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Abstract. We developed a strongly coupled aerosol–
meteorology four-dimensional variational (4D-Var) assimila-
tion system, CMA-GFS-AERO 4D-Var, for investigating the
feedback of aerosol data assimilation on meteorological fore-
casts. This system was developed on the basis of the frame-
work of the incremental analysis scheme of the China Meteo-
rological Administration Global Forecasting System (CMA-
GFS). CMA-GFS-AERO 4D-Var includes three component
models: forward, tangent linear, and adjoint models. The
CMA-GFS-AERO forward model was constructed by inte-
grating an aerosol module containing the main physical pro-
cesses of black carbon (BC) aerosol in the atmosphere into
the CMA-GFS weather model. The tangent linear model and
the adjoint model of the aerosol module were further devel-
oped and coupled online with the CMA-GFS tangent linear
and adjoint models, respectively. In CMA-GFS-AERO 4D-
Var, the BC mass concentration was used as the control vari-
able and minimized together with atmospheric variables. The
validation of this system includes the tangent linear approx-
imation, the adjoint correctness test, the single-observation
experiment, and the full-observation experiment. The results
show that the CMA-GFS-AERO tangent linear model per-
forms well in terms of tangent linear approximation for BC
and that adjoint sensitivity agrees well with tangent linear
sensitivity. Assimilating BC observations can generate analy-
sis increments not only for BC but also for atmospheric vari-
ables, highlighting the capability of CMA-GFS-AERO 4D-

Var in exploring the feedback of BC assimilation on atmo-
spheric variables. The computational performance of CMA-
GFS-AERO 4D-Var also indicates its potential in operational
application. This study focuses on the theoretical architec-
ture and practical implementation of the system; the detailed
analysis of a series of cycling assimilation experiments will
be described in part 2 of this set of companion papers.

1 Introduction

Coupled chemistry–meteorology models (CCMMs) are at-
mospheric chemistry models that concurrently simulate me-
teorological processes and chemical transformations (Zhang,
2008; Baklanov et al., 2014; Bocquet et al., 2015). They are
more recent compared to chemical transport models (CTMs),
which rely on meteorological fields as inputs (Seinfeld and
Pandis, 1998). CCMMs account for the feedback mechanism
between aerosols and meteorology, specifically the moisture
and temperature perturbations resulting from aerosol micro-
physics and radiative forcing, which, in turn, affect atmo-
spheric dynamics such as convection, circulation, and stabil-
ity, whereas CTMs lack the capability to incorporate these
feedback mechanisms (Guerrette and Henze, 2015).

CCMMs provide the possibility of assimilating both me-
teorological and chemical data, enabling the production
of an optimal initial condition for improving air quality
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predictions and developing reanalysis of three-dimensional
(3D) chemical concentrations over the past decades (Boc-
quet et al., 2015). One of the first applications of data as-
similation with a CCMM was conducted at Météo-France.
Semane et al. (2009) used four-dimensional variational
(4D-Var) data assimilation to assimilate the vertical pro-
files of ozone (O3) concentrations obtained from the Mi-
crowave Limb Sounder (MLS) aboard the Aura satellite
into the ARPEGE/MOCAGE (Action de Recherche Petite
Echelle Grande Echelle/Modèle de Chimie Atmosphérique
de Grande Echelle) chemistry–meteorology integrated sys-
tem, and they found that the assimilation of O3 reduces the
wind bias in the lower stratosphere. This general approach
is also adopted by the European Centre for Medium-Range
Weather Forecasts (ECMWF), although without considering
the influence of chemical species on meteorological variables
(Flemming et al.,2011; Inness et al., 2013). Flemming et
al. (2011) utilized the 4D-Var system of the Integrated Fore-
cast System (IFS) coupled with three different O3 chemistry
mechanisms, including a linear chemistry, the MOZART3
(Model for Ozone and Related Chemical Tracers, version 3)
chemistry, and the TM5 (Transport Model, version 5) chem-
istry, to assimilate O3 data from four satellite-borne sensors
to improve the simulation of the stratospheric O3 hole in
2008. Previous efforts have also explored the application of
ensemble-based methods for data assimilation with a CCMM
(Pagowski and Grell, 2012; Bocquet et al., 2015). Pagowski
and Grell (2012) assimilated surface measurements of fine
aerosols using the Weather Research and Forecasting model
coupled with Chemistry (WRF-Chem) and the ensemble
Kalman filter (EnKF) method. Bocquet et al. (2015) also
presented an application of the EnKF to assimilate surface
fine-particulate-matter observations and meteorological ob-
servations with the WRF-Chem model over the eastern part
of North America. Results demonstrated a large positive im-
pact of aerosol data assimilation on aerosol concentrations,
while the effect of meteorological observation assimilation
on aerosol concentration was rather minor. All the preceding
studies have laid good foundations for data assimilation with
CCMMs. However, since CCMMs are fairly recent, the de-
velopment and applications of data assimilation in CCMMs
are still limited. Further research and more attention are re-
quired, especially in terms of the potential feedback of chem-
ical data assimilation on meteorological forecasts.

Additionally, EnKF estimates background error covari-
ance through ensemble forecasts, which rely on a limited
number of ensemble members (Zhu et al., 2022). In high-
dimensional problems, the limited number of samples may
not be able to fully capture all the error characteristics, re-
sulting in inaccuracies in the estimation of background error
covariance. Although ensemble Kalman smoothers (EnKSs)
extend the EnKF framework by incorporating an assimilation
window to leverage temporal observational information, they
remain constrained by similar limitations in ensemble size. In
contrast, 4D-Var explicitly integrates both the complete ob-

servational dataset and the full model dynamics within the
assimilation window to constrain state evolution, rather than
relying solely on ensemble statistics. This generally allows
4D-Var to achieve higher accuracy in high-dimensional prob-
lems by making better use of both observational data and
model constraints, leading to more precise state estimation.
While the flow dependence of the background error covari-
ance is implicitly realized within the assimilation window in
4D-Var, modeling the cross-variable component of the co-
variance presents a significant challenge in data assimilation
for CCMMs. Furthermore, the tangent linear model (TLM)
and the adjoint model (ADM) are essential components of
4D-Var, but their development is often fraught with difficul-
ties.

Significant efforts have been made in the field of atmo-
spheric chemistry adjoint modeling. Elbern and Schmidt
(1999) first constructed the ADM of a 3D CTM, EUARD
(The University of Cologne European Air Pollution Disper-
sion Chemistry Transport Model). Inspired by this work,
various ADMs of CTMs have been successively developed,
including mainly CHIMERE (Menut et al., 2000; Vautard
et al., 2000; Schmidt and Martin, 2003), IMAGES (In-
termediate Model of Global Evolution of Species; Müller
and Stavrakou, 2005), STEM-III (Sulfur Transport Eule-
rian Model; Sandu et al., 2005), CAMx (Comprehensive Air
Quality Model with Extensions model; Liu et al., 2007),
CMAQ (Community Multiscale Air Quality model; Hakami
et al., 2007), and GEOS-Chem (Henze et al., 2007). An et
al. (2016) and Wang et al. (2022) constructed the ADM of
GRAPES-CUACE (Global/Regional Assimilation and PrE-
diction System coupled with CMA Unified Atmospheric
Chemistry Environmental Forecasting System), an indepen-
dently developed CCMM in China (Wang et al., 2010, 2018).
ADMs of these widely used CTMs play an important role
in inverse modeling and chemical data assimilation (Menut
et al., 2000; Müller and Stavrakou, 2005; Sandu et al.,
2005; Hakami et al., 2007; Henze et al., 2009). However,
these CTMs do not take into account the relationships be-
tween chemical species and meteorological variables, result-
ing in certain uncertainties in adjoint sensitivity, which in
turn affect the effectiveness of 4D-Var. Although GRAPES-
CUACE is a CCMM, its ADM includes only the adjoint
model of the chemical model and not the adjoint model of
the meteorological model, leading to uncertainties in the sen-
sitivity calculation as well.

Black carbon (BC) aerosol, a major component of the fine
particulate matter (PM2.5) defined by an aerodynamic diame-
ter of 2.5 µm or less, primarily originates from the incomplete
combustion of biomass and fossil fuels (Kuhlbusch, 1998).
As an important atmospheric pollutant, BC is porous and ad-
sorbs other solid and gaseous pollutants (e.g., SO2, O3), and
it provides catalytic conditions for them, which plays an im-
portant role in photochemical and heterogeneous reactions
and gas–particle conversion processes (Koch, 2001). BC is
also the main optically absorbing component of atmospheric
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aerosols, effectively absorbing solar radiation in the visible
to infrared wavelength range, thus affecting the temperature
field throughout the atmosphere, including the surface tem-
perature. The climatic effects of BC have been widely re-
ported, but the extent to which BC affects weather forecast-
ing requires further investigation (Chung and Seinfeld, 2002;
Menon et al., 2002; Bond et al., 2013).

To deeply investigate the feedbacks of aerosol data as-
similation on meteorological forecasts, we utilized BC as
a starting point to develop the strongly coupled aerosol–
meteorology 4D-Var system. Firstly, we constructed a
coupled aerosol–meteorology system, named CMA-GFS-
AERO, by integrating an aerosol module (AERO-BC) con-
taining main aerosol physical processes of BC in the atmo-
sphere into the operational version of the weather model
CMA-GFS V4.0 (Shen et al., 2023), which was developed
by the China Meteorological Administration (CMA; GFS
stands for Global Forecasting System). Then, the tangent
linear model and the adjoint model of the AERO-BC mod-
ule were constructed and coupled online with the TLM and
ADM of CMA-GFS (Liu et al., 2017, 2023; Zhang et al.,
2019), respectively. Thus, CMA-GFS-AERO ADM includes
not only the adjoint model of physical processes of BC, but
also the adjoint model of the meteorological model. More-
over, the BC adjoint variables and the meteorological adjoint
variables mutually influence each other throughout the ad-
joint integration process, leading to a notable enhancement
in the precision of the adjoint sensitivity of the aerosol and
meteorology state. Based on the CMA-GFS-AERO forward
model and its TLM and ADM, we further constructed CMA-
GFS-AERO 4D-Var by adding BC as a control variable into
the incremental analysis scheme of CMA-GFS 4D-Var. The
rationality and capability of CMA-GFS-AERO 4D-Var in
capturing the feedbacks of aerosol data assimilation on mete-
orological analysis were verified using the single-observation
experiment and the full-observation experiment. The follow-
ing text is divided into five sections. Section 2 introduces the
methods, Sect. 3 describes the development of CMA-GFS-
AERO 4D-Var, Sect. 4 provides the model setup, Sect. 5
presents the results, and the conclusions are found in Sect. 6.

2 Methodology

2.1 Model description

2.1.1 CMA-GFS

The China Meteorological Administration Global Forecast-
ing System (CMA-GFS, formerly known as GRAPES-GFS)
is an operational global numerical weather model inde-
pendently developed by the CMA (Chen and Shen, 2006;
Chen et al., 2008; Shen et al., 2023). For this work, we
used CMA-GFS version 4.0 (CMA-GFS v4.0). The dy-
namic core of CMA-GFS utilizes the fully compressible non-

hydrostatical equations formulated on spherical coordinates
with latitude and longitude and adopts the height-based,
terrain-following coordinate, which is shown in Fig. S1 in the
Supplement (Yang et al., 2007). The model employs semi-
implicit and semi-Lagrangian schemes in two-level time in-
tegration (Yang et al., 2007). The spatial differential adopts
the Arakawa-C grid in the horizontal and Charney–Phillips
variable staggering in the vertical. The large-scale transport
processes utilize a hybrid piecewise rational method (PRM)
and quasi-monotone semi-Lagrangian (QMSL) scheme (Su
et al., 2013). The physical parameterization schemes used
in this work are consistent with those adopted in the oper-
ational application of CMA-GFS v4.0 and have been proven
to perform well in global numerical weather prediction. The
selected schemes mainly include the Simplified Arakawa–
Schubert (SAS) cumulus convection scheme (Arakawa and
Schubert, 1974; Liu et al., 2015), the double-moment cloud
microphysics scheme (Liu et al., 2003a, b; Li et al., 2024),
the Rapid Radiative Transfer Model for the GCM (RRTMG)
longwave and shortwave radiation schemes (Mlawer et al.,
1997; Morcrette et al., 2008), the Common Land Model
(CoLM) land surface scheme (Dai et al., 2003), and the New
Medium Range Forecast (NMRF) boundary layer scheme
(Hong and Pan, 1996; Han and Pan, 2011). The state vari-
ables of the CMA-GFS nonlinear model (NLM) include
non-dimensional pressure (5), potential temperature (θ ), the
east–west component of horizontal wind (u), the north–south
component of horizontal wind (v), the vertical component of
wind (ŵ), and the specific humidity (q).

2.1.2 CUACE

CUACE (CMA Unified Atmospheric Chemistry Environ-
mental Forecasting System) is an air quality model devel-
oped by the Chinese Academy of Meteorological Sciences
to study both air quality forecasting and climate change
(Gong and Zhang, 2008; Wang et al., 2010; Zhou et al.,
2012). CUACE mainly includes three modules: the aerosol
module, the gaseous chemistry module, and the thermody-
namic equilibrium module. CUACE adopts CAM (Canadian
Aerosol Module; Gong et al., 2003), which employs the size-
segregated multicomponent aerosol algorithm as its aerosol
module. CAM involves six types of aerosols – BC, sulfate
(SF), nitrate (NI), sea salt (SS), organic carbon (OC), and
soil dust (SD) – and each of them utilizes the sectional rep-
resentation method (Gelbard et al., 1980; Meng et al., 1998;
Gong et al., 2003), in which the aerosol size distribution is
generally approximated by a set of contiguous, nonoverlap-
ping and discrete size bins, to represent particle size distri-
butions. The core of CAM is the major aerosol processes in
the atmosphere, including hygroscopic growth, coagulation,
nucleation, condensation, dry deposition/sedimentation, and
below-cloud scavenging.
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2.2 Incremental 4D-Var

The CMA-GFS 4D-Var data assimilation system has been in
operation at CMA since 1 July 2018 (Zhang et al., 2019).
CMA-GFS 4D-Var applies the incremental analysis scheme
proposed by Courtier et al. (1994). The cost function is de-
fined as

J (δx)=
1
2
δxTB−1δx+

1
2

∑n

i=0
(HiM0→iδx+ d i)

T

R−1
i (HiM0→iδx+ d i)+ Jc, (1)

where δx = xa− xb represents the analysis increment of the
model variables, with xa being the analysis field and xb the
background state; d i =HiM0→i (xb)−yi is the observation
innovation at time i, with yi being the observation at time
i; Hi represents the observation operator at time i; M0→i
denotes the nonlinear model integration from the analysis
time to time i; Hi is the linear operator corresponding to Hi ;
M0→i is the linear model corresponding to M0→i ; B repre-
sents the error covariance matrix of xb; Ri denotes the obser-
vation error covariance matrix at time i; and Jc is the weak
constraint term on the basis of the digital filter. Jc is not rel-
evant to the current work, so the formula described below
omits the Jc term from the cost function for the sake of sim-
plicity.

After the physical and preconditioning transformations of
the control variables, the cost function can be expressed as
(Courtier et al., 1994; Lorenc et al., 2000; Zhang et al., 2019)

J (w)=
1
2
wTw+

1
2

∑n

i=0
(HiM0→iUw+ d i)

T

R−1
i (HiM0→iUw+ d i), (2)

where w denotes the control variables after the physical
and preconditioning transformations, and the analysis incre-
ment is expressed as δx = Uw, with U (UUT = B) being the
square root matrix of the background error covariance ma-
trix.

The gradient of the cost function J (w) with respect to the
control variable w is

∇wJ = w+
∑n

i=0
UT MT

0→iH
T
i R−1

i (HiM0→iUw+ d i), (3)

where HT
i is the adjoint operator of Hi and MT

0→i is the ad-
joint model of M0→i , which denotes the backward integra-
tion of the ADM from the time i to the analysis time.

Currently, the CMA-GFS 4D-Var system adopts a 6 h cy-
cle and is performed four times a day, with assimilation
windows of 03:00–09:00, 09:00–15:00, 15:00–21:00, and
21:00–03:00 UTC. The assimilation process is divided into
two parts: the outer loop and the inner loop. In the outer
loop, the CMA-GFS NLM (M0→i) is integrated at high res-
olution for 6 h to obtain the trajectory, which is a collection
of stored values of all model state variables at all time steps
within the assimilation window. The observation innovation

d i is calculated in the outer loop as well. In the inner loop,
the CMA-GFS TLM and ADM are integrated at low reso-
lution to calculate the cost function (J (w)) and its gradient
(∇wJ ). The gradient is further provided to the Lanczos-CG
algorithm (Lanczos, 1950; Liu et al., 2018) to perform the
minimization, obtaining the optimal analysis increments of
control variables.

3 Development of CMA-GFS-AERO 4D-Var

The computational cost is an important factor to be consid-
ered when developing a coupled aerosol–meteorology 4D-
Var system with potential for operational application (Flem-
ming et al., 2015). The CUACE model is computationally
expensive since it includes more than 100 chemical vari-
ables for aerosols and gases, as well as hundreds of gas-
phase chemical reactions. It is difficult to construct a cou-
pled aerosol–meteorology 4D-Var system directly based on
the CUACE model. On the other hand, BC has an impor-
tant impact on the climate and can be used to study the two-
way feedback interactions between aerosol and meteorology
(Chung and Seinfeld, 2002; Menon et al., 2002; Bond et al.,
2013). Therefore, we utilized BC as a starting point to con-
struct the strongly coupled aerosol–meteorology 4D-Var sys-
tem (CMA-GFS-AERO 4D-Var).

Creating CMA-GFS-AERO 4D-Var required three impor-
tant components: (1) the CMA-GFS-AERO forward model,
(2) the CMA-GFS-AERO TLM and ADM, and (3) the 4D-
Var framework. This section provides a detailed description
of the construction of the CMA-GFS-AERO 4D-Var from
these three aspects.

3.1 CMA-GFS-AERO forward model

In this work, for the sake of interest in BC and the consid-
eration of computational efficiency, we developed the CMA-
GFS-AERO forward model by integrating the aerosol mod-
ule AERO-BC into CMA-GFS v4.0. The AERO-BC module
was created by extracting BC-related codes from the CUACE
model, with its functionality aligning with the BC aerosol
processes in the CAM module of CUACE. In other words,
the physical processes for BC in AERO-BC are identical to
those in the CAM module, with no changes made. The main
differences lie in the engineering aspect: (1) while the CAM
module was originally written in Fortran 77, the AERO-BC
code has been rewritten in Fortran 90; (2) since CAM in
CUACE deals with six types of aerosols, the code structure
is somewhat complex and redundant, whereas AERO-BC fo-
cuses solely on BC, resulting in a simpler and more stream-
lined structure. These updates improve code readability and
enhance computational efficiency, without affecting the un-
derlying physical processes.

In AERO-BC, BC is represented by six bins with parti-
cle diameters of 0.01–0.04, 0.04–0.16, 0.16–0.64, 0.64–2.56,

Geosci. Model Dev., 18, 4855–4876, 2025 https://doi.org/10.5194/gmd-18-4855-2025



Y. Liu et al.: Development of the CMA-GFS-AERO 4D-Var assimilation system v1.0 – Part 1 4859

2.56–10.24, and 10.24–40.96 µm, where the radius range is
calculated by the geometric progression method to satisfy
i = 1+ ln

[
(ri/r1)

3]/ln[VRAT], with VRAT being the average
volume ratio between adjacent bins (Jacobson et al., 1994).
Thus, six new prognostic variables for the mass mixing ratio
of BC, denoted as ψnbc (units: kg kg−1), where n= 1, . . .,6,
are added in the dynamical framework of CMA-GFS.

The main processes in AERO-BC include (1) calculating
the emission flux of BC through the surface flux calculation
module, (2) calculating the vertical diffusion trend of BC
by solving the vertical diffusion equation, and (3) simulat-
ing key BC aerosol processes in the atmosphere, including
hygroscopic growth, coagulation, nucleation, condensation,
dry deposition/sedimentation, and below-cloud scavenging.
For more details, please refer to the relevant literature on the
CAM module (Gong et al., 2003; Gong and Zhang, 2008;
Wang et al., 2010; Zhou et al., 2012). The AERO-BC mod-
ule is designed as a one-dimensional (1D) column module,
which operates at individual vertical columns corresponding
to fixed horizontal locations (i.e., fixed latitude and longi-
tude). In the integration of AERO-BC with CMA-GFS, the
interface programs transfer meteorological parameters (e.g.,
temperature, wind, and humidity) from CMA-GFS to AERO-
BC, extend the spatial dimension from 1D to 3D, and read
emissions for AERO-BC. The transport processes forψnbc are
the same as those for the variables associated with the differ-
ent water species in CMA-GFS, using the hybrid PRM and
QMSL schemes (Su et al., 2013).

Besides, according to the vertical distribution of BC in
the MERRA-2 (Modern-Era Retrospective analysis for Re-
search and Applications, Version 2) reanalysis data (GMAO,
2015), we observed that the BC mass mixing ratio de-
creases rapidly after entering the stratosphere, reaching val-
ues of about 10−12 kg kg−1. This is 2–3 orders of magni-
tude smaller compared to the surface. To improve compu-
tational efficiency and to balance memory usage with the
effectiveness of BC forecasting, we set the height of ψnbc
in the CMA-GFS-AERO model to 65 levels (approximately
30 hPa), which corresponds to the middle layer of the strato-
sphere. Regarding the absence of BC above model level 65,
we handled vertical transport by assuming that any BC con-
centrations above this level are negligible. This approxima-
tion does not significantly affect the model’s performance,
as the BC mass mixing ratio is very small in the upper lay-
ers. Correspondingly, in the adjoint code, BC concentrations
above model level 65 are also treated as negligible, and this
does not significantly affect the adjoint calculations.

3.2 CMA-GFS-AERO TLM and ADM

In developing the TLM and ADM of the CMA-GFS-AERO
model, we firstly constructed the tangent linear and adjoint
codes of the AERO-BC module, subsequently coupling them
with the TLM and ADM, respectively, of the CMA-GFS
model (Liu et al., 2017, 2023; Zhang et al., 2019). Since ad-

joint codes generated by automatic differentiation tools often
suffer from issues such as poor readability and maintainabil-
ity, low efficiency, and even errors due to the complexity of
numerical models (Zou et al., 1997), the tangent linear and
adjoint codes in this study were written line by line manu-
ally, without using any automatic differentiation tool.

The AERO-BC can be symbolically written as

yAERO = F(c), (4)

where F denotes the AERO-BC model operator and c and
yAERO are vectors representing the input and output variables
of the AERO-BC, respectively.

The TLM of the AERO-BC can be obtained by linearizing
F , expressed as

δyAERO = Fδc =
∂F
∂c
δc, (5)

where F is the TLM operator and δc and δyAERO represent
perturbations of input and output variables of the AERO-BC,
respectively.

The ADM of AERO-BC is essentially the transpose of the
AERO-BC TLM expressed as

δc∗ = FT δy∗AERO, (6)

where FT is the adjoint operator of F and δy∗AERO and δc∗

represent input and output variables of the ADM of AERO-
BC, respectively.

In constructing the TLM and the ADM of AERO-BC,
no simplifications were made to the AERO-BC processes.
Specifically, no regularization was applied to the nonlinear
equations, nor were any complex processes, which were diffi-
cult to linearize, omitted. As a result, the TLM and the ADM
of AERO-BC fully include all processes related to emission
flux, vertical diffusion, and aerosol physical processes as de-
scribed in Sect. 3.1.

The TLM and the ADM of AERO-BC are 1D column
modules, meaning that they operate independently at each
fixed horizontal grid point (i.e., fixed latitude and longitude),
with vertical variation only. To extend them to 3D, the tan-
gent linear model and the adjoint model of the interface pro-
grams were also constructed. Furthermore, the tangent lin-
ear model and the adjoint model of BC transport processes
follow the same framework as those for the variables associ-
ated with the different water species in the CMA-GFS TLM
and ADM, utilizing the tangent linear model and the ad-
joint model of QMSL. In this way, the 3D parameters could
be transferred from CMA-GFS to AERO-BC. Thus, we ob-
tained the CMA-GFS-AERO TLM and ADM.

3.3 CMA-GFS-AERO 4D-Var

On the basis of the CMA-GFS-AERO forward model and
its TLM and ADM, we further constructed the CMA-GFS-
AERO 4D-Var by adding BC as a control variable into the
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incremental analysis scheme introduced in Sect. 2.2. We also
provided a detailed introduction to the BC observation and
errors, the BC observation operator, and the background error
covariance for BC.

3.3.1 BC mass concentration as a control variable

The establishment of a strongly coupled aerosol–
meteorology 4D-Var system based on CMA-GFS 4D-Var
requires the addition of aerosol analysis. Although the six
variables for the mass mixing ratio of BC (ψnbc) have been
used in the CMA-GFS-AERO forward model, they can con-
stitute a heavy burden for the analysis if they are all included
in the control vector. The reasons for this, as mentioned
by Benedetti et al. (2009), mainly include the following:
(1) background error statistics would have to be generated
for all variables separately, (2) the control vector would
be significantly larger in size, which would consequently
increase the cost of the iterative minimization, and most
importantly, (3) the BC analysis would be under-constrained
since the surface observations of BC are mass concentrations
(units: µg m−3), which do not distinguish between size
bins, resulting in one observation of BC mass concentration
being used to constrain six BC variables. To address these
issues, the BC mass concentration is selected as the control
variable, denoted as Cbc (units: µg m−3), and is added to
the control vector (xu = (ψ,χu,πu,q)

T , where ψ is the
stream function, χu is the unbalanced velocity potential,
πu is the unbalanced Exner pressure, and q is the specific
humidity) of CMA-GFS 4D-Var. Thus, the control vector for
the CMA-GFS-AERO 4D-Var is xu = (ψ,χu,πu,q,Cbc)

T ,
assuming that these five variables are independent of each
other.

The conversion relationship between Cbc and ψnbc is

Cbc =
∑6

n=1
ψnbc · ρ · 109, (7)

where ρ is the atmospheric density. In order to obtain the
BC initial field that can be used in the CMA-GFS-AERO
model from the analysis field, it is also necessary to con-
vert Cbc into ψnbc. Firstly, the distribution weights (ωn) of
each size bin of ψnbc in the background field are calculated
based on the entire three-dimensional domain, following the

equation ωn =
∑N

1 ψ
n
bc∑6

n=1

(∑N
1 ψ

n
bc

) , where N represents the num-

ber of three-dimensional grid points. Secondly, the analysis
increment of ψnbc (δψnbc) is calculated based on the analysis
increment of Cbc (δCbc), following the equation

δψnbc = ω
n
·
δCbc

ρ · 109 . (8)

Finally, δψnbc is interpolated and superimposed on ψnbc in the
background field to obtain the initial field of BC.

Similarly, in the minimization process of the inner loop of
CMA-GFS-AERO 4D-Var, the conversion between the tan-
gent linear variable of BC (δψnbc) and the analysis increment

of Cbc (δCbc) is also calculated according to the derivative of
Eq. (7) (δCbc =

∑6
n=1δψ

n
bc · ρ · 109) and Eq. (8).

3.3.2 BC observation and errors

The BC observations used in the CMA-GFS-AERO 4D-Var
system are the BC surface concentrations obtained from the
China Atmospheric Monitoring Network (CAWNET), which
was established by the CMA and has been monitoring the
BC surface mass concentration in China since 2006 (Xu et
al., 2020). The BC observation data were collected from
32 stations (Guo et al., 2020), including 11 urban, 17 ru-
ral, and 4 remote stations. The distribution of these stations
is shown in Fig. S2. The monitoring of BC in CAWNET
was conducted using an Aethalometer, AE31, which is one
of the models produced by Magee Scientific (USA, https:
//www.aerosolmageesci.com, last access: 30 July 2025). The
AE31 determines mass concentration of BC particles col-
lected from air samples flowing through a quartz filter. The
instrument measures the transmission through the filter over
a wide spectrum of wavelengths from 370 to 950 nm. Light
at the selected wavelength is transmitted through control and
sample filters, and the attenuation change in the filter is then
translated into the BC mass concentration. In this study, we
used the BC concentration measured at the recommended
wavelength of 880 nm. The AE31 measures BC concentra-
tions every 5 min. We performed quality control on the origi-
nal data and obtained the hourly average values, which were
used in the BC assimilation experiments. The quality control
procedures are as follows:

1. Eliminating abnormal values. During the calculation of
hourly averages from the 5 min sampled data, any BC
concentration values that differ significantly from the
hourly average (i.e., those where the absolute differ-
ence exceeds 3 times the standard deviation) are con-
sidered abnormal and discarded. Additionally, any bad
data flagged by the instrument’s monitoring system are
also removed.

2. Filling in missing values. If more than one-third of the
data for a given hour are missing or if there are more
than three consecutive missing values, the entire hour’s
data are discarded. For other cases, linear interpolation
is applied to fill in the missing values.

The observation error covariance matrix R in Eq. (1) con-
tains both measurement and representativeness errors. Fol-
lowing the formula described by Chen et al. (2019), which
is an improvement on the method proposed by Pagowski et
al. (2010) and Schwartz et al. (2012), we calculated the mea-
surement error ε0. The formula is expressed as

ε0 = 1.0+ 0.0075×Obc, (9)

where Obc denotes the observed BC concentrations (units:
µg m−3).
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Representativeness errors reflect the inaccuracies in the
observation operator and in the interpolation from the model
grid to the observation location. We used the representative-
ness error (εr) expression defined by Elbern et al. (2007) as
follows:

εr = γ ε0

√
1x

L
, (10)

where γ is an adjustable parameter scaling ε0 (γ = 0.5 was
used here),1x is the grid spacing (100 km in this work), and
L is the radius of influence of a BC observation. According
to Elbern et al. (2007), L was set to 2, 10, and 20 km for
urban, rural, and remote stations, respectively. The total BC
observation error (εbc) was defined as

εbc =

√
ε2

0 + ε
2
r , (11)

which constituted the diagonal elements in the R matrix.

3.3.3 BC observation operator

The observation operator in the CMA-GFS-AERO 4D-Var
system performs two basic tasks: (1) transforming model
state variables into observed physical quantities and (2) in-
terpolating the background field (or analysis field) to the lo-
cation of the observation. The transformation of the physical
quantities is related to the type of observations, and the spa-
tial interpolation operator consists of both horizontal and ver-
tical interpolation. Since the CMA-GFS-AERO 4D-Var sys-
tem adopts the Charney–Phillips staggered grid in the verti-
cal direction and the Arakawa-C grid in the horizontal direc-
tion, the observation operator must account for the staggered
locations of different physical variables. To minimize errors
introduced by variable transformations and spatial interpola-
tion, appropriate handling of horizontal staggering and ver-
tical layer transitions is required. The steps to construct the
BC observation operator are as follows:

1. Based on Eq. (7), the BC mass mixing ratios (ψnbc) of
six size bins are summed and converted into the mass
concentrations (Cbc), which are further interpolated to
the observation locations by the horizontal bilinear in-
terpolation to obtain the equivalent BC concentrations
that are consistent with the units of the observations.

2. According to the heights of BC surface observations,
the corresponding vertical interpolation schemes are se-
lected to obtain the equivalent BC observations. If the
height of BC surface observation is greater than the
height of the first model layer, the cubic spline inter-
polation is used to process the BC concentration inter-
polation. If the observation height is less than the height
of the first model layer and the difference between the
two heights is less than 300 m, the BC concentration at
the first model layer is regarded as the equivalent BC
observation. However, if the difference between the two

heights is greater than or equal to 300 m, the data from
that site are discarded.

3.3.4 Background error covariance for BC

The variable fields involved in variational assimilation are all
three-dimensional, and it is challenging to directly deal with
the correlations of these three-dimensional fields due to their
high dimensionality. Therefore, in the CMA-GFS 4D-Var as-
similation system, a simplification is made by assuming that
the correlation coefficient can be expressed as the product of
the vertical correlation coefficient and the horizontal correla-
tion coefficient (Zhang et al., 2019). The horizontal correla-
tion is calculated using the spectral filtering method, while
the vertical correlation is calculated through empirical or-
thogonal function (EOF) decomposition (Zhang et al., 2019).

In the CMA-GFS-AERO 4D-Var system, the background
error covariance for the control variable BC adopts a mod-
eled structure. The background error variance varies with
height, as shown in Fig. 1a. The vertical correlation model
of the background error is derived through a combination of
theoretical considerations (Bergman, 1979) and experimental
tuning, with particular reference to the methodology used for
humidity in the CMA-GFS 4D-Var system. It is expressed as

R
(
zi,zj

)
=

1
1+ kz(zi − zj )2

, (12)

where zi and zj are the model terrain heights of level i and

j , respectively. kz =
g2

(RdT0)2
kp, where g denotes the gravita-

tional acceleration, Rd represents the gas constant for dry at-
mospheric air, T0 is the standard temperature (273.15 K), and
kp is the constant coefficient (Bergman, 1979). Following the
value of kp used for the control variable of humidity in the
CMA-GFS 4D-Var system, we set kp to 10 for the control
variable BC. Figure 1b depicts the distribution of the vertical
correlation coefficients of the background error of the 1st,
10th, and 20th layers with other layers.

The horizontal correlation of the background error for the
control variable BC is calculated by the second-order autore-
gressive (SOAR) correlation function, which is commonly
used in operational data assimilation systems (Ballard et al.,
2016), expressed as

ri,j =

(
1+

di,j

L

)
exp

(
−
di,j

L

)
, (13)

where di,j is the arc length of the great circle between two
points i and j and L is the characteristic horizontal length
scale. The length scale for the control variable BC varies with
height in the model, following the way the length scale of the
humidity variable varies with height in the CMA-GFS 4D-
Var system, which is shown in Table 1.
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Figure 1. (a) Vertical profile of background error variance for BC; (b) vertical correlation coefficients of background error between the 1st,
10th, and 20th layers with other layers for BC.

Table 1. Characteristic horizontal length scales of the background
error.

Height length scale
(km) (km)

0.50 165
1.43 172
5.56 175
10.5 209
16.3 234
23.9 234

3.3.5 Flow-dependent background error covariance in
CMA-GFS-AERO 4D-Var

In the strongly coupled aerosol–meteorology assimilation
system, interactions between the atmospheric variables and
BC allow BC observations to influence the analysis incre-
ments of atmospheric variables and vice versa. The incre-
mental 4D-Var algorithm implicitly evolves the background
error covariances (B) throughout the assimilation window ac-
cording to the TLM dynamics. This process modifies prior
background error variance estimates and induces non-zero
correlations between model variables (Smith et al., 2015). By
utilizing the fully coupled TLM and ADM in the inner loops
of the strongly coupled assimilation system, cross-covariance
information between BC and atmospheric variables is gener-
ated. This enables observations of one variable to produce

analysis increments in the other, leading to more consistent
analyses.

Specifically, if the BC observation is assumed to take place
at the beginning of the assimilation window only and un-
der the assumption of a single, non-cycling assimilation win-
dow, the 4D-Var assimilation behaves similarly to the 3D-
Var assimilation. In this case, since the BC variable is as-
sumed to be uncorrelated with the atmospheric variables in
the static B and there is no direct relationship between the
BC observation operator and the atmospheric variables, the
BC observation does not lead to the generation of the analy-
sis increments of atmospheric variables. Therefore, the mer-
its of a coupled data assimilation system cannot be fully
manifested by assimilating a BC observation at the begin-
ning of the window only. If the BC observation is assumed
to take place at the middle and the end of the assimila-
tion window, B evolves within the assimilation time win-
dow through the TLM M0→i , obtaining the implicit back-
ground error covariance matrix M0→iBMT

0→i at the observa-
tion time. M0→iBMT

0→i includes the cross-covariance infor-
mation of BC and atmospheric variables and can realize the
feedback of the BC observation on the atmospheric variables
through the CMA-GFS-AERO ADM MT

0→i , further produc-
ing analysis increments of atmospheric variables. In other
words, the distribution of the analysis increment at the ob-
servation time is determined by the cross-time error matrix
M0→iB.
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4 Model setup

In this work, the horizontal resolution of the CMA-GFS-
AERO forward model in the outer loop was set to 0.25°,
with an integration step of 300 s, and the horizontal reso-
lution of the CMA-GFS-AERO TLM and ADM in the in-
ner loop was 1.0°, with an integration step of 900 s. The
model has 87 vertical layers, with the top being approxi-
mately 0.1 hPa (Fig. S1). Referring to the running scheme
of the CMA-GFS 4D-Var system described in Sect. 2.2, the
CMA-GFS-AERO 4D-Var system also adopts the same 6 h
cycling schedule and assimilation windows. The forecast of
the CMA-GFS-AERO model started at 03:00 UTC on 1 Oc-
tober 2016 and was restarted every 6 h. The meteorological
initial fields for each 6 h cycle were obtained from the op-
erational CMA-GFS analysis. The BC field was initialized
with null concentrations at 03:00 UTC on 1 October 2016.
From the second forecast cycle onward, the initial conditions
of BC were derived from the BC field at the end of the pre-
vious 6 h forecast, allowing the BC field to be cycled. The
first 9 d was used as the spin-up time to establish a realistic
BC distribution. The maximum minimization iteration num-
ber in the inner loop was set to 50, while the outer loop was
performed only once. This setting is consistent with the op-
erational configuration of the CMA-GFS 4D-Var system and
has been found sufficient for achieving convergence in our
experiments. The atmospheric observations used in this work
are shown in Table S1.

Anthropogenic emission sources used in this study were
from the Multi-resolution Emission Inventory for China
(MEIC) (Li et al., 2017; Zheng et al., 2018), the Copernicus
Atmosphere Monitoring Service global and regional emis-
sions (CAMS) (Granier et al., 2019), and the global datasets
of the Task Force Hemispheric Transport of Air Pollution
(HTAP) (Janssens-Maenhout et al., 2015). These inventories
include various gases (NOx , CO, SO2, NH3, CH4, and non-
methane volatile organic compounds (NMVOCs)) and par-
ticulates (OC, BC, PM2.5, and PM10), where PM10 refers to
the inhalable particulate matter with an aerodynamic diam-
eter of 10 µm or less. These data were processed into grid-
point emission data applicable to the CUACE model through
the EMIPS emission source processing system (Chen et al.,
2023). To improve computational efficiency, they were fur-
ther simplified into emission source data containing only BC
as input to the CMA-GFS-AERO model.

At present, we have run the CMA-GFS-AERO 4D-Var
system for 3 months from 1 October 2016. This section
mainly shows the experiment results of random time in this
3-month period to the present the rationality and stability of
the system. The detailed analysis of the cycling assimilation
experiments will be further elaborated in part 2 of this paper.

5 Results

5.1 Validation of CMA-GFS-AERO TLM and ADM

Validation of the tangent linear and adjoint models is an im-
portant part of introducing a new modeling component, such
as the AERO-BC module. Considering that CMA-GFS TLM
and ADM have been validated and documented in Liu et
al. (2017, 2023) and Zhang et al. (2019), here we mainly
present the validation of the tangent linear model and adjoint
model of the newly developed AERO-BC module.

The correctness of the AERO-BC TLM can be verified by
checking whether the following equation is satisfied (Mah-
fouf and Rabier, 2000; Liu et al., 2017; Tian and Zou, 2020):

8(α)=
‖F (c+α · δc)−F (c)‖

‖F(α · δc)‖
= 1+O (α), (14)

where ‖.‖ denotes the norm of the vector and α is the scale
factor of initial perturbations with the range from 1.0 to
10−14. As the scale factor α becomes smaller and smaller,
the function 8(α) is expected to approach unity in an ap-
proximately linear manner.

We firstly verified all submodules in the AERO-BC TLM,
finding that the tangent linear approximation of each sub-
module was correct. Subsequently, we conducted a set of six
experiments with the integration time from 1 to 6 h to ver-
ify the correctness of the full AERO-BC TLM. The back-
ground field and analysis increment generated by the CMA-
GFS-AERO 4D-Var system were used as the basic-state ini-
tial field and the perturbation initial field of the CMA-GFS-
AERO TLM for 6 h forecasting. The atmospheric and BC
state variables c and their perturbations δc of these six time
periods were used as inputs of the AERO-BC and its TLM,
and the tangent linear approximation of the output variable
(the perturbation of the mass mixing ratio of BC, δψnbc) of
the AERO-BC TLM is tested using Eq. (14).

Figure 2 shows the results of the six correctness exper-
iments. As expected, in each verification experiment, as the
scale factor α becomes smaller and smaller for certain ranges
of α values, the values of 8(α) gradually get closer and
closer to unity. When α is too small (such as 10−12), the ac-
curacies of the 8(α) values start to be affected by the ma-
chine round-off errors and drift away from unity. This indi-
cates that the tangent linear approximation of the AERO-BC
TLM is correct.

We further diagnosed the impact of linearized physical
processes on the forecast effectiveness of CMA-GFS-AERO
TLM. Generally, the diagnostic method is to calculate the rel-
ative error (r) between the tangent linear perturbation fore-
cast M(δx) and the nonlinear perturbation forecast 1M(δx)
(Mahfouf, 1999; Liu et al., 2019; Zhang et al., 2019), which
can be expressed as

r =
|M(δx)−1M(δx)|

1M(δx)
. (15)
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Figure 2. Variations in the function |8(α)− 1| for the correctness check of the AERO-BC TLM for the 6 h forecast length, where α is the
scale factor of initial perturbations.

The nonlinear perturbation forecast1M(δx) is the difference
between the NLM forecasts from two different initial condi-
tions: the analysis field xa and the background field xb; that
is 1M(δx)=M(xa)−M(xb). And the tangent linear per-
turbation forecast M(δx) is integrated using the analysis in-
crement δx (δx = xa− xb) as the initial perturbation field. r
needs to be calculated for each model variable at each grid.

The forecast period for this experiment was 6 h starting
from 03:00 UTC on 25 October 2016 (randomly selected
time). For the nonlinear perturbation test, which includes the
full physical processes, the two initial conditions were the
analysis field xa and the background field xb generated by
the CMA-GFS-AERO 4D-Var system at 03:00 UTC on 25
October 2016. For the tangent linear perturbation test, the ini-
tial condition was the analysis increment δx (δx = xa− xb)
at 03:00 UTC on 25 October 2016. The model trajectory re-
quired for the tangent linear perturbation forecast was calcu-
lated by the CMA-GFS-AERO NLM including the full phys-
ical process with the background field xb as the initial field.
The nonlinear and tangent linear models were performed at
the same resolution of 1.0°, and the analysis field xa and
the background field xb were interpolated from 0.25 to 1.0°
based on the 3D interpolation method (Huo et al., 2022).

Figure 3 depicts the results of the nonlinear perturbation
forecast and the tangent linear perturbation forecast. Fig-
ure 3a–b show the differences in vertically accumulated and
latitudinally averaged BC mass concentration (units: µg m−3)
after 6 h of integration of the CMA-GFS-AERO NLM with
two initial conditions of xa and xb, respectively, and Fig. 3c–
d present the vertically accumulated and latitudinally aver-
aged BC mass concentration perturbations after 6 h of inte-
gration of CMA-GFS-AERO TLM with the initial condition
of δx (δx = xa−xb). It can be seen that after 6 h of forecast,
the distribution of the results of CMA-GFS-AERO NLM
and TLM, both horizontally and vertically, are very similar
with only minor differences. This indicates that CMA-GFS-

AERO TLM shows good performance in terms of tangent
linear approximation for BC.

The vertical distribution of the globally averaged rela-
tive error between the perturbation forecasts of CMA-GFS-
AERO TLM and NLM, which was calculated according to
Eq. (15), is shown in Fig. 4. It can be seen that below the
20th model layer, the tangent linear approximation for BC
is better than that for the wind field, potential temperature,
and specific humidity. Although the tangent linear approxi-
mation for BC is slightly worse above the 20th model layer,
it is still far better than that for specific humidity. It is worth
noting that the BC concentration above the 20th model level
is quite low (Fig. 3b), so the impact of the tangent linear ap-
proximation is minimal. This phenomenon indicates that, in
comparison to variables such as potential temperature and
specific humidity in the CMA-GFS-AERO model, the tan-
gent linear approximation for BC is quite effective, making
it well-suited for constructing a 4D-Var system.

The correctness of the AERO-BC adjoint can be veri-
fied by checking whether the following equation is satisfied
(Mahfouf and Rabier, 2000; Liu et al., 2017; Tian and Zou,
2020):

〈F(δc),F(δc)〉 = 〈δc,FT (F(δc))〉, (16)

where 〈, 〉 denotes the inner product. Using δc as the in-
put of the AERO-BC TLM, the output of the AERO-BC
TLM F(δc) can be obtained and the left-hand side (LHS) of
Eq. (16) can be calculated. Then, taking F(δc) as the input
of the AERO-BC adjoint, we can get its output FT (F(δc))
and calculate the right-hand side (RHS). If the AERO-BC
adjoint is developed correctly, the LHS and RHS of Eq. (16)
are expected to agree with the machine accuracy of the data
type declared in the program, which is double precision in
the AERO-BC.

Following Eq. (16), we conducted five experiments with
the integration time equal to 1, 6, 12, 24, and 36 steps with
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Figure 3. Differences in (a) vertically accumulated and (b) latitudinally averaged BC mass concentration (units: µg m−3) after 6 h of inte-
gration of the CMA-GFS-AERO NLM with initial conditions xa and xb and perturbations in (c) vertically accumulated and (d) latitudinally
averaged BC mass concentration after 6 h of integration of CMA-GFS-AERO TLM with the initial condition δx (δx = xa− xb).

a time step of 900 s. Considering the mass mixing ratio of
BC (ψnbc) as an example, for each experiment, the atmo-
spheric variables and ψnbc perturbations in the analysis in-
crement generated by the CMA-GFS-AERO 4D-Var system
were used as the input of the AERO-BC TLM. We ran the
tangent linear codes once to obtain the value of the tangent
linear output and calculated the LHS of Eq. (16). Then, tak-
ing the tangent linear output as input, the AERO-BC adjoint
codes were run once to obtain the sensitivity value, which
was further used to calculate the RHS of Eq. (16) with the
ψnbc perturbation. The validation results are presented in Ta-
ble 2. The resulting LHS and RHS from the five tests agree
with the precision of machine accuracies, indicating the cor-
rectness of the AERO-BC adjoint model.

5.2 Single-observation experiment

In order to evaluate the rationality of the CMA-GFS-AERO
4D-Var system, we performed the single-observation ex-
periment for BC. The experiment period was 6 h starting

from 03:00 UTC on 24 November 2016 (randomly selected
time), and the forecast field of the CMA-GFS-AERO model
at this time was selected as the background field. During
the assimilation process, no atmospheric observations were
added. We adopted the BC surface observation at Nanjiao
station (116.47° E, 39.8° N), which is located in Beijing,
at 03:00 UTC on 24 November 2016. The altitude of Nan-
jiao station is 31.3 m, and the observed BC concentration is
10.0 µg m−3. Figure S3 shows the location of the BC ob-
servation and the wind field at 925 hPa, which moves from
northwest to southeast. The BC observation was placed at
03:00, 06:00, and 09:00 UTC, respectively, corresponding to
the beginning, the middle, and the end of the assimilation
time window.

Theoretically, the analysis increment at the be-
ginning time for 4D-Var assimilation is δx =

B
∑n
i=0MT

0→iH
T
i

(
HiM0→iBMT

0→iH
T
i +Ri

)−1
(−d i).

If we only assimilate the observation at time ti , the anal-
ysis increment at the observation time is M0→iδx =
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Table 2. Correctness check results of the newly developed AERO-BC adjoint model when it is integrated for 1, 6, 12, 24, and 36 steps.

Step LHS RHS (LHS−RHS) /LHS

1 6.048801009887637×10−15 6.048801009887634×10−15 5.2166431260112900×10−16

6 5.661147803064362×10−15 5.661147803064381×10−15 3.3443150371477720×10−15

12 5.608184349558140×10−15 5.608184349558160×10−15 3.6572234893387934×10−15

24 5.694921201673081×10−15 5.694921201673082×10−15 1.3852007381406021×10−16

36 5.845344664075793×10−15 5.845344664075791×10−15 2.6991082666833257×10−16

LHS: left-hand side of Eq. (16); RHS: right-hand side of Eq. (16).

Figure 4. The vertical distribution of the globally averaged rel-
ative error between the perturbation forecasts of the CMA-GFS-
AERO TLM and NLM at the resolution of 1.0° (black line: non-
dimensional pressure; blue line: potential temperature; red line: BC;
magenta line: u wind; cyan line: v wind; green line: specific humid-
ity).

M0→iBMT
0→iH

T
i

(
HiM0→iBMT

0→iH
T
i +Ri

)−1
(−d i).

When assimilating the single observation,(
HiM0→iBMT

0→iH
T
i +Ri

)−1
(−d i) is a vector with

only one factor. If the observation position and the analysis
grid coincide, the spatial interpolation in the observation
operator can be ignored. Thus, the analysis increment at the
observation time can reflect the structure of the background
error covariance M0→iBMT

0→i at the observation time. Fig-
ure 5 shows the analysis increments of BC at the first model
layer at the observation times, with the BC observation
placed at 03:00, 06:00, and 09:00 UTC, respectively. When
the BC observation is placed at 03:00 UTC (the observation
innovation (d i =HiM0→i (xb)− yi) is −1.2 µg m−3 at

03:00 UTC), the 4D-Var assimilation behaves similarly to
the 3D-Var assimilation, and the horizontal distribution
of the BC analysis increment is determined by the static
background error covariance model B. Since the CMA-GFS-
AERO 4D-Var system uses a homogeneous second-order
autoregressive spatial correlation model, the BC analysis
increment at 03:00 UTC (Fig. 5a) is essentially isotropic, and
only the background error covariance, which varies with lati-
tude, causes the analysis increment to differ somewhat in the
north–south direction. When the BC observation is placed
at 06:00 UTC (the observation innovation is −9.5 µg m−3

at 06:00 UTC) and 09:00 UTC (the observation innovation
is −9.0 µg m−3 at 09:00 UTC), the BC analysis increments
show anisotropic characteristics (Fig. 5b–c), which is con-
sistent with the movement of the wind at 925 hPa (Fig. S3),
indicating that the background error covariance varies with
the weather situation. Meanwhile, it can also be seen that
the values of the BC analysis increments at 06:00 and
09:00 UTC are much larger than those at 03:00 UTC. This
is because the BC observation innovations at 06:00 and
09:00 UTC are greater than those at 03:00 UTC.

Figure 6 presents the evolved analysis increments of BC at
the first model level at the end of the assimilation time win-
dow (09:00 UTC) obtained by the CMA-GFS-AERO TLM,
with the BC observation placed at 03:00 and 06:00 UTC, re-
spectively. For the case where the BC observation is placed
at 03:00 UTC, the initial analysis increment at 03:00 UTC
(Fig. 5a) exhibits an isotropic structure due to the static B.
In contrast, the propagated analysis increment at the end
of the assimilation time window (09:00 UTC, Fig. 6a) ex-
hibits an anisotropic structure under the influence of the flow-
dependent M0→iBMT

0→i. Similarly, when the BC observa-
tion is placed at 06:00 UTC, both the initial analysis incre-
ment at 06:00 UTC (Fig. 5b) and the propagated analysis in-
crement at 09:00 UTC (Fig. 6b) exhibit an anisotropic struc-
ture. In addition, the horizontal distribution structure of the
BC analysis increments in Fig. 6a and b closely resembles
that of the analysis increments at the observation time of
09:00 UTC (Fig. 5c). This indicates the significant impact of
flow-dependent dynamics on the evolution of the analysis in-
crements. No matter what time the observation is placed at,
the spatial propagation of the observation information is ef-
fectively achieved through the model integration. In this ide-
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Figure 5. The analysis increments of BC at the first model level at the observation times, with the BC observation placed at (a) the beginning
of the assimilation time window, 03:00 UTC; (b) the middle of the assimilation window, 06:00 UTC; and (c) the end of the assimilation time
window, 09:00 UTC. The black triangle represents the ideal observation location (116.47° E, 39.8° N).

alized single-observation experiment, the propagation of BC
increments is primarily dominated by advection due to the
limited observational constraint. When more comprehensive
observations are assimilated, advection remains a key factor,
but its dominance is less pronounced as other processes also
influence the adjustment of BC distributions (see Sect. 5.3).

Figure 7 depicts the analysis increments of temperature at
the first model level at the beginning time of the assimilation
time window (03:00 UTC), with the BC observation placed
at 06:00 and 09:00 UTC in panels (a) and (b), respectively.
In this specific case, the analysis increments of temperature
are positive, with a value of about 0.02 K near the observa-
tion location, when the BC observation is placed at 06:00 and
09:00 UTC. The temperature analysis increment depends on
several factors, including the BC observation innovation, the
location of the observation, and the meteorological condi-
tions during the assimilation time window. Here, the positive
analysis increments of temperature may be due to the fact
that the BC observation innovations at 06:00 and 09:00 UTC
are negative (−9.5 µg m−3 at 06:00 UTC and −9.0 µg m−3 at
09:00 UTC), indicating that the background BC concentra-
tion is lower than the observed values. Assimilation of these
observations increases the BC concentrations in the analysis,
which, under the prevailing meteorological conditions, leads
to positive temperature increments near the observation site.
As explained in Sect. 3.3.5, the coupling between BC and
atmospheric variables within the system allows this type of
feedback to occur.

Figure 8 shows the analysis increments of pressure at the
first model level, as well as the east–west component of hori-
zontal wind and relative humidity at the same level at the be-
ginning of the assimilation time window (03:00 UTC), with
the BC observation placed at 09:00 UTC. The assimilation
of a single BC observation produces noticeable analysis in-
crements in the pressure, east–west component of horizon-
tal wind, and relative humidity in North China, which shows
that the CMA-GFS-AERO 4D-Var coupled assimilation sys-
tem can reflect the impact of BC assimilation on atmospheric
increments. In reality, unlike the single-observation experi-
ment, the BC observation is distributed within the assimila-

tion time window, rather than just at a fixed moment; thus,
the advantages of the CMA-GFS-AERO 4D-Var strong cou-
pling assimilation system can be fully utilized to explore the
feedback of BC assimilation on atmospheric variables.

5.3 Case study on BC and atmosphere assimilation

On the basis of the single-observation experiment, we fur-
ther conducted the full-observation experiment for BC and
atmospheric variables. The experiment period was also 6 h
starting from 03:00 UTC on 24 November 2016 (the same
time as the experimental setup in Sect. 5.2), and the fore-
cast field of the CMA-GFS-AERO model at this time was
selected as the background field. We conducted a set of four
experiments to investigate the impact of different BC as-
similation strategies on both BC and atmospheric variables.
These experiments are listed in Table 3. Differently from
the single-observation experiment in Sect. 5.2, in which the
observations are placed at a fixed time, we assimilated all
available BC observations with an hourly frequency within
the assimilation time window in the full-observation exper-
iment. For the DA_MET_then_BC experiment, the CMA-
GFS-AERO 4D-Var system was executed twice sequen-
tially within the same assimilation window. In the first step,
only operational meteorological observations were assim-
ilated, and the resulting analysis was used as the back-
ground field for the second step, in which only BC sur-
face observations were assimilated. Except for the obser-
vational datasets, the model configurations and assimilation
settings in both steps remained identical. This two-step pro-
cedure allows us to separate the effect of BC observations
from the influence of meteorological observations and their
associated background adjustment, thereby facilitating a
clearer attribution of the BC assimilation impact. In contrast,
DA_MET_BC_simult assimilated both operational meteoro-
logical observations and BC surface observations simultane-
ously within a single 4D-Var run. This one-step assimilation
strategy allows all observations to jointly influence the anal-
ysis field, reflecting the integrated effect of both meteoro-
logical and BC observations. In the following analysis, we
primarily compare the BC analysis increments obtained from
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Figure 6. The analysis increments of BC at the first model level at the end of the assimilation time window, 09:00 UTC, with the BC
observation placed at (a) the beginning of the assimilation window, 03:00 UTC and (b) the middle of the assimilation window, 06:00 UTC.
The black triangle represents the ideal observation location (116.47° E, 39.8° N).

Figure 7. The analysis increments of temperature at the first model layer at the beginning of the assimilation time window, 03:00 UTC,
with the BC observation placed at (a) the middle of the assimilation window, 06:00 UTC and (b) the end of the assimilation time window,
09:00 UTC. The black triangle represents the ideal observation location (116.47° E, 39.8° N).

DA_BC, DA_MET_then_BC, and DA_MET_BC_simult ex-
periments, noting that the BC analysis increments from
the DA_MET experiment are very small (figure omit-
ted). Additionally, we compare the atmospheric analy-
sis increments caused by BC assimilation in DA_BC,
DA_MET_then_BC (DA_MET_then_ BC-DA_MET), and
DA_MET_BC_simult (DA_MET_BC_simult-DA_MET).

Figure 9 presents the analysis increments of BC at the
first model layer from the DA_BC, DA_MET_then_BC, and
DA_ MET_BC_ simult experiments. These analysis incre-
ments are valid at the beginning of the assimilation win-
dow, as is standard in 4D-Var systems. When only BC sur-
face observations are assimilated (DA_BC), the BC anal-
ysis increment is mainly concentrated in North China and
Eastern China, with a maximum value of about 6.0 µg m−3

(Fig. 9a). When operational meteorological observations
are assimilated first, followed by BC surface observations
(DA_MET_then_BC), or when both operational meteorolog-
ical and BC surface observations are assimilated simultane-
ously (DA_MET_BC_simult), the distribution and the value
of BC analysis increments are nearly identical to those of

DA_BC, with only minor differences (Fig. 9b–c). This in-
dicates that the three BC assimilation strategies have simi-
lar assimilation effects on BC, further demonstrating that the
assimilation of meteorological observations has a relatively
small impact on BC analysis increments.

We further explored the impact of different BC assim-
ilation strategies on analysis increments of atmospheric
variables. Figure 10 shows the analysis increments of the
temperature, pressure, east–west component of horizontal
wind, and relative humidity at the first model layer, result-
ing from BC assimilation in DA_BC, DA_MET_then_BC,
and DA_ MET_BC_simult. It is worth noting that in
DA_BC, only BC observations are assimilated, so the
analysis increments of atmospheric variables purely reflect
the response to BC. In contrast, both DA_MET_then_BC
and DA_MET_BC_simult assimilate BC and meteorolog-
ical observations, and thus their analysis increments in-
clude the combined effects of both types of observations.
To isolate the influence of BC assimilation alone on at-
mospheric variables and under the assumption that the
contribution of meteorological observations is compara-
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Figure 8. The analysis increments of the (a) pressure, (b) east–west component of horizontal wind, and (c) relative humidity at the first
model layer at the beginning of the assimilation time window, 03:00 UTC, with the BC observation placed at the end of the assimilation time
window, 09:00 UTC. The black triangle represents the ideal observation location (116.47° E, 39.8° N).

Table 3. Design of four assimilation experiments.

Experiments Description

DA_BC Assimilating only BC surface observations while excluding operational meteorological observations
DA_MET Assimilating only operational meteorological observations while excluding BC surface observations
DA_MET_then_BC First assimilating operational meteorological observations, then assimilating BC surface observations
DA_MET_BC_simult Assimilating both operational meteorological and BC surface observations simultaneously

ble between DA_MET_then_BC/DA_MET_BC_simult and
DA_MET, we calculated the differences between the analysis
increments of these experiments and those from DA_MET,
which assimilates only meteorological observations. This
subtraction effectively removes the contributions from me-
teorological observations, allowing the resulting increments
to be attributed solely to the assimilation of BC observa-
tions. In this way, a more direct and fair comparison can
be made with DA_BC. Figure 10a, d, g, and j display the
analysis increments of these variables from BC assimilation
in DA_BC. Figure 10b, e, h, and k show the increments
due to BC assimilation in DA_MET_then_BC, obtained by
subtracting the atmospheric increments in DA_MET from
DA_MET_then_BC (DA_MET_then_ BC-DA_ MET). Fig-
ure 10c, f, i, and l illustrate the increments caused by BC
assimilation in DA_MET_BC_simult, obtained similarly by
subtracting the increments in DA_MET from DA_MET_
BC_ simult (DA_MET_BC_simult−DA_MET).

When only BC surface observations are assimilated
(DA_BC), analysis increments of the temperature (Fig. 10a),
pressure (Fig. 10d), east–west component of horizontal wind
(Fig. 10g), and relative humidity (Fig. 10j) are present in
North China and Eastern China. The value of the analy-
sis increments for the temperature, pressure, east–west com-
ponent of horizontal wind, and relative humidity reach ap-
proximately 0.1 K (Fig. 10a), 0.1 Pa (Fig. 10d), −0.2 m s−1

(Fig. 10g), and 0.8 % (Fig. 10j), respectively.
When operational meteorological observations are as-

similated first, followed by BC surface observations
(DA_MET_then_BC), the distributions and the values of the
analysis increments of these four atmospheric variables due
to BC assimilation (Fig. 10b, e, h, k) are basically consis-

tent with those of DA_BC. This is because, although the
DA_MET_then_BC experiment assimilates meteorological
observations before BC surface observations, the background
field of BC remains unchanged. While the assimilation of
meteorological observations updates atmospheric variables,
it does not directly alter the BC background field. Therefore,
the observation-minus-background (OMB) values for BC ob-
servations in DA_MET_then_BC are very close to those in
DA_BC, with only minor differences caused by the slight in-
fluence of updated meteorological fields on the observation
operator. As a result, the analysis increments of atmospheric
variables due to BC assimilation are similar between the two
experiments. Additionally, the values in each sub-image of
the middle panel in Fig. 10 differ slightly from those on the
left. These differences are attributed to the distinct basic-state
values of the atmospheric variables used in the tangent lin-
ear and adjoint processes. Specifically, in DA_BC, the basic-
state values of the atmospheric variables are derived from the
atmospheric background field without meteorological assim-
ilation, while in DA_MET_then_BC, they are taken from the
atmospheric analysis field after assimilating the operational
meteorological observations. These differences in the input
to the TLM and ADM can lead to subtle variations in the
analysis increments.

The overall distribution and pattern of the analysis in-
crements of temperature (Fig. 10c), pressure (Fig. 10f),
and the east–west component of horizontal wind (Fig. 10i)
caused by BC assimilation in DA_MET_BC_simult are
consistent with those in DA_BC and DA_MET_then_BC.
However, the increment values in DA_MET_BC_simult
are smaller, with values reaching approximately 0.02 K
(Fig. 10c), 0.002 Pa (Fig. 10f), and −0.05 m s−1 (Fig. 10i),
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Figure 9. The analysis increments of BC at the first model layer from (a) DA_BC, (b) DA_MET_then_BC, and (c) DA_ MET_BC_ simult.

Figure 10. The analysis increments of the (a, b, c) temperature, (d, e, f) pressure, (g, h, i) east–west component of horizontal wind, and (j,
k, l) relative humidity at the first model layer caused by BC assimilation. Panels (a), (d), (g), and (j) are analysis increments from DA_BC;
panels (b), (e), (h), and (k) are the differences in analysis increments between DA_MET_ then_BC and DA_MET (DA_MET_then_BC
minus DA_MET); and panels (c), (f), (i), and (l) are the differences in analysis increments between DA_MET_BC_simult and DA_MET
(DA_ MET_BC_simult minus DA_MET).

respectively. The analysis increment of relative humidity
(Fig. 10l) due to BC assimilation in DA_MET_BC_simult
shows a small positive value distribution, whereas in DA_BC
and DA_MET_then_BC, it exhibits a negative value distri-
bution. The differences in analysis increments of the four
atmospheric variables caused by BC assimilation between
DA_MET_BC_simult and DA_ BC/DA_MET_then_BC
may be attributed to the stronger constraints imposed by the
atmospheric observations. In both DA_MET_then_BC and

DA_BC, only BC surface observations are incorporated dur-
ing the BC assimilation step. At this stage, the system relies
solely on BC observations to correct the initial field. In the
absence of atmospheric observations, BC observations play a
dominant role, leading to larger analysis increments of atmo-
spheric variables. In contrast, in DA_MET_BC_simult, both
operational meteorological observations and BC surface ob-
servations are assimilated simultaneously. In this scenario,
atmospheric observations may impose additional constraints
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Table 4. Computational costs (unit: s) for 6, 24, and 120 h integra-
tions of CMA-GFS and CMA-GFS-AERO models.

Model Integration time

6 h 24 h 120 h

CMA-GFS 111.5 366.6 1725.2
CMA-GFS-AERO 121.9 403.5 1930.5

The CMA-GFS and CMA-GFS-AERO models are integrated
with the same time step (300 s), the same horizontal resolution
of 0.25°, and the same CPU cores (1920 cores).

Table 5. Computational costs (unit: s) for 12 h integrations of CMA-
GFS TLM/ADM and CMA-GFS-AERO TLM/ADM.

Model CPU core

480 960 1440

CMA-GFS TLM 14.63 8.95 7.04
CMA-GFS ADM 19.25 11.14 8.07
CMA-GFS-AERO TLM 16.58 10.18 7.55
CMA-GFS-AERO ADM 22.92 12.96 9.31

CMA-GFS TLM/ADM and CMA-GFS-AERO TLM/ADM are
integrated with the same time step (900 s) and the same horizontal
resolution of 1°.

on the adjustment of atmospheric fields, thereby moderating
the impact of BC observations during the assimilation pro-
cess. As a result, a more balanced adjustment of atmospheric
variables is achieved in DA_MET_BC_simult. This behav-
ior also highlights the importance of properly specifying the
observation error covariance matrix. In future work, we plan
to further examine the specification of the BC observation
errors and their impact on assimilation performance.

The preliminary results obtained from this set of four ex-
periments indicate that different BC assimilation strategies
have little impact on BC analysis increments but signifi-
cantly affect the analysis increments of atmospheric vari-
ables. When only BC observations are assimilated, the in-
fluence of BC on atmospheric variables is more pronounced,
whereas the simultaneous assimilation of meteorological ob-
servations moderates this influence. This suggests that the
presence of meteorological observations during assimilation
may impose additional constraints on the adjustment of at-
mospheric fields, potentially reducing the degree to which
the assimilation of BC observations alone can alter the at-
mospheric state. In this way, the integration of meteorologi-
cal observations helps stabilize the adjustment process, sup-
porting more consistent and interpretable assimilation re-
sults. Moreover, the four experiments demonstrate that the
CMA-GFS-AERO 4D-Var system has been technically im-
plemented and is able to produce credible analysis incre-
ments in both BC and atmospheric fields. These increments
display realistic spatial structures and amplitudes, indicating
that the system performs as intended under the current con-
figuration and with the available observations. These results

Table 6. Computational costs (unit: s) for 6 h integrations of CMA-
GFS 4D-Var and CMA-GFS-AERO 4D-Var.

Model CPU core

480 960 1440

CMA-GFS 4D-Var 803 515 428
CMA-GFS-AERO 4D-Var 1013 640 591

CMA-GFS 4D-Var and CMA-GFS-AERO 4D-Var are integrated
with the same time step of 300 s/900 s (outer loop/inner loop), the
same horizontal resolution of 0.25°/1° (outer loop/inner loop), and
the same number of minimization iterations of 35 steps.

offer practical evidence of the system’s functionality and its
potential utility for exploring the feedback of BC data as-
similation on meteorological forecasts. In the future, we will
conduct cycling assimilation experiments using CMA-GFS-
AERO 4D-Var to gain deeper insights into the role of BC as-
similation in numerical weather prediction and further refine
the system for broader applications.

5.4 Computational performance of CMA-GFS-AERO
4D-Var

This section presents the computational performance of
CMA-GFS-AERO 4D-Var from three aspects: (1) the for-
ward model, (2) the TLM and ADM, and (3) the 4D-Var sys-
tem. We firstly evaluated the computational performance of
a CMA-GFS-AERO simulation and compared it with that of
the CMA-GFS simulation. Table 4 shows the computational
costs for 6, 24, and 120 h integrations of CMA-GFS and
CMA-GFS-AERO models. It can be seen that for 6, 24, and
120 h forecasts with the same integration time step (300 s),
the same horizontal resolution of 0.25°, and the same num-
ber of CPU cores (1920 cores), the CMA-GFS-AERO simu-
lations increase only about 10 % of the computational time of
the CMA-GFS simulations (as a reference, the microphysics
process accounts for approximately 5 % of the total compu-
tation time in CMA-GFS simulations). This shows the high
efficiency of the CMA-GFS-AERO forward model, which is
an important factor in developing a strongly coupled aerosol–
meteorology 4D-Var system.

Table 5 presents the computational costs for 12 h inte-
grations of CMA-GFS TLM/ADM and CMA-GFS-AERO
TLM/ADM, and Table 6 shows the computational costs for
6 h integrations of CMA-GFS 4D-Var and CMA-GFS-AERO
4D-Var. It is apparent that with an increasing number of CPU
cores, the acceleration effects of CMA-GFS-AERO TLM,
ADM, and 4D-Var are comparable to those of CMA-GFS
TLM, ADM, and 4D-Var. When using 1440 CPU cores, the
total times of CMA-GFS-AERO TLM, ADM, and 4D-Var
are approximately 1.1 times, 1.2 times, and 1.4 times those
of CMA-GFS TLM, ADM, and 4D-Var, respectively. This
highlights the high efficiency and good scalability of CMA-
GFS-AERO TLM, ADM, and 4D-Var, making the coupled
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aerosol–meteorology 4D-Var system potentially suitable for
operational application.

6 Conclusions

In this study, we developed CMA-GFS-AERO 4D-Var, a
strongly coupled aerosol–meteorology data assimilation sys-
tem, under the framework of the incremental analysis scheme
of CMA-GFS 4D-Var. CMA-GFS-AERO 4D-Var includes
three model components: forward, tangent linear, and ad-
joint models. The CMA-GFS-AERO forward model was
constructed by integrating the AERO-BC module, an aerosol
module containing main aerosol physical processes of BC
in the atmosphere, the code of which was extracted from
the CUACE air quality model and further optimized in this
work, into the CMA-GFS weather model. The tangent linear
model and the adjoint model of the AERO-BC module were
developed and coupled online with the TLM and ADM of
CMA-GFS, respectively. Thus, the CMA-GFS-AERO ADM
includes not only the adjoint model of physical processes
of BC, but also the adjoint model of the meteorological
model. The BC mass concentration was used as the control
variable and minimized together with atmospheric variables.
The background error covariance of the control variable BC
adopted a modeled structure. The assimilation system used
BC surface observations from the China Atmospheric Mon-
itoring Network. The observation error and the observation
operator of BC were described in detail as well.

The CMA-GFS-AERO TLM and ADM were verified by
tangent linear approximation and adjoint correctness tests.
The results show that CMA-GFS-AERO TLM exhibits good
performance in tangent linear approximation for BC, and
adjoint sensitivity agrees well with tangent linear sensitiv-
ity. The CMA-GFS-AERO 4D-Var system was validated for
its accuracy and rationality by the single-observation exper-
iment and the full-observation experiment. The results show
that assimilating BC observations can generate analysis in-
crements not only for BC but also for atmospheric vari-
ables such as the temperature, pressure, wind field, and rel-
ative humidity. This demonstrates that the newly developed
CMA-GFS-AERO 4D-Var system has been technically im-
plemented and is capable of producing credible assimilation
outcomes, highlighting its potential as a useful tool for ex-
ploring the feedback of BC data assimilation on meteorolog-
ical forecasts. Additionally, the computational performance
of CMA-GFS-AERO 4D-Var was evaluated, and the results
indicate that when using 1440 CPU cores for 6 h integrations,
the total time of CMA-GFS-AERO 4D-Var is approximately
1.4 times that of CMA-GFS 4D-Var, highlighting the high
efficiency of CMA-GFS-AERO 4D-Var and the potential in
operational application.

The next steps are as follows. We intend to explore the
impact of assimilating surface BC observations on the fore-
cast fields of BC and atmospheric variables through cy-

cling assimilation experiments. CMA-GFS-AERO 4D-Var
still needs to be applied to control variables for BC emission
scaling factors. Further development of CMA-GFS-AERO
4D-Var will aim to assimilate more aerosol species while en-
suring computational efficiency, providing an effective way
to study the impact of aerosol assimilation on the analysis
and forecast fields of atmospheric variables.

Code and data availability. The CMA-GFS model and its 4D-Var
system and CUACE model were distributed by the CMA Earth
System Modeling and Prediction Centre (CEMC) and the Chinese
Academy of Meteorological Sciences, respectively. The model was
run on the PI-SUGON high-performance computer with Intel For-
tran Compiler. Due to copyright restrictions of CEMC, the full
codes of the system are not freely available; interested users can
contact the operational management department of CEMC or the
author Yongzhu Liu (liuyzh@cma.gov.cn) for further assistance.
Codes related to this study, including the tangent linear and adjoint
interface codes for black carbon (BC) and the observation opera-
tor codes for BC and the CMA-GFS-AERO 4D-Var main program,
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