Geosci. Model Dev., 18, 483-509, 2025
https://doi.org/10.5194/gmd-18-483-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Quantifying uncertainties in satellite NO, superobservations for
data assimilation and model evaluation

Pieter Rijsdijk1’2*3'*, Henk Eskesz’*, Arlene Dingemans'?, K. Folkert Boersma>*, Takashi Sekiya®,

Kazuyuki Miyazaki®, and Sander Houweling>'

ISRON Netherlands Institute for Space Research, Leiden, the Netherlands

2Satellite Observations department, Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
3Department of Earth Sciences, Vrije Universiteit, Amsterdam, the Netherlands

“Meteorology and Air Quality group, Wageningen University, Wageningen, the Netherlands

>Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

®Jet Propulsion Laboratory/California Institute for Technology, Pasadena, California, USA

dcurrently at: Koninklijke Luchmacht, Breda, the Netherlands

X These authors contributed equally to this work.
Correspondence: Pieter Rijsdijk (p.rijsdijk @sron.nl)

Received: 1 March 2024 — Discussion started: 3 April 2024

Revised: 3 November 2024 — Accepted: 17 November 2024 — Published: 28 January 2025

Abstract. Satellite observations of tropospheric trace gases
and aerosols are evolving rapidly. Recently launched instru-
ments provide increasingly higher spatial resolutions, with
footprint diameters in the range of 2-8 km and with daily
global coverage for polar orbiting satellites or hourly obser-
vations from geostationary orbits. Often the modelling sys-
tem has a lower spatial resolution than the satellites used,
with a model grid size in the range of 10-100km. When
the resolution mismatch is not properly bridged, the final
analysis based on the satellite data may be degraded. Super-
observations are averages of individual observations match-
ing the model’s resolution and are functional to reduce the
data load on the assimilation system. In this paper, we dis-
cuss the construction of superobservations, their kernels, and
uncertainty estimates. The methodology is applied to nitro-
gen dioxide tropospheric column measurements of the TRO-
POspheric Monitoring Instrument (TROPOMI) instrument
on the Sentinel-5P satellite. In particular, the construction
of realistic uncertainties for the superobservations is non-
trivial and crucial to obtaining close-to-optimal data assimi-
lation results. We present a detailed methodology to account
for the representation error when satellite observations are
missing due to, e.g., cloudiness. Furthermore, we account
for systematic errors in the retrievals leading to error cor-
relations between nearby individual observations contribut-

ing to one superobservation. Correlation information is typ-
ically missing from the retrieval products, where an error
estimate is provided for individual observations. The vari-
ous contributions to the uncertainty are analysed from the
spectral fitting and the estimate of the stratospheric contri-
bution to the column and the air mass factor for which we
find a typical correlation length of 32 km. The method is ap-
plied to TROPOMI data but can be generalized to other trace
gases such as HCHO, CO, and SO; and other instruments
such as the Ozone Monitoring Instrument (OMI), the Geo-
stationary Environment Monitoring Spectrometer (GEMS),
and the Tropospheric Emissions: Monitoring of POllution
(TEMPO) instrument. The superobservations and uncertain-
ties are tested in the Multi-mOdel Multi-cOnstituent Chem-
ical (MOMO-Chem) data assimilation ensemble Kalman fil-
ter system. These are shown to improve forecasts compared
to thinning or compared to assuming fully correlated or un-
correlated uncertainties within the superobservation. The use
of realistic superobservations within model comparisons and
data assimilation in this way aids the quantification of air pol-
lution distributions, emissions, and their impact on climate.
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1 Introduction

The capabilities that satellite instruments have to measure
trace gases in the atmosphere have increased greatly in
recent years. Instruments measuring from the ultra-violet
(UV) to infrared and microwaves (https://earthobservations.
org/, last access: August 2023, https://ceos.org/ourwork/
virtual-constellations/acc/, last access: August 2023) allow
the retrieval of concentrations of a large number of gases in-
cluding O3, NO;, SO, CO, CHy, and CO,. While a previ-
ous generation was providing measurements with footprint
diameters of the order of 15-50km, instruments like the
polar-orbiting spectrometer, TROPOspheric Monitoring In-
strument (TROPOMI) (Veefkind et al., 2012), and the re-
cently launched geostationary instruments, the Geostationary
Environment Monitoring Spectrometer (GEMS) (Kim et al.,
2020) and Tropospheric Emissions: Monitoring of POllution
(TEMPO) (Zoogman et al., 2017), provide observations with
a spatial resolution at around 5 km, allowing the identifica-
tion of plumes originating from individual major emitters and
the estimation of their emissions (Streets et al., 2013; Geor-
goulias et al., 2020). At the same time, these instruments pro-
vide daily global coverage (TROPOMI) or regional hourly
observations (GEMS and TEMPO), resulting in large data
volumes (e.g. about half a terabyte per day for TROPOMI).
Making good use of all this information is a major challenge.

In parallel, global atmospheric composition analysis sys-
tems have been developed which use data assimilation tech-
niques to assimilate the available satellite data. In Europe,
the Copernicus Atmosphere Monitoring System (CAMS)
(Peuch et al.,, 2022) is assimilating about 24 satellite
datasets in real time to constrain the concentrations of re-
active gases, aerosols, and greenhouse gases (Inness et al.,
2019b). Multi-decadal reanalyses have been generated by
CAMS (Inness et al., 2019a) or by the Multi-mOdel Multi-
cOnstituent Chemical (MOMO-Chem) data assimilation sys-
tem (Miyazaki et al., 2020a).

The recent advances in satellite instruments have led to a
mismatch in the resolution between models and observations.
For example, the TROPOMI instrument has footprints of 5.5
by 3.5 km at nadir (about 20 km?), whereas the CAMS model
grid cells are roughly 0.4 by 0.4 ° (about 2000 km?). As a re-
sult, a single model grid cell may be covered by the order
of 100 observations, which will lead to large differences be-
tween individual observations and interpolated model values
because trace gas concentrations vary and are strongly linked
to the distribution of (point) air pollution sources. The large
number of satellite observations (about 1 000 000 cloud-free
NO; observations per day) makes the assimilation of all ob-
servations numerically very costly. Also, regional data assim-
ilation or inverse modelling applications, e.g. van der A et al.
(2024), are often implemented with a resolution of the or-
der of 0.2° or coarser, with the order of 10-20 TROPOMI
observations per grid cell. This mismatch is the main reason
for introducing superobservations, namely averages of the in-
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dividual observations which are representative of the scales
that are resolved by the model.

Crucial for a successful analysis is high-quality informa-
tion on the uncertainties in the model forecast (the error co-
variance matrix) and in the observations. Observation errors
that are too optimistic will lead to spurious impacts in the
model, degrading the quality of the analyses, while an over-
estimate of the observation error implies that the observa-
tions are not used to their full potential.

The model-data mismatch, or departure d, in Eq. (1) is
a key quantity in data assimilation (Kalnay, 2002). Here y
is the observation vector, and H is the observation operator
converting the model state vector x to the observations.

d=y— Hlx] ()

There are three sources of error contributing to non-zero
d values, namely the error in the observation y; the fore-
cast error in x; and the errors in the observation operator,
which are often combined with the observation error. The er-
ror in H describes how accurately the measurement can be
reconstructed from the model state represented on a finite-
resolution grid. This representation error, although some-
times neglected, will often be the dominant error source. Var-
ious terms may contribute to this error, including horizon-
tal spatial representation errors (Janji¢ et al., 2018; Schut-
gens et al., 2016; Miyazaki et al., 2012a), temporal errors
(Boersma et al., 2016), vertical interpolation errors, smooth-
ing errors (when averaging kernels are not used; see Rodgers,
2000), and forward-modelling errors (errors in the radiative
transfer model included in H to describe the (satellite) ob-
servation).

In this paper, we focus on the horizontal spatial representa-
tion error (RE) because this is a major source of errors in the
case of large sub-grid variability and partial coverage. Also,
this error is straightforward to simulate and quantify in the
framework of superobservations.

In data assimilation applications, the uncertainties in the
observations are often assumed to be uncorrelated in space
because of its complexity. Satellite retrieval products gener-
ally contain detailed retrieval error estimates, but these are
available for individual observations, and typically, there is
no information on how much errors in nearby observations
may be correlated. If such correlations are neglected, the in-
dividual observations will impact the analysis too strongly.

Thinning the observational dataset through using only a
subset of the observations often improves the data assim-
ilation results and reduces correlated errors through a data
density reduction, while reducing the computational cost in
data assimilation (Liu and Rabier, 2002, 2003). However,
thinning does not decrease the uncorrelated part of the un-
certainty (Berger and Forsythe, 2003) and leads to a loss of
information as well. In the case of a short-lived tracer like
NO; with local sources, the variability within a grid cell of
40 x 40 km? is large and is picked up by TROPOMI. Ran-
domly selecting one observation in a grid cell, or within a
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correlation length scale, implies throwing away most of the
sub-grid information and leads to very noisy comparisons be-
cause the model does not resolve the fine-scale variability,
especially around inhomogeneous point sources. A better ap-
proach is selecting the single observation closest to the mean
or median of the observations within the grid cell (Plauchu
et al., 2024), but note that this approach makes use of the
information on all these observations.

An alternative to thinning is “superobbing”. In this ap-
proach, multiple observations are clustered and averaged to a
single superobservation. The superobservations then replace
the original observations in data assimilation applications, as
illustrated in Fig. 1. This makes for a more representative and
less noisy comparison, while also reducing the correlation in
uncertainties between superobservations.

Superobbing can also prevent biases. The uncertainty in
individual observations often scales with the column amount.
This is the case for NO; column retrievals and is related to
uncertainties in the air mass factor. If all individual observa-
tions with their individual uncertainties are assimilated in a
model with a coarser resolution than the satellite, this leads
to low-biased analyses because more weight is given to low
observations with a small uncertainty. With the superobser-
vation approach described in this paper, such persistent low
biases are largely avoided.

Satellite trace gas retrieval products often contain a signif-
icant number of negative values. This may result from small
signal-to-noise ratios (for instance, for HCHO and SO; col-
umn retrievals) or from a subtraction of two large numbers
(the total and stratospheric columns in the case of tropo-
spheric NOy). These negative values are, however, essential
for maintaining statistical consistency and preventing biases
when averaging the observations. Data assimilation systems
for atmospheric chemistry are often unable to use negative
values, discarding them instead. But this practice will result
in positive biases, for instance, over remote regions in the
case of NO,. The process of creating superobservations im-
plies an averaging over individual positive and negative val-
ues, which reduces the relative percentage of negative ob-
servations. This is another advantage of using superobserva-
tions.

Various methods of superobbing exist. The clustering of
observations inside the optimal interpolation analysis is in-
troduced in Lorenc (1981), but Purser et al. (2000) points out
two disadvantages with this method. First, the superobser-
vations are not independent of the assimilation system, and
second, creating superobservations requires a statistical de-
scription of the forecast system, which is not always avail-
able. Another example is the 10s observations constructed
for OCO-2 (Crowell et al., 2019). Superobbing methods gen-
erally consist of three components, namely a method to clus-
ter the observations, to average the observations, and to aver-
age the uncertainties.

A simple way to cluster observations is using a pre-
determined grid, such as a model grid (Jeuken et al., 1999;
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Boersma et al., 2016). This minimizes the RE between the
superobservations and the model. Another approach involves
clustering observations based on the proximity to a model
point in both space and time. Alternatively, clustering obser-
vations based on information density can be preferable, de-
pending on the desired properties (Duan et al., 2018; Purser,
2015). Detail is retained where necessary, and more of the
structures of the original observations are preserved. This
method can retain more information with fewer data points,
especially for data with a heterogeneous information density,
such as wind data. However, it yields an irregular grid, which
may be undesirable. The irregular grid increases the RE be-
tween the superobservations and the model.

Several methods exist for averaging the clustered obser-
vations. The simplest method is to take a mean of all obser-
vations forming part of a superobservation cluster. Crowell
et al. (2019) use the uncertainty in the observation as weights.
Miyazaki et al. (2012a) and Boersma et al. (2016) average
the observations with the overlap of the observation footprint
with the superobservation grid as weights.

Various methods to compute the superobservation uncer-
tainty have been introduced in the past. Uncertainties may be
averaged in the same way as the observations have been (In-
ness et al., 2019b). On the other hand, Crowell et al. (2019)
calculate their uncertainty as the largest of the square root
of the mean variance’s or the observation’s standard devia-
tion. Berger and Forsythe (2003) and Miyazaki et al. (2012a)
introduce spatial error correlations between individual obser-
vations and combine the uncertainties based on these correla-
tions. Determining the correlation between the uncertainties
is difficult and can be qualitative (Miyazaki et al., 2012a).

The inflation of uncertainties is another method that is of-
ten employed to address the problem of correlated uncertain-
ties. Chevallier (2007) demonstrated that inflating observa-
tional uncertainties gives good results. This method is often
combined with thinning to account for the fact that thinned
observations are still correlated (Heilliette and Garand, 2015;
Bédard and Buehner, 2020). Inflation can also be used in con-
junction with superobservations, as superobservation uncer-
tainties are still spatially correlated.

In this paper, we improve and formalize the superobserva-
tion method used by Miyazaki et al. (2012a) and Boersma
et al. (2016) and apply it to TROPOMI tropospheric NO»
observations for data assimilation applications. The corre-
lations between the retrieval uncertainties are quantified to
calculate the superobservation uncertainty more accurately.
Also, we derive an equation for the representation error,
which has only been parameterized until now. Furthermore,
we apply a correction to take systematic sampling into ac-
count. We study superobservations with NO; because it is
one of the trace gases most affected by correlated uncer-
tainties and representation errors, due to its short residence
time and large variation in both time and space. Also, the
high signal-to-noise ratio of the retrieval makes systematic
errors dominant over random errors, which makes correctly
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Figure 1. The superobservation approach implies that the direct
assimilation of level 2 retrievals (top row) is replaced by a pre-
processing step, where a superobservation generator is applied to
form an intermediate set of clustered observations with the spatial

resolution of the data assimilation system which is subsequently as-
similated or compared with model output (bottom row).

handling the correlation between uncertainties more impor-
tant. In particular, we discuss in detail the construction of the
superobservation uncertainty, explicitly treating correlations
between nearby observations and the horizontal representa-
tivity term. The applications that we have in mind for the su-
perobservations are the assimilation of high-resolution satel-
lite observations with global analysis systems and the model
validation of global chemistry transport models or general
circulation models including chemistry. These are applica-
tions that make use of the averaging kernels.

In Sect. 2, we give background information on the
TROPOMI NO; product. Section 3 contains the method
we use for superobservation construction and explains the
choices for the method. We add to the existing method in
Sects. 4 and 5 by quantifying the correlations between obser-
vational uncertainties and the horizontal representation error.
In Sect. 6, we test different methods of constructing the su-
perobservation uncertainty by assimilating the superobserva-
tions into the MOMO-Chem data assimilation system.

2 Sentinel-5P TROPOMI NO; observations

The TROPOMI instrument (Veefkind et al., 2012) is a
push-broom spectrometer and is the single payload on the
Sentinel-5P satellite, which is part of the fleet of Sentinel
satellites of the EU Copernicus programme. The following
four aspects make TROPOMI unique: (1) the large swath
width and resulting daily global coverage; (2) the large spec-
tral range from the UV to the short-wave infrared, allowing
the retrieval of a large number of trace gases like O3, NO»,
SO,, HCHO, CO, and CHy, as well as aerosol properties;
(3) the very high signal-to-noise ratio, which allows the re-
trieval of these gases with a high precision; and (4) the small
pixels of down to 3.5 x 5.5km? at nadir.

The TROPOMI NO; product data usage and details of
the retrieval are provided in the product Readme file (Es-
kes and Eichmann, 2022), the product user manual (Eskes
et al., 2022), and the algorithm theoretical baseline docu-
ment (van Geffen et al., 2022a). The Sentinel-5P Validation
Data Analysis Facility (https://s5p-mpc-vdaf.aeronomie.be/,
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last access: March 2023) is providing routine validation re-
sults with quarterly validation updates.

Two versions of the product are used in this paper. Pro-
cessor version 2.2.0 became operational in the summer of
2021, including a new implementation of cloud retrieval,
leading to a substantial increase in the tropospheric columns
retrieved (van Geffen et al., 2022b). In combination with
high-resolution a priori information (Douros et al., 2023),
this improved the comparisons to ground-based remote sens-
ing observations (Verhoelst et al., 2021). An intermediate
and consistent reprocessing of the NO, data became avail-
able on the S5P-PAL server (https://data-portal.s5p-pal.com,
last access: March 2023). These NO, data are no longer
publicly available after completion of the official v2.4 re-
processing. In July 2022, TROPOMI v2.4.0 became oper-
ational, including a replacement of the Ozone Monitoring
Instrument (OMI) and the Global Ozone Monitoring Ex-
periment 2 (GOME-2)-derived Lambertian-equivalent reflec-
tivity (LER) albedos in the UV-visible and near-infrared
spectral ranged by the TROPOMI directionally dependent
Lambertian-equivalent reflectivity (DLER) database (Tilstra,
2023). An official reprocessing of the full mission dataset
(30 April 2018—present) became available in March 2023
(Copernicus Sentinel-5P, 2021). This most recent upgrade is
relevant for this paper because it allows us to study the sensi-
tivity of the tropospheric columns and air mass factors to un-
certainties in the input databases. At the start of this research,
the v2.4 reprocessing was not yet publicly available. Instead,
we make use of a pre-release processing dataset used for the
final evaluation. These data are identical to the release data
but limited in scope to the first 14 d of September in 2018,
2019, 2020, 2021, and 2022. Thus, the analyses in this paper
are limited to this time frame.

A crucial input for estimating the superobservation un-
certainty is the error analysis of the individual tropospheric
columns. For NO,, the error budget is particularly complex
since many aspects contribute significantly to the uncertainty
o, of the retrieved tropospheric vertical column N;. This fol-
lows the error propagation approach developed in Boersma
et al. (2004).

N \? N \? AN\
(71%, = t O'/%, + E (7,%, =L (7,%4 2)
t a Nslanl slant 8 1\]5‘.1‘3.l strat a Ml t

The equation distinguishes error contributions from the slant
column Ngan¢ (uncertainties in the differential optical absorp-
tion spectroscopy (DOAS) spectral fit), the estimate of the
stratospheric contribution Ny, to the total column, and the
uncertainties in the tropospheric air mass factor M;. The par-
tial derivatives are the error propagation terms or the sensi-
tivity of the retrieval to the various sources of uncertainty.
Note that in this equation there is no distinction between
random and systematic components of the errors. All terms
have quasi-systematic components, e.g. the input surface
albedo is available as monthly datasets with a limited spatial
resolution which introduces systematic errors, but the satel-
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lite sampling of the albedo introduces a random component.
For the NO; slant column retrievals, the random and system-
atic components have been discussed in Zara et al. (2018)
and van Geffen et al. (2020).

The tropospheric air mass factor M; depends itself on the
a priori NO» profile x,, as well as several input parameters b,

Mtth(xa,b)th(xav fC»ZC»aS)9 (3)

where f, is the (effective) cloud fraction, z. is the (effective)
cloud height, and qg is the surface albedo. Note that aerosols
are not treated explicitly in the NO; retrieval but are implic-
itly accounted for by the effective cloud fraction and height
(Boersma et al., 2004, 2011).

A basic assumption in the error estimation in Eq. (2) is that
all terms are uncorrelated. There is one exception, namely a
correlation term which is introduced between the cloud frac-
tion and albedo. An error in the albedo has a direct impact
on the air mass factor but also an indirect impact through
the retrieved cloud fraction, partly compensating for the di-
rect error (Boersma et al., 2004). Despite this extra corre-
lation term, the uncertainties in the air mass factor may be
overestimated. In the v2 retrievals, high biases in the albedo
(or LER/DLER) are corrected by matching the observed and
computed radiance levels for cloud-free pixels, which fur-
ther lowers the impact of the (D)LER input on the final result
(van Geffen et al., 2022b). The reduction in the uncertainty
due to the albedo adjustment is not accounted for in the v2
uncertainty analysis. The air mass factor uncertainties will be
further discussed below in Sect. 4.3.

The air mass factor also depends on the a priori NO» pro-
file. However, as shown in Eskes and Boersma (2003), rela-
tive comparisons between a model and the NO, satellite ob-
servations become independent of the prior when the aver-
aging kernel is used in the observation operator. Since the
superobservations are constructed for model validation and
data assimilation applications, the kernels should always be
applied. Therefore we omit errors related to the a priori in the
remainder of this study.

The NO, data product includes averaging kernel vectors
A that link model profiles to the retrieved (tropospheric)
columns. According to the optimal estimation theory, these
kernels are part of the observation operator and are used to
compute a model-equivalent yp, of the retrieval y by the fol-
lowing equation,

Ym =Xa +AX —xy). “

Here x is the tropospheric NO; vertical profile from the
model colocated in space and time to the footprint of the
satellite, and x, is the vertical profile of layer contributions
to the column. Because, for the NO; retrieval (which is lin-
ear to a good approximation), we have (I — A)x, = 0, where
I is a vector with elements 1 (Eskes and Boersma, 2003), this
reduces to

Ym = Ax. ®)]
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Note that in this paper, A refers to the NO, tropospheric col-
umn averaging kernel. These are computed from the total
column averaging kernel by multiplying with the ratio of the
total and tropospheric air mass factor (Eskes et al., 2022).
Values above the troposphere as calculated by the Tracer
Model 5 massive parallel (TM5-MP) are set to 0.

3 Constructing superobservations: the tiling approach

Superobservation construction consists of three components,
namely clustering, averaging, and uncertainty averaging.
The TROPOMI observations are clustered to the grid of
the model that the superobservations will be used with,
which minimizes the representation error. Additionally, this
removes the need for grid interpolation during assimila-
tion. Clustering also significantly reduces the number of
TROPOMI observations.

3.1 Averaging approach

We average using the overlap of the individual observations
with the grid cell as weights (Eq. 6) (Miyazaki et al., 2012a;
Boersma et al., 2016).

yg = Z? w; yi
i wi

In our formulation, the superobservation is the best pos-
sible estimate of the model grid box average NO, col-
umn, given n satellite observations. The weights w; are ob-
tained by covering (tiling) the grid box with the TROPOMI
observations, as shown in Fig. 2. They are equal to
the area overlap between the footprint of the TROPOMI
observation y; and the selected model grid box. Fig-
ure 11b shows satellite observations over Europe, with
the associated superobservations shown in Fig. 11a. This
method of averaging is similar to spatial binning using
the data harmonization toolset for scientific Earth obser-
vation data (HARP) (http://stcorp.github.io/harp/doc/html/
algorithms/regridding.html#spatial-binning, last access: Au-
gust 2024). In the rest of this paper, normalized weights are
used (Eq. 7).

(6)

> wi

The tiling method has three main advantages over other av-
eraging methods. First, it takes into account the idea that
observations which only partially overlap with the superob-
servation area should contribute less to the superobservation
average. This is especially relevant for smaller superobser-
vations, where the difference in overlap becomes more pro-
nounced. Second, the tiling method is not sensitive to cre-
ating biases. Last, the tiling method has a clear physical in-
terpretation with a closed mass balance. The total amount
of tropospheric NO; in a superobservation is the sum of the

wj

)
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tropospheric NO; of the observations comprising the super-
observation. The main alternative of using precision weights
assumes that every observation within a superobservation is
an independent measurement of the superobservation (Tay-
lor, 1997). This is not the case here, as different pixels are
independent measurements looking at different air masses.

To compare a superobservation against a model, we also
need a corresponding averaging kernel, which is averaged in
the same way as the observations. Multiplying Eq. (1) with
w; and summing over the satellite observations, we get the
following:

n n n
D iidi =) biyi— Y WiAHinerpoli[X]=ds.  (8)
i i i

Here x is the vector of modelled NO; partial columns in the
vertical layers of the model for the chosen horizontal model
grid box, A; is the averaging kernel of observation y;, and
Hy interpol,i 18 the vertical interpolation between the satellite-
averaged kernel pressure levels and the model pressure lev-
els.

A horizontal interpolation operator is missing because ys
is compared with the model using a single profile of model
values for the selected horizontal model grid cell. This is in
contrast to an assimilation of individual observations, where
typically a bi-linear interpolation operator is introduced in-
volving neighbouring horizontal model grid cells.

n
ds =ys — ASHV,interpolx ; Ag = Zﬁ)iAi‘ C))
i

Thus, the averaging kernel of the superobservation (the “su-
perkernel” Ag) is constructed in the same way as the super-
observation using the weights w;. Note that because all in-
dividual observations are by construction compared with the
same model value, we do not have to worry about correla-
tions between A; and x (von Clarmann and Glatthor, 2019).

Note that each TROPOMI observation comes with a
unique surface pressure, which may differ substantially be-
tween neighbouring pixels over mountain terrain. To con-
serve the total column in the model-satellite comparison,
we will follow the TROPOMI NO; product user manual and
align the surface pressures by replacing the retrieval surface
pressure with the surface pressure of the model grid cell be-
fore comparing. In this way, the kernels of all observations
contributing to the superobservation will have the same pres-
sure levels and can be averaged, as in Eq. (9). Note that the
shape of the kernel is only weakly dependent on changes in
the surface pressure.

3.2 Uncertainty averaging

A realistic superobservation uncertainty estimate is essential
to guide the data assimilation and to find the right balance
between the model forecast and the observations in the anal-
ysis. The total uncertainty in the superobservation o is the
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Figure 2. The tiling approach, where a model grid cell mean NO,
tropospheric column amount is constructed as an overlapping area-
weighted average of the satellite footprints covering the model grid
cell. The colours indicate the weights w;, which are the area overlap
(km?) between the superobservation grid cell and satellite observa-
tion footprint. The grid cell boundary is indicated in blue.

combination of the measurement error and representation er-
ror terms, assuming that these are uncorrelated (Eq. 10).

05 = /03 +0R (10

The observational uncertainty in the superobservation de-
pends on the uncertainty in the individual observations, as
well as their correlation. To calculate the former, we apply
the method from Sekiya et al. (2022), who calculate the re-
trieval contribution to the superobservation uncertainty using
Eq. (11). This assumes a representative uniform correlation
factor ¢, which is applied to all uncertainties within a su-
perobservation. Here the observational uncertainty is a com-
bination of an uncorrelated part and a correlated part. The
uncorrelated part tends towards zero as the number of ob-
servations increases because the square of the standardized
weights 1Z1i2 decreases. On the other hand, the correlated part
does not change much when adding more observations. As
a result, the correlated part puts a lower limit on the uncer-
tainty, which is roughly o \/c.

N N 2
%zbs=(1—C)Zﬁ)i20'i2+c<zwi‘fi) (11)
i=1

i=1

4 Uncertainty estimate for TROPOMI NO,

As mentioned in Sect. 3.2, the superobservation uncertainty
depends on the observational uncertainties and their correla-
tion ¢ (Eq. 11). As shown in Eq. (2), the tropospheric column
uncertainty consists of three separate sources of uncertainty,
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namely the stratospheric uncertainty, the slant column uncer-
tainty, and the air mass factor uncertainty. The superobserva-
tion uncertainty in these components is calculated separately
because they have different correlations, which means that
their uncertainty propagates differently. Every component
and its correlation are discussed individually in the sections
below. Note that these components are not provided sepa-
rately in the retrieval, but through using the methods from
the algorithm theoretical basis document (ATBD) (van Gef-
fen et al., 2022a), they can be reconstructed using the avail-
able information.

4.1 Stratospheric uncertainty

The tropospheric NO; column is obtained by subtracting
an estimated stratospheric column from the total observed
column. The stratospheric column is obtained by TM5-MP
model simulations, while assimilating TROPOMI NO; col-
umn observations (Huijnen et al., 2010; Dirksen et al., 2011).
With the method, the stratospheric column is constrained by
the TROPOMI observations, with strong forcings in the as-
similation over unpolluted areas, such as the oceans, and
small adjustments over polluted regions. Subtracting the
modelled stratospheric slant column from the total slant col-
umn and dividing the tropospheric air mass factor gives tro-
pospheric NO; (Eq. 12).

Ntrop _ Nslant - Ns,strat (1 2)

Mtrop

The resolution of the (TM5-MP) model is 1° x 1°, and the
horizontal correlation length scale used in the assimilation is
about 500 km, with both being coarser than the superobser-
vation sizes considered in this paper. Therefore, the strato-
spheric uncertainty is assumed to be fully correlated (¢ = 1)
between observations that are part of one superobservation.

Because fully correlated terms will influence the final su-
perobservation error more strongly than uncorrelated or par-
tially correlated terms, the stratospheric estimate will be-
come relatively more important compared to other sources of
uncertainty. Therefore, it is relevant to investigate this term
in more detail.

There is seasonal and latitudinal variation in the strato-
spheric uncertainty. However, the TROPOMI NO; retrieval
approximates the stratospheric uncertainty using a constant
mean value. To improve on this, we analyse the observation-
minus-forecast (OmF) departure between TROPOMI and the
model column, using a geometric air mass factor for both
(Eq. 13; using solar zenith angle ®¢ and viewing zenith an-
gle ®). The root mean square error (RMSE) is calculated
daily over 5° latitudinal bands, highlighting latitudinal and
temporal uncertainties. Only areas with an average model-
estimated tropospheric NO, column lower than 30 umol m ™2
are included to minimize the effect of the troposphere. Fig-
ure 3 shows clear latitudinal and seasonal variations in the
TROPOMI and TMS differences. To reduce noise in the data,
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a block function convolution is applied to smooth the data
over 15° and 2 weeks. The smoothed data are oversampled
into bins of 2° by 1d. To calculate the geometric strato-
spheric uncertainty Osatgeo fOr an observation, these data
are linearly interpolated to their day and latitude. If an ob-
servation occurs outside of the bounds of the data, then it is
set to the maximum of the data. These gaps result from the
lack of observations during polar nights. Equation (14) con-
verts the geometric stratospheric RMSE to the stratospheric
uncertainty (van Geffen et al., 2022a).

1 1
= 13
897 cos ®y) cos® (13)
OSirs x M,
 Orat = Strat geo geo . (14)

M, trop

Compared to the constant osgratgeo Of 3.32 umol m~2 of the
data product, the new uncertainty is generally lower, espe-
cially at the Equator. Areas closer to the poles can have a
higher RMSE, depending on the season. This is more pro-
nounced in the Northern Hemisphere because the higher NO,
concentrations in the Northern Hemisphere increase the ab-
solute errors. In winter, the polar region is not observed, and
model biases will build up, affecting concentration estimates
in late winter. Also, there is seasonal variation in the high
latitudes which relates to the formation and breaking of the
polar vortex during winter, leading to larger errors. Gradients
around the Antarctic vortex are also challenging to predict,
particularly during the Southern Hemisphere spring. Because
the Antarctic vortex is more stable, these errors are less pro-
nounced and occur during the Southern Hemisphere spring.
High-latitude summer NO; levels are also difficult to pre-
dict. This relates to Arctic fire emissions from Siberia and
Alaska. In TM5-MP, these are based on climatological fire
intensities from the Global Fire Emissions Database (GFED)
(van der Werf et al., 2017), meaning that the model is not ca-
pable of accurately predicting individual fire events and the
corresponding total and stratospheric column. In contrast, in
the tropics, the RMSE results are better than the mean value
because of the relatively small natural variability there.

4.2 Slant column

Measurement noise is contributing to the slant column un-
certainty. An average random slant column uncertainty of
10.23 umolm~2 is found by van Geffen et al. (2020) for
cloud-free scenes. Apart from a random component to the
slant column uncertainty, there will also be a (regionally)
systematic component. The systematic component consists
of gaps in knowledge, such as missing cross sections, inac-
curate ring coefficients in the DOAS fit, or the lack of an in-
tensity offset and a correction for vibrational Raman scatter-
ing (Richter et al., 2011). These systematic effects are most
pronounced over the sea in clear-sky conditions. In such cir-
cumstances, the systematic uncertainty can be larger than the
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Figure 3. Zonal average of the observation (the forecast root mean
square error in the TROPOMI total column) in the TMS total col-
umn averaged over multiple years (2018-2022). Data are smoothed
over 15° and 2 weeks and averaged into bins of 1° by 1 d. This result
is used as the geometric stratospheric uncertainty ogyratgeo instead
of the constant in the retrieval.

random uncertainty. But because these are low-NO; environ-
ments, the impact on the retrieval is limited.

Any systematic error in the slant column also influences
the quantification of the stratospheric error discussed in
Sect. 4.1 because the slant column is assimilated for the
quantification of the stratosphere. Moreover, the transport of
the systematic error within the model results in a further in-
crease in the (OmF) RMSE. Considering that the effect of the
systematic error is already (partially) included in the strato-
spheric (OmF) RMSE discussed above, we do not separately
quantify the effect of the systematic retrieval error. Instead,
only the random part of the slant column uncertainty from
the level 2 data is converted to a tropospheric column uncer-
tainty through the tropospheric air mass factor (AMF) and
averaged as uncorrelated using Eq. (11).

4.3 Air mass factor uncertainty

To calculate the superobservation uncertainty resulting from
the air mass factor uncertainty, we use the uncertainty from
the retrieval, together with a correlation c¢. Note that the
AMF uncertainty is not part of the level 2 product but can
be calculated using the available information (van Geffen
et al., 2022a). Calculating the associated spatial correlation
between observations is not trivial because the tropospheric
air mass factor M; is calculated through several inputs, al-
gorithms, dependencies, and feedbacks, as shown in Fig. 4.
One of these complicating factors is the use that is made of
the top-of-atmosphere (TOA) radiance to correct the albedo
climatology for dark scenes. Uncertainties in the algorithms
and input variables induce uncertainty in the AMF. Of these
uncertainties, the a priori NO; profile is a large contribution,
typically ranging from 5 %-20 % in polluted regions. These
are most affected because the low resolution of the a priori
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profile may result in the underestimation of hotspots (Douros
et al., 2023). However, as shown in Eskes and Boersma
(2003), the relative comparisons between a model and the
NO; satellite observations become independent of the a pri-
ori profile shape when the averaging kernel is used in the
observation operator. Since the superobservations are con-
structed for model validation and data assimilation applica-
tions, the kernels should always be applied. Therefore, we
omit errors related to the a priori in the discussion below.

Other large sources of uncertainty are the effective cloud
cover, the effective cloud height, and the surface albedo (or
the Lambertian-equivalent reflectivity, LER). Aerosols are
treated implicitly through the effective cloud fractions and
cloud height, which introduces a minor uncertainty (Boersma
et al., 2004, 2011). All three of these variables depend on
a climatological surface albedo dataset. For the S5P-PAL
NO; processor version 2.3.1, these are derived from OMI
(440nm) and GOME-2 (758 nm), while for v2.4.0 it is de-
rived from TROPOMI spectra. A typical RMSE difference
between these two albedo datasets at 440nm is 0.015 or
about 25 % for a typical albedo of 0.06. Furthermore, the
uncertainties are spatially correlated, first of all, because of
the relatively low resolution of the LER database but also
because surface-modifying conditions are often spatially ex-
tensive. For example, droughts impact the surface albedo in a
large area. Luckily the retrieval algorithm can partially com-
pensate for errors in the climatological surface albedo. If the
TOA radiance is lower than expected based on the albedo,
then the albedo is adjusted downwards. On the other hand, if
the TOA radiance is higher than expected, then it is attributed
to “effective” clouds. If these clouds are placed at the correct
heights (e.g. at the surface for a high-albedo anomaly), then
this yields approximately the same AMF as with a perfect
surface albedo (Riess et al., 2022).

To estimate the spatial correlation required to estimate the
superobservation uncertainty, we compare versions 2.3.1 and
2.4 of the retrieval. We use the data of the first 2 weeks of
September for 2018-2022 because these were processed as
the validation before the product was made publicly avail-
able. The difference between the datasets should be repre-
sentative of the uncertainty resulting from the climatologi-
cal surface albedo as both datasets are valid inputs. Albedo
is also a key input for cloud retrieval, so this replacement
also generates differences in cloud fraction and cloud pres-
sure. One may argue that the comparison is not a good esti-
mate of the uncertainty in v2.4 because the new TROPOMI
surface albedo is likely superior. Thus, the uncertainties ob-
tained here are overestimated. However, both maps are still
climatological. This absence of temporally explicit data is
probably a major source of uncertainty, making both maps
uncertain.

Figure 5 shows the difference in NO, on 14 Septem-
ber 2018. These differences, caused by the replacement of
the albedo climatology, are spatially correlated. A correla-
tion length is calculated as outlined in Appendix A. Here we
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Figure 4. Diagram showing the dependencies (arrows) in the calculation of the air mass factor (AMF) as part of the TROPOMI NO,
tropospheric column retrieval. Shown in blue are the input data (TROPOMI radiances, albedo climatology, and static data), in orange are
the processing blocks (cloud properties and box AMF lookup table evaluation, TM5 chemical transport model, CTM), and in green are the
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Figure 5. Difference between the tropospheric column of the v2.3.1 and v2.4 products on 14 September 2018. Data are filtered for quality
assurance > (.75 (grey areas indicate cloud cover). White colours range from —8 to 8 pmolm_z.

find a correlation length of 32 km. This correlation length is
then used to calculate the average correlation of a superob-
servation for use with Eq. (11). Using a correlation length
is preferable over using an average correlation because it
takes into account the fact that high-latitude superobserva-
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tions have a smaller surface area than low-latitude ones and
thus should have a higher average correlation if other factors
are equal. Also, a correlation length is resolution-agnostic,
which allows for an easy change in the superobservation res-
olution and a properly behaved limit towards smaller super-
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Figure 6. Binned scatter plot between the retrieved average tropo-
spheric uncertainty resulting from the AMF and the average RMSE
of the difference between the retrieval versions. Calculated using
globally available data. Trendline fit using a Theil-Sen estimator.

observations. The correlation C between two points at a dis-
tance d for a correlation length [ is calculated using the ex-
ponential form, C = exp(—d/1).

We calculate the correlation for every distance within a su-
perobservation and multiply this with the probability density
function of points within a box (Philip, 2007). Integrating
this yields the average correlation within a superobservation.
Note that, strictly speaking, the probability density function
(PDF) from Philip (2007) is for a Cartesian plane and not for
a sphere, but grid cells are rectangular to a good approxima-
tion, except very close to the pole. For a 0.5° superobserva-
tion, this gives C ~ 0.3.

The difference between the versions is compared to the un-
certainty due to the AMF, as estimated by the retrieval. The
RMSE is calculated per swath in a 1° by 1° grid and then
averaged. The uncertainty is averaged to the same grid. Fig-
ure 6 shows the relationship between these variables. There
is a relationship between them, with an R value of 0.724. On
average, the uncertainty estimated by the retrieval is higher
than the RMSE, with a slope of 0.747 for the Theil-Sen esti-
mator. Note that factors other than the surface albedo con-
tribute to the uncertainty, such as the choice of radiative
transfer model, the wavelength at which the AMF is calcu-
lated, sphericity corrections, and systematic aspects in cloud
retrieval (Lorente et al., 2017). Based on this information,
the difference between v2.4 and v2.3 is consistent with the
retrieval uncertainty. Thus, the obtained correlation length is
likely representative of AMF uncertainty.
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5 Representation error

When making superobservations, the data are clustered
within a pre-defined grid. Ideally, we would always have
complete coverage, and thus complete information, of the
grid cell. However, this is not the case as satellite observa-
tions are often flagged due to quality concerns, for instance,
linked to the presence of clouds obscuring pollution close to
the surface.

In the case of incomplete information, the grid cell mean
concentration can still be estimated using the available sam-
ple of observations, but the area-weighted average will be
an estimate of the true average. The difference between the
(population) average of the entire grid cell and the estimate
using an incomplete (sample) average is the (horizontal) rep-
resentation error, which we quantify in this section.

5.1 Representation error due to random removal of
observations

By comparing the mean of a completely covered grid cell to
a random sample mean, we can calculate the representation
error (RE) for the situation, which is given by

RE = |0 — Xn|, (15)

with the true mean u and an estimate of the mean x,,, which
depends on the number of sample observations n. To quantify
the error, we perform experiments by taking a fully covered
grid cell and by removing random observations to calculate
the RE for n observations. Because the order in which we
remove observations results in different estimates, we repeat
the experiment for / number of iterations. Figure 7a shows
the results of this experiment as grey lines, with every line
representing one iteration.

The uncertainty org, , associated with this error is the stan-
dard deviation of the estimated mean x,, around the true mean
W, as follows:

i

1
ORE,n = 7

=/
(n— %) (16)
i=1

This standard deviation is plotted as the green line in Fig. 7a.
Increasing n improves our estimate of j, decreasing oRrg .
When 7 equals the total number of observations N in the grid
cell, the estimate )Efl equals u, and the uncertainty becomes
0.

Note that oRrg,, is the standard deviation of the sample
mean to the true mean, also known as the standard error (SE).
To calculate org, we can use the formula for the standard er-
ror with a correction factor because the population of obser-
vations within a superobservation (N) is finite (Bondy and
Zlot, 1976; Isserlis, 1918). With this correction factor, org
becomes

SE o |[N—n (17
0 =SE=—,/| ——.
REn JnV N-—1
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The results from the equation are shown in Fig. 7a as the blue
line. The theoretical blue line is on top of the experimental
green line, which means Eq. (17) describes org very well.

Equation (17) indicates that org , is proportional to the
standard deviation o of the observations within the grid cell.
In Fig. 7, the results are divided by this grid-cell-dependent
standard deviation such that different TROPOMI superobser-
vations can be compared. To calculate the absolute value of
ORE, estimating the standard deviation o is crucial, as dis-
cussed in Sect. 5.3. Equation (17) also shows that the uncer-
tainty resulting from random thinning (n = 1) is equal to the
standard deviation of the area that the thinned observation
represents.

There are some difficulties in applying Eq. (17) to the su-
perobservation RE because it applies the standard error to
the mean and not a weighted average. This is also the reason
why the blue and green lines in Fig. 7a do not match per-
fectly. For an unweighted average, they would converge with
enough iterations. Generally, this only results in minor differ-
ences between the predictions and the experiments, but these
errors become more pronounced if the difference in weights
between observations increases. This error is most present in
smaller superobservations because they have relatively more
partially overlapping observations.

In Appendix B, we derive a formulation of the repre-
sentation error that works with observations with different
weights by introducing fractional observations. This results
in Eq. (18):

Nf_ (Nfz‘n + 1— fzn)

N1 (18)

[
ORE,n =
KE vV foz,n+ 1 _fz,n
Here f; , is the coverage fraction of the superobservation
grid from 0-1, and Nt is the fractional population size. Note
that n in Eq. (17) is replaced by Nt f; ,.

5.2 Representation error due to systematic removal of
observations

A major complicating factor is that the coverage of the su-
perobservation is not random. A cloud field could cover the
northern half of the superobservation. The valid observations
then only cover the southern half of the superobservation,
making it less representative of the grid cell as a whole than
a random sample. We repeat the experiment from Sect. 5.1
but, instead, sample systematically. The systematic sampling
of a grid cell starts by picking a random observation from the
grid cell. Then the nearest observation is added to the sample,
which is repeated until the grid cell is filled. This is done for
multiple iterations, resulting in Fig. 7 (bottom panel), with
the iterations in grey and the experimental org in red. As
expected, the systematic experiment produces a higher rep-
resentation error.

This increase in RE is parameterized by fitting the total
population size N in the first term of Eq. (18). By lower-
ing the population size, org increases for the same coverage,
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which allows us to match the curve obtained in the systematic
sampling experiment. We call this fitted population size the
effective population size Negr. It is not necessary to modify
the finite population correction term (second term) because
this term accounts for having more complete information
of the superobservation as the number of observations ap-
proaches the population size. This effect remains unchanged
with systematic sampling.

_ o \/N_(Nfz.n+1 — Jfon)
ORE,n =
\/Nefffz,11+1—fz.)1 N-1
Fitting the number of observations using Eq. (19) results in
the purple line in Fig. 7c. The line fits well but is not perfect.

The effective population size of a superobservation has a
physical interpretation. Imagine a superobservation contain-
ing two distinct regions; there is a city with high-tropospheric
NO; levels, and a rural area outside the city with low-
tropospheric NO;. If we were to sample the entire city (in-
cluding the pollution plume from the city), the estimate of the
superobservation average is not much better than with a sin-
gle sample over the city. Effectively, there are only two inde-
pendent observations, namely the city and the rural area. As
the example illustrates, the effective population size of obser-
vations in a superobservation depends on its spatial structure.
If the effective population size is the same as the regular pop-
ulation size, then there is no effect of systematic sampling
on the superobservation. This occurs over areas such as the
oceans and the Sahara, where observed tropospheric NO; is
similar and noise-dominated. If the values within the super-
observation are random, systematic sampling has no effect.
On the other hand, source regions are sensitive to systematic
sampling and applying it gives very different results. Major
population centres, such as China, the Middle East, and Eu-
rope, all have a significantly lower effective population size
than the actual population size. Regions with fire emissions,
such as the savannahs in Africa, are also sensitive to sys-
tematic sampling. The effective population is a property of a
location and can be quantified for that location.

To calculate a representative effective population size for
a location, org /o on that location is calculated and aver-
aged over the dataset. The average is used to fit an effective
population Ngg for that location, which we compare to the
average population size for the location. The ratio Ref be-
tween the time-averaged population size (N) and the effec-
tive population size Negr captures how sensitive that location
is to systematic sampling (Refr = (N)/ Netr).

While it is possible to calculate Rc¢r for every superobser-
vation, this quantification would be grid-dependent, which
would make the method inflexible. Instead, we calculate an
average ratio Reg for polluted superobservations and unpol-
luted superobservations at multiple resolutions. Superobser-
vations over 30 umolm™? are classified as polluted and are
expected to be sensitive to systematic sampling. First, we cal-
culate Regr for every 1° superobservation for the polluted and
unpolluted cases. The resulting fits are shown as the thin lines

19)
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Figure 7. Results of repeatedly sampling a single grid cell to calculate org. (a) Random sampling of a single superobservation. The thin
grey lines represent individual random experiments for the superobservation. The green line is the mean of the samples, and the blue line is
the theoretical result from Eq. (17). (b) Example of a random sample at 30 % coverage. (c¢) Systematic sampling of a single superobservation.
The red line is the mean of the samples, and the blue line is the theoretical result for the random case. The purple line shows the fit to the
systematic mean by fitting Negr. In this case, the fitted Negr is 5.5 when compared to 536 observations. (d) Example of a systematic sample

for 30 % coverage.

in Fig. 8. Note that there are fewer fits for the polluted case
because many locations are never polluted. Then we average
Refr, which gives an Regr of 21 and 3 for polluted and un-
polluted 1° superobservations respectively. The purple line
in Fig. 8 shows the average result of the fits, which matches
well with the average experimental values in black for both
the unpolluted and polluted case. These figures also show the
average effect of systematic sampling. At 50 % coverage, the
increase in RE when sampling systematically instead of ran-
domly is 54 % for unpolluted areas and 263 % for polluted
areas.

Figure 9 shows the R as a function of the superobserva-
tion area, which increases as the area increases for both pol-
luted and unpolluted superobservations. Increasing the area

Geosci. Model Dev., 18, 483-509, 2025

of a superobservation increases the distance between obser-
vations. As a result, they become more sensitive to system-
atic sampling. Within our software, we use the trendlines in
Fig. 9 in combination with the distinction between polluted
and unpolluted superobservations to quantify the R of a su-
perobservation. This allows us to calculate R.s for different
grids and to take into account latitudinal variations in grid
cell size.

5.3 Sample standard deviation
Thus far, the RE has been expressed in terms of the standard

deviation of the observations (tropospheric NO;) within each
grid cell. This standard deviation is estimated using the mea-
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Figure 9. Resolution dependency of the correction for system-
atic sampling as a function of the area of the superobservation
up to a resolution of 2°. The plot distinguishes between polluted
(> 30 pmolm_z; orange curve) and unpolluted (blue curve) grid
boxes.

surement variability for each superobservation individually.
In practice, this procedure works well for coverages up to
30 % for 0.5° superobservations. This coverage corresponds
to the point where, on average, the sample standard devia-
tion would be more accurate than a climatological standard
deviation. With this coverage, it is still possible that there are
not enough available data points to calculate a reliable stan-
dard deviation, in particular for smaller superobservations.
For smaller superobservations, a minimum coverage of 50 %
or even 70 % may be appropriate. The optimal coverage may
also vary between assimilation systems, applications, and in-
struments. It is a tradeoff between data quantity and quality.
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Figure 10. The division of the superobservation error variance into
its components, namely stratosphere (blue), slant column (orange),
air mass factor (green), and representativity (red). Computed from
TROPOMI NO, at a 0.5° resolution. Note that the figure depicts
the error variance uncertainty instead of the uncertainty because the
variance is a direct sum of its contributions. The black line shows
the number of observations within each column bin.

When fewer than five data points are available, it is impos-
sible to calculate a reliable standard deviation. Instead, we
set the standard deviation to 0.4 times the tropospheric col-
umn +2.5 umolm~2. This is based on the relation between
the standard deviation and tropospheric column, as shown in
Fig. C1 in Appendix C.

6 Combined uncertainty in the superobservations

Figure 10 shows the contributions to the superobservation
uncertainty (crsz) as a function of the tropospheric NO;
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(a) TROPOMI NO; superobservation
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Figure 11. Panel showing various methods of pre-processing observations for data assimilation on 8 September 2018 for g, > 0.75. (a) Su-
perobservations constructed for this research. (b) Regular TROPOMI observations. (¢) Uncertainty-weighted superobservations instead of
the area weights used by this research. (d) Random sample from the observations within the model grid.

column. For low-tropospheric columns, the uncertainty is
dominated by the stratospheric uncertainty, while for high-
tropospheric columns, it is impacted most by the air mass
factor with a major contribution still coming from the strato-
spheric uncertainty. The RE is only a minor contribution to
the average uncertainty, but it varies significantly by loca-
tion, depending on the coverage and standard deviation (as
illustrated in Fig. 12c below) and becomes important at the
edges of cloud fields. The slant column uncertainty has al-
most no impact on the average uncertainty, even though itis a
major source of uncertainty for individual observations over
clean areas. Because the slant column uncertainty is treated
as dominantly uncorrelated, it is reduced significantly by the
averaging process. Note that the systematic slant column un-
certainty is (partly) included in the stratospheric uncertainty.

Geosci. Model Dev., 18, 483-509, 2025

We constructed and created superobservations by combin-
ing all sources of uncertainty, as described in Sects. 3.2 and
5. Figure 11a shows the constructed tropospheric NO; su-
perobservations on a grid of 0.5° x 0.5° for the overpass on
8 September 2018. Additionally, Fig. 11 shows superobser-
vations created using weights determined from the uncer-
tainty in the individual observations (w; = 1/012) (Fig. 11¢)
and using random observations (analogous to thinning;
Fig. 11d). For comparison, the satellite observations have
also been included (Fig. 11b). The regular superobserva-
tions and the uncertainty superobservations are similar. Both
give a realistic low-resolution representation of the origi-
nal satellite data. But, as expected, the uncertainty-weighted
superobservations have systematically lower values because
the weights favour the smaller columns, though the differ-
ence remains subtle. The difference is most clearly observed
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Figure 12. Panels showing various methods of pre-processing uncertainties for data assimilation and the RE on 8 September 2018 for
ga > 0.75. (a) Superobservation uncertainty constructed for this research. (b) Fully correlated uncertainty (C = 1). (¢) Representation error.

(d) Uncorrelated uncertainty (C = 0).

over Paris and North Africa. On average, the uncertainty-
weighted superobservations in Fig. 11 have a tropospheric
column of 22.4 umolm~2 compared to 23.0 umolm~2 for
the normal superobservations, which is a reduction of 2.7 %.
Over polluted areas with a tropospheric NO, column over
30 umol m~2, this reduction is 5 %. With the tiling approach,
we avoid such a systematic low bias. The randomly sampled
observations provide a noisy picture of the data, making it
much less reliable than the other methods and demonstrating
the large sub-grid variability.

The spatial structure of the superobservation uncertainty
is illustrated in Fig. 12a and is compared to two simplified
methods of calculating the superobservation uncertainty. The
associated RE is shown separately in Fig. 12c. Note how
the RE is mainly present at the edges of cloud fields due to
the low coverage there. Also, note how the RE is higher in
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high-NO» areas due to the higher variation in measurement
in these areas. This is particularly visible over Tunis and the
Rubhr area.

The assumption that the observational uncertainty is fully
correlated in space results in the uncertainties shown in
Fig. 12b. Uncertainties using this approach are much higher
than Fig. 12a and are likely overestimated. Assuming that
the uncertainty is fully uncorrelated results in a much lower
uncertainty, as shown in Fig. 12d. In this case, the total un-
certainty is dominated by the number of observations in the
grid cell, somewhat reflecting the RE. This is a strong under-
estimation compared to the uncertainty shown in Fig. 12a.

6.1 Data assimilation experiments

The impact of superobservations and their uncertainties in
the NO; analysis from NO, emission optimization is evalu-
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ated in a state-of-the-art chemical data assimilation frame-
work. The data assimilation system used is described in
Sekiya et al. (2022) and Miyazaki et al. (2020b) and uses the
CHASER 4.0 chemical transport model (Sudo et al., 2002;
Sekiya et al., 2018) at 1.125° x 1.125° resolution as the fore-
cast model and the local ensemble transform Kalman filter
(LETKF) data assimilation technique (Hunt et al., 2007).
The assimilation was performed with 32 ensemble members
and a 2 h assimilation window. Covariance localization was
applied based on species-dependent localization scales that
were derived from sensitive tests in Miyazaki et al. (2012b).
Covariance inflation was also applied by inflating emission
factor uncertainties (i.e. ensemble spread) to a minimum pre-
defined value. Additionally, a multiplicative covariance infla-
tion of 7 % was applied to the concentrations. In addition to
NO,, the assimilated measurements included total columns
from the thermal-infrared (TIR)/near-infrared (NIR) band
of the Measurement of Pollution in the Troposphere (MO-
PITT) instrument (Deeter et al., 2017), OMI SO, planetary
boundary layer vertical columns (Li et al., 2020), and Aura
Microwave Limb Sounder (MLS) O3 and HNO3 profiles
(Livesey et al., 2022).

To demonstrate the impact of different superobservation
settings, the following four sensitivity runs were done for
July 2019, only varying the NO; observations:

1. The superobservations and their uncertainties as de-
scribed in this paper (Figs. 11a, 12a).

2. The superobservations with uncorrelated errors include
the standard superobservations, with modified uncer-
tainty, assuming that the observations are fully uncor-
related in space (C = 0; Fig. 12d).

3. The superobservations with correlated errors include the
standard superobservations with modified uncertainty,
assuming that the individual observations are fully cor-
related in space (C = 1; Fig. 12b). This is analogous to
the variance-averaged uncertainty.

4. Thinning includes thinned observations for which the
values of one superobservation were taken randomly as
one of the available observations within a model grid
cell, similar to Fig. 11d. The uncertainty is the corre-
sponding retrieval uncertainty in this observation.

Note that the RE for thinned observations is expected to be
higher than the standard superobservations. Nevertheless, the
RE was set to be the same among experiments to assess the
impacts of the superobservation uncertainty itself.

Geosci. Model Dev., 18, 483-509, 2025
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Table 1. Metrics of the data assimilation experiments.

Experiment RMSE x2 MAD

[umolm™2]  [-] [umolm~2]
Superobs 8.7 1.8 5.2
Thinning 15.7 1.7 9.5
Uncorrelated 12.1  111.0 4.8
Correlated 9.0 0.7 54

The effectiveness of the assimilation for these four exper-
iments was evaluated with the OmF RMSE as follows:

1 t
RMSE, = |- > (Orxy = Fix ). (20)
1

Here Oy, values are the observations associated with the
experiment (1, 2, and 3 in Fig. 11a and 4 in Fig. 11d), and
Fi x,y values are the forecasted values. This is shown in
Fig. 13. The relative adjustments made by data assimilation
are evaluated by comparing the analysis (A;) and forecasts
(Fy) as follows:

1A - Fl
Impact [%] = ~ Y ———"100. 21
mpact [%] (2 F 21

The results are shown in Fig. 14. Additionally, the mean ab-
solute difference (MAD) is as follows:

1 n 1 t
MAD =~ 21: - 21: Orxy— Fixy

RMSE and x? metrics were evaluated for the different ex-
periments (see Table 1). The x2 value is the ratio between
the OmF errors (actual errors) and the model plus observa-
tional uncertainties (estimated uncertainty). A x?2 of 1 means
the residuals and uncertainties are balanced, while a higher
X2 value indicates that uncertainties are underestimated, and
vice versa. It is calculated as in Sekiya et al. (2022) and
Zupanski and Zupanski (2006). x? was estimated only over
highly polluted areas with observation concentrations higher
than 17 umol m~2. The impact calculation uses data between
11 and 17h (local time), which is the time window during
which TROPOMI observations are available.

The x? value of the standard superobservations (Obs-1)
is 1.8, which means either the model or the observational
uncertainties (or both) are somewhat underestimated. The x 2
value can be sensitive to the choice of the covariance inflation
factor through its impacts on background error covariance
(i.e. model errors), as indicated by Sekiya et al. (2022). We
have conducted several sensitivity calculations by perturbing
the covariance inflation factor and have found that the impact
on 2 is limited because the increase in background error
covariance is compensated by an increase in the OmF error.

. (22)

https://doi.org/10.5194/gmd-18-483-2025



P. Rijsdijk et al.: NO; superobservations 499
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Figure 13. Panel showing the RMSE of the OmF for the superobservations and how it compares to the other experiments. The RMSE is
calculated over the time dimension using only grid cells for which the tropospheric column is over 17 pmol m~2 (Eqg. 20). (a) RMSE of the su-
perobservations. (b) Difference RMSE thinning — superobservations. (¢) Difference RMSE uncorrelated — superobservations. (d) Difference
RMSE fully correlated — superobservations.
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Figure 14. Panel showing the relative impact of the superobservations on the data assimilation system, and how this compares to the other
experiments. (a) Relative impact of the superobservations. (b) Difference relative impact thinning — superobservations. (¢) Uncorrelated —
superobservations. (d) Fully correlated — superobservations.
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The increase in spread from the covariance inflation results in
a poorer forecast. The reason why x 2 is higher than 1 can be
due to a variety of model forecast or observation errors that
are not accounted for in the covariances, such as transport
errors and error correlations between superobservations.

Both the MAD and RMSE values are largest in the thin-
ning case (Table 1). The decreased RMSE when using the
superobservations indicates that averaging satellite observa-
tions leads to values which are closer to the scale that is
represented by the model. The larger MAD in the thinning
case reflects the fact that randomly selecting observations of-
ten results in negative tropospheric NO; columns, which are
rejected by the assimilation system, resulting in a positive
sampling bias. This effect is particularly obvious over remote
areas, with some negative values due to the retrieval uncer-
tainties. In the case of superobservations, the proportion of
observations with negative tropospheric columns and their
value are both significantly reduced.

The standard superobservation case had the smallest
RMSE compared to both the fully correlated and the uncor-
related cases. Given the common tropospheric NO, fields,
the difference is attributed to the differences in the superob-
servation uncertainty. In the uncorrelated case, correspond-
ing to the smaller uncertainties, the data assimilation adjust-
ments become larger than the standard superobservation case
(Fig. 14c¢), with larger RMSE:s in highly polluted areas, prob-
ably due to overcorrections (Fig. 13c). In remote areas, the
RMSE improves with smaller uncertainties, suggesting that
the standard superobservations overestimate its uncertainty
in remote areas. The smaller MAD in the uncorrelated case
reflects the reduced RMSEs in remote areas.

On the other hand, in the correlated case, the uncertainty is
large, which reduced the data assimilation impact and some-
what increased the RMSE and MAD. This shows that assum-
ing that the uncertainties are fully correlated is not so unre-
alistic, but it does lead to a reduction in performance almost
everywhere. One exception to this is central Africa, where
the lower uncertainty significantly improves the RMSE. Note
that there is only a small decrease in the relative impact in
this area going from the superobservations to the correlated
experiment. Despite the fact that there is almost no uncer-
tainty reduction from the superobservations, the uncertainty
is still too low. It is likely that further increasing the uncer-
tainty yields even better results than the correlated experi-
ment. Because this effect is so strong and local, we believe
it is not related to the superobservation method but instead
results from fire-related errors in the observation uncertainty
or model. The high absolute errors in the area have a large
impact on the RMSE and MAD values, despite a small dif-
ference in the relative impact. As a result, the superobserva-
tions probably do not compare as well to the uncorrelated
experiment in Table 1 as they should.

The uncertainty is similar between the thinning and fully
correlated cases because the retrieval uncertainty is not as
noisy as the retrieval concentrations. Correspondingly, the
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effect of the observations on the assimilation should be simi-
lar between the thinning and correlated cases. This is mostly
true, except for some high-emission areas, such as central
Africa, the Middle East, and eastern China. Here the larger
OmF and RMSE values between the model and observations
increases the impact of the observations on the assimilation.
Also, note that thinning results in a similar X2 value to the
superobservations. The larger OmF and uncertainty maintain
the ratio between the two.

7 Discussion

In this paper, we presented a detailed methodology to con-
struct superobservations and their errors and averaging ker-
nels, improving upon the superobservations used previously
by Miyazaki et al. (2012a), Boersma et al. (2016), Sekiya
et al. (2022), and van der A et al. (2024). These super-
observations are constructed in particular for data assim-
ilation, inverse modelling, and model evaluation applica-
tions. The first aspect of this is an improved estimation
of the superobservation uncertainties stemming from the
observational uncertainties for individual TROPOMI NO,
observations. This is achieved by quantifying the correla-
tion between observations, allowing for a more accurate
propagation of the observational uncertainties and the spa-
tial distribution of these uncertainties. The spatial correla-
tions for the slant column, stratosphere, and air mass fac-
tor contributions are estimated and treated separately. Un-
certainties relating to the prior are not discussed because
it is assumed that the kernels will be used during assimi-
lation or model evaluation. As shown by the data assimi-
lation experiments, realistic uncertainties are of key impor-
tance for the optimal performance of the assimilation sys-
tem. The correlated experiment leads to an overestimation
of the uncertainty. This is similar to the method of Inness
et al. (2019b) and the HARP spatial binning method for total
uncertainty variables (http://stcorp.github.io/harp/doc/html/
algorithms/regridding.html#spatial-binning, last access: Au-
gust 2024). On the other hand, the uncorrelated experiment
underestimates the uncertainty. It is similar to the HARP spa-
tial binning method for random uncertainty variables. Both
an over- and underestimation of the uncertainty degrade the
short-term forecast in the MOMO-Chem data assimilation
system, as demonstrated above.

The quantification of the spatial error correlation is com-
plicated and remains uncertain. Correlations between re-
trieval uncertainties in nearby satellite pixels may be caused
by spatially correlated biases in the characterization of the
surface reflectance or LER, aerosol, and cloud properties and
may depend on the weather. For instance, rainfall or drought
may locally impact the albedo, which is not described by
the albedo climatology used in the retrieval. Estimating a
correlation for the AMF uncertainty is particularly difficult
because it results from complex interactions between algo-
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rithms and variables such as surface albedo, cloud albedo and
cloud height, and unspecified systematic retrieval errors. The
way that these variables are spatially correlated propagates
to the correlation of the AMF uncertainty.

The stratospheric uncertainty treatment was updated. For
individual observations, the stratosphere does not contribute
much to the uncertainty, but for the clustered superobserva-
tions, the stratosphere is a prime source of error. We quan-
tified a longitude- and seasonal-dependent stratospheric un-
certainty, replacing the default constant uncertainty present
in the TROPOMI data product. As a result, lower latitudes
have significantly lower stratospheric uncertainties. Uncer-
tainties for the higher latitudes are generally lower than the
default uncertainty but can also be higher, depending on the
season.

We also improved the existing method of calculating the
(horizontal) RE. A simple constant parameterization was
used before by Miyazaki et al. (2012a) and Boersma et al.
(2016). We presented a mathematical derivation for the RE
in the case of a random missing observation. This allows for
an easier and more accurate computation of the RE. Addi-
tionally, we have quantified a systematic sampling correction
for the case when the missing observations are clustered, as
would be the case when clouds cover part of the superob-
servation area. This leads to higher uncertainties and a lower
impact of low-coverage superobservations. The RE deriva-
tion also shows that a thinning approach (keeping just one
observation per grid cell) would add a large uncertainty to
the observation equal to the standard deviation of the obser-
vations within a model grid cell.

Compared to Miyazaki et al. (2012a), who postulated a
fixed correlation of 0.15, our superobservations are some-
what more uncertain. However, due to the separation of the
different components, the uncertainty correlation in our su-
perobservations is spatially heterogeneous and has a differ-
ent behaviour over the ocean than over polluted regions. In a
further development, Sekiya et al. (2022) already separated
the stratospheric error, treating it as fully correlated. How-
ever, Sekiya et al. (2022) still use the postulated correlation
of 0.15 for the remaining observational uncertainties. This
means that the slant column uncertainties presented here are
lower than theirs, but our AMF uncertainty is higher (except
for very large superobservations). Compared to Sekiya et al.
(2022), our superobservations are somewhat more impactful
over clean areas and somewhat less impactful over polluted
areas.

When compared to thinning, the superobservations are
a much less noisy representation of the satellite data and
thereby improve the performance of the data assimilation.
The uncertainty-weighted superobservations also provide a
realistic average of the data, but they favour the small column
retrievals and are therefore biased low, which is a feature we
avoid using the tiling approach.

The superobservations resolve the correlations between
observations within the superobservation grid cell. However,
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they does not describe a remaining correlation between adja-
cent superobservations. Inflating the superobservation uncer-
tainty could improve the results of the assimilation, depend-
ing on the size of the superobservations.

We have focused on constructing superobservations of the
same size as the grid cell of the model that they will be com-
pared against. However, it is not obvious that this would be
the most optimal configuration. According to Nyquist (Shan-
non, 1949), in order to capture all the variability at the size of
the superobservations, we would need to oversample by in-
troducing extra superobservations shifted in space. One may
argue that for a species like NO, with a very inhomoge-
neous fine-scale distribution, interpolation in model space is
not useful without knowledge of the sub-grid distribution of
the emission sources. Data assimilation implementations typ-
ically introduce spatial correlation lengths covering multiple
grid cells in the modelling of the background (forecast) co-
variance matrix B. These correlations act as low-pass filters,
and the fine-scale variability for smaller length scales is not
constrained in the analysis. In that case, constructing super-
observations larger than a single model grid cell could be ex-
plored, as long as the horizontal correlation lengths of the
assimilation system are appropriately oversampled. These
coarser superobservations could be useful for satellite data
with a high relative noise level (e.g. HCHO and SO, column
observations) or reducing correlated uncertainties between
observations while at the same time lowering computational
costs.

8 Conclusion

In conclusion, this research has improved and formalized ex-
isting methods of creating superobservations. Superobserva-
tion uncertainties have been quantified by analysing the vari-
ous aspects leading to systematic and random uncertainties in
the satellite retrieval and by mathematically deriving a realis-
tic representation error. Data assimilation experiments show
that the uncertainties derived in this way lead to better fore-
cast results than postulating either fully correlated or uncor-
related uncertainties. A thinning of the observations results in
very noisy patterns of NO, and degraded assimilation results
compared to the superobservations. Thus, we recommend the
use of superobservations with quantitative uncertainties for
the assimilation of atmospheric NO, and other trace gases.
The superobservation methodology is generic and will be
applied in the future to other species, like HCHO, SO,, CO,
O3, CH4, and CO,, and to other satellite instruments, like
OMI, GEMS, or TEMPO. All of the concepts and mathe-
matics described in this paper are broadly applicable. This
includes the method of clustering, averaging, and uncertainty
averaging. The latter does require the quantification of cor-
relations. Calculating the RE is also species-agnostic, with
only the systematic correction requiring extra quantification.
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Another possible application for superobservations is the
creation of level 3 data. These methods provide satellite in-
formation on regular grids. Our superobservation approach
provides realistic error estimates of the grid box mean value
in case the level 3 grid boxes contain multiple satellite foot-
prints and have a lower resolution than the satellite. This is a
first step towards a consistent averaging of the satellite data
into monthly, seasonal, and yearly averages and specifying
meaningful uncertainties for such averages. Additional con-
siderations are needed to quantify the temporal representa-
tion and temporal correlations. Also, in our work targeting
model comparisons and data assimilation, we did not con-
sider the a priori uncertainties which may need to be quanti-
fied for level 3 data, depending on the application.

Appendix A: Correlation calculation

Al Calculation of the grid box mean correlation from
the correlation length

The mean correlation C between pairs of observations within
a superobservation is calculated as an average of the corre-
lation between all pairs of points in a superobservation. This
is obtained by multiplying the probability density function
(PDF) of the distance between all points in a square with
the correlation as a function of the distance and integrating
the result. The PDF of all points in a rectangle is taken from
Philip (2007), and the correlations are calculated for a dis-
tance d and a correlation length /, assuming an exponential
decay, C = ¢~?/!. The correlation length / is computed using
the TROPOMI v2.4-v2.3.1 differences.

For example, a 1° superobservation at 29° latitude isa 113
by 99 km rectangle resulting in a PDF, as shown in Fig. Ala.
A correlation length of 32km yields Fig. Alb. Multiplying
the two functions creates Fig. Alc, and integrating this re-
sults in a correlation of 0.24 (Fig. Ald).

A2 Calculation of the correlation length

The correlation length is calculated using the inverse of the
method for calculating the correlation, where a correlation
is converted to a correlation length based on the PDF of
distances. This requires a representative correlation of the
dataset with a representative grid cell. The autocorrelation of
the v2.4—v2.3.1 tropospheric column differences within a 1°
superobservation is calculated using Eq. (A1) for n number
of tropospheric columns x in a superobservation indexed by i
and j. This is a special case of the Pearson correlation, where
we assume the mean of the v2.4-v.2.3.1 retrieval difference
is 0.

2 DX,

n_2
i X

Crx (A1)

Correlations are computed within single superobservations.
Figure A2a and b show the difference and the correlation
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on a single day. Averaging the correlation over the available
data gives Fig. A2c. Because the AMF is most important for
polluted observations, we filter this result for areas with an
average tropospheric NO, concentration over 30 umolm™2,
shown in Fig. A2d. The average correlation of the remaining
data is 0.244 at an average grid box size of 113 x 99 km?.
Applying the inverse method of Sect. Al gives a correlation
length of 32 km.

https://doi.org/10.5194/gmd-18-483-2025



P. Rijsdijk et al.: NO; superobservations

(a) Probability density function
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(b) Correlation function
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Figure Al. Panels show the computation of the superobservation correlation from a correlation length and latitude. (a) The probability
density function for the distance between two points in a 1° superobservation at 29° latitude. (b) Correlation function for a correlation length
of 32 km. (c¢) Multiplication of the PDF in panel (a) and the correlation function in panel (b). (d) Integration of the curve from panel (c). The

area under the curve gives the correlation of the superobservation.
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(a) Difference in tropospheric NO2 v2.4-v2.3 ,2018-09-14. (b) Correlation 1-degree superobservations 2018-09-14.
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(c) Mean correlation 1-degree superobservations. (d) Polluted areas mean correlation.
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Figure A2. Panels showing the calculation of a representative correlation for the purpose of calculating a representative correlation length.
(a) Difference between the v2.4 and v2.3 observations. (b) Correlations within 1° superobservations relative to dataset. (¢) Average correlation
in the month of September for 2018-2022. (d) Average correlation of polluted areas.
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Appendix B: Fractional representation error

To use the formula of the representation error (Eq. 17)
with observations with different weights, we reformulate the
equation using fractional observations (nf). Here partially
overlapping observations are counted based on the fraction
of overlap (o). The overlap of an observation is the ratio be-
tween the area inside the superobservation grid (aj,,;) to the
total area (aor,; ).

0; = Znd (B1)

Qtot,i

An observation with a 20 % overlap only counts as 0.2 ob-
servations. To take into account the size differences between
satellite observations, we also normalize the overlap by the
average area of the observations (including the parts outside
of the superobservation).

The number of fractional observations of (nf,,) within a
superobservation is the sum of the observation area divided
by the average area and multiplied by the observation over-
laps, as follows:

n
aj

nin =y 0i=——. (B2)

7 Qavg
In this formulation, an average sized observation that com-
pletely overlaps the superobservation will count as one ob-
servation, while smaller or partially overlapping observations
count for less. The total population size of fractional obser-
vations (Ny) is the sum over all observations within the su-

perobservation, as follows:

N~
Ne=Y 0. (B3)
i

Aavg

To facilitate the comparison between superobservations with
different population sizes N, the RE can be expressed in
terms of a fractional coverage f ranging from O to 1, as fol-

lows:
__ Nfn

Jo = Np (B4)

Replacing n with ny , and substituting ny , with ng,, = N f,,
ORE becomes

o Nt — N fu (B5)
ORE.n = .
REn = N o\ Ni—1

However, expressing the RE in terms of fractional observa-
tions or coverage has the following two problems:

1. Because different configurations of observations have a
different number of fractional observations, it is not pos-
sible to experimentally calculate org , using Eq. (16)
because the values on the x axis are different. Interpo-
lating the values solves this, except for the case where
n = 1 because there are no values for 0 observations.
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2. There are situations where nf < 1, which results in
oRE,1 > 0. This should not happen because it is not pos-
sible to have fewer than one observation. In Fig. 7a, we
also see that org,1 (green line) does not exceed 1 stan-
dard deviation.

Both of these problems require that for one observation rnr, |
or N fi is equal to 1, irrespective of the actual ng. More for-
mally, there is a constraint, where

Nfi=1. (B6)

First, we redefine the fractional coverage to 0 for n = 1 using
the following formula:

1
=(f-f1) ——. B7
fon=(f =0 1= (B7)
We call this new fractional coverage f; ,. Essentially, this
stretches the org , to always range from O to 1 fractional
coverage. Because f; 1 =0, the following equation satisfies
the constraint:

anszz,n‘i‘l_fz,n' (B8)

Substituting Eq. (B8) into Eq. (BS) yields the final equation
for the random representation error as follows:

o Nf*(fozn+1*f24n)
o ’ ) BY
oRE \/foz,n+1—fz,n\/ Ni—1 B9

Appendix C: Fallback standard deviation

For the case when there are insufficient observations to cal-
culate a meaningful standard deviation for a grid cell, we im-
plemented a fallback option in which the superobservation
standard deviation is estimated as 0.4 times the tropospheric
column +2.5 umolm™—2, based on the trendline in Fig. Cl.
This relationship has a Pearson correlation of 0.9. We calcu-
lated the fallback using 0.3° superobservations, which con-
tain on average 25 TROPOMI observations at the Equator.

60+ =
rrrrr trendline R = 0.897 y = 0.402x + 2.528E+00
rrrrrr 1:1line

50000
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40000
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10 20 30 40 50 60
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Figure C1. Relationship between the superobservation tropospheric
column and standard deviation for a 0.3° superobservation.
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2024). The TROPOMI NO, L2 datasets used in this paper are
made available operationally through the Copernicus dataspace
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