 631, 563-569, 10.1038/s41586-024-

07602-x, 2024. 

Raoult, N., Beylat, S., Salter, J. M., Hourdin, F., Bastrikov, V., Ottlé, C., and Peylin, P.: 

Exploring the potential of history matching for land surface model calibration, 

Geosci. Model Dev., 17, 5779-5801, 10.5194/gmd-17-5779-2024, 2024. 

Santoro, M. and Cartus, O.: ESA Biomass Climate Change Initiative (Biomass_cci): 

Global datasets of forest above-ground biomass for the years 2010, 2015, 2016, 

2017, 2018, 2019, 2020 and 2021, v5. NERC EDS Centre for Environmental Data 

Analysis [dataset], 10.5285/5f331c418e9f4935b8eb1b836f8a91b8, 2024. 

Shinozaki, K. K. Y., Hozumi, K., and Kira, T.: A quantitative analysis of plant form—

the pipe model theory. I. Basic analysis, Jpn.j.ecol, 1964. 

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., 

Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of 

ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ 

dynamic global vegetation model, Global Change Biology, 9, 161-185, 

10.1046/j.1365-2486.2003.00569.x, 2003. 

Yang, H., Ciais, P., Wang, Y., Huang, Y., Wigneron, J.-P., Bastos, A., Chave, J., Chang, 

J., E. Doughty, C., Fan, L., Goll, D., Joetzjer, E., Li, W., Lucas, R., Quegan, S., Le 

Toan, T., and Yu, K.: Variations of carbon allocation and turnover time across 

tropical forests, Global Ecology and Biogeography, 30, 1271-1285, 

https://doi.org/10.1111/geb.13302, 2021. 

Yang, H., Wang, S., Son, R., Lee, H., Benson, V., Zhang, W., Zhang, Y., Zhang, Y., 

Kattge, J., Boenisch, G., Schepaschenko, D., Karaszewski, Z., Stereńczak, K., 

Moreno-Martínez, Á., Nabais, C., Birnbaum, P., Vieilledent, G., Weber, U., and 

Carvalhais, N.: Global patterns of tree wood density, Global Change Biology, 30, 

e17224, https://doi.org/10.1111/gcb.17224, 2024. 

Yao, Y., Joetzjer, E., Ciais, P., Viovy, N., Cresto Aleina, F., Chave, J., Sack, L., Bartlett, 

M., Meir, P., Fisher, R., and Luyssaert, S.: Forest fluxes and mortality response to 

drought: model description (ORCHIDEE-CAN-NHA r7236) and evaluation at the 

Caxiuanã drought experiment, Geoscientific Model Development, 15, 7809-7833, 

10.5194/gmd-15-7809-2022, 2022. 

Yu, Y., Saatchi, S., Yang, Y., Xu, L., and Meyer, V.: Mapping Global Live Woody 

Vegetation Biomass at Optimum Spatial Resolutions [dataset], 

https://doi.org/10.5281/zenodo.7583611, 2023. 

 


