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Abstract. The Vegetation Photosynthesis and Respiration
Model (VPRM) is a well-established tool for estimating car-
bon exchange fluxes between the atmosphere and the bio-
sphere. The gross primary production (GPP) and respira-
tion (Reco) of the ecosystem are modeled separately at high
spatial and temporal resolution using the satellite-derived en-
hanced vegetation index (EVI) and land surface water in-
dex (LSWI), as well as meteorological variables for solar
irradiance and surface temperature. The net ecosystem ex-
change (NEE) is calculated as the difference between the
gross flux GPP and respiration. VPRM is widely used as
a biospheric flux model in atmospheric transport modeling,
most often on scales ranging from city to continent, but also
in studies of biospheric carbon budgets and their changes
with climate extremes. Historically, satellite-based surface
reflectances from the 500 m resolution Moderate Resolution
Imaging Spectroradiometer (MODIS) have been used to de-
termine the EVI and LSWI. However, MODIS is reaching the
end of its lifetime and will soon be decommissioned. There-
fore, we present an updated version of VPRM, pyVPRM,
which provides a software framework with a modular struc-
ture that can be used with various satellite products, land
cover maps, meteorological data sources, and VPRM model
parameterizations. Our tool naturally provides an interface
to use satellite data from Sentinel-2, MODIS, and VIIRS, as
well as global high-resolution land cover classification maps
from the Copernicus Dynamic Land Cover Collection 3 and
ESA WorldCover at 100 and 10 m resolution, respectively.

Neither product is static; hence, dynamic changes of the land
cover from year to year can be represented. Using Sentinel-
2, ecosystem fluxes can be calculated at a resolution of up
to 20 m, providing more accurate flux estimates in hetero-
geneous landscapes like croplands and making it possible
to resolve small-scale vegetation patches common in urban
areas. In contrast, VIIRS data are at the same resolution as
MODIS and thus can provide continuity once MODIS is dis-
continued, requiring only minor adjustments to the VPRM
data preprocessing. In addition, pyVPRM improves the data
handling, for example, for snow-covered scenes. This paper
presents the pyVPRM framework, discusses changes and im-
provements compared to previous VPRM implementations,
and provides VPRM parameters for the European domain
based on indices calculated from MODIS, Sentinel-2, and
VIIRS using a new selection of eddy-covariance observa-
tions from 97 flux tower sites. Using pyVPRM and the new
parameters, we observe significant improvements in the esti-
mation of the European carbon budget. The results conform
well with those from inversion studies.

1 Introduction

Carbon dioxide (CO2) is the most important anthropogeni-
cally influenced greenhouse gas in the Earth’s atmosphere
and plays a decisive role in the carbon cycle. Carbon cy-
cling occurs between the different compartments/reservoirs
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(i.e., atmosphere, oceans, and biosphere) of the Earth sys-
tem on different timescales. The largest exchange flux of car-
bon is between the atmosphere and the terrestrial biosphere
(Friedlingstein et al., 2023). This uptake flux is driven by
the biosphere’s photosynthesis (gross primary production, or
GPP), i.e., the conversion of carbon dioxide, light, and water
into sugar and oxygen. At the same time, carbon dioxide is
released back to the atmosphere by respiration from plants
and soil. The net vegetation flux into the atmosphere, i.e., the
net ecosystem exchange (NEE), is given by the difference be-
tween the GPP and respiration. With a yearly global GPP of
around 120 GtC, biospheric carbon dioxide fluxes are about
an order of magnitude larger than anthropogenic emissions
(with a yearly emission of 11.1 GtC in 2022; see Friedling-
stein et al., 2023). Clearly, biospheric fluxes have an impor-
tant impact on the time-dependent CO2 concentrations in the
atmosphere. Over longer timescales, GPP and respiration are
nearly in balance, with a net carbon sink of around 3 GtC per
year (Friedlingstein et al., 2023).

Terrestrial biosphere models (TBMs) are commonly used
to simulate the carbon exchange between the biosphere and
the atmosphere. They can be used to study the carbon budget
of the terrestrial biosphere, as well as the impact of droughts
and other climate extremes (Thompson et al., 2020; Stocker
et al., 2019). Frequently, TBM outputs are also used as an in-
put in atmospheric transport models, e.g., for the (inverse or
top-down) estimation of carbon budgets from anthropogenic
and natural sources from city to global scales (Bousquet
et al., 1999; Sargent et al., 2018). Those top-down estimates
of anthropogenic CO2 emissions, informed by atmospheric
concentration measurements, are expected to become an in-
tegral part of the global stocktakes required by international
climate treaties (Maksyutov et al., 2019). They provide com-
plementary information to the “bottom-up” methods, which
combine activity data with emission factors to derive the bud-
get (Choulga et al., 2021).

There are several TBMs that utilize remote-sensing data to
locally estimate the plant and water dynamics (Nelson et al.,
2024; Gerbig and Koch, 2021; Randerson et al., 1996; Run-
ning and Zhao, 2021). The Vegetation Photosynthesis and
Respiration Model (VPRM) is a well-established light-use-
efficiency TBM that estimates GPP, respiration, and, conse-
quently, NEE from satellite-derived indices and meteorolog-
ical drivers (Mahadevan et al., 2008). VPRM parameters are
estimated using in situ measurements from eddy-covariance
flux towers in different regions, for different years, and across
different vegetation classes. Historically, VPRM has mainly
been used with observations from the 500 m resolution Mod-
erate Resolution Imaging Spectroradiometer (MODIS) in-
strument, installed on board the Terra and Aqua satellites1,

1MODIS bands 1 and 2 have a 250 m resolution. Throughout
this paper, we define the VPRM model resolution as the lowest res-
olution among all the required bands.

combined with the 1 km resolution SYNMAP land cover
classification map (Jung et al., 2006).

Several modifications of the standard VPRM have been
discussed in the literature. A common modification is a more
sophisticated term for Reco by, for example, including ad-
ditional information on water stress (Gourdji et al., 2022)
or adjusting the temperature response function (Sun et al.,
2023). Other customized VPRM applications are the Urban-
VPRM model for cities (Hardiman et al., 2017), the Po-
larVPRM for high-latitude ecosystems (Luus and Lin, 2015),
a regional version for China (China-VPRM, Dayalu et al.,
2018), approaches that incorporate information from solar-
induced fluorescence (Commane et al., 2017), and a version
to run online in the greenhouse gas module of the Weather
Research and Forecasting (WRF) model (Ahmadov et al.,
2009). All of these VPRM implementations rely on indices
derived from MODIS.

The first MODIS sensor was launched in 1999, and since
then the series of instruments have provided nearly a quarter-
century time series of consistent data with high temporal res-
olution. Due to an onboard fuel shortage, MODIS will be de-
commissioned at the end of 2025, and hence alternative data
sources are needed for VPRM.

In this paper, we present a new software package –
pyVPRM (https://github.com/tglauch/pyVPRM, last access:
24 July 2025) – which adapts the VPRM to the post-MODIS
era. It has an interface for new satellite datasets (Sentinel-2,
VIIRS) and high-resolution land cover products (Copernicus
Dynamic Land Cover Collection 3, Buchhorn et al., 2020;
ESA WorldCover, Zanaga et al., 2022; and MapBiomas,
Souza et al., 2020). Furthermore, it provides several im-
provements in terms of data handling, including the treat-
ment of snow-covered scenes to improve stability and the use
of the actual observation time when using time-aggregated
products (like the 8 d MODIS products MOD09A1 (Ver-
mote, 2021a) and MYD09A1 (Vermote, 2021b)) in the data
smoothing process. In summary, those changes allow for
a more accurate estimation of biospheric carbon dioxide
fluxes, especially in regions with highly heterogeneous land-
scapes like cities or croplands. Thanks to its modular struc-
ture, pyVPRM can be easily extended by users to include
further satellite products, land cover maps, meteorological
datasets, and VPRM implementations.

This paper is structured as follows: in Sect. 2, we review
the methodology of the standard VPRM model (Mahadevan
et al., 2008). In Sect. 3, we discuss the improvements and
changes in pyVPRM. In Sect. 4, we describe the estimation
of the VPRM parameters for MODIS, VIIRS, and Sentinel-2
using a new selection of European flux tower sites. In Sect. 5,
we discuss those parameters and their implications for Euro-
pean biospheric fluxes. In Sect. 6, we provide a discussion on
the improvements, and we conclude in Sect. 7 with a sum-
mary and an outlook. A brief overview of the code structure
is provided in Appendix A.
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2 Review of the VPRM model

It should be noted that VPRM is not a centrally managed
model, and implementations present throughout the literature
differ significantly in their choices of vegetation classes and
model equations. In this paper, we focus only on the origi-
nal VPRM model implementation (Mahadevan et al., 2008)
(called the vprm_base module in pyVPRM). For Mahadevan
et al. (2008), eight vegetation classes are used: evergreen for-
est, deciduous forest, mixed forest, shrubland, savanna, crop-
land, grassland, and urban/non-vegetated.

All VPRM model implementations split the CO2 flux be-
tween the terrestrial biosphere and atmosphere into two parts:
gross primary production (GPP), driven by photosynthesis,
and the sum of soil and plant respiration. In the standard
VPRM (Mahadevan et al., 2008), the GPP is parameterized
as

GPP= ε×
1

1+PAR/PAR0
×PAR×EVI. (1)

Here, EVI is the remote-sensing-based enhanced vegeta-
tion index (EVI), which is closely related to the productiv-
ity of vegetation (Huete et al., 2002). It is used as a mea-
sure of the fraction of absorbed photosynthetically active
radiation (fAPAR, at wavelengths between around 400 and
700 nm) available for photosynthesis. EVI is usually based
on measurements in the red, near-infrared, and blue bands,
but a variant of this index can be calculated using only the
red and infrared bands (see Sect. 3.1.1 for details). In con-
trast to other vegetation indices, like the normalized differ-
ence vegetation index (NDVI, Rouse et al., 1974), EVI is
more sensitive to variations in canopy structure, including
leaf area index (LAI), canopy type, and plant physiognomy
(Huete et al., 2002).

The total amount of incoming photosynthetically active
radiation can be approximated through the incoming short-
wave (SW) radiation (direct and diffuse) at the surface using
the relationship PAR≈ SW/0.505 (Mahadevan et al., 2008).
The term 1/(1+PAR/PAR0) describes the saturation of the
plants’ photosynthetic activity. PAR0 is the half-saturation
value, one of the parameters fitted in the model for each veg-
etation class. Finally, ε is the light-use efficiency, which is
the product of four terms with values between 0 and 1:

ε = λ× Tscale×Wscale×Pscale. (2)

Here, Tscale describes the temperature dependence of the pho-
tosynthesis, defined as

Tscale =
(T − Tmin)(T − Tmax)

(T − Tmin)(T − Tmax)−
(
T − Topt

)2 , (3)

with Tmin, Topt, and Tmax referring to literature-derived val-
ues of the minimal, optimal, and maximal temperatures for
photosynthesis for each vegetation class in degrees Celsius.
At temperatures below Tmin or above Tmax, photosynthetic

activity is set to 0. Usually, the temperature T is given by the
2 m temperature, which is available in most meteorological
models.

The variable Pscale accounts for the effect of leaf age and
is defined separately for the different vegetation types. For
evergreen forests,

Pscale = 1; (4)

for grassland and savannas,

Pscale = (1+LSWI)/2; (5)

and for all other vegetation classes,
Pscale ={

1, between leaf full expansion and senescence
(
EVI> THleaf full expansion

)
(1+LSWI)/2, during bud burst to leaf full expansion and during senescence

(
EVI≤ THleaf full expansion

) . (6)

Here, LSWI is the land surface water index, which captures
the effects of water stress and leaf phenology and is derived
using satellite data in the near and shortwave infrared (see
Sect. 3.1.1 for details). The periods from bud burst to leaf
full expansion and senescence are defined as those where the
EVI is below a threshold of

THleaf full expansion = EVImin+0.55·(EVImax−EVImin) . (7)

Both the maximum and minimum EVI values (EVImax and
EVImin) are calculated for each satellite pixel over an entire
year.

The variableWscale represents the canopy water content as
a measure of the water stress. It is defined as

Wscale =

{
LSWI−LSWImin

LSWImax−LSWImin
, grassland and savanna,

1+LSWI
1+LSWImax

, all other classes.
(8)

The LSWI thresholds, LSWImax and LSWImin, are calcu-
lated as the pixel-wise maximum/minimum LSWI during the
growing season (Eq. 7). Using this threshold ensures that the
maximum LSWI lies within the growing season. This is im-
portant because LSWI is sensitive to snow periods.

Note that for grassland, we follow the parameterization of
Matross et al. (2006), which takes into account that grass-
lands are xeric ecosystems. This represents a deviation from
the work of Mahadevan et al. (2008) relevant for Eqs. (5)
and (8).

Finally, λ is a fitting parameter that accounts for the quan-
tum yield and also includes vegetation-class-specific (lin-
ear) corrections to the other parameters. For well-watered
C3 plants, the quantum yield is expected to be around 1/6
(Mahadevan et al., 2008).

The parameterization of ecosystem respiration, Reco, is a
simple linear function with two free parameters, α and β:

Reco = α×max(T ,Tlow)+β. (9)

When T < Tlow, the temperature in Eq. (9) is set to Tlow to
maintain a minimal level of respiration, as the (winter) soil
temperature is typically higher than the air temperature.

In summary, four free parameters α, β, PAR0, and λ have
to be fitted for each vegetation type.
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3 The pyVPRM package

With pyVPRM, we provide a Python-based software pack-
age that can be used for a wide range of applications of the
Vegetation Photosynthesis and Respiration Model (VPRM).
It has a modular structure and can be used to combine dif-
ferent satellite data products, land cover maps, meteorology
datasets, and VPRM model parameterizations. It provides
all functions to fit VPRM parameters, produce biospheric
fluxes, and generate input files for using VPRM online in
mesoscale atmospheric transport models like the Weather
Research and Forecasting model (WRF-GHG, Beck et al.,
2012/WRF-Chem, Peckham, 2012) or the ICON-ART model
(Schröter et al., 2018). An overview of the modular structure
of pyVPRM is given in Fig. 1.

3.1 Satellite data

In general, all multi-spectral satellites that have at least a
near-infrared, a short wavelength infrared, and a red chan-
nel are suitable for constructing the indices required in the
VPRM model. In addition, a blue band can be useful for the
calculation of the enhanced vegetation index (EVI) but is not
strictly necessary. While MODIS has been used historically,
other satellite datasets are now available as well. Notably,
Sentinel-2 (ESA, 2022) improves the VPRM spatial resolu-
tion from 500 m (MODIS (Vermote, 2021a, b; Vermote and
Wolfe, 2021, ?), VIIRS (Vermote et al., 2023a, b)) down to
20 m, which is especially useful for modeling ecosystem car-
bon dioxide fluxes in urban areas or in heterogeneous land-
scapes such as croplands and agricultural grasslands. The
choice of satellite mission ultimately depends on the specific
user requirements, e.g., the required spatial resolution, data
availability, and satellite revisit time, especially when persis-
tent cloud cover is an issue.

In its current implementation, pyVPRM provides an inter-
face for satellite data products from MODIS, VIIRS, and
Sentinel-2. Due to the modular structure, pyVPRM can be
extended to other missions (e.g., Landsat) or fusion products
of different satellite missions (e.g., Moreno-Martínez et al.,
2020). VIIRS is of particular interest, as it is the drop-in re-
placement for MODIS after its discontinuation. A summary
of the three satellite missions and the relevant mission speci-
fications are given in Table 1. Evidently, there is a large over-
lap between the wavelength bands among the missions. Nev-
ertheless, we fit a different set of VPRM parameters for each
mission, accounting also for differences in the data process-
ing, like the atmospheric correction.

The MODIS sensor is placed on two research satellites
– Aqua and Terra – with afternoon and morning orbits, re-
spectively. Hence, combining data from the two satellite mis-
sions helps to mitigate sparse observations and improve the
modeling of vegetation dynamics. This is especially use-
ful in regions with high cloud coverage like the tropics.
MODIS (Terra, Aqua) and VIIRS products are available as

daily observations (MOD09GA, MYD09GA, VNP09GA)
and as aggregated 8 d products (MOD09A1, MYD09A1,
VNP09H1). The choice of optimal product depends on the
expected vegetation dynamics and available computing re-
sources. In this work, we use daily MODIS and VIIRS data,
i.e., MOD09GA, MYD09GA, and VNP09GA.

3.1.1 Satellite indices

EVI is sensitive to the leaf area index, canopy type, and
plant physiognomy. It is defined using the reflectances in
red (ρRed), infrared (ρNIR), and blue (ρBlue) following Huete
et al. (2002) as

EVI=G×
(ρNIR− ρRed)

(ρNIR+C1× ρRed−C2× ρBlue+L)
, (10)

where, in general, the free parameters G, C1, C2, and L de-
pend on the satellite sensor. In our case, we use G= 2.5,
C1 = 6, C2 = 7.5, and L= 1 (Huete et al., 2002) for both
MODIS and Sentinel-2. While the detection of vegetation is
governed by the red and infrared bands, the blue channel was
added to account for the impact of atmospheric aerosols. It is,
however, also possible to define an alternate enhanced vege-
tation index without a blue band (Jiang et al., 2008), EVI2,
as

EVI2=G×
(ρNIR− ρRed)

(ρNIR+C1× ρRed+L)
, (11)

with only three free parameters, i.e., G, C1, and L. In our
case, we use EVI2 for data from the VIIRS satellite, as no
blue band is available. Here, the free parameters are set to
G= 2.5, C1 = 2.4, and L= 1 (Huete et al., 2002).

In addition to EVI, VPRM uses another remote-sensing-
based index – the land surface water index (LSWI) – to esti-
mate the vegetation and soil water content. LSWI requires a
near-infrared and a shortwave infrared band and is calculated
for all satellite missions following Gao (1995) as

LSWI=
ρNIR− ρSWIR

ρNIR+ ρSWIR
. (12)

In pyVPRM, both EVI and LSWI are calculated within the
VPRM preprocessor class (see Fig. 1) whenever a new satel-
lite image is added to the instance (using the add_sat_img(.)
function). The implementation of pyVPRM allows the user to
adjust the free parameters in the function call or even add an
entirely different implementation of satellite indices.

3.1.2 Data quality masking

Not every satellite observation is useful for the estimation of
EVI and LSWI. Typical problems include cloudiness, shad-
ows, and problems in the satellite retrieval. In order to get a
reliable estimate of the time evolution of the two indices, pix-
els that have any of the previously mentioned problems are
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Figure 1. Modular structure of pyVPRM. Using different combinations of inputs, one can either calculate VPRM parameters, generate VPRM
input files for atmospheric models, or calculate “offline” biospheric carbon dioxide fluxes. The type of module is shown in bold with the
corresponding (exemplary) file name below. This is subject to changes and extensions in the further development of the model. The VPRM
preprocessor is the central class that prepares the satellite images and land cover maps, as described in Sect. 3.1–3.3. More details are found
in Appendix A.

Table 1. Overview of the relevant properties of the different satellite missions. The spatial resolution is given as the minimal resolution of all
bands required for the VPRM calculations. In addition, the table names the MODIS (Vermote and Wolfe, 2021, ?; Vermote, 2021a, b), VIIRS
(Vermote et al., 2023a, b), and Sentinel-2 (ESA, 2022) data products used for the VPRM calculations in this paper. Note that for Sentinel-2,
there is a slight difference in the bands between Sentinel-2A and Sentinel-2B. The values given here represent the bands of Sentinel-2A.

Feature MODIS (Terra, Aqua) VIIRS (Suomi NPP) Sentinel-2A and 2B

Red band [nm] 620–670 (Band 1) 600–680 (Band l1) 664.6± 31 (Band 4)

Near-infrared band (NIR) [nm] 841–876 (Band 2) 846–885 (Band l2) 864.7± 21 (Band 8A)

Shortwave infrared band (SWIR) [nm] 1628–1652 (Band 6) 1580–1640 (Band l3) 1613.7± 91 (Band 11)

Blue band [nm] 459–479 (Band 3) – 492.4± 66 (Band 2)

Spatial resolution 500 m 500 m 20 m

Revisit frequency (at Equator) 1–2 d 1–2 d 5 d

Data availability 1999–now 2011–now 2015–now

Data products
MOD09GA, MYD09GA VNP09GA

Sentinel-2 Collection 1 Level-2A
MOD09A1, MYD09A1 VNP09H1

masked out from all further calculations using the data qual-
ity flags of the respective data products. Specifically, we use
only pixels that have the highest-quality data in all bands,
do not show any kind of cloud cover (also cirrus), and are
free from cloud shadows. Periods with snow are treated dif-
ferently; see Sect. 3.1.3. Details on the data quality flags for
the satellite products discussed in this paper can be found
in Table B1 (for MODIS), Table B2 (for VIIRS), and Ta-
ble B3 (for Sentinel-2). In pyVPRM, the mask_bad_pixels(.),
mask_bad_clouds(.), and mask_bad_snow(.) functions of the
respective satellite image class are used.

3.1.3 Time smoothing

We expect both LSWI and EVI to be continuous functions
over the year. Hence, in order to remove statistical noise,
we derive daily indices through a temporal smoothing pro-

cedure (Mahadevan et al., 2008). In the first step, all the
available satellite scenes for at least a year are loaded and
combined into a data cube with two spatial dimensions and
a time dimension. Subsequently, the array of observations in
each pixel is smoothed using a lowess (LOcally WEighted
Scatterplot Smoothing) function (Cleveland, 1979) (using the
lowess(.) function of the VPRM preprocessor). The smooth-
ing takes into account the specific observation time of each
scene, even if 8 d products (like MOD09A1) are being used.
Finally, the fitted lowess function is evaluated for each day of
the year, producing a data cube storing daily EVI and LSWI
for each pixel. It is good practice to include additional satel-
lite scenes before the beginning and after the end of the year
of interest to avoid boundary effects.

While the lowess function is fairly stable against noise,
instabilities may arise if the vegetation is covered by snow

https://doi.org/10.5194/gmd-18-4713-2025 Geosci. Model Dev., 18, 4713–4742, 2025
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Figure 2. Left panel: comparison of the hourly GPP at the cropland flux tower site Selhausen Juelich (DE-RuS; 50.8659° N, 6.4471° E) with
the satellite indices (EVI, LSWI) for Sentinel-2 and MODIS over the year 2022. GPP (in light gray) is based on the ICOS daytime partitioning
method. The solid and dash-dotted lines show the lowess-smoothed LSWI and EVI, respectively. Values from MODIS are shown in black,
while values for Sentinel-2 are shown in blue. The blue points show the unfiltered EVI measurements for the case of Sentinel-2. Right panel:
satellite image of the site with the relevant MODIS (white) and Sentinel-2 (yellow) pixels overlaid. The position of the flux tower is shown
with a blue pin. Map data © Google Earth 2024.

for several months of the year (especially at high latitudes).
Hence, instead of masking out every observation with de-
tected snow cover, as we do for clouds and other low-quality
observations, during snow-covered periods, we set the EVI
and LSWI to the minimum value observed outside of the
snow-covered period. This stabilizes the numerical fit and
does not impact the estimated carbon fluxes, as the tempera-
ture during snow-covered periods is usually below 0° C, re-
sulting in negligible GPP (see Eq. 3). The respiration, on the
other hand, is independent of the satellite indices.

Figure 2 shows an example of the lowess-filtered values
for EVI and LSWI from MODIS and Sentinel-2 at the Ger-
man cropland flux tower site Selhausen Juelich (DE-RuS;
50.8659° N, 6.4471° E) in 2022. For comparison, hourly
measured GPP is shown in the background. On average, the
crosswind integrated distance, which contributes 90% of the
flux measurement, is around 85 m at the eddy-covariance site
DE-RuS (ICOS RI et al., 2023). A 2D map of the footprint is
shown in Fig. 2b of Paulus et al. (2024). Evidently, the dis-
agreement of the MODIS EVI curve with the measured GPP
is a direct result of the limited spatial resolution of MODIS
in such a heterogeneous landscape. In fact, the observed sea-
sonal cycle of the satellite indices is a superposition of the
seasonal cycles of the fields contained within the MODIS
pixel (white). The field containing the flux tower itself was
growing potatoes in 2022, which are only planted in April,
take time to grow, and last until fall. The eastern and south-
eastern neighboring fields, in contrast, had winter wheat,
which was sown the fall before, starts photosynthesis early,
and is typically harvested around July (Marius Schmidt, per-
sonal communication, 2025). In contrast, the Sentinel-2 in-
dices more closely follow the seasonal cycle of the GPP mea-
surements. Uncertainties in Sentinel-2 arise mainly through
the limited revisit frequency. While MODIS provides one im-
age every 1–2 d under clear-sky conditions, Sentinel-2 takes
only one image every ∼ 5 d. Hence, in time periods with fre-
quent cloud coverage, observations can become sparse. The

resulting interpolation errors are largest in periods of strong
leaf phenological change.

We have exemplarily studied the impact of the revisit
time for three flux tower sites with very homogeneous land-
scapes on the spatial scale of a MODIS pixel; see Fig. 3.
For MODIS, we have used the daily Terra and Aqua obser-
vations (MOD09GA, Vermote and Wolfe, 2021/MYD09GA,
Vermote, 2021a), and for Sentinel-2, Collection 1 Level-2A
data from Sentinel-2A and 2B (ESA, 2022). The EVI curves
for both satellites show a similar behavior. Small differences
between the absolute EVI values are expected due to dif-
ferences in the observation channels and resolutions. While
Sentinel-2 curves show a little bit more instability, this is a
minor effect on absolute scales. In general, we expect the in-
stability of the smoothing to increase for regions with very
frequent cloud coverage or long times without daylight (as in
northern Scandinavia).

3.2 Land cover classification

The standard VPRM model (Mahadevan et al., 2008), as de-
scribed in Sect. 2, is fitted with four independent parame-
ters for each vegetation class. In addition to remote sensing
data, the estimation of terrestrial carbon fluxes with VPRM
therefore requires a land cover classification map that covers
the entire area of interest. In general, pyVPRM can be used
with any kind of land cover product and vegetation classi-
fication. By default, the package provides interfaces for the
global 100 m Copernicus Dynamic Land Cover Collection 3
(Buchhorn et al., 2020) and the global 10 m ESA WorldCover
(Zanaga et al., 2022) product. Neither product is static in that
they provide different maps for different years to account for
land use changes.

In addition, both land cover products do not provide a ded-
icated savanna class. We therefore drop it, which is reason-
able for most parts of the mid-latitudes. In regions where this
vegetation class is needed, it is advisable to use a dedicated

Geosci. Model Dev., 18, 4713–4742, 2025 https://doi.org/10.5194/gmd-18-4713-2025



T. Glauch et al.: pyVPRM: a next-generation vegetation photosynthesis and respiration model 4719

Figure 3. Development of the EVI for three test sites with different vegetation types in 2022: ES-Amo (shrubland), DE-Hai (deciduous
forest), and NL-Loo (evergreen forest). Blue and green lines show the lowess-smoothed curves for Sentinel-2 and MODIS, respectively. The
dots in the background show the cloud- and snow-filtered satellite observations.

Figure 4. The region around Vienna for three different land cover classification products: SYNMAP (a), the 100 m product of the Copernicus
Dynamic Land Cover Collection 3 (b), and a hybrid between ESA WorldCover and the Copernicus Dynamic Land Cover Collection 3 (c).
Different colors (numbers) represent the different vegetation classes in our VPRM model for Europe: evergreen (1), deciduous forest (2),
mixed forest (3), shrubland (4), cropland (6), grassland (7), non-vegetated area (8), and wetland (9). The class savanna (5) is not used in this
implementation but remains in the numbered list for legacy reasons.

land cover product and VPRM parameters. On the contrary,
we have decided to add a new class for wetland. This is mo-
tivated by the larger amount of available flux tower measure-
ments (cf. Fig. 6).

Table 2 shows the mapping between the land cover types
for the two products and the eight VPRM classes used in this
paper. Note that ESA WorldCover has only one forest class
and, therefore, contains no information on the forest type.
Hence, it is rational to generate a hybrid product that uses
ESA WorldCover as a baseline but replaces the forest sub-
class information with that of the (lower-resolution) Coper-
nicus Dynamic Land Cover Collection 3 (Buchhorn et al.,
2020). A sequence of land cover maps with increasing reso-
lution is shown for a region around Vienna in Fig. 4. Note that
while SYNMAP (Jung et al., 2006) does not resolve much of
the structure inside the built-up urban area, the Copernicus
Dynamic Land Cover Collection 3 (Buchhorn et al., 2020)
product and especially the hybrid product can resolve vege-

tated areas within the built-up area and heterogeneity within
the forested area to the west of the city and the surrounding
croplands.

In many cases, the land cover maps will not have the same
coordinate reference system and resolution as the satellite
data products. Hence, the land cover map needs to be re-
gridded to match the satellite data. pyVPRM uses the xESMF
package (Zhuang et al., 2023), which is based on the Earth
System Modeling Framework (ESMF) (Hill et al., 2004).
xESMF supports general curvilinear grids and different re-
gridding algorithms, most importantly bilinear and conser-
vative, in order to preserve total quantities. Using conser-
vative regridding, the add_land_cover_map(.) function of
pyVPRM’s VPRM preprocessor calculates the fraction of
each land cover class from the input (land cover) grid for
each pixel in the destination (satellite) grid. The result is a
2D vegetation fraction map for each vegetation class with
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Table 2. Mapping from land cover classifications in the Copernicus
Dynamic Land Cover Collection 3 (Buchhorn et al., 2020) and ESA
WorldCover (Zanaga et al., 2022) to the eight VPRM classes used
in this paper. The numbers represent the internal land cover codes of
the two data products. Note (∗) that ESA WorldCover has only one
forest class. Hence, it is advised to use a hybrid of the two products
in this table, using the forest-type classification of the 100 m prod-
ucts of the Copernicus Dynamic Land Cover Collection 3. pyVPRM
uses YAML configuration files to define the mapping and auxiliary
data for the vegetation classes.

Copernicus Dynamic ESA WorldCover
Land Cover
Collection 3

Evergreen forest 111, 112, 121, 122 10∗

Deciduous forest 113, 114, 123, 124 10∗

Mixed forest 115, 126, 116, 125 10∗

Shrubland 20 20
Cropland 40 40
Grassland 30, 100 30, 100
Non-vegetated 50, 60, 70, 80, 200 50, 60, 70, 80
Wetland 90 90, 95

the same spatial extent and on the same grid as the satellite
scenes.

3.3 VPRM data preparation and calculation of carbon
fluxes

In order to generate the VPRM fluxes for a given region, we
use Eqs. (1) and (9) in matrix form. This requires the mete-
orological data (e.g., temperature and solar irradiance) and
the land cover information to be regridded onto the native
satellite grid using the xESMF package; see Sect. 3.2. With
all the data on the same grid, the net ecosystem exchange (or
GPP and respiration) for each land cover type is calculated by
matrix multiplication (using the make_vprm_predictions(.)
function of the VPRM model class). Summing up all land
cover types with their respective fractional weight, Fv, gives
the total flux per pixel, i.e.,

NEE2D =
∑
v∈

veg classes

Fv×
[
−
(
λv× Tscale,v×Wscale×Pscale,v

)
×

1
1+PAR/PAR0,v

×PAR×EVI+αv

×max
(
T ,Tlow,v

)
+βv

]
. (13)

3.4 VPRM preprocessor for online flux calculation in
mesoscale atmospheric transport models

Complementary to the direct calculation of carbon fluxes,
pyVPRM can also be used as a preprocessor to generate input
files for online flux calculation within mesoscale atmospheric
models, such as the greenhouse gas module of the Weather
Research and Forecasting (WRF-GHG/WRF-Chem) model

or ICON-ART. In this case, the fluxes are calculated us-
ing the 2 m temperature and shortwave radiation at the sur-
face calculated within the atmospheric model. The procedure
for the generation of the input files is similar to the proce-
dure described in Sect. 3.3. The difference is that, instead
of using Eq. (13) to calculate the CO2 fluxes, the EVI and
LSWI fields as well as the land cover map are regridded to
match the input format of the atmospheric model. Overall,
the VPRM preprocessor needs to create seven files: two con-
taining the daily EVI and LSWI for each vegetation class,
four with the annual minimum and maximum EVI and LSWI
for each vegetation class, and one with the pixel-wise frac-
tion of each vegetation class. In pyVPRM, the output files can
be directly written from a VPRM preprocessor instance us-
ing the to_wrf_output(.) method. Figure 5 shows an example
of the vegetation fractions for Europe using the Copernicus
Dynamic Land Cover Collection 3 (Buchhorn et al., 2020) as
input.

4 Estimating VPRM parameters for Sentinel-2,
MODIS, and VIIRS

The full equation of the VPRM model, Eq. (13), contains
four free parameters for each vegetation class: the quantum
efficiency λ, the half saturation value of the photosynthetic
activity PAR0, and two parameters, α and β, describing a
linear respiration model with temperature. Those parameters
are required to calculate the carbon fluxes, whether VPRM is
used offline or within the weather prediction/tracer transport
model. To estimate those parameters, in situ CO2 flux mea-
surements from eddy-covariance towers are used. We show
here an example of the fitting procedure for the European
domain and provide an updated VPRM parameter set for
Sentinel-2, MODIS, and VIIRS.

4.1 Flux tower selection

Several data collections provide harmonized eddy-
covariance flux tower measurements for a collection of
measurement sites. For example, the FLUXNET2015 data
collection (Pastorello et al., 2020) provides global data for a
total of 212 sites, but currently only up to the year 2015. On
a continental level, AmeriFlux provides data for North and
South America, the ICOS Carbon Portal (ICOS RI et al.,
2023) provides data for Europe, and OzFlux provides data
for Australia and New Zealand.

For our European application, we combine data from
FLUXNET and ICOS covering the period between 2002
and 2022. An overview of the locations and ecosystem types
of the various stations is given in Fig. 6. For the fit of the
Sentinel-2 parameters, only sites with data after 2015 can be
used. To be consistent with previous VPRM versions (Ger-
big and Koch, 2021), we use only 1 year of flux tower data
per site. The year is selected as the year within the data ac-
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Figure 5. Vegetation fractions of the eight land cover classes used in our VPRM model, based on the Copernicus Dynamic Land Cover
Collection 3. The data are regridded on a 0.25°× 0.25° regular grid. This is a typical example of a vegetation fraction map that can also be
used in mesoscale atmospheric models like WRF-GHG/WRF-Chem or ICON-ART. The abbreviations are evergreen forest (EF), deciduous
forest (DF), mixed forest (MF), shrubland (SH), cropland (CRO), grassland (GRA), non-vegetated (URB), and wetland (WET). Not shown
here are the other files generated by the pyVPRM preprocessor, i.e., the EVI and LSWI maps.

Figure 6. Left panel: the flux tower sites used to estimate the VPRM parameters. Circles with black and white contours indicate data that
were used from the ICOS or FLUXNET data collection, respectively. Different colors show the different vegetation types with the number
of sites shown in the histogram on the right. Brighter bars show the number of ICOS and FLUXNET stations with available data during the
period covered by MODIS. Darker bars show the number of stations available since the launch of Sentinel-2. Abbreviations are as follows:
EF – evergreen forest, DF – deciduous forest, MF – mixed forest, SHR – shrubland, CRO – cropland, GRA – grassland, WET – wetland,
SAV – savanna. Background satellite image created using MODIS data.

quisition period of the respective satellite with the maximum
amount of available flux tower data. Overall, we use 97 sites
for MODIS, 52 sites for Sentinel-2, and 68 sites for VIIRS.
An overview of the stations used for parameter estimation is
shown in Sect. D for each satellite mission.

All flux towers use the eddy-covariance technique, which
determines vertical fluxes from turbulence-resolving (i.e.,
sub-second) measurements of the vertical wind component
and the quantity of interest – in our case, CO2 (Baldocchi
et al., 2001; Swinbank, 1951). They measure a weighted av-
erage of fluxes in the upwind direction. The spatial area from

which fluxes contribute to the measurement is called the foot-
print, and this depends strongly on the height above canopy
of the flux tower itself, as well as other aerodynamic quanti-
ties such as the surface roughness (Chen et al., 2009; Schmid,
1994). Optimally, the flux tower should be surrounded by
a sufficiently homogeneous landscape to be representative
for a specific land cover class. This is, however, not always
the case. For some sites, the measurement might see signals
from different land cover types at different times (Järvi et al.,
2012). Other sites might be located in a satellite pixel that
overlaps with different land covers; see Fig. 2. For this rea-
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son, we visually inspect all sites using Google Earth and re-
move those that are extremely heterogeneous on the spatial
scale of the satellite resolution.

4.2 Spatial smoothing

Spatial smoothing is a way to account for footprints that ex-
ceed the size of a single satellite pixel. In previous VPRM
versions (Mahadevan et al., 2008), the EVI and LSWI of the
nine MODIS pixels surrounding the tower location were av-
eraged for comparison with the flux tower data. This means
averaging over a region of around 1.5× 1.5 km2. In many
cases, especially in Europe, the averaging is therefore done
over heterogeneous land cover types, leading to inconsisten-
cies between measured and modeled fluxes; see Fig. 10.

We mitigate this problem by dropping the spatial smooth-
ing for MODIS and VIIRS (with 500 m resolution), i.e.,
we use only the pixel in which the tower is located. For
Sentinel-2, with a pixel size of 20 m, we use a 3× 3 pixel
(60 m× 60 m) spatial smoothing centered at the tower loca-
tion.

In general, pyVPRM also provides the option of using ar-
bitrary weighting kernels in the smearing(.) function of the
VPRM preprocessor to better match the satellite observation
to flux tower footprint models.

4.3 Fitting VPRM parameters

For the fit, we choose only the highest-quality data
points, thus removing low turbulence conditions with
bad flux measurements (i.e., only using data where
“NEE_VUT_REF_QC” is 0). Further, we ensure that the data
are distributed uniformly over the year and the time of the
day. To do that, we group the data in two dimensions by week
of the year and time of the day in 3-hour time steps. Subse-
quently, we randomly sample three measurements from each
group. This leads to a selection of O(103) data points with
uniform distribution over the year for each tower. The se-
lected data are fitted using a two-step mean-squared-error
fitting. In the first step, the respiration parameters are fitted
for nighttime data only, thus naturally removing the light-
dependent photosynthesis. In the second step, NEE is fitted
using the best-fit parameters of the first step for the respira-
tion parameters. This fitting procedure hence does not require
a partitioning of the measured NEE into GPP and respiration
but rather uses the flux measurements directly. This avoids
typical assumptions and uncertainties that arise when parti-
tioning the carbon fluxes from eddy-covariance towers (Wut-
zler et al., 2018). In pyVPRM, each VPRM model class has a
function fit_vprm_data(.) that performs the fit.

5 Results

VPRM parameters for the different satellite missions
(MODIS, VIIRS, Sentinel-2) for the European domain are

shown in Table 3. We observe that, although the wavelength
bands of MODIS and Sentinel-2 largely overlap, there are
some differences between the parameters for the two prod-
ucts. This could be related to slight differences in the satel-
lite bands and data collection or in the different spatiotem-
poral resolutions of the observations. This question will be
investigated in further studies. The parameters for VIIRS are
calculated using EVI2 (without the blue band) and hence are
not expected to be directly comparable.

In order to evaluate how the high resolution of Sentinel-
2 can improve flux estimates, we have studied some of the
(heterogeneous) cropland flux sites in more detail. In Fig. 7,
the monthly average diurnal cycle is shown for the Selhausen
Juelich site (DE-RuS; 50.8659° N, 6.4471° E). Evidently, the
monthly median diurnal cycle of Sentinel-2 matches the ob-
servation much better than the one from MODIS in most
months. This is a direct consequence of the different sea-
sonal cycles of the EVI, as shown in Fig. 2. While the higher
resolution of the Sentinel-2 images allows the growing pe-
riods of the specific field to be resolved, MODIS is averag-
ing over several fields, resulting in a superposition of their
seasonal cycles. This results in predicted fluxes in April and
May that are much larger than what is observed at the site.
Overall, the mean-squared deviation from the measurement
reduces from 43.9 (MODIS) to 7.1 (Sentinel-2). Similar ef-
fects can be observed for many cropland sites, which is espe-
cially problematic in Europe, where 38 % of the land surface
is covered with cropland. Figure 8 gives an overview of the
mean-squared deviation from the measurement for the crop-
land sites with data availability during the Sentinel-2 mis-
sion. For comparison, we also show similar results for ever-
green forest sites, which are usually pretty homogeneous (the
same plot for deciduous and mixed forest is shown in the Ap-
pendix, Fig. G1). As expected, the majority of cropland sites
show a significant reduction in the mean-square deviation,
while there is no trend for evergreen forests (as for the other
forest classes). The full diurnal cycles of all cropland sites
in Fig. 8 are shown in Appendix E. Our findings are in line
with a recent study of Bazzi et al. (2024) that found that us-
ing Sentinel-2 data significantly improves the simulation of
cropland carbon dioxide fluxes in Europe.

As an example for a high-resolution pyVPRM flux, we
have calculated hourly NEE in the 19 km× 19 km region
around Vienna using a combination of Sentinel-2 data
for 2022, a hybrid land cover map (as explained above),
and the ERA5-Land meteorological reanalysis data from
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) (Hersbach et al., 2020). For shortwave ra-
diation, we use the parameter ssrd (surface solar radia-
tion downwards; paramID:169), and for the 2 m temper-
ature, the parameter t2m (2 m temperature; paramID:167)
(Muñoz Sabater et al., 2021). The VPRM parameters are
those described later in Table 3. The monthly aggregated re-
sults for May, July and October are shown in Fig. 9.
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Table 3. Overview of the VPRM parameter sets for MODIS, Sentinel-2, and VIIRS and the different ecosystems. Abbreviations are as
follows: EF – evergreen forest, DF – deciduous forest, MF – mixed forest, SHR – shrubland, CRO – cropland, GRA – grassland, WET –
wetland. The parameters of Gerbig (2024) can be found in Table C1 for comparison.

Temperatures MODIS Sentinel-2 VIIRS

Tmin Topt Tmax Tlow λ par0 α β λ par0 α β λ par0 α β

EF −4 15 38 −3 0.13 561.8 0.21 1.09 0.12 566.7 0.23 1.25 0.13 518.3 0.24 1.11
DF 1 21 37 0 0.12 526.7 0.24 1.15 0.11 428.9 0.25 1.47 0.13 461.0 0.26 1.12
MF −1 18 38 0 0.15 439.3 0.2 0.87 0.14 393.9 0.18 1.29 0.13 506.4 0.22 0.71
SHR −1 19 44 2 0.1 440.2 0.08 0.59 0.29 216.8 0.16 0.99 0.08 565.0 0.15 0.44
CRO −3 16 50 −3 0.09 925.0 0.17 1.10 0.08 965.8 0.17 1.14 0.08 930.5 0.18 1.17
GRA −2 17 36 −2 0.23 414.9 0.33 1.29 0.17 607.8 0.34 1.12 0.23 483.1 0.36 1.08
WET −2 26 40 0 0.12 393.2 0.28 −0.3 0.13 316.4 0.32 −0.39 0.09 552.8 0.29 −0.06

Figure 7. The mean diurnal cycle for each month at the cropland site Selhausen Juelich (DE-RuS, 50.8659° N; 6.4471° E) in 2022. The
median tower measurements for each hour of the day are shown as black lines. Colored solid lines indicate the results from the VPRM model
using indices from Sentinel-2 (green) and MODIS (blue). In the top panel, NEE is shown, and in the bottom panel, GPP (negative values,
carbon uptake) and respiration (positive values, carbon release) are shown. The flux partitioning is based on the nighttime partitioning method
with a variable u∗ threshold (Reichstein et al., 2005).

Finally, we have compared the MODIS-based European
fluxes from pyVPRM against those published on the ICOS
Carbon Portal for the year 2023 (ICOS RI et al., 2023); see
Fig. 12. A summary of the model properties for the differ-
ent flux datasets is shown in Table 4. The plot on the left
shows the annual net carbon flux as published on the ICOS
Carbon Portal using the old software and old model settings.
The middle panel shows a model run with the same VPRM
parameters and the same land cover maps as the old version
but using the pyVPRM to run the computations. The compar-
ison shows that the old and new software frameworks pro-
duce numerically compatible results. The right panel shows
the annual fluxes using pyVPRM and the new VPRM param-
eters as well as the new land cover map. This clearly shows
how the fluxes change with the new approach.

6 Discussion

Evidently, fluxes change significantly with the new VPRM
version. This is primarily driven by improvements in the
VPRM parameter estimation for cropland and grassland. The
origin of those improvements is illustrated in Fig. 10. Two
changes are important here: one related to the spatial smooth-
ing of the satellite data and one related to the fit procedure
itself.

First, the old VPRM version used a 3× 3 spatial smooth-
ing of the MODIS data before the fit, while pyVPRM does
not. The difference becomes particularly visible for heteroge-
neous land cover types – in Europe especially for grassland
and cropland. Figure 10 shows an example of this for the
Gebesee (DE-Geb; 51.0997° N, 10.9146° E) cropland site. A
single MODIS pixel on top of the flux tower already cov-
ers more than one field. Consequently, doing a 3× 3 pixel
smoothing includes many fields, diluting the seasonal cycle
of the EVI (see also Fig. 2). As a result, the new GPP model,
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Figure 8. Mean squared deviation (MSD) between the VPRM prediction and the eddy flux tower observation for evergreen forest (a) and
cropland (b) sites. Green and blue are used to show the VPRM predictions using Sentinel-2 and MODIS, respectively.

Figure 9. Monthly aggregated ecosystem fluxes for 3 months in the region around Vienna. The different months (May, July, October) are
shown in the panels from left to right. From top to bottom, net ecosystem exchange (NEE), gross primary production (GPP), and respiration
are shown. Negative values represent a carbon uptake, while positive fluxes show carbon release into the atmosphere. The fluxes are based
on Sentinel-2 images, a hybrid land cover map, and hourly ERA5-Land meteorological data. The corresponding land cover map is shown in
Fig. 4.
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Table 4. A comparison of the VPRM settings used to estimate the European carbon fluxes in Fig. 12.

ICOS Carbon Portal pyVPRM (old model) pyVPRM (new model)

Satellite product MODIS MOD09A1 version 6.1 MODIS MOD09GA version 6.1 MODIS MOD09GA version 6.1

Land cover map SYNMAP SYNMAP Copernicus Dynamic Land Cover
Collection 3

Meteorology ECMWF IFS (3-hourly) ECMWF ERA5-Land (hourly) ECMWF ERA5-Land (hourly)

VPRM parameters VPRM optimization code VPRM optimization code pyVPRM v3.0
version Rev.7 version Rev.7 (no spatial smoothing)
(using 3× 3 pixel smoothing) (using 3× 3 pixel smoothing)

Figure 10. Left panel: the monthly mean diurnal cycles for NEE (top plot) and for respiration and GPP (bottom plot) for the cropland site
Gebesee (DE-Geb; 51.0997° N, 10.9146° E) in 2007. Flux tower data are shown as solid black lines, and VPRM estimates from the old
and new model are shown as green and blue lines, respectively. The flux partitioning is based on the nighttime partitioning method with
a variable u∗ threshold. GPP is shown as negative fluxes (carbon uptake), and respiration as positive values (carbon release). Right panel:
image of the DE-Geb site. The blue square shows the MODIS pixel on top of the flux tower location (yellow pin). The green pixels show the
satellite data used in the previous VPRM version. © Google Earth 2024.

which does not use spatial smoothing, better matches the ob-
servations (Fig. 10).

The second key difference between the versions is that the
pyVPRM fit follows a two-step procedure: at the beginning,
the respiration parameters are fitted against nighttime (respi-
ration) measurements, and then the GPP parameters are fitted
using (daytime) NEE data (utilizing the previously fitted res-
piration parameters). The old parameters, on the other hand,
were produced by simultaneously fitting the GPP and respi-
ration parameters at once using daytime and nighttime NEE
data. The problem with this strategy is that errors in the GPP
are propagated to the respiration, as GPP fluxes are much
larger and more variable than those of respiration. In the case
of Gebesee (DE-Geb; 51.0997° N, 10.9146° E), the underes-
timation of the GPP forces the respiration to also be under-
estimated to better match the NEE.

In summary, this shows that it is important to (1) match the
spatial smoothing of the satellite data to the flux tower foot-
print and (2) to fit respiration and GPP separately to avoid
systematic biases. As a consequence, the slope of the new
respiration function, α in Eq. (9), is 3 times higher for grass-
lands and croplands than the previously reported parameters
(Gerbig, 2024) and therefore much more in line with the
respiration parameters for the other vegetation classes. Fig-

ure 11 shows the respiration function for the grasslands sites
for the old and the new version of VPRM (the same plot for
the cropland sites is shown in the Appendix, Fig. F1). The
respiration function in the old version underestimates the car-
bon release to the atmosphere for most of the sites. The de-
viation becomes especially large for high-respiration periods
(i.e., high-temperature periods). While it is evident that the
simple linear respiration function does not capture all effects
of the ecosystem respiration, the new function is clearly an
improvement over the old version. This has large implica-
tions for European flux estimates, as croplands and grassland
make up 39 % and 15 % of the total European land surface
area, respectively (Buchhorn et al., 2020).

Overall the annual NEE budget for the European domain
in 2023 changes by 75 %, from −2.1 PgC yr−1 (ICOS Car-
bon Portal (Gerbig and Koch, 2024)) to −0.45 PgC yr−1

(new pyVPRM estimate). The former is likely an overestima-
tion of the carbon sink, caused by the underestimation of res-
piration. Our new pyVPRM budget, on the contrary, is more
consistent with previous works estimating the European car-
bon sink (Monteil et al., 2020; Munassar et al., 2022; Crow-
ell et al., 2019; Scholze et al., 2019). Monteil et al. (2020)
provides a comprehensive intercomparison study of different
inversion systems with varying transport models, inversion
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Figure 11. Comparison of VPRM respiration models and eddy-covariance measurements for the old VPRM model and the new pyVPRM
model at the grassland sites. For the measurements data, the partitioned variable “RECO_NT_VUT_REF” has been used. The bands show
the 10th and 90th percentiles of the model. The black solid line is the expectation for a perfect model.

Figure 12. Annual NEE for Europe in 2023 at a 0.25°× 0.25° resolution. Negative flux values (green) show a net carbon uptake, while
positive values (purple), a net carbon release. Left panel: fluxes taken from the ICOS Carbon Portal (Gerbig and Koch, 2024). Middle panel:
fluxes generated with pyVPRM but using the same VPRM parameters and land cover map (SYNMAP) as for the fluxes in the ICOS Carbon
Portal. Right panel: fluxes calculated using the new pyVPRM implementation with the new land cover map and MODIS VPRM parameters
as given in Table 3.

approaches, and priors for the European domain. For most
prior biogenic flux models, the estimate carbon sink is be-
tween −0.5 and 0 PgC yr−1. A much larger sink is estimated
only when using the old VPRM fluxes as the prior, which is
likely related to the respiration issue discussed above. By as-
similating three datasets (in situ atmospheric CO2, remotely
sensed soil moisture, and vegetation optical depth), Scholze
et al. (2019) estimate a carbon sink of−0.3±0.08 PgC yr−1.
Crowell et al. (2019) use OCO-2 XCO2 data in an inversion
system and estimate the sink as −0.25± 0.46 PgC yr−1.

As expected, the changes from the old to the new VPRM
estimate are mainly driven by changes in the budget of

grassland and cropland. In both cases, the carbon sink de-
creases by around 0.7 PgC yr−1. Cropland is estimated to be
a sink with−0.16 PgC yr−1. Grassland, on the contrary, turns
into a source of around 0.4 PgC yr−1. This is clearly visible
in Scandinavia, around the Mediterranean, and in northern
Africa. Assuming a closed carbon cycle, this is an indica-
tion that some model issues also remain in the new VPRM
version. Especially unrealistic are net respiration fluxes in
low soil and biomass carbon regions in southern Spain up
to nearly 1 kgC m2 yr−1. As a second-order effect, the sink
of evergreen forests is reduced by around 0.4 PgC yr−1.
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There are different limitations in the current VPRM model
that could explain inaccuracies: (1) the sparse coverage of
eddy-covariance towers, especially in Scandinavia, Spain,
and the Balkans, does not provide strong constraints on the
VPRM parameters in these regions. Hence, the VPRM pa-
rameters from central Europe are extrapolated to regions and
climates where they likely have limited applicability. This
problem appears to be smaller in the previous VPRM version
because of the underfitted respiration parameters; see Fig. 11.
(2) The linear respiration function is likely unrealistic for
high temperatures and low soil moisture levels. Recent stud-
ies suggest that unimodal respiration functions might provide
a better description under these conditions (Niu et al., 2024).
(3) The respiration function currently does not take into ac-
count the total amount of plants and biomass available. This
problem can be tackled by including EVI in the respiration
as shown in (Gourdji et al., 2022). An implementation of this
modified VPRM is available in the pyVPRM GitHub reposi-
tory (https://github.com/tglauch/pyVPRM/tree/main, last ac-
cess: 24 July 2025) but not discussed in this paper. Improve-
ments for the respiration function will be investigated and
implemented in future versions of pyVPRM. Finally, grass-
lands pose a special challenge, as they can be managed/un-
managed, xeric/non-xeric, and high/low altitude. Most Euro-
pean flux tower sites currently measure managed grasslands
in central Europe. Adding flux towers in the dry (Mediter-
ranean) and polar (Scandinavian) regions might facilitate cal-
culation of the VPRM parameters for those different types of
grasslands.

A central improvement of pyVPRM is the ability to use
different satellite and land cover data products depending on
the application. While MODIS and VIIRS provide long-term
observations at 500 m resolution, Sentinel-2 is especially ap-
plicable for high-resolution applications like the modeling of
urban fluxes. Especially for heterogeneous land cover types
such as croplands and grasslands, the new VPRM parame-
ters enhance the coherence between the model and flux tower
data. However, the current VPRM parameter estimation still
has limitations. Notably, it does not account for the time-
dependent footprint of the flux towers, which remains a key
area for improvement in future research.

7 Conclusions

pyVPRM provides a next-generation framework for the ap-
plication of the Vegetation Photosynthesis and Respiration
Model (VPRM) from city to continental scale. The model
is driven by remote sensing indices and meteorological
variables to estimate the ecosystem’s light-use efficiency
for the uptake of carbon through photosynthesis and the
(temperature-dependent) ecosystem respiration. Typical ap-
plications are the estimation of ecosystem carbon budgets
from city to global scale and as a biospheric prior for the
estimation of both biogenic and anthropogenic CO2 emis-

sions using atmospheric inversion with transport models like
WRF-GHG (Beck et al., 2012) or ICON-ART (Schröter
et al., 2018).

pyVPRM extends previous VPRM versions (Mahadevan
et al., 2008) by including the latest remote sensing prod-
ucts from Sentinel-2 and VIIRS, as well as updated and dy-
namic land cover products like the global Copernicus Dy-
namic Land Cover Collection 3 and the global ESA World-
Cover. Using Sentinel-2 data enables us, for the first time, to
resolve very heterogeneous landscapes like croplands, agri-
cultural grasslands, or urban areas. Using VIIRS as a replace-
ment for MODIS guarantees consistent long-term datasets
after the planned discontinuation of MODIS. Furthermore,
pyVPRM brings improvements in the model parameteriza-
tion of grasslands and shrublands compared to the current
implementation in the ICOS Carbon Portal (Gerbig, 2024).

Free model parameters for eight ecosystem types are fit-
ted using data from up to 97 eddy-covariance towers across
Europe. Comparing to flux tower data we observe significant
improvements with the Sentinel-2 model, due to a better rep-
resentation of the flux tower footprint. This is most important
for cropland and grassland sites, which are heterogeneous
vegetation classes that are very abundant in Europe.

In contrast to previous MODIS-based flux estimates for
the European domain (Gerbig and Koch, 2021), pyVPRM has
a more realistic overall budget when compared to indepen-
dent top-down estimates (Monteil et al., 2020) and improves
the seasonal and diurnal cycle for grassland and cropland.
This is mostly related to the improved fitting procedure, in
which the estimation of the respiration function is not in-
fluenced by mismatches between the measured GPP and the
EVI estimation. Smaller improvements come from the usage
of a higher-resolution land cover map and the replacement
of the 3-hourly ECMWF IFS model (Roberts et al., 2018)
with the hourly and higher-resolution ERA5-Land reanalysis
(Muñoz Sabater et al., 2021).

Due to its modular structure, pyVPRM can be easily ex-
tended to incorporate other satellite missions, meteorologi-
cal models, and land cover classifications. Likewise, differ-
ent versions of the VPRM model can be implemented, e.g.,
the modified VPRM that includes nonlinear respiration terms
(Gourdji et al., 2022) or the urban VPRM, which has been
optimized for applications inside of urban areas (Hardiman
et al., 2017). Likewise, we can use the pyVPRM framework
to run machine-learning-based models.

Appendix A: Code structure

For examples on how pyVPRM can be used, hands-
on example scripts are available on GitHub (https://
github.com/tglauch/pyVPRM_examples/tree/main, last ac-
cess: 24 July 2025). Here, we provide a brief overview of the
classes and scripts provided within pyVPRM. Two main li-
braries provide the interface for accessing and preprocessing
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the required meteorological and satellite data: pyVPRM/me-
teorologies and pyVPRM/sat_managers), respectively. The
main preprocessing of the satellite data and land cover maps
is done in the VPRM class, defined in VPRM.py. This is
necessary for any kind of VPRM usage. The modules of
different VPRM flux models and parameter-fitting func-
tions are defined in the scripts in pyVPRM/vprm_models/,
such as pyVPRM/vprm_models/vprm_base.py for the “base”
version of the model. The interface to work with
flux tower data used for parameter fitting is given in
pyVPRM/lib/flux_tower_class.py, and some useful functions
are provided in pyVPRM/lib/functions.py. More details about
the scripts/libraries and the functions therein are provided
below.

A1 pyVPRM/meteorologies

The met_data_handler classes in this folder provide an in-
terface for the input meteorological data, which need to
be customized if using a different model or data source.
All meteorology classes are derived from the base class
in met_base_class.py. An example to implement a new
meteorology class can be found in era5_class_draft.py.
met_local_measurement.py is used to extract and employ
site-level meteorological data.

A2 pyVPRM/sat_managers

The satellite_data_manager class in this library is the ba-
sic data structure for all satellite image and land cover maps
used in pyVPRM. It provides functions to re-project, trans-
form, merge, and crop satellite images. All other classes for
specific satellite images or land cover maps, with their re-
spective loading routines, are derived from this base class
and implemented in the respective class files in the folder.

The other scripts in this library define classes for spe-
cific satellite reflectance products (modis.py, proba_v.py,
sentinel2.py, viirs.py, viirs09ga.py) or land cover maps
(city.py, copernicus.py, esa_world_cover.py, mapbiomas.py,
synmap.py), along with product-specific functions for
data screening (e.g., for clouds, snow, and bad pixels).
Configuration (YAML) files defining the VPRM vegeta-
tion classes for different land cover maps are found in
pyVPRM/vprm_configs and are required to map the land
cover categories to VPRM classes.

A3 VPRM.py

The VPRM class defined in VPRM.py is the implementation
of the VPRM preprocessor. This is the central code to calcu-
late the satellite indices, run the time smoothing, transform
satellite data and the land cover map to the same grid, and
prepare all the variables for the VPRM models. It can also
be used to generate input files to run VPRM online in atmo-
spheric models. In order to run the preprocessor, a configu-
ration file with a mapping from land cover classes to VPRM
classes is required.

A4 pyVPRM/vprm_models/vprm_base.py

In this folder, different implementations of the VPRM model
are included. Every implementation requires at least a func-
tion to fit the VPRM parameters and make VPRM predic-
tions given an instance of the VPRM preprocessor and the
meteorology. The version described throughout this paper is
in vprm_base.py.

A5 pyVPRM/lib/flux_tower_class.py

Flux tower data are not completely harmonized in terms
of format, and as such, custom classes will likely need to
be added to accommodate new data sources, and vegeta-
tion classes/land cover types may need to be harmonized
by hand. Custom classes are included in this script already
for FLUXNET, ICOS, AmeriFlux, and the LBA-ECO CD-
32 Flux Tower Network Data Compilation. This can also be
used as a template for adding new flux tower sites.

pyVPRM/lib/functions.py

Additional functions that are used in pyVPRM are stored in
functions.py.
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Appendix B: Data quality masking

Table B1. Flags used for data masking in MODIS. Scenes where any of the band quality, cloud masking, or cloud shadow masking criteria
are not fulfilled are masked out. Scenes with an active snow flag receive special treatment; see Sect. 3.1.3.

MODIS

Band quality masking Highest-quality surface reflectance band quality description (0000) for band 1, band 2, band 3, band 6
Cloud masking State QA flag 0–1 (cloud state)== 00 (clear), and state QA flag 8–9 (cirrus detected)== 00 (none)
Cloud shadow masking State QA flag 2 (cloud shadow)== 0 (no)
Snow masking State QA flag 12 (MOD35 snow/ice flag)== 0 (no)

Table B2. Flags used for data masking in VIIRS. Scenes where any of the band quality, cloud masking, or cloud shadow masking criteria are
not fulfilled are masked out. Scenes with an active snow flag receive special treatment; see Sect. 3.1.3.

VIIRS

Band quality masking Highest-quality surface reflectance band quality description (0000) for band 1, band 2, band 3
Cloud masking State QA flag 0–1 (cloud state)== 00 (clear), and state QA flag 8–9 (cirrus detected)== 00 (none)
Cloud shadow masking State QA flag 2 (cloud shadow)== 0 (no)
Snow masking State QA flag 12 (MOD35 snow/ice flag)== 0 (no)

Table B3. Flags used for data masking in Sentinel-2. Scenes where any of the band quality, cloud masking, or cloud shadow masking criteria
are not fulfilled are masked out. Scenes with an active snow flag receive special treatment; see Sect. 3.1.3.

Sentinel-2

Band quality masking SCL flag not 0, 1, 2
Cloud masking SCL flag not 8, 9, 10
Cloud shadow masking SCL flag not 3
Snow masking SCL flag not 11

Appendix C: Old VPRM parameters

Table C1. Overview of the VPRM parameter sets for MODIS used for the fluxes in the ICOS Carbon Portal (Gerbig, 2024). Abbreviations
are as follows: EF – evergreen forest, DF – deciduous forest, MF – mixed forest, SHR – shrubland, SAV – Savanna, CRO – cropland, GRA
– grassland.

Temperatures MODIS

Tmin Topt Tmax Tlow λ par0 α β

EF 0 20 40 4 0.1 621.7 0.22 −0.64
DF 0 20 40 0 0.09 620.4 0.13 1.14
MF 0 20 40 2 0.07 1019.8 0.17 0.01
SHR 2 20 40 4 0.1 200.0 0.05 −0.17
SAV 2 20 40 0 0.06 344.4 0.005 0
CRO 5 22 40 0 0.04 2619.7 0.07 0.58
GRA 2 18 40 0 0.09 1147.4 0.09 0.36
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Appendix D: Flux tower data

Table D1. Overview of flux tower sites and years used for estimating the VPRM parameters for MODIS, VIIRS, and Sentinel-2. Table 1/3.

Site name Veg. Longitude Latitude MODIS Sentinel-2 VIIRS
type [° E] [° N]

AT-Neu GRA 11.32 47.12 2010 – –
BE-Bra EF 4.52 51.31 2022 2022 2022
BE-Lcr DF 3.85 51.11 2020 2020 2020
BE-Lon CRO 4.75 50.55 2020 2020 2020
BE-Maa SH 5.63 50.98 2022 2022 2022
BE-Vie MF 6.00 50.30 2022 2022 2022
CH-Cha GRA 8.41 47.21 2013 – 2013
CH-Dav EF 9.86 46.82 2022 2022 2022
CH-Fru GRA 8.54 47.12 2008 – 2013
CH-Lae MF 8.36 47.48 2014 – 2014
CH-Oe1 GRA 7.73 47.29 2007 – –
CH-Oe2 CRO 7.73 47.29 2009 – 2013
CZ-BK1 EF 18.54 49.50 2022 2022 2022
CZ-BK2 GRA 18.54 49.49 2004 – –
CZ-Lnz DF 16.95 48.68 2022 2022 2022
CZ-wet WET 14.77 49.02 2020 2020 2020
DE-Akm WET 13.68 53.87 2010 – 2013
DE-Geb CRO 10.91 51.10 2021 2021 2021
DE-Gri GRA 13.51 50.95 2021 2021 2021
DE-Hai DF 10.45 51.08 2020 2020 2020
DE-Har MF 7.60 47.93 2021 2021 2021
DE-HoH DF 11.22 52.09 2022 2022 2022
DE-Kli CRO 13.52 50.89 2020 2020 2020
DE-Lkb EF 13.30 49.10 2011 – –
DE-Lnf DF 10.37 51.33 2008 – –
DE-Msr EF 11.46 47.81 2021 2021 2021
DE-Obe EF 13.72 50.79 2012 – –
DE-RuR GRA 6.30 50.62 2015 2020 2015
DE-RuS CRO 6.45 50.87 2022 2022 2022
DE-RuW EF 6.33 50.50 2012 2020 2012
DE-Seh CRO 6.45 50.87 2009 – –
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Table D2. Overview of flux tower sites and years used for estimating the VPRM parameters for MODIS, VIIRS, and Sentinel-2. Table 2/3.

Site name Veg. Latitude Longitude MODIS Sentinel-2 VIIRS
type [° N] [° E]

DE-SfN WET 11.33 47.81 2014 – 2014
DE-Spw WET 14.03 51.89 2012 – –
DE-Tha EF 13.57 50.96 2022 2022 2022
DE-Zrk WET 12.89 53.88 2014 – 2014
DK-Eng GRA 12.19 55.69 2006 – –
DK-Fou CRO 9.59 56.48 2005 – –
DK-Gds EF 9.33 56.07 2021 2021 2021
DK-Skj WET 8.40 55.91 2022 2022 2022
DK-Sor DF 11.64 55.49 2022 2022 2022
DK-Vng CRO 9.16 56.04 2022 2022 2022
ES-Amo SH −2.25 36.83 2009 – –
ES-LJu SH −2.75 36.93 2009 – 2013
ES-LgS SH −2.97 37.10 2008 – –
ES-Ln2 SH −3.48 36.97 2009 – –
FI-Hyy EF 24.29 61.85 2019 2019 2019
FI-Jok CRO 23.51 60.90 2001 – –
FI-Ken EF 24.24 67.99 2020 2020 2020
FI-Let EF 23.96 60.64 2017 2017 2017
FI-Lom WET 24.21 68.00 2008 – –
FI-Sii WET 24.19 61.83 2019 2019 2019
FI-Sod EF 26.64 67.36 2011 – 2013
FI-Var EF 29.61 67.75 2018 – 2018
FR-Aur CRO 1.11 43.55 2021 2021 2021
FR-Bil EF −0.96 44.49 2022 2022 2022
FR-EM2 CRO 3.02 49.87 2020 2020 2020
FR-Fon DF 2.78 48.48 2020 2020 2020
FR-Gri CRO 1.95 48.84 2022 2022 2022
FR-Hes DF 7.06 48.67 2022 2022 2022
FR-LBr EF −0.77 44.72 2002 – –
FR-LGt WET 2.28 47.32 2020 2020 2020
FR-Lam CRO 1.24 43.50 2022 2022 2022
FR-Mej GRA −1.80 48.12 2020 2020 2020
FR-Pue EF 3.60 43.74 2022 2022 2022
FR-Tou GRA 1.37 43.57 2020 2020 2020
IT-BCi CRO 14.96 40.52 2007 – 2013
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Table D3. Overview of flux tower sites and years used for estimating the VPRM parameters for MODIS, VIIRS, and Sentinel-2. Table 3/3.

Site name Veg. Latitude Longitude MODIS Sentinel-2 VIIRS
type [° N] [° E]

IT-BFt DF 10.74 45.20 2021 2021 2021
IT-CA1 DF 12.03 42.38 2012 – –
IT-CA2 CRO 12.03 42.38 2012 – –
IT-CA3 DF 12.02 42.38 2013 – 2013
IT-Col DF 13.59 41.85 2014 – 2014
IT-Cp2 MF 12.36 41.70 2022 2022 2022
IT-Cpz EF 12.38 41.71 2000 – –
IT-Isp DF 8.63 45.81 2014 – 2014
IT-La2 EF 11.29 45.95 2001 – –
IT-Lav EF 11.28 45.96 2013 – 2013
IT-Lsn SH 12.75 45.74 2018 2018 2018
IT-MBo GRA 11.05 46.01 2007 – –
IT-Niv GRA 7.14 45.49 2020 2020 2020
IT-Noe SH 8.15 40.61 2010 – –
IT-PT1 DF 9.06 45.20 2003 – –
IT-Ren EF 11.43 46.59 2022 2022 2022
IT-Ro1 DF 11.93 42.41 2006 – –
IT-Ro2 DF 11.92 42.39 2009 – –
IT-SR2 EF 10.29 43.73 2021 2021 2021
IT-SRo EF 10.28 43.73 2004 – –
IT-Tor GRA 7.58 45.84 2022 2022 2022
NL-Hor GRA 5.07 52.24 2007 – –
NL-Loo EF 5.74 52.17 2006 – –
SE-Deg WET 19.56 64.18 2020 2020 2020
SE-Htm EF 13.42 56.10 2022 2022 2022
SE-Nor EF 17.48 60.09 2020 2020 2020
SE-St1 WET 19.05 68.35 2013 – 2013
SE-Sto WET 19.05 68.36 2022 2022 2022
SE-Svb EF 19.77 64.26 2020 2020 2020
SJ-Adv WET 15.92 78.19 2011 – 2013
UK-AMo WET −3.24 55.79 2022 2022 2022
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Appendix E: Diurnal cycles for cropland sites

Figure E1. The mean diurnal cycle for each month at the cropland site BE-Lon. The median tower measurements for each hour of the day
are shown as black lines. Colored solid lines indicate the results from the VPRM model using indices from Sentinel-2 (green) and MODIS
(blue). In panel (a), NEE is shown, and in panel (b), GPP (negative values, carbon uptake) and respiration (positive values, carbon release)
are shown. The flux partitioning is based on the nighttime partitioning method with a variable u∗ threshold (Reichstein et al., 2005).

Figure E2. The mean diurnal cycle for each month at the cropland site DE-Geb. For more details, see Fig. E1.
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Figure E3. The mean diurnal cycle for each month at the cropland site DE-Kli. For more details, see Fig. E1.

Figure E4. The mean diurnal cycle for each month at the cropland site DE-RuS. For more details, see Fig. E1.

Figure E5. The mean diurnal cycle for each month at the cropland site DK-Vng. For more details, see Fig. E1.
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Figure E6. The mean diurnal cycle for each month at the cropland site FR-Aur. For more details, see Fig. E1.

Figure E7. The mean diurnal cycle for each month at the cropland site FR-EM2. For more details, see Fig. E1.

Figure E8. The mean diurnal cycle for each month at the cropland site FR-Gri. For more details, see Fig. E1.
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Figure E9. The mean diurnal cycle for each month at the cropland site FR-Lam. For more details, see Fig. E1.

Appendix F: Respiration functions

Figure F1. Comparison of VPRM respiration models and eddy-covariance measurements for the old VPRM model and the new pyVPRM
model at the cropland sites. For the measurement data, the partitioned variable “RECO_NT_VUT_REF” has been used. The bands show the
10th and 90th percentiles of the model. The black solid line is the expectation for a perfect model.
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Appendix G: Mean squared deviation for deciduous
forest and mixed forest

Figure G1. Mean squared deviation (MSD) between the VPRM prediction and the eddy flux tower observation for deciduous forest (a) and
mixed forest (b) sites. Green and blue are used to show the VPRM predictions using Sentinel-2 and MODIS, respectively.

Code and data availability. The current version of
pyVPRM is available from the project website, i.e.,
https://github.com/tglauch/pyVPRM (last access: 28 July 2025),
under the MIT license. The exact version of the model used
to produce the results used in this paper is archived on Zen-
odo at https://doi.org/10.5281/zenodo.14216613 (Glauch,
2024) (v3.0). Data processing scripts are specific to the DLR
Terrabyte cluster that has been used to calculate the results.
Ecosystem final quality (L2) product in ETC-Archive format
– INTERIM release 2023-2 – were downloaded from the
ICOS Carbon Portal, DOI: https://doi.org/10.18160/JYAR-
7YEH (ICOS RI et al., 2023). FLUXNET 2015 data were
retrieved from https://doi.org/10.1038/s41597-020-0534-3
(Pastorello et al., 2020). The MODIS and VIIRS satel-
lite datasets are publicly available through LP DAAC:
MOD09GA (https://doi.org/10.5067/MODIS/MOD09GA.061,
Vermote and Wolfe, 2021), MYD09GA
(https://doi.org/10.5067/MODIS/MOD09GA.061,
Vermote and Wolfe, 2021), MOD09A1
(https://doi.org/10.5067/MODIS/MOD09A1.061,
Vermote, 2021a), MYD09A1 (Vermote, 2021b),
VNP09GA (https://doi.org/10.5067/VIIRS/VNP09GA.002,
Vermote et al., 2023a), and VNP09H1
(https://doi.org/10.5067/VIIRS/VNP09H1.002, Vermote
et al., 2023b). Sentinel-2 Collection 1 Level-2A data are
distributed through the Copernicus Data Space Ecosystem
(https://doi.org/10.5270/s2_-znk9xsj, ESA, 2022). The land

cover maps are accessible through
https://doi.org/10.5281/zenodo.3938963, (Buchhorn
et al., 2020) (Copernicus Land Cover Service) and
https://doi.org/10.5281/zenodo.7254221 (Zanaga et al., 2022)
(ESA WorldCover).
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