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Abstract. For the hydromechanical coupling of solid—fluid
porous media, this study presents an explicit stabilized two-
phase material point method (MPM) formulation based on
the one-point two-phase MPM scheme. To mitigate the spu-
rious pore pressure and maintain the numerical stability, sta-
bilized techniques, including the strain smoothing method
and the multi-field variational principle, are implemented in
the proposed formulation. The strain smoothing technique is
used to smooth the volumetric strain rate, and the calcula-
tion of the pore pressure increment at particles is based on
the multi-field variational principle. Four numerical exam-
ples are performed to evaluate the performance of the pro-
posed formulation. With its effective and easy-to-implement
stabilized techniques, the proposed formulation provides sta-
ble and reliable outcomes that align well with analytical so-
lutions and results from other approaches, offering extensive
validation that the proposed two-phase MPM formulation is
an effective and reliable approach for the simulation of solid—
fluid porous media under both static and dynamic conditions.

1 Introduction

The hydromechanical coupling of solid—fluid porous me-
dia widely presents in nature and engineering, from natural
processes such as rainfall-induced landslide and earthquake-
induced liquefaction to coastal dike-breaking and offshore
foundations (Jerolmack and Daniels, 2019; Zhan et al., 2025;
Guan and Shi, 2023). Due to the practical importance, repro-
ducing and understanding the physical nature of such a two-

phase system has attracted strong research interests across
many scientific and engineering disciplines and has become
increasingly recognized with recent advances in both obser-
vational and simulation tools (Li et al., 2023; Taylor-Noonan
et al., 2022; Pudasaini and Mergili, 2019). Numerical mod-
eling of this two-phase coupling system is of great interest
in geological hazard prevention and in the geotechnical field,
yet it remains a significant challenge for researchers in many
disciplines alike.

In solid—fluid-coupling problems, the motion of each con-
stituent is governed by stress distributions, external grav-
ity forces, and interaction forces (Pudasaini and Mergili,
2019; Baumgarten and Kamrin, 2018; Bandara and Soga,
2015). For the simulation of this two-phase system, vari-
ous numerical methods have been proposed, including the
smoothed particle hydrodynamics (SPH) method (Lian et al.,
2023; Chen et al., 2023), the particle finite element method
(FEM; Yuan et al., 2022; Jin and Yin, 2022), and the mate-
rial point method (MPM) (Bandara and Soga, 2015; Bandara
et al., 2016; Jassim et al., 2013; Yerro et al., 2015; Wyser
et al., 2020). Among these methods, MPM has proven to be
both effective and efficient for simulating large-deformation
problems with history-dependent materials. Originating from
the particle-in-cell (PIC) method, MPM is a hybrid Euler—
Lagrangian method that has significant advantages in dealing
with large-deformation problems (Li et al., 2020; Zhao et al.,
2023; Ferndndez et al., 2023). In MPM, a continuum body is
discretized by a group of material points carrying all phys-
ical information, such as displacement, velocity, stress, and
strain. At each time step, the physical information at particles
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Figure 1. Standard algorithm of MPM: (a) interpolating information from particles to nodes, (b) solving governing equations on nodes,
(¢) interpolating information from nodes to particles, (d) updating particle information.

is interpolated to the background mesh, which is essentially
Eulerian mesh; then, the governing equations can be solved
on it. Subsequently, the solution is re-interpolated to each
material particle for the update of particle physical informa-
tion. The original background mesh can be used again in the
new time step, which can eliminate the mesh distortion prob-
lem in the Lagrangian method, and the accuracy of large-
deformation-problem simulations can be guaranteed (Fig. 1).
Currently, various coupling MPM formulations have been
proposed, i.e., the one-point or two-point schemes (Bandara
and Soga, 2015; Jassim et al., 2013), the solid displacement—
fluid pressure or solid velocity—fluid velocity formulation
(Zhang et al., 2009; Lei et al., 2020) and have been widely
used in two-phase coupling problems and engineering appli-
cations (Du et al., 2023; Ceccato et al., 2024; Shen et al.,
2024; Zheng et al., 2024a; Yamaguchi et al., 2023; Zheng
et al., 2024b; Zhan et al., 2025).

However, the standard MPM formulation usually employs
lower-order shape functions within an explicit time inte-
gration scheme for simplicity and efficiency, which suf-
fers from the cell-crossing error and the volumetric lock-
ing when applied to coupled hydromechanical problems (Li
et al., 2024; Sang et al., 2024). The cell-crossing error dur-
ing particle movement arises from the use of lower-order
shape functions, which exhibit discontinuous gradients be-
tween background mesh elements. To address this issue,
higher-order interpolation functions with continuous gradi-
ents across elements can be employed, such as the General-
ized Interpolation Material Point (GIMP) method (Barden-
hagen and Kober, 2004), the B-spline method (De Vaucor-
beil et al., 2020), and the Convected Particle Domain Inter-
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polation (CPDI) (Wang et al., 2023b). Due to the low com-
pressibility of pore fluid and limited permeability, the volu-
metric locking and erroneous strain may occur during sim-
ulation, which may not only result in undesired pore pres-
sure oscillation but also render the simulation highly unsta-
ble. Various numerical stabilization techniques have been im-
plemented in MPM to solve this issue, including the reduce
integration (Bandara and Soga, 2015; Zheng et al., 2021),
the B-bar approach (Wang et al., 2018; Tang et al., 2024),
the nodal or cell smoothing method (Lei et al., 2020; Wang
et al., 2023a), the fractional step method (Kularathna et al.,
2021; Jassim et al., 2013), the polynomial pressure projec-
tion method (Zhao and Choo, 2020), the multi-field varia-
tional principle (Liu et al., 2020; Zheng et al., 2021; Tang
et al., 2024; Zheng et al., 2022), and coupling with other
algorithms (Baumgarten et al., 2021; Li et al., 2024; Tran
et al., 2023; Sang et al., 2024). Although these techniques
produce results that overcome volumetric locking and reduce
pore pressure oscillation, some are conditionally stable and
some require significant modifications of the existing MPM
algorithm, leading to additional computation cost and diffi-
culty (Lei et al., 2020; Li et al., 2024). Therefore, their usage
should depend on the specific problem at hand. More fea-
tures and limitations of these techniques can be found in the
summaries of Li et al. (2024) and Sang et al. (2024).

Here, based on the one-point two-phase MPM scheme
(Jassim et al., 2013), we propose an explicit stabilized two-
phase MPM formulation for both static and dynamic analy-
ses of solid—fluid porous media. To avert the volumetric lock-
ing and maintain the numerical stability, the stabilized tech-
niques, including the strain smoothing method (Mast et al.,
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Figure 2. Sketch of material point composition in a single-point
two-phase MPM model (Kularathna et al., 2021).

2012) and the multi-field variational principle (Chen et al.,
2018), have been implemented in the proposed formulation.
The strain smoothing method is employed to smooth the vol-
umetric strain rate, and the calculation of the pore pressure
increment at particles is based on the multi-field variational
principle for accuracy and stability. The spurious pore pres-
sure oscillation can be well mitigated during pore pressure
calculation and interpolation. With these effective and easy-
to-implement techniques, the volumetric locking can be sig-
nificantly eliminated under both static and dynamic condi-
tions. The study is organized as follows. Firstly, the govern-
ing equations for solid—fluid two-phase systems are briefly
introduced in Sect. 2. The numerical implementation of the
proposed formulation and the stabilized techniques are pre-
sented in Sect. 3; then, four numerical examples for the veri-
fication of the proposed method are performed and analyzed
in Sect. 4. Finally, the last section contains the discussion and
conclusions.

2 Governing equations

In one-point two-phase MPM formulation, according to the
theory of mixture (Baumgarten and Kamrin, 2018), the rep-
resentative volume (RVE) V,, of a particle material particle
is a summation of solid-phase volume Vi, and fluid-phase
volume Vy,, and each phase (solid, fluid) in the RVE can be
characterized by its volume fraction (Fig. 2). The apparent
density of each phase is characterized by the intrinsic den-
sity with the volume fraction, which reads

ﬁs =¢p575f=npfs (1)

where ¢ is the solid volume fraction; n is the porosity; ps and
pr are the intrinsic density of solid and fluid, respectively;
and pg and py are the apparent density of solid and fluid,
respectively.

2.1 Mass conservation equations

The mass conservations in a part of the solid—fluid-phase
continuum in Lagrangian description are expressed as

S—

D°p

SR ADY v =0, @)
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f—

%+5fv-vf=o, 3)
where vg and vr are the velocity of solid and fluid phases in
their reference frames, respectively. In microscale, the solid
grain is assumed to be incompressible, so pg is constant.
However, p, will change when the solid phase compacts or
dilates due to the deformation of the solid skeleton structure.
Therefore, a simple expansion of Eq. (2) using the definition
of porosity yields an expression for the change rate of the
local measure of porosity,

Dsn
Dt

=(1—n)V v, (4)

In one-point two-phase MPM formulation, all constituents
are represented by the same Lagrangian material point in
the current configuration. The material time derivative of the
fluid phase with respect to the motion of the solid phase is
described as follows:

Df DS

—=—+4(vr—0)V, 5

ol RIS 5)
so Eq. (3) can be expressed as

D*p¢
Dt

+ (e —v5) - Vpr + 05V - 05 =0, (6)

and Eq. (6) can be further written as

DS pg
Dt

D’n
n +,0fE+(vf—vs)'vnpf+npr'vf=0. @)

Assuming the fluid phase is barotropic, density variation

in a barotropic fluid obeys the following relationship:

1 Do 1 D°py
pt Dt Ki Dt

®)

where K is the bulk modulus of fluid and pr is the pore fluid
pressure.

Combined with Eq. (4) and neglecting spatial variations
in density and porosity, the pore pressure change rate can be
obtained:

D? pg K¢
n

[ =n)V - vs4+nV - vs]. €))

Dt

2.2 Momentum conservation equations

The momentum conservation equations for each continuum
phase are given as

_ sts _
,057=,Osb—fb—fd+v-0s, (10)
_Dfvw _
PfF:pfb‘l‘fb‘f‘fd‘f‘v'o’f, (11)

where b is the body force, which is equal to the gravitational
acceleration; fy, and fy are the buoyant force and inter-phase
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body force, respectively; and o and oy are the solid and fluid
stress, respectively. Due to the viscous effects, a flow through
porous media results in a drag force, which can be regarded
as a body force enforced on one phase from the other phase.
The classic Darcy’s law describes a linear drag force as

_ npgg

fa X,

(vs —vp), 12)

where K (in ms™!) is the hydraulic conductivity
(K = psgk/ut, where k is intrinsic permeability in m? and
e is the dynamic viscosity of fluid). This linear relation
has been employed in several studies (Zhan et al., 2023; Liu
et al., 2017) to model the drag force in saturated porous me-
dia when the pore flows are in the laminar flow range with
a relatively low Reynolds number. The buoyant force, fi,
which yields the form for immiscible mixtures, can be writ-
ten as follows:

fo=ptVn, (13)

and the solid-phase stress oy is taken following the effec-
tive stress classic form,

os=0,— (1—n)p, (14)

where Iis a 3 x 3 identity matrix and o7}, is the effective solid
phase related to the deformation of the solid-phase matrix,
which excludes the pressurization of the solid phase due to
the pressure of the pore fluid. The fluid-phase stress ot is sim-
plified into an isotropic pressure, n p¢I, which is expressed as

of= —npr. (15)

Finally, the momentum equations for solid and fluid phase
are given as

DSy

2y =08 — fa+V-o,—(1—-n)Vps, (16)
_D'v _
D¢ D = 0t8 + fa—nVpr. 17

With a proper constitutive rule governing the mechanical
behavior of the solid effective stress as’ , the equations can
fully capture the motion and physical behavior of this two-
phase system.

3 Numerical implementations

3.1 Discretization of governing equations

In MPM, the material domain is discretized into Lagrangian
material points under Euler background mesh, and the field
variables of particles can be interpolated to the background
mesh nodes through shape functions. For instance, the dis-
placement and its derivative at particle p is expressed as

Ng
pi =Y _Nipui, (18)
=1
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N, g
upij =) Nip juri, (19)
I=1
where subscripts i and j denote the components of tensor,
which follow the Einstein summation convention, and the
comma between the subscripts indicates partial derivatives;
uy; is the displacement at grid node I; Ny, = Ny(xp) is the
shape function of particle p at grid node /; x, denotes the
coordinates of particle p; Ny, ; is the derivative of shape
functions; and Ny is the total grid node number. In this study,
the GIMP shape function (Bardenhagen and Kober, 2004)
and discretization are used to avoid the stress oscillation pro-
moted by the cell-crossing error.

In this way, the momentum equations are discretized in
space by means of the Galerkin method considering nodal
shape functions. A discretized form of the momentum equa-
tion of solid phase, Eq. (16), on background mesh node is
expressed as

int ext
msrasri = for; + fsqi» (20)
NP
where mg; = Y Ny pMsp is the node mass for solid, in which
p=1

N is the total number of particles and mgp is the particle
solid mass; as;; is the solid acceleration at node; and Sl}‘lt and
Se,"it are the internal and external nodal forces, respectively.

The internal nodal force is expressed as

Ny, Np
il = Z(l —np)Nip,jPipVp = ZNIPv/US/pij Ve, Q2D
p=1 p=1

where o'sp;; is the effective stress of material particle p,

Dip 18 the pore pressure of material particle, n;, is the material

particle porosity, and V), is the volume of material particle p.
The external grid nodal force is expressed as

N, N,
s?}t = ZNIpmSpbi - ZNIpdep +/N[stdS
p=l p=1 90

— f (1 —np)Nyp PdS, (22)
Q2

where T and P are the prescribed traction and the pre-
scribed pressure on the boundary 9€2, respectively, and
dS denotes the surface integral that is only non-zero at the
boundary 9€2.

Likewise, a discretized form of the momentum equation of
fluid phase, Eq. (17), on the mesh node can be expressed as

int t
myragr; = fr; + fi (23)
NP
where mg = ) mgpNyp represents the grid node mass
p=1

for fluid, in which my, is the particle fluid mass;
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NP
=3 npNip,jptpVp represents the nodal internal
p=I1

NF
force from pore pressure gradient; f5\'= > Njpmgb; +
p=1

N,

Zp Nip faVp — fmnpNH,FdS denotes the nodal external

p=1

forces from the body force, inter-phase drag force, and

boundary prescribed pressure; agj; is the fluid-phase accel-

eration at mesh node; and b; is the body force vector.
Meanwhile, the strain rate associated with the material

point is calculated with its corresponding nodal velocity,

ng

spij = Z[Nlp,jvsi + (N1p.jvsi)'1/2, 24
1=1
ng

tpij = Z[Nlp,jvfi + (N1, jui)’1/2, (25)
1=1

where vg; and vg; are the nodal velocities for the solid phase
and fluid phase, respectively, and &;;; and é¢p;; are the par-
ticle strain rates for the solid phase and fluid phase, respec-
tively.

3.2 Numerical stability

As mentioned above, the solid—fluid-coupling MPM suffers
from the volumetric locking. The stabilized technique is
needed for the stability of the simulation. Here, to mitigate
the pore pressure oscillation and maintain the numerical sta-
bility, the strain smoothing method is used to smooth the par-
ticle volumetric strain rate, while the pore pressure increment
at particles is calculated based on the multi-field variational
principle for the stability, accuracy, and smoothness of the
results.

3.2.1 Strain smoothing method

The numerical stress/strain smoothing method has been used
in the two-phase saturated and unsaturated MPM formula-
tions (Lei et al., 2020; Wang et al., 2023a) and can effectively
mitigate the stress oscillation in a simple way. Here, for sim-
plicity and efficiency, a cell-based average approach (Mast
et al., 2012) is employed to smooth the particle volumetric
strain rate. By doing this, the volumetric strain rate of ma-
terial points p is replaced by the averaged field value of the
cell ¢ to which it belongs,

ocp=Zotmpmp/Zmp, (26)

where «, represents the variables, including the volumetric
strain rate of solid and fluid, and m , is the mass of material
point, representing the solid or fluid mass in different phases.

From the averaged volumetric strain rates €y, the updated
strain rates £; j are computed by means of

&ij =&d4+8y,8i/3, 27
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where £q is the deviatoric strain rate and §;; is the Kronecker
delta. On the basis of the modified strain rates, stresses can
be directly computed using the constitutive relation.

3.2.2 The multi-field variational principle

Since the formulation of MPM is analogous to that of the tra-
ditional finite element method (FEM), the similar techniques
used in FEM for the volumetric locking are also applicable
to MPM. The multi-field variational principle is a commonly
used anti-locking technique in FEM without using higher-
order shape functions. In MPM, Chen et al. (2018) first used
the multi-field variational principle to mitigate volumetric
locking and numerical oscillation in weakly compressible
problems; then, Liu et al. (2020) and Tang et al. (2024) ap-
plied this technique in the single-point two-phase unsaturated
MPM formulation to mitigate volumetric locking and carried
out the simulation of the Hong Kong Tsui Load landslide and
the Yanyuan landslide. Zheng et al. (2021, 2022) used the
multi-field variational principle for the patch recovery of pore
pressure increment in the explicit two-point two-phase MPM
formulation and fully implicit MPM formulation. Based on
the multi-field variational principle, the pore pressure field is
approximated by expressing the pore pressure increment and
the test function as (Chen et al., 2018)

prx,n) = QT (X)a(), (28)
8pr(x.1) = 8a" (1) Q(x), (29)
where Q and a are the polynomial basis function and coeffi-
cient vector to be solved. The polynomial basis function can
be constant, linear, or quadratic (i.e., Q =[1], [1, x, y, zl,
or [1, x,y, z, x2, xy, y%, yz, 7%, zx], and the corresponding
coefficient a = [ao], [ao, a1, a2, a3]¥, or [ag, a1, a2, a3, a4,
as,dag, a7j, ag, dg, alo]T). Here, in the single-point two-phase
MPM formulation, the weak form of the pore pressure rate
can be expressed as

/spf(pf+ %[(l—n)v-vs—}-nv-vs])dQ:O. (30)
Q

Then, the weak form can be changed to

K¢ T
/Q—[(l—n)v-vs —i—nV-vS]dQ:—a/QQ d. (31)
n
Q Q

The coefficient can be further expressed as

a:_H—I/Qﬁ[(l—n)v-us+nv.vs]dsz, (32)
n
Q

where H = f Y 0TdS. In order to solve the coefficient vec-
tor, the node-based method (Mast et al., 2012) is used due to
its simplicity and efficiency. Using the node-based method,
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Figure 3. Numerical implementation procedure of the proposed stabilized two-phase MPM formulation.

the node coefficient vector is written as

"p
_ Ky
aj=-H;'> NipQp—I[(1=mV - v5+nV -v,]Vp, (33)
p=1

p
where H; = Zl 0y Q;N 1pVp. After solving the coefficient
p:
vector for each node, the changing rate of pore pressure can
be written as

g
prp =0} Y arNip, (34)
I=1
g
where ) aj Ny, is the node value interpolated to the parti-
=1

cle.
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3.3 Numerical algorithm

In the proposed formulation, each time step is solved explic-
itly according to the following sequence of sub-steps (see
Fig. 3):

1. All the variables associated with each material point
are initialized first (initial position, stress, pore pressure,
etc.).

2. The variables of material points are interpolated to the
nodes of the background mesh using the shape function
calculated based on particle locations with respect to the
background mesh nodes.

3. Combined with the correct boundary conditions, the ac-
celerations of each phase on the background mesh node
are obtained based on Egs. (20) and (23).

4. The velocity of all material points is updated for
both phases using the FLIP scheme (Hammerquist and
Nairn, 2017).
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5. The nodal velocities for both phases are updated by in-
terpolating velocities back from the material points.

6. Strain rate increments of solid and fluid phase on parti-
cles are calculated, and the cell-based strain smoothing
technique expressed in Eq. (26) is applied to smooth the
volumetric strain rate.

7. The effective stress is updated based on its constitutive
model, and the pore pressure is updated based on the
multi-field variational principle.

8. The state variables at particles are updated, such as par-
ticle volume, porosity, and position.

9. The background mesh for the next step is reset, and all
the updated information is stored in material points.

4 Numerical examples

In this section, four numerical examples are conducted to
demonstrate the performance of the proposed MPM formu-
lation. Firstly, a one-dimensional consolidation under both
small and large conditions is simulated. Subsequently, the
two-dimensional consolidation under localized loading and
cyclic loading is performed to show its efficacy under exter-
nal loading. Then, the self-wight consolidation is analyzed to
illustrate its capability in simulating undrained and drained
conditions and the large-deformation situation.

4.1 One-dimensional consolidation

The one-dimensional consolidation problem has frequently
been studied to verify and assess numerical methods, as it
allows a direct comparison with analytical solutions. Here,
both small- and large-deformation conditions are conducted,
and the numerical results are compared with their corre-
sponding analytical solutions.

4.1.1 Small deformation

As shown in Fig. 4, a saturated soil column with a width
of 0.1 m and a length of 1.0m is considered for the simu-
lation. An isotropic linear elastic constitutive model is em-
ployed, with parameters detailed in Table 1. The background
mesh consists of cells sized 0.05 m x 0.05 m, with 4 material
points in each mesh element, resulting in a total of 160 mate-
rial points. A normal impermeable roller boundary is applied
to the lateral surfaces, while the bottom is fully fixed and
impermeable. The top surface of the column is permeable,
allowing fluid to flow out through it. The initial conditions
include an excess pore pressure pg = 10 kPa and zero effec-
tive stress. Not considering gravity, the consolidation process
begins by applying a 10 kPa traction to the top material point
layer and keeping it constant during the calculation. The time
step is set to be 1.0 x 107 s with a total simulation time
of 2.0s.

https://doi.org/10.5194/gmd-18-4743-2025
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Figure 4. Schematic of the one-dimensional consolidation.

Table 1. Material parameters for the one-dimensional consolida-
tion.

Parameter Value
Solid grain density ps (kg m~3) 2650
Young’s modulus £ (MPa) 10
Poisson’s ratio v 0.0
Fluid density pw (kgm™3) 1000
Initial porosity n 0.3
Bulk modulus of fluid K¢ (Gpa) 2.2

Hydraulic conductivity K (m sfl) 0.001

Under such a constant loading, the deformation of the col-
umn is very small and Terzaghi’s one-dimensional consoli-
dation theory is applicable. Figure 5 presents a comparison
of the normalized pore pressure distribution at different time
factors between the numerical solution and the analytical so-
lution (the time factor 7y = Cyt/H 2 where C, is the coef-
ficient of consolidation and H is the drainage path length).
Initially, the pore pressure equals the external load, with the
fluid phase undertaking the external loading. Since the exter-
nal loading is constant, the pore fluid is gradually discharged
from the top surface and the pore pressure begins to dissi-
pate progressively from the top. The numerical results show
excellent agreement with the analytical solutions, effectively
capturing the dissipation process of the excess pore pressure
during consolidation. Additionally, the comparison of the av-
erage consolidation degree (defined by strain) is presented in
Fig. 6, indicating that the numerical results accurately repli-
cate the deformation process as the analytical solution shows.

4.1.2 Large deformation

For the large-deformation condition, the same geometry and
discretization as in the small-deformation case are used.

Geosci. Model Dev., 18, 4743-4758, 2025
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Figure 5. Comparison of pore pressure profiles from the proposed formulation with Terzaghi’s solution.
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Figure 6. Comparison of the average degree of consolidation from
the proposed formulation with Terzaghi’s solution.

However, a larger top traction (0.2 MPa) is applied, a softer
material (E =1 MPa) is considered, and the hydraulic con-
ductivity K is adjusted to be 0.0001 ms~'. Accordingly, the
pore pressure is initialized at 0.2 MPa, ensuring that the load-
ing is initially fully carried by the fluid phase. Similarly to
the small-deformation case, the pore pressure will gradually
dissipate after applying the constant loading, but now this
process will generate considerable vertical deformation. The
decrease in the column length is not negligible; therefore the
small-strain Terzaghi’s theory is no longer applicable. Based
on the large-deformation analytical solution (Xie and Leo,
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2004), the evolution of pore pressure, top settlement, and the
average degree of consolidation (defined by strain) can be
expressed as

1 > 2 Mz
Z,1) = Inf14 (e"™1P2 —1 — sin (—)

przn =~ [ ( >m221 i -

x e—Mva}, (35)
S = Ho(1—e™Pa) [ 1 2w, (36)
v = Ho(l —e _ZM26 )

m=1

2 2
US: 1_ZW6_M Tv, (37)

m=0

where my) = 1/E is the one-dimensional compressibility,
Pa is applied external load, Hy is the initial depth of the col-
umn, and z is the distance to the top surface. With the same
time step, the total simulation time is 300.0 s.

Figure 7 shows the numerical solution of pore pressure
evolution along the column height against the results from
the analytic solution at different average degrees of consoli-
dation. In the small-deformation case, the consolidation coef-
ficient Cy is equal to 1, while, for the large-deformation case,
the consolidation coefficient Cy is very small, so the consoli-
dation is a long process. Hence, the pore pressure dissipation
here is much slower than in the small-deformation case. The
comparison shows that the numerical results are consistent
with the analytic solutions and accurately depict this large-
deformation consolidation process. The cell average method
used in the strain smoothing method will give the same vol-
umetric strain rate for the particles in the same mesh cell,
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Figure 7. Comparison of pore pressure profiles from the proposed
formulation with analytic solution.
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Figure 8. Comparison of the top settlement from the proposed for-
mulation with analytic solution.

resulting in the same pore pressure distribution in each mesh
cell, but the overall trend of this large consolidation process
can still be captured. Figure 8 shows the evolution of the set-
tlement at the top surface. The numerical result (final top set-
tlement: 0.1815m) is very close to the analytic result (final
top settlement: 0.1802 m). The comparison demonstrates the
validation and applicability of the proposed formulation in
this two-phase large-deformation process.

4.2 Two-dimensional consolidation under localized
loading

In this section, a two-dimensional elastic consolidation un-
der a localized loading is simulated, with the geometry and
boundary conditions illustrated in Fig. 9. Due to the sym-
metry of the problem, only half of the domain is modeled.
The saturated material domain possesses a dimension of
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Figure 9. Model setup for the two-dimensional consolidation.

Table 2. Material parameters for the two-dimensional consolida-
tion.

Parameter Value
Solid density ps (kgm™3) 2700
Young’s modulus £ (MPa) 10
Poisson’s ratio v 0.3
Fluid density py (kgm™3) 1000
Initial porosity n 0.3
Bulk modulus of fluid Ky, (Gpa) 2.2
Hydraulic conductivity Ks (m s~h) 0.0001

10.0 m x 10.0 m, while the background mesh consists of cell
elements sized 0.05 m x 0.05 m, with four material points in
each cell element, resulting in 1600 particles. A normal im-
permeable roller boundary is applied to the lateral surfaces
and the bottom, while the top surface is permeable and un-
constrained. Initially, a constant local loading of 20.0kPa,
spanning a width of 0.3 m, is applied on the left side of the
top surface. Without considering gravity, the initial stress
and pore pressure are set to be 0. The isotropic linear elas-
tic constitutive model is used, and the material parameters
are provided in Table 2. The time step of the simulation is
2.0 x 10™4s, and the total simulation time is 0.1 s. The same
simulation was conducted in previous studies by a semi-
implicit MPM scheme (Yuan et al., 2023; Kularathna et al.,
2021).

Figure 10 illustrates the distribution of pore pressure at
time t = 0.1 s, comparing the results obtained with and with-
out stabilized techniques. In Fig. 10b, a spurious pore pres-
sure field with a checkerboard distribution is observed. In
contrast, the result with stabilized techniques shows a smooth
excess pore pressure field caused by the external loading
(Fig. 10a). It demonstrates that the stabilized techniques
can mitigate pore pressure oscillation well in the two-phase
MPM formulation, offering a stable pressure distribution.

Geosci. Model Dev., 18, 4743-4758, 2025
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Figure 11. Distribution of displacement field at time = 0.1 s.

The displacement distribution at # = 0.1 s is shown in Fig. 11.
Consistent with the applied local loading, the displacement
mainly occurs in the local loading region, indicating that the
local loading is undertaken by the upper-left corner area.
The maximum displacement (6.737 mm) occurs at the top-
left corner, which is consistent with the results from the semi-
implicit MPM formulation (Yuan et al., 2023). Similar results
are also obtained using the semi-implicit MPM with artificial
compressibility stabilization and the fractional step method
(Yuan et al., 2023; Kularathna et al., 2021). The stabilized
techniques employed here can yield equivalent results that
are free of stress oscillations while accurately preserving the
mechanical behavior.

4.3 Cyclic loading test

Inspirited by the lateral cyclic loading test (Liang et al.,
2023), we conduct a vertical cyclic loading test of a satu-
rated granular material. The model setup is shown in Fig. 12,
where the saturated material is placed in a rigid box and sub-
jected to a vertical cyclic loading. The material domain mea-
sures 2m in width and 1 m in height and is discretized by
a quadrilateral element with a size of 0.05m x 0.05m, and

Geosci. Model Dev., 18, 4743-4758, 2025

Table 3. Material parameters for the cyclic loading test.

Parameter Value
Solid density ps (kg m_3) 2650
Young’s modulus E (MPa) 600
Poisson’s ratio v 0.3
Fluid density pyw (kgm™3) 1000
Initial porosity n 0.23
Bulk modulus of fluid Ky (Gpa) 2.2

Hydraulic conductivity K (m s_l) 0.001

there are 4 particles in each element, giving 3200 particles.
Both the bottom and laterals are normal impermeable and
supported by rollers, and the top is unconstrained and perme-
able. To apply a cyclic loading, the top surface is prescribed
by a sinusoidal function periodic load of 40sin5mt kPa. Ta-
ble 3 lists the material parameters used for the isotropic linear
elastic constitutive model. Before the cyclic stimulation, an
equilibrium condition is achieved by a linear gravity loading
from 0t0 9.81 ms~2 within 0 < ¢ < 0.1 s; then, the gravity re-
mains constant. To monitor the cyclic loading response, three
monitoring points located at the bottle, middle, and top of the
material domain (A, B, C) are selected (as shown in Fig. 12).
The time step is set to be 1.0 x 107> s, and the simulation is
terminated at 2.1 s.

Figure 13 shows the generated pore pressure at four dif-
ferent time instants. After the application of linear gravity
loading, an equilibrium condition is achieved and a hydro-
static pressure field is generated (Fig. 13a). Subsequently, a
vertical cyclic loading is applied to the surface. When the ma-
terial domain is subjected to compressive loading, the pore
pressure field increases, whereas, under tensile loading, the
pore pressure field decreases correspondingly. This vertical
cyclic shaking induces an apparent periodic buildup and dis-
sipation of excess pore pressure in the material domain. In
Fig. 13b, a clear pore pressure decrease due to tensile load-
ing at r =0.51 s can be seen. As the tensile loading gradually
decreases and shifts into compressive loading, the pore pres-
sure will gradually raise up. As a result, the pore pressure
field returns to the hydrostatic state at t =0.61s (Fig. 13c).
Subsequently, the compressive loading leads to a further in-
crease in pore pressure. As depicted in Fig. 13d, a significant
excess pore pressure field is regenerated. Therefore, the pore
pressure in the material domain exhibits periodic variations
in response to the cyclic loading.

To further present the cyclic dynamic response under the
applied cyclic loading, the evolution of pore pressure and dis-
placement at the selected monitoring points is presented in
Fig. 14. The time history of pore pressure and displacement
over time demonstrates this cyclic loading response more
quantitatively and vividly. The linear gravity loading ends at
t =0.1's, during which the displacement remains very small.
After that, the vertical loading will induce a relatively large
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Figure 12. Schematic of the cyclic loading test.
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Figure 13. Distribution of pore pressure at  =0.1 s (hydrostatic pressure), t =0.51s,7=0.61s, and r =0.71ss.

displacement. Under the sinusoidal periodic loading, the ver-
tical displacement of point B and C exhibits a sinusoidal vari-
ation and the pore pressure at point A and B also changes
accordingly. These cyclic responses can be well captured by
the proposed stabilized MPM formulation.

4.4 Self-weight consolidation

The large-deformation consolidation of an elastic slump-
ing block under gravity loading is presented in this sec-
tion (Fig. 15), which is related to the settlement of a very
soft soil and has been simulated in previous studies (Zheng
et al., 2021, 2022; Sang et al., 2024; Wang et al., 2023a).
The simulation focuses on the right half of a symmetric do-
main with dimensions of 4m width and 2m height. The
material domain is discretized using quadrilateral elements
of size 0.125m x 0.125m and 4 particles in each element,
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giving 1024 particles in total. No external load is applied,
making the consolidation process solely driven by the initial
gravitational force at the start of the simulation. The gravity
linearly increases from O to 9.81 ms~2 within 0 <7 <0.1s
and then remains constant. Both the top and right bound-
aries are unconstrained and freely draining, while the left
and bottom boundaries are normally impermeable and sup-
ported by rollers. The gravity will give rise to pore pressure
buildup, while the deformation will lead to the dissipation of
pore pressure over time, and two points (P, P>) at the bottle
and middle are selected to evaluate the consolidation process
(as shown in Fig. 15). An isotropic linear elastic constitutive
model is used, and the parameters are listed in Table 4. The
total simulation time is 0.5, and the simulation is performed
with a time step equal to 1.0 x 107 6.

Initially, due to the relatively quick application of gravity
loading, the pore fluid cannot be rapidly discharged, and the

Geosci. Model Dev., 18, 4743-4758, 2025
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Figure 15. Schematic of the self-weight consolidation.

Table 4. Material parameters for the self-weight consolidation.

Parameter Value
Solid density pg (kg m_3) 2650
Young’s modulus E (kPa) 100
Poisson’s ratio v 0.3
Fluid density pyw (kgm™3) 1000
Initial porosity n 0.4
Bulk modulus of fluid Ky (Gpa) 2.2
Hydraulic conductivity Kg (m s_l) 0.0001

Geosci. Model Dev., 18, 4743-4758, 2025

loading process is carried out under approximately undrained
conditions. Therefore, the applied gravity loading will induce
excess pore pressure at the beginning. Figure 16 shows pore
pressure fields after gravity loading (f =0.05s) with stabi-
lized techniques and without stabilized techniques. It can
be seen that the result without stabilized techniques suffers
from pore pressure oscillations. The stabilized result, in con-
trast, eliminates spurious oscillations effectively under strin-
gent undrained conditions. Moreover, the distribution of pore
pressure and deviatoric stress at three different times (0.1,
0.3, and 0.5 s) is illustrated in Figs. 17 and 18, respectively.
Upon the application of linear gravity loading, a pore pres-
sure field develops, gradually decreasing from the bottom-
left corner upwards, as shown at t =0.1 s (Fig. 17a). At this
stage, the deformation is not large, with a localized region
of deviatoric stress distribution observed near the bottom-
right corner (Fig. 18a). Subsequently, gravity continues to
generate pore pressure, and the deviatoric stress gradually
increases as deformation progresses. As deformation devel-
ops under gravity, the pore pressure first reaches the maxi-
mum value and then dissipates because of the deformation
and drainage at the boundary. This process can be observed
in Figs. 17b, 18b and Figs. 17c, 18c. Both pore pressure
and deviatoric stress changed continuously along the large-
deformation process. The absence of checkerboard oscilla-
tions shows the stability of the proposed stabilized formu-
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Figure 17. Pore pressure distribution at different times.

lation in capturing the mechanical behavior of the slumping
block during the consolidation process.

To further verify the accuracy of the results, the time evo-
lution of the pore pressure at two points (P;, P, in Fig. 15)
is shown in Fig. 19, and the results are compared with those
of Zheng et al. (2022) using implicit stabilized MPM formu-
lation and Sang et al. (2024) using implicit coupled MPM
formulation. During the linear gravity loading, pore pres-
sure increases linearly, followed by non-monotonic dissipa-
tion due to the Mandel-Cryer effect. The curves obtained us-
ing the proposed stabilized formulation agree well with those
of Zheng et al. (2022) and Sang et al. (2024), and the final
displacement field (Fig. 20) closely matches the results re-
ported in previous studies (Wang et al., 2023a; Yuan et al.,
2023).

5 Discussion and conclusions

For the hydromechanical coupling problems in solid—fluid
porous media, this study presents an explicit stabilized two-
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phase material point method by incorporating the strain
smoothing method and the multi-field variational principle
in the single-point two-phase MPM scheme. The proposed
model effectively mitigates pore pressure oscillation and
maintains numerical stability.

The proposed two-phase MPM was initially validated
through a one-dimensional consolidation problem under both
small- and large-deformation cases, with the numerical re-
sults showing strong agreement with analytical solutions.
It was further assessed through two-dimensional consolida-
tion under localized loading and cyclic loading, demonstrat-
ing the formulation’s ability in accurately capturing the dy-
namic response of saturated porous media under external
loads. Finally, the self-weight consolidation was analyzed
to showcase its efficacy in simulating both undrained and
drained conditions and in handling large-deformation prob-
lems. The results aligned closely with analytical solutions
and outcomes from other approaches. In particular, the pore
pressure instabilities were greatly mitigated by the stabilized
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techniques, as clearly validated by the numerical results in
terms of pore pressure.

With its effective and easy-to-implement stabilized tech-
niques, the proposed two-phase MPM formulation is well
suited for analyzing a wide range of hydromechanical pro-
cesses under various undrained, drained, and loading condi-
tions. It offers an effective and reliable approach for simulat-
ing both static and dynamic processes in solid—fluid porous
media. While the current work is limited to the linear elas-
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tic behavior of the solid phase, future efforts will focus on
the practice and application involving more complex large-
deformation problems and advanced constitutive models.

Code and data availability. The model developed in this study is
based on the open-source MPM code, which is available on GitHub:
https://github.com/xzhang66/MPM3D-F90 (Zhang et al., 2016).
The current version of the model (Tang, 2025) is available on the
project website at https://doi.org/10.5281/zenodo.14899281 under
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and all data were presented in the article.
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