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Abstract. In the Gulf of Trieste, the sea surface currents
were observed by high-frequency radar for almost 2 years
(2021–2022) at a temporal resolution of 30 min. We devel-
oped a hierarchy of idealized models to simulate the ob-
served sea surface currents, combining a deterministic and
a stochastic approach, in order to reproduce the externally
forced motion and the internal variability, which is charac-
terized by fat-tailed statistics. The deterministic signal in-
cludes tidal and Ekman forcing and resolves the slowly
varying part of the flow, while the stochastic signal repre-
sents the fast-varying small-scale dynamics, characterized by
Gaussian or fat-tailed statistics, depending on the statistic
used. This is done using Langevin equations and modified
Langevin equations with a gamma-distributed variance pa-
rameter. The models were adapted to resolve the dynamics
under nine tidal and wind forcing protocols in order to best
fit the observed forced motion and internal variability proba-
bility density function (PDF). The stochastic signal requires
2 stochastic degrees of freedom when the average tidal forc-
ing is adopted, while it needs 1/2 stochastic degree of free-
dom when the complete tidal forcing is used. Despite its ide-
alization, the deterministic–stochastic model with stochastic
fat-tailed statistics captures the essential dynamics and per-
mits mimicking the observed PDF. Moreover, a fluctuation
response relation is valid when the stochastic signal is per-
turbed, showing that the response to an external perturbation
can be obtained by considering the fluctuations of the unper-
turbed system.

1 Introduction

The Gulf of Trieste is a shallow, semi-enclosed basin in the
northern Adriatic Sea (Mediterranean Sea, Fig. 1). Its sur-
face circulation is influenced by the broader Adriatic cy-
clonic (anti-clockwise) circulation and the basin’s thermoha-
line stratification and circulation (Cosoli et al., 2012; Querin
et al., 2021). Due to its shallowness and small scale (horizon-
tal length scale of around 20 km and depth of around 25 m),
its current dynamics highly depend on two external forcings:
the wind forcing and the Isonzo/Soc̆a river freshwater input
(Querin et al., 2006; Cosoli et al., 2012, 2013; Querin et al.,
2021).

The Bora and the Sirocco are the main strong wind pat-
terns affecting the dynamics in the Gulf of Trieste. The Bora
is an east-north-easterly katabatic wind, bringing cold and
dry air from the continent over the sea (Poulain and Raicich,
2001). Its strength is heavily influenced by the local topogra-
phy, making it particularly powerful over the Gulf of Trieste,
where it can reach gusts up to 180 km h−1. When it blows,
surface water is pushed out of the gulf towards the Adriatic
basin, and a compensating bottom counter-current flows in,
causing upwelling on the coastal side (Malačič et al., 2001;
Querin et al., 2006; Reyes Suárez et al., 2022). The Sirocco
is a moist, warm and relatively mild southerly wind, chan-
nelled by the Adriatic coastal mountains. It causes sea level
rise in the northern Adriatic, leading to a strong southward
return flow when the wind diminishes (Cosoli et al., 2012).

In recent years, the Gulf of Trieste has benefitted from an
abundance of observational data, particularly high-frequency
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radar (HFR) sea surface currents. The amount of data will
strongly increase in the near future. This large amount of
data allowed for a statistical approach to characterize the data
(Flora et al., 2023). In particular, the authors found the an-
alytical probability density function (PDF) of the observed
HFR sea surface velocity increments using a superstatisti-
cal (a superposition of statistics) analysis and the principle
of maximum entropy. Superstatistical analysis (Beck et al.,
2005) considers a system with a clear timescale separation:
at a fast timescale, a Gaussian PDF is observed, of which the
variance evolves slowly, on the long timescale. In the Gulf of
Trieste, the fast timescale of around 2 h is consistent with the
turbulence of the mixed-layer dynamics. The slow timescale
of almost 2 d is consistent with the variability of the synoptic
wind forcing, and the variance is distributed according to a
gamma distribution with a shape parameter equal to 2. The
Gaussian is the minimum entropy PDF with a finite variance,
and the gamma distribution is the minimum entropy PDF for
a positive variable, as is the variance, with a specified mean.
The total PDF of the sea surface velocity increments is a fat-
tailed PDF, which means that extreme events occur more of-
ten than in Gaussian statistics. The superstatistical analysis,
however, is descriptive and has no predictive skills.

When modelling the turbulent ocean currents subject to a
known wind forcing, there is part of the dynamics that can
be described by a deterministic model and the unresolved
turbulent processes that have to be described stochastically.
This concept is reflected in stochastic differential equations
(SDEs) and the corresponding Fokker-Planck equations. The
former consider the evolution of many possible realizations,
which allow construction of a time-evolving PDF, while the
latter describe the deterministic evolution of the PDF. The
use of SDEs in air–sea interaction was pioneered by Has-
selmann (1976), who initiated a strand of scientific research
on stochastic climate models. Taking into account the cou-
pled ocean–atmosphere–cryosphere–land system, he divided
it into a fast varying “weather” system and a slowly respond-
ing “climate” system, clearly separated by a fast and a slow
timescale. In his modelization, the slow climate variables
play the role of large particles interacting with an ensemble
of smaller particles, i.e. the fast weather variables in the anal-
ogy, of the so-called Brownian motion problem. In this pic-
ture, the dispersion of the climate variables is inferred from
the statistics of the weather variables with which they inter-
act.

Brownian motion was first analytically described by Ein-
stein (1905) and Langevin (1908) (see Einstein, 1956 and
Lemons and Gythiel, 1997, respectively, for an English trans-
lation). Since that time, the SDE of the motion of a Brow-
nian particle has been called the “Langevin equation”. The
SDE approach, adopted also in this paper, has been widely
used in the past decades in a variety of scientific fields: sta-
tistical mechanics (Baldovin et al., 2018), condensed matter
physics (Silveira and Aarão Reis, 2012), marine biology and
oceanography (Brillinger and Stewart, 2010), space weather

science (Alberti et al., 2018), biophysics (Ham et al., 2022),
and finance (Wand et al., 2024), to name a few. Regarding
climate science, the Langevin equation has been widely used
(Berglund and Gentz, 2002; Wirth, 2019; van den Berk et al.,
2021), and great improvements have been achieved. Franzke
et al. (2015) and Palmer (2019) show that including stochas-
ticity into the parameterized representations of subgrid pro-
cesses of physical climate systems has improved the skill of
forecasts and reduced systematic model error. It is important
to remark that the use of additive noise in linear SDE has lim-
itations in terms of extreme event predictability, as it leads to
Gaussian statistics. Adopting multiplicative noise or nonlin-
ear damping, taking into account nonlinear interactions be-
tween resolved and unresolved modes of variability (Franzke
et al., 2005; Wirth, 2018) leads to non-Gaussian statistics, in-
creasing the fatness of the PDF tails of the modelled variables
(Sura, 2013).

Modern concepts of non-equilibrium statistical mechan-
ics have been applied to environmental fluid dynamics and
to components of the climate system. Often, these consid-
erations are limited to conceptual pertinence and tested on
idealized models, such as the Lorenz models (Lorenz, 1996)
and others, or on data from numerical models. In the present
work, we apply a hierarchy of idealized models for the sea
surface current observations from the Gulf of Trieste, starting
with a deterministic modelization and then adding increas-
ingly complex stochasticity. For solving these models, we
rely on analytical calculations where possible and proceed
with solutions of involved SDEs. This approach enables con-
necting observational data in a systematic way to the under-
lying principles of physics.

Our modelling approach is idealized and local: it consid-
ers one point in space, evolving in time, with wind shear and
tidal deterministic forcing and a stochastic signal that mim-
ics all the smaller unresolved scale dynamics. The aim of the
modelization is to simulate the evolution of the forced mo-
tion and of the observed analytical PDF. It is based on the
slow evolution of a short-timescale Gaussian and can be in-
terpreted by an SDE. This enables us to understand what is
the role of the stochasticity in the simulation of the Gulf of
Trieste wind- and tide-driven circulation. The model is fi-
nally used to test the fluctuation response relation (FRR), de-
scribed by Lacorata and Vulpiani (2007), that relates the sys-
tem’s reaction to external perturbations to spontaneous fluc-
tuations of the unperturbed system. An evaluation of the fore-
casting of ocean currents based on the SDE predictability is
also given.

In Sect. 2, the observed HFR sea surface data and the
model forcing atmosphere data are presented. In Sect. 3, the
modelization is explained with some FRR background and
predictability evaluation methodology, while the computa-
tional results and their discussion are given in Sect. 4. The
conclusions are reported in Sect. 5. In the Appendixes, the
details and methods of the analytical calculations are shown.
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2 The data

Two classes of time series are used: the observed sea sur-
face horizontal HFR current data and the forecasted wind
data for the Gulf of Trieste (northern Adriatic Sea, Fig. 1a).
The data sets used are identical to those presented in Flora
et al. (2023); they refer to a selected grid point in the Gulf
of Trieste (point P and point WRFP in Fig. 1b) and cover a
time range of almost 2 years: from 1 January 2021 to 18 Oc-
tober 2022.

Sea surface currents are measured by two beamform-
ing Wellen Radar stations operating in the Gulf of Trieste
(Lorente et al., 2022) (Fig. 1b, red dots). The HFR system
combines the radial sea surface currents of the two stations
to obtain the longitudinal u and the latitudinal v components,
with a spatial resolution of 1.5 km and a time resolution of
30 min. The data are open access; further details can be found
in OGS et al. (2023). The quality control standards from the
EU high-frequency node (Corgnati et al., 2018) were applied
to the data set. In addition, any remaining spikes were re-
moved. The measured u and v time series used in this article
are from the P grid point (Fig. 1b).

The atmosphere data consist of the forecasted wind
velocity field at 10 m above the surface in the Gulf
of Trieste from the Weather Research and Forecasting
(WRF) model (https://www.mmm.ucar.edu/models/wrf, last
access: 30 October 2024), version 4.2.1. The forecasting
is performed daily by the Agenzia Regionale per la Pro-
tezione dell’Ambiente del Friuli Venezia Giulia (ARPA
FVG) using initial and boundary conditions from the Na-
tional Oceanic and Atmospheric Administration Global
Forecasting System (https://www.ncei.noaa.gov/products/
weather-climate-models/global-forecast, last access: 30 Oc-
tober 2024) and provides the wind time series for the same
day and the following one. The field has a spatial resolution
of 2 km and a temporal resolution of 1 h. Additional technical
details can be found in Goglio (2018). The wind components
time series used in this article are from the WRFP grid point
(Fig. 1b) and account for the 1 d forecasting.

3 Methods

This section provides the model definition, the FRR back-
ground – with details on how it is dealt with within this study
– and a methodology to evaluate the predictability of the de-
veloped model.

3.1 The model hierarchy

The aim of the present work is to numerically simulate ob-
served sea surface currents with slow dynamics that is gov-
erned by the slow components of the forcings and with fast
variations that parameterize the remaining, unresolved pro-
cesses. This is achieved when the time-averaged dynamics
and the statistics of the time increments of the model agree

with the observation. In the following, the time series prefix
“δ” gives the increment time series, δu(t)= u(t + δ)− u(t),
and we call the observed fat-tailed PDF of the sea surface
current increments, from Flora et al. (2023), the “Exp-Lin”
PDF, as it is composed of an exponential and a linear term.

When modelling a natural process, such as currents,
through an SDE, part of the dynamics is resolved, and part of
it is parameterized by noise. What is deterministic and what
is noise depends on the degree of coarse-graining. In our pre-
vious work (Flora et al., 2023), the dynamics was parameter-
ized, and the model has no predictability. The other extreme
is a purely deterministic model that includes all the processes
involved. Such model is unattainable. We implemented a hi-
erarchy of three idealized local models (two velocity com-
ponents at one point in space, evolving in time) for the sea
surface current in the Gulf of Trieste. The first is the purely
deterministic (DET) model, taking into account the tidal sig-
nal and the wind-forced Ekman dynamics, while the unre-
solved processes are neglected. The second is the Gaussian
(GAU) model, which adds Gaussian additive stochastic noise
for which the corresponding SDE can be solved analytically.
The third is the superstatistical (SUP) model, which consid-
ers a deterministic signal with the most realistic stochastic
noise. The stochastic part of this model is partially resolv-
able analytically. Furthermore, these models are forced by
nine different forcing protocols (FPs) (see Sect. 4). The de-
terministic and stochastic models come in pairs; the more
processes and timescales are resolved deterministically, the
less have to be parameterized stochastically.

More precisely, the total sea surface current vector uo is
given in terms of the tidal current uM, the wind-forced Ek-
man sea surface current uE and the stochastic current uS, as
detailed in Table 1 for the different models. The tidal sig-
nal is an analytic and linear combination of n tidal com-
ponents uM(t)=

∑n
i=1au,i cos(ωi t −φu,i) (analogously for

vM), where a, ω and φ are the amplitude, the frequency and
the phase of each tidal component, respectively.

The Ekman current, subject to the wind forcing, the Cori-
olis force and the friction with the underlying water masses,
is modelled by

d
dt

(
uE
vE

)
=

(
−
CB
h̃
ũ f

−f −
CB
h̃
ũ

)(
uE
vE

)
+

1

h̃

(
Fu
Fv

)
. (1)

In Eq. (1),CB = ρocb, where cb is the underlying ocean layer
drag coefficient; h̃= ρoh, where ρo is the ocean density and
h is the considered ocean surface layer depth; and ũ is the
total speed of the surface layer as defined in Table 1. The
last does not include the tidal current, as it is assumed that
the tidal signal is constant along the water column and does
not create shear, while the Ekman and stochastic signals are
present in the surface layer only. Finally, f is the Coriolis pa-
rameter, and F = ρaca|ua−uo|(ua−uo) is the wind forcing
(ρa is the atmosphere density, ca the atmosphere drag coeffi-
cient and ua the wind velocity at 10 m above the sea surface).
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Figure 1. (a) Gulf of Trieste location (red rectangle) in the Adriatic Sea; (b) enlarged view of Gulf of Trieste with the percentage of available
HFR data (in multiple colours) for the selected period. The HFR baseline is shown by the red line between Aurisina and Piran. The HFR “P”
grid point is shown with a black asterisk, and the closest WRF grid point is marked with a blue star and called “WRFP” (Flora et al., 2023).

Equation (1) is an ordinary differential equation of the DET
model, while it includes the stochastic quantity ũ in the GAU
and SUP models. If the wind forcing were to cease, the mod-
elled mean flow would fall to the tidal signal.

The Ekman modelization in Eq. (1) is valid only on fre-
quency scales comparable to the Coriolis parameter. The
stochastic velocity, representing the fast unresolved turbu-
lent dynamics and present in the GAU and SUP models, is
defined by the following set of equations (for the purpose
of this study, i.e. to reproduce the observed superstatistical
statistics, it is sufficient to have uncorrelated stochastic ve-
locity components):

d
(
x

y

)
=−γx

(
x

y

)
dt +

(√
Qu 0
0

√
Qv

)(
dWx

dWy

)
, (2)

d
dt

(
uS
vS

)
=−γu

(
uS
vS

)
+ η

(
x

y

)
. (3)

In Eqs. (2) and (3), the variables dWx and dWy are de-
rived from independent Wiener stochastic processes. For ev-
ery independent realization of the Wiener processes Wx and
Wy , we obtain a solution of the dynamics, named a random
walker. The collection of all the random walkers forms the
stochastic ensemble and allows construction of a PDF. The
coefficient γx = 1/τ is the inverse of the characteristic short
timescale τ (short compared to the long timescale discussed
below in connection with the SUP model), whose numeri-
cal value is determined from the observations (Flora et al.,
2023), γu is a coefficient that is a posteriori adjusted to ob-
tain the observed HFR initial decay of the autocorrelation
function of the SUP model sea surface currents (Fig. 7) and
η is a proper constant, as discussed below. The difference be-
tween the GAU and SUP models lies in the terms Q. In the

GAU model, which is a simplification of the SUP model,Qu

and Qv are constants: they are the mean values of the SUP
model Q variables, as given in Table 1. The GAU model is
a system of linear SDEs, and all variables are Gaussian and
are determined by their means and variances. All the depen-
dencies for means and variances on the original parameters
are given in Appendix A. Furthermore, in Eq. (A33), the an-
alytical condition on η for which the Gaussian variable δuS
has the same mean and variance as x (analogously δvS with
y), given a fixed γu, is shown. This also helps to adjust the
parameters of the SUP model.

In the SUP model, the Q terms originate themselves from
2ν stochastic processes αi : Q=

∑2ν
i=0α

2
i . The variable ν

gives the degrees of freedom (DOFs), according to the inter-
pretation of Flora et al. (2023): the system has 1 DOF if its
positive variable characterizing the variability of the system
maximizes the entropy, i.e. it is exponentially distributed.
This corresponds to half the value of the interpretation by
Beck and Cohen (2003). Each stochastic process αi is gov-
erned by

dαi =−µαidt +βdWi, i = 1, · · ·,2ν

and β =

{
βu for the u component

βv for the v component,
(4)

where the variables dWi are derived from independent
Wiener stochastic processes, βu and βv are constants whose
values are determined empirically, and µ= 1/T is the in-
verse of the characteristic long timescale T (i.e. τ � T ), cor-
responding to the variation timescale of the variance in the
superstatistical approach. Its numerical value is determined
from the observations (Flora et al., 2023). The variables αi
are solutions of the Langevin equation: they are Ornstein–
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Uhlenbeck processes (we refer the reader to Kloeden and
Platen (1999) for a pedagogical discussion of stochastic pro-
cesses), characterized by Gaussian statistics:

pα(αi)=

√
µ

πβ2 e
−µα2

i /β
2
. (5)

In the SUP model, the variables Q depend on the variables ν
and αi , as shown in Table 1. The Q variables are distributed
according to a gamma distribution with a shape parameter
equal to ν, given in Eq. (B5) and Table B1. In Eq. (B6),
we give the computation for its first moment E[Q], used in
the GAU model. In Appendix B, the PDFs of the variable
x (and y) are derived for ν = 2 and ν = 1/2. A decrease in
the stochastic degrees of freedom ν leads to a reduction of
the variability (non-maximal entropy) in the unresolved pro-
cesses, represented by the stochastic variables. In the case of
2 DOF, the variables x and y are Exp-Lin distributed with a
PDF given bypν=2(x)=

√
µγx

2βu
e−2
√
µγx |x|/βu

(
2
√
µγx
βu
|x| + 1

)
pν=2(y)=

√
µγx

2βv
e−2
√
µγx |y|/βv

(
2
√
µγx
βv
|y| + 1

)
.

(6)

In the case of 1/2 DOF, the variables x and y are distributed
according to a modified Bessel function of the second kind
of zero-order K0(|z|):pν= 1

2
(x)=

2
√
µγx

πβu
K0

(
2
√
µγx
βu
|x|
)

p
ν= 1

2
(y)=

2
√
µγx
πβv

K0

(
2
√
µγx
βv
|y|
)
.

(7)

The SDEs for the variables uS and vS in Eq. (3) contain a
linear drag term and are forced by a coloured non-Gaussian
noise. We do not know an analytical distribution of uS and
vS. Nevertheless, thanks to the definition of the constant η in
Eq. (A33) discussed in connection with the GAU model, the
distributions of δuS and δvS are numerically similar to the
PDFs of x and y (shown in Sect. 4.1).

As it can be seen in Eqs. (6) and (7), the final stochastic
PDFs depend on the β parameter, which is linked to the vari-
able’s second-order moment, by E[x2

] =
β2

µγx
for ν = 2. For

this case, it will be shown in Sect. 4.1 that the PDF of the
total velocity increment is given mainly by the stochastic ve-
locity increment PDF only. For this reason, in the numerical
simulations with 2 DOF in the stochastic part of the model,
the value of β is therefore fixed by the observed variance s2

of the HFR velocity increment found in Flora et al. (2023):
β = s

√
µγx . In the case of 1/2 DOF in the stochastic signal,

the tidal and Ekman signals contribute more to the variance
of the total velocity increment, but their contribution is un-
known analytically. For this reason, in this case, the β co-
efficient is increased empirically in order to fit the observed
variance in the total velocity increment PDF.

In Table 1, the definitions of the variables distinguishing
the DET, GAU and SUP models are given with a summary

of the main properties of the models’ variables. For all the
models, we can (or cannot) consider the eddy depletion term
in the wind stress term, i.e. the relative velocity of the wind
with respect to the sea surface current, causing a reduction of
kinetic energy injection into the ocean (Zhai et al., 2012), in
contrast to the absolute wind velocity. We report the results
just with the eddy depletion term, as it is the theoretically
most correct formulation and does not significantly burden
the computational calculation.

In summary, we developed three types of models: the DET
model is purely deterministic with tidal and Ekman currents,
the GAU model adds a Gaussian stochastic signal, and the
SUP model considers a stochastic sea surface current with
fat-tailed increments instead of the Gaussian noise (Table 1).

3.2 The FRR background and methods

The FRR relates the response of a system perturbed by an ex-
ternal perturbation to internal fluctuations of the unperturbed
system. Exploring the FRR is particularly challenging and
interesting when considering natural systems where pertur-
bation experiments cannot be performed and statistical en-
sembles are not available. Our SUP model is an example of
a subcomponent of the climate system, and it is instructive
to explore the FRR for such model. We refer to Lacorata and
Vulpiani (2007) for the theoretical background concerning
FRRs. We show here some fundamentals of the theoretical
concepts and the methodology we applied to the most in-
volved of the SUP models (FP9, Table 2, Sect. 4).

In the present case, given the SUP model evolutionary sys-
tem with the SUP variables uo = uE+uM+uS and vo = vE+

vM+vS, a small fixed perturbation1uS or1vS is imposed at
t = t0 to each walker. Then, the system is left free to evolve
and, for each time, the separation1uo(t |t0)= uo,P(t)−uo(t)
and 1vo(t |t0)= vo,P(t)− vo(t) between the perturbed (uo,P
and vo,P) and the unperturbed (uo and vo) systems is com-
puted. We emphasize that the methodology requires one ve-
locity component to be perturbed and not both in the same
perturbed simulation. It is possible to obtain the mean value
of the perturbed variables through a mean response function
Ruu(t) or Rvv(t):

〈1uo(t)〉 = Ruu(t)1uS when uS is perturbed

〈1vo(t)〉 = Rvv(t)1vS when vS is perturbed, (8)

where the angle brackets 〈· · ·〉 indicate the ensemble mean.
The FRR is concerned with expressing the mean response
function in terms of correlation functions of the unperturbed
system.

In practice, the mean response functions are computed as
follows. After the first perturbation at t0, the selected vari-
able in the perturbed system is perturbed again with the same
variation at tk = t0+k1t , and the separation between the per-
turbed and unperturbed systems is computed. The perturba-
tion time is fixed to 1t = 12 h, allowing us to repeat the pro-
cedure M = 1311� 1 times, and 1uS =1vS = 8 cm s−1.
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Table 1. Variable definitions distinguishing the different models and the x, y, δuS and δvS PDFs’ characteristics. The variable ν indicates
the degrees of freedom of the stochastic signal.

uo ũ Q x and y distribution δuS and δvS distribution

DET uE+uM |uE| No stochasticity No stochasticity No stochasticity

GAU uE+uM+uS |uE+uS| E[Q]SUP = νβ
2/µ Gaussian, Eq. (A29) Gaussian, Eq. (A31)

SUP uE+uM+uS |uE+uS|
∑2ν
i=1α

2
i

ν = 2: Exp-Lin, Eq. (6)
ν = 1/2: Bessel, Eq. (7)

Not analytical,
but numerically similar
to the x and y PDF

The diagonal mean response functions are computed as fol-
lows:

Ruu(t)=
1
M

M−1∑
k=0

〈1uo(tk + t |tk)〉

1uS
when uS is perturbed

Rvv(t)=
1
M

M−1∑
k=0

〈1vo(tk + t |tk)〉

1vS
when vS is perturbed. (9)

According to Lacorata and Vulpiani (2007), the FRR holds
if the mean response functions have a connection with some
suitable correlation functions computed in the unperturbed
system. In particular, in the case of multivariate Gaussian
variables, the mean response functions are a linear combi-
nation of the variable correlations. In Sect. 4.2, the results
with unperturbed initial condition uo(t = 0)= 0 and when
the stochastic signal is initially perturbed, as described be-
fore, is shown. Some brief comments for the case where the
Ekman system is initially perturbed are also provided.

3.3 Predictability evaluation methods

In order to test the predictability capabilities of the SUP
model, perturbation methods are adopted assuming that the
HFR observations are not affected by observational uncer-
tainty and represent the reality, i.e. modelled data are re-
placed by observations. In the following, this method is
called “observation-based perturbation”. In detail, at every
time 1t , the perturbed system (uo,P) is updated to the ob-
served HFR velocities (both the uo and vo components in the
same simulation); in particular, it is the stochastic signal to
be perturbed. The method may appear equivalent to the FRR
method, but the equivalence is not valid because (i) the ini-
tial perturbation is not a constant but changes for each 1t
time window and for each walker and (ii) we are perturbing
both the uo and vo components (in the stochastic signal) in
the same perturbed simulation. We define the following func-
tions:

ξ(t)=

√√√√ 1
M

∑M−1
k=0 〈

(
uo,P(tk + t)−uo(tk + t)

)2
〉

1
M

∑M−1
k=0 〈

(
uo,P(tk−1+1t)−uHFR(tk)

)2
〉

, (10)

ε(t)=

√√√√ 1
M

∑M−1
k=0 〈

(
uo,P(tk + t)−uHFR(tk + t)

)2
〉

1
M

∑M−1
k=0 〈

(
uo,P(tk−1+1t)−uHFR(tk)

)2
〉

, (11)

where the time tk−1+1t means tk right before the pertur-
bation. The function ξ(t) quantifies the difference between
the perturbed and the unperturbed system, while the function
ε(t) computes the difference between the perturbed system
and the observations. Both are normalized through the mean
initial perturbation over all the time windows. In Sect. 4.3,
the results are presented. Some brief comments for the case
where the Ekman system is initially perturbed are also pro-
vided.

4 Results and discussion

We test the different models by imposing different forcing
protocols (FPs) in the tidal and wind time series (Table 2). In
the most complete FP, the complete tidal and wind forcing is
included (FP9); in the other FPs, the forcing signal is either
averaged by a moving average over 12 h or completely set to
zero.

The numerical values of the coefficients common to all
the models and to all the runs are described here. Tidal har-
monic analysis calculations on the HFR sea surface currents
were done using the MATLAB programme t_tide (Pawlow-
icz et al., 2002). The resultant tidal ellipse parameters are
shown in Table 3. The S1,M2 and S2 tidal components show
a sufficiently high signal-to-noise ratio (SNR) and are there-
fore included to be considered in our modelization. The con-
version from the ellipse parameters to the sinusoidal tidal co-
efficients is applied according to Foreman (1978). The non-
filtered tidal signal consists of the S1, M2 and S2 compo-
nents, while the 12 h moving-averaged signal is characterized
by the diurnal oscillation only.

The wind velocity ua time series is linearly interpolated
from its 1 h original resolution or from a 12 h moving average
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Table 2. Settings and results of the experiments on the models:×means that the forcing is set to 0, 12h means that the forcing is filtered with
a 12 h moving average and X means that we use the original forcing. The variable s is the observed standard deviation of the HFR velocity
increment found in Flora et al. (2023). The abbreviation “n.s.” stands for “not shown”.

Forcing protocol 1 2 3 (n.s.) 4 (n.s.) 5 6 (n.s.) 7 (n.s.) 8 9

Forcings
Tide × × × 12h 12h 12h X X X
Wind × 12h X × 12h X × 12h X

Results
DOF ν 2 2 2 2 2 2 1/2 1/2 1/2
β

s
√
µγx

1 1 1 1 1 1 1.5 1.5 1.5

Table 3. Tidal ellipse parameters with 95 % confidence interval estimates, extracted from the HFR data.

Tide ω [h−1] SEMA [cm s−1] SEMI [cm s−1] INC [°] PHA [°] SNR

S1 0.0426667 6.732± 0.692 −2.522± 0.66 −26.46± 6.65 233.62± 7.64 95

M2 0.0805114 3.537± 0.407 0.296± 0.39 47.84± 6.05 151.27± 5.96 76

S2 0.0833333 3.389± 0.454 −0.167± 0.39 23.67± 7.22 130.69± 7.59 56

to the integration time step of the numerical model (2.5 min).
The determination of h̃ and CB as best linear fit functions
of the wind speed is given in Appendix C. The algorithm to
determine the wind regimes Bora, Sirocco, Mistral and low
wind is explained in Flora et al. (2023): if the daily wind
speed is higher than the threshold value of 3 m s−1, then it is
defined as Bora, Sirocco or Mistral depending on its direc-
tion; if it is lower, it is classified as low wind. Mistral occurs
just for a few days in almost 2 years; it is therefore consid-
ered statistically not significant. In the numerical integration,
the parameters shown in Table 4 are used, and a Runge–Kutta
method of the second order is adopted for the Ekman system.

4.1 Comparison of the DET, GAU and SUP models on
different forcing timescales

All the models start from the initial condition uo(t = 0)=
uHFR(t = 0), where uHFR is the observed HFR sea surface
velocity, with uS(t = 0)= 0. The obtained numerical sea
surface currents are then compared to the HFR measure-
ments. We start this section by commenting on FP1, which
has no tides and no wind forcing (see Table 2), and compare
the DET, GAU and SUP models in the FP5 and FP9 cases
(see Table 2). We conclude this section with a discussion of
the change in the stochastic DOF when the tidal forcing is
modified. We show only time series for the u component of
the sea surface current variables; the results for the v compo-
nent are similar.

The stochastic model has to be adapted to the FPs to best
represent the dynamics unresolved by the deterministic part
of the model. FP1 does not take into account any physi-
cal forcings, and the deterministic part vanishes. The DET
model is therefore null, while the GAU and SUP models
have a nonzero stochastic part. The SUP model best fits the

Table 4. Parameters involved in the numerical modelization: total
integration time, Runge–Kutta time step, increment time δ (from
the velocity increment definition), atmosphere density ρa, atmo-
sphere drag coefficient ca, ensemble size, stochastic time step dt ,
long timescale T , short timescale τ , αi ’s linear drag coefficient µ,
x’s and y’s linear drag coefficient γx , observed HFR velocity in-
crements’ standard deviations su and sv , uS’s and vS’s linear drag
coefficient γu, and forcing coefficient η. The numerical values of δ,
τ , T , su and sv are taken from Flora et al. (2023).

Parameter Value

Total integration time 656 d
Runge–Kutta time step 3×102 s
δ 1.44×104 s
ρa 1.3 kg m−3

ca 10−3

Ensemble size 105

Stochastic time step dt 1.5× 102 s
T 1.746× 105 s
τ 6.6× 103 s
µ= 1/T 5.728× 10−6 s−1

γx = 1/τ 1.515× 10−4 s−1

su 12.265× 10−2 m s−1

sv 9.6696× 10−2 m s−1

su
√
µγx 3.612× 10−6 m s−2

sv
√
µγx 2.848× 10−6 m s−2

γu 1.166× 10−4 s−1

η 1.660× 10−4 s−1

observed data when ν = 2 DOF is chosen (see Flora et al.,
2023), as we obtain a total velocity increment (δuo = δuS
because, in FP1, δuM = δuE = 0) distributed according to
the Exp-Lin PDF (as summarized in Table 1). The result is
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shown in the left column of Fig. 2, in which SUP δuo of FP1
coincides with SUP δuS of FP5 (as shown in Table 2 and
commented on below, they both have ν = 2 stochastic DOF).
The GAU model in FP1 (Eq. (A31) and the left column of
Fig. 2, in which GAU δuo of FP1 coincides with GAU δuS
of FP5) fails in reproducing the fat-tailed Exp-Lin PDF.

In FP5, a 12 h moving-averaged tidal and wind forcing is
applied to the models, while FP9 includes the forcings with-
out averaging (see Table 2). For the different types of forc-
ings, we choose the DOF that best fitted the superstatistical
Exp-Lin PDF from Flora et al. (2023). In particular, for FP5,
ν = 2 gives the best fits, while for FP9, ν = 1/2 does. In
Fig. 2, the PDFs of the stochastic variables of the GAU and
SUP models for FP5 and FP9 are compared to the analyti-
cal PDFs. The figures validate the choice of the parameters
in our model hierarchy for the different forcings, as sum-
marized in Table 1: (i) the GAU δuS follows the analytical
Gaussian from Eq. (A31); (ii) in FP5, the stochastic variable
SUP x is Exp-Lin distributed, while in FP9, it is Bessel dis-
tributed; (iii) the SUP δuS are distributed as SUP x in both
the simulations, showing the validity of the choice of η (fixed
according to the analytical condition from the GAU model in
Eq. (A33) – its choice is discussed in Sect. 3.1 in connec-
tion with the GAU and SUP models). This also validates the
numerical model through the cases where the analytical so-
lution is known.

In Fig. 3, the time series of the observed and model ve-
locities for some days of April 2021 are reported. The differ-
ence in the forcing timescale is clearly visible in the deter-
ministic DET model velocities’ variability: smoother in FP5
than in FP9. They both follow the slow variability of the ob-
served HFR currents. In fact, looking at Fig. 4, the linear re-
gression of the scattered data has a lower slope with respect
to the bisector, meaning that the DET model is not able to
simulate the observed extremes. Nevertheless, their 2D his-
tograms have an elongated peak along the bisector, and their
correlation coefficient reaches 55 % in FP5 and 56 % in FP9
for the u component (29 % and 35 % for the v component,
respectively). Moreover, it is possible to see that sometimes
(e.g. 3 April 2021 from Fig. 3) the observed uHFR sea sur-
face current shows a negative peak at the beginning of Bora
events. This behaviour is missing from the DET model uo ve-
locity. This fact can be due to the model instantaneous change
in the values of h̃ and CB with the wind speed, while the sea
surface system in nature takes some time to adjust to the wind
forcing through vertical mixing (the thin surface layer sud-
denly accelerates, then thickens, and the speed decreases).

Regarding the ensemble averaged sea surface currents of
the GAU and SUP models, they follow closely the DET
model time series. This shows that the stochastic models in-
crease the variability to observed values but have little in-
fluence on the averaged dynamics. We emphasize that if our
model were perfect, the observations would be one of the
walkers and therefore would at times be outside the SUP
total velocity ensemble standard deviation σuo (red) band,

as is the case for the two random walkers (green lines) re-
ported in Fig. 3. The SUP ensemble standard deviation of the
uE+uM velocity (light-blue band) is smaller than the SUP
total velocity ensemble standard deviation σuo (red band),
as expected, because the tidal velocity is purely determin-
istic and, in the Ekman velocity, the stochasticity enters only
through the drag. What is particularly interesting is that the
GAU σuo ensemble standard deviation (blue band) almost
completely coincides with the SUP σuo (red band) and not
with the GAU σuS (yellow band) ensemble standard devia-
tion. A clear example of that is visible on 3, 4, 6 and 13 April
2021 in Fig. 3 for the u component, where the wind forc-
ing increases and the GAU and SUP σuo standard deviations
(blue and red bands, respectively) reduce with respect to the
GAU σuS statistics (yellow band). In this case, it originates
from the stochasticity present in the Ekman drag term.

Looking at the PDFs of the velocity increments in Fig. 5, it
can be seen that the DET model PDF in FP5 is more peaked
around zero compared to FP9, which is closer to the obser-
vations. This is because the latter model has a higher vari-
ability due to the inclusion of higher-frequency forcing data.
Despite the rather high correlation of the DET currents with
the observations, the DET model does not explain most of
the variability seen in the HFR data, especially the tails, i.e.
the extreme events, which are not well reproduced.

From Fig. 5, one can also observe that in FP5, the GAU
δuo PDF is similar to the analytical PDF N(0,σδuS) from
Eq. (A31), while in FP9, it deviates, showing a lower peak
and fat tails. The reason is explained in more detail for the
SUP model in the next paragraph, but, in summary, it is due
to the capacity in FP9 of the tidal and Ekman modelization to
resolve a large part of the variability. For both FPs, although
the first and second moments of the velocities are compara-
ble to the SUP model (Fig. 3) and the shape of the PDF of the
velocity increments has improved compared to the results of
the DET model (Fig. 5), the tails of the GAU velocity incre-
ment PDFs are (by construction) not fat enough to resemble
the superstatistical Exp-Lin PDF, and the occurrence of ex-
treme events is strongly underestimated.

Regarding the SUP model, in FP5, the SUP δuE+ δuM
PDF is very peaked, due to the 12 h forcing timescale that
suppresses a large part of the variability. Hence, the SUP
δuE+δuM PDF contributes little to the SUP δuo PDF, which
is distributed similar to the SUP δuS Exp-Lin PDF, having fat
tails (compare Figs. 2 and 5). In FP9, the SUP δuE+δuM PDF
is distributed closely to the DET δuo PDF (larger with respect
to the FP5 case), meaning that a large part of the SUP δuo
variability is resolved by the deterministic model. The SUP
δuS PDF is given by the Bessel function of Eq. (7) and shown
in Fig. 2. The SUP δuo PDF, shown in Fig. 5, is a convolu-
tion of the SUP δuE+δuM PDF (no analytical form available)
and the Bessel function. This PDF shows a lower and shifted
peak with respect to the observed and superstatistical Exp-
Lin PDFs (probably due to the SUP δuE+ δuM PDF), but its
tails slightly deviate from the observed and Exp-Lin ones.
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Figure 2. PDFs of the stochastic variables of the GAU and SUP models for FP5 (left column) and FP9 (right column) in lin–lin plots (top
row) and lin–log plots (bottom row). In particular, analytical solution of the GAU δuS variable from Eq. (A31) (blue continuous line) and
PDFs of the model variables: numerical GAU δuS (blue dots), SUP x (yellow continuous line) and SUP δuS (red continuous line). PDFs of
the analytical superstatistical Exp-Lin PDF from Eq. (6) (black dotted line with crosses) and of the analytical superstatistical Bessel function
from Eq. (7) (black dotted line with circles) are also shown. Note that in FP5 (FP9), the SUP x, SUP δuS and Exp-Lin (Bessel) lines almost
superpose.

The percentages of the observed HFR velocity increments
inside the SUP σδuo (and σδvo ) ensemble standard deviation
band are measured from the model results:

FP5

{
Pr
(
δuo− σδuo ≤ δuHFR ≤ δuo+ σδuo

)FP5
SUP ' 73%

Pr
(
δvo− σδvo ≤ δvHFR ≤ δvo+ σδvo

)FP5
SUP ' 73%,

(12)

FP9

{
Pr
(
δuo− σδuo ≤ δuHFR ≤ δuo+ σδuo

)FP9
SUP ' 61%

Pr
(
δvo− σδvo ≤ δvHFR ≤ δvo+ σδvo

)FP9
SUP ' 62%.

(13)

Repeating the calculation in Eq. (12) and Eq. (13) without
the eddy depletion term, we obtain a difference of less than
1 % with respect to the shown case, in which the relative ve-
locity between the sea and the atmosphere is considered. For
FP5, the percentages compare well to the analytical supersta-
tistical Exp-Lin values:

Pr(−σ ≤ x ≤ σ)=

+σ∫
−σ

e−2|x|/σ
(

2|x|
σ
+ 1

)
2σ

dx

=

+σ∫
0

e−2x/σ
(

2x
σ
+ 1

)
σ

dx

=
1
2

2∫
0

e−z(z+ 1)dz' 73%. (14)

This fact quantitatively confirms that the SUP model in FP5
needs ν = 2 DOF in the stochastic signal, producing a reli-
able PDF with respect to the observations. In this respect,
the observations are therefore indistinguishable from a sin-
gle walker of the SUP model ensemble. The percentages of
the FP9 case, which has ν = 1/2 DOF in the stochastic sig-
nal, show small discrepancies with respect to the analytical
ones. Despite the deviations from the analytical superstatisti-
cal Exp-Lin PDF, the SUP model in FP9 reproduces the PDF
tails of the velocity increments with even greater fidelity to
the observations than in the FP5 case (Fig. 5).
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Figure 3. Sea surface currents time series (u component) during 11 d in April 2021 of the HFR observations with their measurement accuracy
(blue sticks with error bars) from the models for FP5 (a) and for FP9 (b): DET model uo with the Gaussian GAU model ensemble standard
deviation of the stochastic velocity (yellow lines), GAU model ensemble mean of uo with their ensemble standard deviation (blue lines), SUP
model ensemble mean of uE+uM with their ensemble standard deviation (light-blue lines) and SUP model ensemble mean of uo with their
ensemble standard deviation (red lines). The SUP uo path of two random walkers is reported (light- and dark-green dotted lines). The symbol
〈· · ·〉 in the legend stands for the ensemble mean. The blue and red shadings represent the Bora and Sirocco wind regimes, respectively, seen
in Flora et al. (2023).

We now move our attention from the PDFs of the veloc-
ity increments to the PDFs of the velocities (Fig. 6). The
DET model is not able to represent the observed PDFs, with
FP5 clearly missing the most of the variability and FP9 (full
forcing) improving the situation but still not reproducing
the fat tails. A stochastic part is needed to represent unre-
solved processes and to increase the variability. The GAU
and SUP models can better reproduce the observations. The
GAU model shows a good pattern around the peak, while it
fails in the reproduction of the extreme events, with errors
of around 1 and 3 orders of magnitude for the occurrence of
extreme velocities of 0.5 m s−1 in FP5 and FP9, respectively.
The SUP model in FP5 confirms, also with this variable, that
it can capture the observed statistics. In FP9, the SUP model
shows a higher peak but demonstrates the ability to repro-
duce some details that FP5 cannot, as the PDF decays with
two different slopes.

Regarding the deterministic DET model uo temporal auto-
correlation functions shown in Fig. 7, the periodicity of the

peaks are consistent with what is observed from the HFR
data, while the amplitude of the peaks is higher with respect
to the observations. This fact is mainly due to the high au-
tocorrelation of the tidal signal and the absence of stochas-
tic variability. The cross-correlation between the DET uM
and the DET uE velocities shows a clear undamped period-
icity of 1 d. This is due to the daily update of the forecast
wind data set: it introduces a spurious artificial periodicity
that perfectly correlates with the daily S1-component tidal
variability. The observed temporal decay (with a correlation
timescale of approximately 5 h) is well reproduced by the
DET model uo autocorrelation from FP9, while it is overes-
timated by FP5. This can be easily explained: FP5 has a 12 h
forcing timescale that brings spurious memory to the system.

The time decay and the modulation of the SUP uo and
vo temporal autocorrelation functions are well reproduced in
both simulations. The fact that the SUP initial decay is com-
parable with the HFR pattern shows that the value of the γu
coefficient shown in Table 4 is well chosen. The amplitudes

Geosci. Model Dev., 18, 4685–4712, 2025 https://doi.org/10.5194/gmd-18-4685-2025



S. Flora et al.: A deterministic–stochastic model of sea surface currents 4695

Figure 4. Normalized 2D histograms of the correlation between the
HFR observations and the DET model u-component velocities from
the simulated period (almost 2 years) from FP5 (a) and from FP9
(b). The r correlation coefficient is reported. The light-blue line is
the linear regression of the scattered data, while the red line is the
bisector.

in FP5 underestimate the observed ones, while in FP9, the
daily peaks are present. In both simulations, the SUP auto-
correlation is more damped in time with respect to the DET
one due to the introduction of the stochasticity, as expected.
The long time variability of the correlation functions of the
idealized models is not expected to be similar to the observed
ones, as the model space domain is zero-dimensional and the
equations do not include the dynamics of eddies and other
coherent two-dimensional structures.

We have seen that when moving from longer-forcing-time-
averaging FP5 to no-forcing-averaging FP9, the stochas-
tic model needs fewer DOFs. In particular, the number of
stochastic DOFs must decrease when the non-averaged tidal
components are considered, as reported in Table 2. This can
be seen numerically in Fig. 8, where all the PDFs are able
to fit the observations appropriately. The rest of the FPs pre-
sented in Table 2 (FP3, FP4, FP6 and FP7) are not shown
because of the following reasons. FP4 and FP7 do not take
into account any wind forcing, so they are not able to mimic
the observed velocities. FP3 and FP6, looking at the PDFs of
SUP δuo and uo, give very similar results to FP5, with the
main differences occurring in the height of the PDF peaks.

In order to check if the models capture the observed veer-
ing angle, the angle between the daily averaged wind and
the daily averaged selected sea surface current is computed
(a positive Ekman angle means that the sea surface current
is on the right with respect to the wind). As seen in Fig. 9,
the observed HFR Ekman angle shows a large spread for
low wind regimes, while it accumulates around the observed
mean value with stronger wind speeds. In both simulations,

the Ekman angle obtained from the DET model (yellow line)
collapses towards the same angle range for high wind speeds
but with less variability with respect to the observations. The
SUP mean Ekman angle is almost the same as for the DET
model and converges towards the observed mean Ekman an-
gle with increasing wind speed. The SUP modelled standard
deviation (grey area) reflects the observed variability in the
entire domain of the Ekman angle for low wind speeds and
shows a decrease in variability for stronger wind speeds. The
SUP modelled Ekman angle includes, most of the time, the
observed Ekman angles inside the 1 standard deviation band.
FP5 shows, for both the DET and SUP model, higher vari-
ability bands with respect to FP9 due to the higher number
of stochastic DOFs.

4.2 The FRR and the SUP model

In this section, the FRR is tested on the SUP model under the
forcings of FP9. In Fig. 10, the perturbation methodology on
the time series, described in Sect. 3.2, and the effects on the
total sea surface velocity are visualized. In this figure, the uS
velocity component is perturbed, while the independent vS
component remains unperturbed. The total SUP uo velocity
component is affected by a clearly visible perturbation that
decays in time, while the total SUP vo velocity component is
slightly perturbed through the Ekman drag term.

In Fig. 11, the diagonal response functions Ruu(t) and
Rvv(t) with the correlations of the observed, unperturbed
Ekman, stochastic, and total velocities and analytical func-
tions discussed further are reported. The diagonal response
functions show an exponential decay with timescale corre-
sponding to the stochastic velocity drag coefficient γu (i.e.
1/γu ' 140 min; see exponential fit in Fig. 11). When it is uE
or vE that is perturbed, the diagonal response functions show
an exponential decay with timescale corresponding to the
mean Ekman drag term CB ũ

h̃
(i.e. h̃

CB ũ
' 65 min; not shown).

This reveals that any external perturbation is decaying due to
the corresponding model drag (γu if we perturb the stochastic
velocity; CB ũ

h̃
if we perturb the Ekman velocity).

As expected, because uo and vo are not Gaussian variables
and include terms that are not affected by the perturbation, as
the tidal signal, the behaviour of the diagonal response func-
tions differs from the corresponding autocorrelations. It is
then not possible to describe the response functions as linear
combinations of the correlations in the unperturbed system.

What is particularly interesting to observe in Fig. 11 is that
the SUP uS and vS autocorrelations coincide with the analyt-
ical autocorrelation function for a stochastic Gaussian vari-
able, defined through a linear SDE with coloured Gaussian
noise, found by Wirth (2019) in his Appendix C2:

CuS(t)=
γue
−γx t − γxe

−γut

γu− γx
, (15)

showing a dependence on the drag coefficients only and not
on the variance of the coloured Gaussian. This result seems
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Figure 5. PDFs of the observed, analytical and numerical velocity increments from FP5 (a, c) and FP9 (d, b) in lin–lin plots (a, b) and lin–log
plots (c, d). In particular, we show the PDFs of the observed HFR velocity increment (black crosses), of the analytical superstatistical PDF
from Eq. (6) (black line), of the analytical Gaussian of the GAU δuS variable from Eq. (A31) (blue dashed line) and of the model variables:
DET δuo (yellow line), GAU δuo (blue line), SUP δuE+ δuM (red dotted line) and SUP δuo (red solid line).

Figure 6. PDFs of the observed uHFR (black crosses) and numerical model sea surface currents from FP5 (a, c) and FP9 (b, d) in lin–lin
plots (a, b) and lin–log plots (c, d): DET uo (yellow line), GAU uo (blue line) and SUP uo (red line).
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Figure 7. Temporal autocorrelation function of the u component of the HFR sea surface velocities (black asterisks) and of the model variables
from FP5 (a) and FP9 (b): autocorrelation of DET uo (continuous yellow line) and of SUP uo (continuous red line). The components of
the DET uo autocorrelation are reported: the autocorrelation of DET uM (yellow dotted line) and of DET uE (yellow dashed line), and the
cross-correlation of DET uM and uE (yellow dotted line with dots), where the normalization is based on the DET uo autocorrelation.

Figure 8. PDFs of the HFR (black crosses) and SUP model total velocity increments δu (a, c) and sea surface velocities u (b, d) in lin–lin
plots (a, b) and log–lin plots (c, d) from FP2 (blue line), FP5 (orange line) and FP8 (yellow line). The analytical superstatistical PDF from
Eq. (6) is also reported (black line).
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Figure 9. Ekman angle as a function of the daily WRF wind speed using the HFR (sticks with error bars) and the model sea surface currents
from FP5 (a) and FP9 (b): DET model Ekman angle (yellow line) and SUP model ensemble mean Ekman angle (black line with coloured
dots; the colours indicate the present wind regime). The grey area indicates the SUP model ensemble standard deviation for the Ekman angle.
The errors are calculated as shown in Appendix D. The horizontal black line is the observed HFR Ekman angle average.

surprising, as our stochastic velocities are obtained through
a linear SDE with Bessel, not Gaussian, coloured noise. Our
interpretation of the fact is the following: the stochastic ve-
locity drag timescale 1/γu ' 140 min is 1 order of magni-
tude smaller than the superstatistical Gaussianity timescale
T ' 2 d of the superstatistical analysis. This means that, un-
der the correlation point of view, the stochastic velocity does
not have the time to develop the non-Gaussian characteris-
tics but operates at an almost constant variance. As a con-
sequence, after a decay time of about 5 h, the SUP uS and
vS autocorrelations collapse exponentially with the same γu
coefficient of the diagonal response functions. This can also
be checked analytically through Eq. (15) and knowing that
γu < γx :

CuS(t)=
γx

γu− γx

(
γu

γx
e−γx t − e−γut

)
t→∞
−−−→

γx

γx − γu
e−γut ∝ Ruu(t). (16)

Thus, knowing the autocorrelation function of the stochastic
velocity, it is possible to obtain the response function of the
total velocity. It is then possible to state that the FRR holds
in the SUP model when the perturbation is applied to the
stochastic signal.

4.3 Predictability evaluation results

In Fig. 12, the observation-based perturbation methodology
on the time series, described in Sect. 3.3, and the effects on
the total sea surface velocities are visualized. In this figure,
the uS and vS velocity components are perturbed. Both the
total SUP uo and vo show the observation-based perturbation
subject to an evident decay in time.

The ξ(t) and ε(t) functions are reported in Fig. 13 and
represent the normalized distance between the perturbed–
unperturbed and the perturbed–observed systems, respec-
tively. The function ξ(t) can be considered as a generaliza-
tion of the response function in the FRR when both the com-
ponents are perturbed of a quantity not known a priori. It is
possible to see that the ξ(t) function has an exponential de-
cay with timescale 1/γu ' 140 min. When the Ekman signal
is perturbed, we obtain two exponential decays: τ1 ' 75 min
for t < 2 h and τ2 ' 140 min for t > 4 h (not shown). The
external perturbation, due to the observation-based method-
ology, decays with the stochastic drag coefficient when we
perturb the stochastic velocity, while a clear correspondence
with the drag coefficient is not found when the Ekman sig-
nal is perturbed. The ε(t) function increases its value in time
from 0 and, after about 5 h, saturates to 1, showing that, af-
ter that time, the perturbed system has completely lost the
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Figure 10. SUP model FP9 stochastic velocities uS (a). HFR (crosses) and SUP FP9 total sea surface velocities uo (b). u component is
in blue, while v component is in red. The SUP model time series are from the first walker in the unperturbed system (dashed lines) and
perturbed system (continuous lines with circles).

memory of the initialization to the observations. This time of
5 h coincides with the autocorrelation timescale of the SUP
stochastic and total velocities.

5 Conclusions

In the Gulf of Trieste, the analytical superstatistical PDF of
the observed HFR sea surface current increments is known
(Flora et al., 2023) and is here called Exp-Lin PDF. The Exp-
Lin PDF is non-Gaussian with fat tails (the extreme events
occur more often with respect to Gaussian statistics), and it
provides all the statistical moments but does not give any pre-
dictive information. In this study, we have developed a hier-
archy of idealized models whose aim is to mimic the sea sur-
face current time series, characterized by the observed statis-
tics.

The hierarchy is organized as follows: the DET model is
purely deterministic and includes tidal and Ekman signals,
the GAU model adds a coloured-in-time Gaussian stochas-
tic velocity, and the SUP model adds a stochastic sea sur-
face velocity with superstatistical fat-tailed increments that
simulate the unresolved dynamics. A variable is superstatis-
tical if it is locally (in time) Gaussian with a variance evolv-
ing over a longer timescale. In our case, the variance is ob-
tained through the sum of 2ν squared (Gaussian) Ornstein–
Uhlenbeck processes and results to be gamma-distributed.

The parameter ν identifies the DOF of the stochastic sys-
tem. The models are then tested, imposing nine FPs combin-
ing different types of tidal and wind forcings: complete, 12 h
moving-averaged time series or omitted forcing (Table 2).
The stochastic models are adjusted for each FP in order to
best fit the observed PDF.

In the following, we point out the general differences be-
tween the models’ results. The DET model is able to simulate
the slow variability of the observed HFR currents, reaching
55 %–56 % of the correlation coefficient (Fig. 4). The GAU
and SUP stochastic models increase the variability to ob-
served values, but because their ensemble means almost co-
incide with the DET model results, they show little influence
on the slow dynamics (Fig. 3).

The main differences between the models are evident
when looking at the PDFs of their variables. Regarding the
total velocity increment PDFs (Fig. 5), the DET model does
not explain the variability of the observed superstatistical
Exp-Lin PDF, which results in a stark underestimation of the
variability. The GAU model improves the results but with-
out the observed fat tails, that is, the occurrence of extreme
events is underestimated. When we consider the SUP model,
in order to fit the observed statistics, the stochastic modeliza-
tion requires ν = 2 stochastic DOF when the tidal forcing is
omitted or averaged, while it needs ν = 1/2 stochastic DOF
when the complete tidal signal is considered (Table 2). This
result affects the shape of the SUP stochastic velocity incre-
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Figure 11. Diagonal response functions (thick dotted lines) and temporal autocorrelations in lin–lin plots (a) and lin–log plots (b) of HFR
(asterisks) and unperturbed SUP model FP9 velocities: uE (dashed and dotted line), uS (thick dashed line), uo (continuous line). Blue
indicates the u component, while red indicates the v component. The analytical autocorrelation function of the stochastic velocity from
Wirth (2019) is reported with the black continuous line. The exponential decay with the stochastic drag coefficient γu is shown with the
black thin dotted line.

ment PDF (Fig. 2), which is Exp-Lin when ν = 2 and Bessel
when ν = 1/2. The SUP model shows a total velocity incre-
ment PDF that is representative of observations (Fig. 5): it
is almost Exp-Lin when the FP considers averaged forcings
and ν = 2 stochastic DOF, while it has a shifted and slightly
lower peak but tails that satisfactorily fit the observed data
when the FP considers the complete forcings and ν = 1/2
stochastic DOF. The convergence to the PDF and, in particu-
lar, the enlargement of the PDF tails to the observed ones in
the progression from the DET model to the GAU and then to
the SUP model is also visible in the PDFs of the velocities
(Fig. 6). In addition, we find that the FP with complete forc-
ings (FP9) and, consequently, with ν = 1/2 stochastic DOF
enables the SUP model to capture the tails with a double
slope in the velocity PDF, as seen from the observations.

The velocity temporal autocorrelation functions under FP9
(Fig. 7) reveal that the SUP model, after a realistic time de-
cay of around 5 h (driven by the deterministic signal), allows
for a better representation, with respect to the DET model,
of the temporal modulations. The Ekman dynamics analysis
(Fig. 9) indicates that strong wind increases the likelihood

of the SUP model generating trajectories that match the ob-
served average Ekman state. This pattern aligns with the HFR
Ekman angle data, where lower wind forcing results in more
variability, while higher wind forcing brings values closer to
the average.

The SUP model under the most complete forcings and,
consequently, with ν = 1/2 DOF (FP9) is then explored by
applying external perturbations to the stochastic signal. The
FRR holds when the stochastic signal is perturbed, showing
that the response to an external perturbation can be obtained
by considering the fluctuations of the unperturbed system.
In particular, the SUP model response function decays with
the stochastic velocity drag timescale (1/γu; see Fig. 11 and
Eq. (16)), indicating a clear memory timescale for external
stochastic perturbations.

The predictability evaluation through the observation-
based perturbation shows that the SUP model, given any ex-
ternal correction to the HFR values, reaches an equilibrium
distance from the observations and converges to the unper-
turbed realization after 5 h (Fig. 13). This time value is con-
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Figure 12. SUP model FP9 stochastic velocities (a), and HFR (crosses) and SUP FP9 total sea surface velocities (b). u component is in
blue, and v component is in red. The SUP model time series are from the first walker in the unperturbed system (dashed lines) and perturbed
system using a data-assimilation method (continuous lines with circles).

Figure 13. Temporal autocorrelations in lin–lin (a) and lin–log (b) plots of the HFR (asterisks) and SUP model stochastic (thick dashed lines)
and total (continuous lines) u (blue) and v (red) sea surface velocities with the ξ (purple thick continuous line) and ε (green thick continuous
line) functions. The exponential fits of the ξ function are shown (purple thin continuous lines). The exponential decay with the stochastic
drag coefficient γu is shown by the black thin dotted line.
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sistent with the autocorrelation decay of the observed and
SUP stochastic and total velocities.

From the predictive point of view, we should remark that
our modelling is extremely idealized: it is local in space and
does not take into account other external forcings besides
wind and tides, such as river discharge. The modelling can
be further developed by including the Isonzo/Soc̆a river influ-
ence, considering other air–sea interaction processes as wave
generation, moving the space domain from one point (zero
dimensions) to two dimensions by including advection, con-
sidering eddy dynamics and incorporating the broader Adri-
atic circulation.

Despite its idealization, the SUP model presented in this
study can reproduce part of the deterministic (tide-wind-
forced) large-scale dynamics and the observed fat tails of
the HFR velocity increment PDFs and is eventually able to
simulate extreme events. One of the most interesting results
is that when we have a more detailed deterministic signal
(given by the complete forcings), a larger part of the dynam-
ics is resolved, and the stochastic part of the model must not
only have less variability but also decrease its DOF. The SUP
model can therefore be taken as an example for the mod-
elling community to reflect on how stochasticity can be used
to reproduce extreme events and how its characteristics vary
depending on the coarse graining of the forcings. Various ap-
plications to the SUP model can be found; for example, it is
currently used to explore the role of extreme events in the ki-
netic energy fluxes between the atmosphere and the sea. Ad-
ditionally, evaluating the air–sea interaction bulk formulas in
the CMEMS MFS model (or another full-physics numerical
model adopted for the Gulf of Trieste) in light of our obser-
vations, and therefore of the SUP model findings, would be
extremely interesting.

Appendix A: An analytical idealized case

This is the idealized case of the stochastic system described
in Sect. 3, Eqs. (2) and (3), in which√
62ν
i=1α

2
i =

√
Q' constant. (A1)

This approximation and the following analysis make it pos-
sible to find the analytical distribution of the variables x, uS
and δuS. Considering the u components, independent from
the v components, Eqs. (2) and (3) can be written as follows:{

dx =−γxxdt +
√
QdWx

duS =−γuuSdt + ηxdt

d

(
x

uS

)
=

(
−γx 0
η −γu

)(
x

uS

)
dt +

(√
Q

0

)
dWx

=M

(
x

uS

)
dt +

(√
Q

0

)
dWx,

(A2)

where M =
(
−γx 0
η −γu

)
can be diagonalized:

det(M −mI)= det
(
−γx −m 0

η −γu−m

)
= (γx +m)(γu+m)= 0, (A3)

obtaining two eigenvalues m1 =−γx and m2 =−γu and the
following eigenvectors (with γx 6= γu):

Me1 =m1e1(
−γx 0
η −γu

)(
e1x
e1y

)
=−γx

(
e1x
e1y

)
{
−γxe1x =−γxe1x

ηe1x − γue1y =−γxe1y{
e1y =−

η
γx−γu

e1x

e2
1x + e

2
1y = 1

e2
1x

(
1+

η2

(γx − γu)2

)
= 1e1x =−

γx−γu√
η2+(γx−γu)2

e1y =
η

√
η2+(γx−γu)2

e1 =

− γx−γu√
η2+(γx−γu)2

η
√
η2+(γx−γu)2

 (A4)

Me2 =m2e2(
−γx 0
η −γu

)(
e2x
e2y

)
=−γu

(
e2x
e2y

)
{
−γxe2x =−γue2x

ηe2x − γue2y =−γue2y{
e2x = 0

e2y = 1

e2 =

(
0
1

)
(A5)

For γx 6= γu, the system in Eq. (A2) is diagonalizable, and it
is possible to write M = T ·D · T −1, where

T =

− γx−γu√
η2+(γx−γu)2

0
η

√
η2+(γx−γu)2

1

 D =

(
−γx 0

0 −γu

)

T −1
=

(
−

√
η2+(γx−γu)2

γx−γu
0

η
γx−γu

1

)
. (A6)

Thus, hypothesizing that γu < γx (i.e. the final distributions
do not change with γx < γu; what changes is just the sign
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of the Wiener processes in the diagonalized system), the fol-
lowing are obtained:

d

(
x

uS

)
= T ·D · T −1

(
x

uS

)
dt +

(√
Q

0

)
dWx, (A7)

d

[
T −1

(
x

uS

)]
=D

[
T −1

(
x

uS

)]
dt

+ T −1
(√

Q

0

)
dWx, (A8)(

x̃

ũS

)
= T −1

(
x

uS

)
=

(
−

√
η2+(γx−γu)2

γx−γu
x

uS+
η

γx−γu
x

)
,

(
−
√
Qx√
Qu

)
= T −1

(√
Q

0

)
=

(
−

√
η2+(γx−γu)2

γx−γu

√
Q

η
γx−γu

√
Q

)
, (A9)

yielding

d

(
x̃

ũS

)
=D

(
x̃

ũS

)
dt +

(
−
√
Qx√
Qu

)
dWx{

dx̃ =−γx x̃dt −
√
QxdWx

dũS =−γuũSdt +
√
QudWx

.

(A10)

The approximation for which
√
Q= constant leads to

√
Qx

and
√
Qu also being constants. This fact leads to the

Gaussianity of the variables x̃ and ũS (they are Ornstein–
Uhlenbeck processes):x̃ ∼N

(
0,σ 2

x̃

)
=N

(
0, Qx2γx

)
=N

(
0, η

2
+(γx−γu)

2

(γx−γu)2
Q

2γx

)
ũS ∼N

(
0,σ 2

ũS

)
=N

(
0, Qu2γu

)
=N

(
0, η2

(γx−γu)2
Q

2γu

) . (A11)

From Eq. (A9), it is possible to write x and uS in terms of
x̃ and ũS, resulting in linear combinations of Gaussian vari-
ables:
x =−

γx−γu√
η2+(γx−γu)2

x̃

uS = ũS+ r̃

r̃ =−
η

γx−γu
x =

η
√
η2+(γx−γu)2

x̃

. (A12)

This leads to the Gaussianity of the variables x, r̃ and uS
with the following variances:
x ∼N

(
0,σ 2

x

)
r̃ ∼N

(
0,σ 2

r̃

)
uS ∼N

(
0,σ 2

uS

) , (A13)



σ 2
x =

(γx−γu)
2

η2+(γx−γu)2
σ 2
x̃
=

Q
2γx

σ 2
r̃
=

η2

η2+(γx−γu)2
σ 2
x̃
=

η2

(γx−γu)2
Q

2γx
σ 2
uS
= σ 2

ũS
+ σ 2

r̃
+ 2 limt→∞corr(ũS(t), r̃(t))

=
η2

(γx−γu)2
Q

2γu
+

η2

(γx−γu)2
Q

2γx
+2 η
√
η2+(γx−γu)2

limt→∞corr(ũS(t), x̃(t))

=
η2(γx+γu)

(γx−γu)2
Q

2γxγu
−

2η2

(γx−γu)2(γx+γu)
Q

=
η2

(γx−γu)2
(γx+γu)

2
−4γxγu

2γxγu(γx+γu)
Q

=
η2

2γxγu(γx+γu)
Q

, (A14)

where, because x̃ and ũS are Ornstein–Uhlenbeck processes:
x̃(t)=−e−γx t

∫ t
0 e
γx t
′√
QxF(t

′)dt ′

ũS(t)= e
−γut

∫ t
0 e
γut
′√
QuF(t

′)dt ′

E[F(t ′)F (t ′′)] = δ(t ′− t ′′)

, (A15)

we have that

corr(ũS(t), x̃(t))=−e
−(γx+γu)t

√
QxQu

t∫
0

t∫
0

eγx t
′

eγut
′′

E[F(t ′)F (t ′′)]dt ′dt ′′

=−
η
√
η2+ (γx − γu)2

(γx − γu)2
Qe−(γx+γu)t

e(γx+γu)t − 1
γx + γu

=−
η
√
η2+ (γx − γu)2

(γx − γu)2
Q

γx + γu

(
1− e−(γx+γu)t

)
t→∞
−−−→−

η
√
η2+ (γx − γu)2

(γx − γu)2
Q

γx + γu
. (A16)

Now, it is possible to express the δuS variable, starting from
its definition and using Eq. (A14), in terms of the diagonal-
ized variables x̃ and ũS:

δuS(t)= uS(t + δ)− uS(t)

= ũS(t + δ)+
η√

η2+ (γx − γu)
2

x̃(t + δ)− ũS(t)−
η√

η2+ (γx − γu)
2
x̃(t)

= [ũS(t + δ)− ũS(t)]

+
η√

η2+ (γx − γu)
2

[
x̃(t + δ)− x̃(t)

]
= δ̃uS(t)+

η√
η2+ (γx − γu)

2
˜δx(t), (A17)
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where{
δ̃uS(t)= ũS(t + δ)− ũS(t)

˜δx(t)= x̃(t + δ)− x̃(t)
. (A18)

Because δ̃uS and ˜δx are linear combinations of Gaussian
variables, they are Gaussian variables themselves:

δ̃uS ∼N(0,σ 2
δ̃uS
)

σ 2
δ̃uS
= 2σ 2

ũS
+ 2 lim

t→∞
corr(ũS(t + δ), ũS(t))

= 2
η2

(γx − γu)
2
Q

2γu

(
1− e−γuδ

)
˜δx ∼N(0,σ 2

˜δx
)

σ 2
˜δx
= 2σ 2

x̃ + 2 lim
t→∞

corr(x̃(t + δ), x̃(t))

= 2
η2
+ (γx − γu)

2

(γx − γu)
2

Q

2γx

(
1− e−γxδ

)
, (A19)

where

corr(ũS(t + δ), ũS(t))=
η2Q

(γx − γu)
2

e−2γut e−γuδ

t+δ∫
0

t∫
0

eγut
′

eγut
′′

δ
(
t ′− t ′′

)
dt ′dt ′′

=
η2Q

(γx − γu)
2 e
−2γut e−γuδ

t∫
0

e2γut ′dt ′

=
η2Q

(γx − γu)
2 e
−γuδ e−2γut e

2γut − 1
2γu

=
η2Q

(γx − γu)
2
e−γuδ

2γu

(
1− e−2γut

)
t→∞
−−−→

η2

(γx − γu)
2
Q

2γu
e−γuδ, (A20)

corr(x̃(t + δ), x̃(t))=
η2
+ (γx − γu)

2

(γx − γu)
2

Q e−2γx t e−γxδ

t+δ∫
0

t∫
0

eγx t
′

eγx t
′′

δ
(
t ′− t ′′

)
dt ′dt ′′

=
η2
+ (γx − γu)

2

(γx − γu)
2 Q e−2γx t e−γxδ

t∫
0

e2γx t ′dt ′
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η+(γx − γu)

2

(γx − γu)
2 Q e−γxδ e−2γx t e

2γx t − 1
2γx

=
η2
+ (γx − γu)

2

(γx − γu)
2

Q

2γx
e−γxδ

(
1− e−2γx t

)
t→∞
−−−→

η2
+ (γx − γu)

2

(γx − γu)
2

Q

2γx
e−γxδ. (A21)

Now, according to Eqs. (A17) and (A19), because δuS is
a linear combination of Gaussian variables, it is Gaussian-
distributed itself:
δuS ∼N(0,σ 2

δu)

σ 2
δu = σ

2
˜δu
+

η2

η2+(γx−γu)
2 σ

2
˜δx
+

2η
√
η2+(γx−γu)

2

limt→∞corr(δ̃uS(t), ˜δx(t))

, (A22)

where

lim
t→∞

corr(δ̃uS(t), ˜δx(t))=

lim
t→∞

corr(ũS(t + δ)− ũS(t), x̃(t + δ)− x̃(t))

= lim
t→∞

[
corr(ũS(t + δ), x̃(t + δ))

−corr(ũS(t + δ), x̃(t))− corr(ũS(t), x̃(t + δ))

+corr(ũS(t), x̃(t))
]

(A23)
lim
t→∞

corr(ũS(t + δ), x̃(t + δ))= lim
t→∞

corr(ũS(t), x̃(t))

=−

η

√
η2+ (γx − γu)

2

(γx − γu)
2

Q

γx + γu
, (A24)

corr(ũS(t + δ), x̃(t))=−
η

√
η2+ (γx − γu)

2

(γx − γu)
2

Q e−γu(t+δ) e−γx t

t+δ∫
0

t∫
0
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′

eγx t
′′

δ(t ′− t ′′)dt ′dt ′′

=−

η

√
η2+ (γx − γu)

2

(γx − γu)
2

Q e−γuδ e−(γx+γu)t

t∫
0

e(γx+γu)t
′

dt ′

=−

η

√
η2+ (γx − γu)

2

(γx − γu)
2

Q

γx + γu

e−γuδ
(
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η

√
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2

(γx − γu)
2

Q
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e−γuδ (A25)

corr(ũS(t), x̃(t + δ))=−
η

√
η2+ (γx − γu)

2

(γx − γu)
2

Q e−γut e−γx (t+δ)

t+δ∫
0

t∫
0

eγut
′

eγx t
′′

δ(t ′− t ′′)dt ′dt ′′

t→∞
−−−→−

η

√
η2+ (γx − γu)

2

(γx − γu)
2

Q

γx + γu
e−γxδ . (A26)
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Hence, continuing Eq. (A23),

lim
t→∞

corr(ũS(t + δ), x̃(t + δ))=

−

η

√
η2+ (γx − γu)

2

(γx − γu)
2

Q

γx + γu

[
2−

(
e−γxδ + e−γuδ

)]
. (A27)

It is now possible to complete the calculation started in
Eq. (A22):

σ 2
δu =σ

2
˜δu
+

η2

η2+ (γx − γu)
2 σ

2
˜δx

+
2η√

η2+ (γx − γu)
2

lim
t→∞

corr(δ̃uS(t), ˜δx(t))

=
2η2

(γx − γu)
2
Q

2γu

(
1− e−γuδ

)
+

η2

η2+ (γx − γu)
2

2
[
η2
+ (γx − γu)

2]
(γx − γu)

2

Q

2γx

(
1− e−γxδ

)
+

+
2η√

η2+ (γx − γu)
2
(−)

η

√
η2+ (γx − γu)

2

(γx − γu)
2

Q

γx + γu

[
2−

(
e−γxδ + e−γuδ

)]
=

2η2Q

(γx − γu)
2

[
1

2γu

(
1− e−γuδ

)
+

1
2γx

(
1− e−γxδ

)
−

1
γx + γu

(
1− e−γxδ

)
−

1
γx + γu

(
1− e−γuδ

)]
=

2η2Q

(γx − γu)
2

[
γx − γu

2γu (γx + γu)

(
1− e−γuδ

)
−

γx − γu

2γx (γx + γu)

(
1− e−γxδ

)]
=

η2Q

γ 2
x − γ

2
u

(
1− e−γuδ

γu
−

1− e−γxδ

γx

)
. (A28)

In summary, in the idealized case of the stochastic sys-
tem, in which Q is constant, the variables x, uS and δuS are
Gaussian-distributed as follows:

x ∼N
(

0,σ 2
x

)
=N

(
0,
Q

2γx

)
(A29)

uS ∼N
(

0,σ 2
uS

)
=N

(
0,

η2Q

2γxγu(γx + γu)

)
(A30)

δuS ∼N
(

0,σ 2
δu

)
=

N

(
0,

η2Q

γ 2
x − γ

2
u

(
1− e−γuδ

γu
−

1− e−γxδ

γx

))
. (A31)

Table A1. Parameters involved in the idealized analytical stochastic
modelization.

Parameter Value

Ensemble size 105

Total integration time ∼ 656 d
Time step dt 1.5× 102 s
τ 6.6× 103 s
γx = 1/τ 1.515× 10−4 s−1

Q 2.6× 10−6 m2 s−3

γu 5.152× 10−5 s−1

η1 1.333× 10−4 s−1

η2 =

√
γ 2
x−γ

2
u

2
[
γx
γu
(1−e−γuδ)−(1−e−γx δ)

] 1.247× 10−4 s−1

δ 1.44× 104 s

It is possible to find a condition for which δuS is dis-
tributed as x:

σ 2
δu =

η2Q

γ 2
x − γ

2
u

(
1− e−γuδ

γu
−

1− e−γxδ

γx

)
=

Q

2γx

2η2

γ 2
x − γ

2
u

[
γx

γu

(
1− e−γuδ

)
−
(
1− e−γxδ

)]
= σ 2

x

2η2

γ 2
x − γ

2
u

[
γx

γu

(
1− e−γuδ

)
−
(
1− e−γxδ

)]
, (A32)

σ 2
δu = σ

2
x ⇔

2η2

γ 2
x − γ

2
u

[
γx

γu

(
1− e−γuδ

)
−
(
1− e−γxδ

)]
= 1

⇔ η =

√√√√ γ 2
x − γ

2
u

2
[
γx
γu

(
1− e−γuδ

)
−
(
1− e−γxδ

)] . (A33)

All these facts are confirmed by the numerical simulation re-
sults shown in Fig. A1 using the numerical parameters in Ta-
ble A1.
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Figure A1. Gaussian PDFs of the stochastic variables x (in blue), uS (in red) and δuS (in green): the continuous lines are the analytical
Gaussian PDFs in Eqs. (A29), (A30) and (A31), while the points are the histograms of the simulated variables described in Eqs. (A2) and
(A17) in the case where Q= constant. The parameters used are shown in Table A1. The simulation results with η = η1 are shown in (a) and
(b), while in (c) and (d), the results with η = η2 are shown. In (a) and (c), the plots are lin–lin, while in (b) and (d), the plots are lin–log.
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Appendix B: Ornstein–Uhlenbeck processes and
coloured noise

Let’s consider the stochastic part for the u component (anal-
ogously for the v component) of the SUP model:

dαi =−µαidt +βudWi, (B1)

dx =−γxxdt +
√
62ν
i=1α

2
i dWx, (B2)

duS =−γuuSdt + ηxdt. (B3)

Because β and µ are constants, Eq. (B1) is a Langevin equa-
tion, and the variables αi are Ornstein–Uhlenbeck processes;
thus, their distribution in the stationary state is Gaussian:

pα(αi)=

√
µ

πβ2
u

e−µα
2
i /β

2
u . (B4)

Defining the new variableQ as the sum of 2ν squared identi-
cally distributed Gaussian variables Q=62ν

i=1α
2
i results in a

variable distributed with a gamma distribution, with a shape
parameter equal to ν in the stationary state:

pQ(Q)= 0ν,λ̃(Q)=
λ̃νQν−1 e−λ̃Q

0(ν)

=

(
µ

β2
u

)ν
Qν−1

0(ν)
e−µQ/β

2
u , (B5)

where λ̃= µ

β2
u

and the first moment is

E[Q] =

∞∫
0

(
µ

β2

)ν
Qν

0(ν)
e−µQ/β

2
dQ=

νβ2

µ
. (B6)

It is possible to write Eq. (B2) in the following way:

dx =−γxxdt +
√
QdWx . (B7)

If Q were a constant, then the equation above would be
a Langevin equation, and x would represent an Ornstein–
Uhlenbeck process. However, by construction, Q slowly
varies with respect to x (because τ = 1

γx
� T = 1

µ
). Thus,

it is possible to assume that, locally in time, Q is constant,
and therefore locally x has a Gaussian distribution, given a
certain variance σ 2

x =
Q

2γx
determined by the value of Q:

p(x|σ 2
x )=N

(
0,σ 2

x

)
=

1√
2πσ 2

x

e−x
2/2σ 2

x

=

√
γx

πQ
e−γxx

2/Q. (B8)

In order to obtain the total x PDF, the σ 2
x PDF f (σ 2

x ) is
needed. Thanks to its dependence on Q, it is possible to ob-
tain it:

f (σ 2
x )= 0ν,λ(σ

2
x )=

λνσ
2(ν−1)
x e−λσ

2
x

0(ν)

=

(
2µγx
β2
u

)ν
σ

2(ν−1)
x

0(ν)
e
−

2µγx
β2
u
σ 2
x
, (B9)

where λ= 2µγx
β2
u

. It follows that

pν(x)=

∞∫
0

f (σ 2
x )p(x|σ

2
x )dσ

2
x

=
λν

0(ν)
√

2π

∞∫
0

σ 2(ν−1)
x e−λσ

2
x

1√
σ 2
x

e−x
2/2σ 2

x d(σ 2
x )

=
λν

0(ν)
√

2π

∞∫
0

zν−3/2e−λz−x
2/2z dz, (B10)

which, for ν = 2, gives the following result (Gradshteyn and
Ryzhik, 2014, p. 369, Eq. 3.471.16), called the Exp-Lin PDF
in this paper:

pν=2(x)=−
λ2
√

2

∂

∂λ

(
λ−1/2e−

√
2λ|x|

)
=

√
2λe−

√
2λ|x|(
√

2λ|x| + 1)
4

=

√
µγx

2βu
e−2
√
µγx |x|/βu

(
2
√
µγx

βu
|x| + 1

)
. (B11)

Meanwhile, for ν = 1/2 (Gradshteyn and Ryzhik, 2014,
p. 370, Eq. 3.478.4),

p
ν= 1

2
(x)=

√
2λ
π

K0

(√
2λ|x|

)
=

2
√
µγx

πβu
K0

(
2
√
µγx

βu
|x|

)
, (B12)

where K0(z) is the modified Bessel function of the second
kind of zero order. A summary of the results of this Appendix
for the cases ν, 2 and 1/2 degrees of freedom (DOFs) is given
in Table B1. Finally, Eq. (B3) does not present any analytic
solution.
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Table B1. Analytical PDFs and means of the variable Q and analytical PDFs of the variable x for ν, 2 and 1/2 degrees of freedom.

DOF pQ(Q) E[Q] p(x)

ν

(
µ

β2
u

)ν
Qν−1

0(ν)
e−µQ/β

2
u νβ2/µ

(
2µγx/β2)ν
0(ν)
√

2π

∫
∞

0 zν−3/2e
−

2µγx
β2 z− x

2
2z dz

2
(
µ

β2
u

)2
Q e−µQ/β

2
u 2β2/µ

√
µγx

2βu
e−2
√
µγx |x|/βu

( 2
√
µγx
βu
|x| + 1

)
1
2

√
µ

πβ2
u

e−µQ/β
2
u

√
Q

β2/2µ 2
√
µγx

πβu
K0

( 2
√
µγx
βu
|x|
)

Appendix C: The Ekman system of the deterministic
model – the linear relation of the coefficients with wind
speed

Defining the energy E = h̃ |uo|
2

2 for the DET model in Eq. (1)
and supposing, as a first approximation, that the tidal signal
is negligible uo ' uE (daily timescale), assuming a slowly
varying sea surface layer depth ∂t h̃= 0 and neglecting the
eddy depletion term F = ρaca|ua|ua, the energy variation in
time can be expressed as follows:

∂tE = h̃ ∂t
|uE|

2

2
= h̃ (uE∂tuE+ vE∂tvE)

=−CB |uE|
3
+ uEFu+ vEFv, (C1)

from which

CB

h̃
=
uEFu+ vEFv

h̃|uE|3
−
∂t |uE|

2

2|uE|3
. (C2)

Discretizing Eqs. (C1) and (C2) around the time step ti
(where 1t = ti+1− ti) and using the centred scheme for the
temporal derivative ∂t |uE|

2
=
|uE(ti+1)|

2
−|uE(ti−1)|

2

21t ) result in
the following:

h̃
|uE(ti+1)|

2
− |uE(ti−1)|

2

4
=−CB(ti) |uE(ti)|

31t

+ [uE(ti) Fu(ti)+ vE(ti) Fv(ti)]1t (C3)

and

CB(ti)

h̃
=
uE(ti) Fu(ti)+ vE(ti) Fv(ti)

h̃|uE(ti)|3

−
|uE(ti+1)|

2
− |uE(ti−1)|

2

4|uE(ti)|31t

=
α(ti)

h̃
− ζ(ti), (C4)

where α(ti)=
uE(ti ) Fu(ti )+vE(ti ) Fv(ti )

|uE(ti )|3
, ζ(ti)=

|uE(ti+1t)|
2
−|uE(ti−1t)|

2

4|uE(ti )|31t
and h̃ has a low dependence on

time. Approximating the daily averaged observed sea
surface current as the daily deterministic Ekman sea surface

current, it is possible to calculate the coefficients α(ti) and
ζ(ti) directly from the observations and the daily averaged
wind forcing.

Equation (1) results in

(
∂tuE
∂tvE

)
=

−(αh̃ − ζ) |uE| f

−f −

(
α

h̃
− ζ

)
|uE|


(
uE
vE

)
+

(
Fu

h̃
Fv
h̃

)
, (C5)

{
∂tuE− ζ |uE|uE− f vE =

Fu−α|uE|uE
h̃

∂tvE− ζ |uE|vE+ f uE =
Fv−α|uE|vE

h̃

, (C6)

from which it is possible to obtain the slowly varying h̃:{
h̃=

Fu−α|uE|uE
∂tuE−ζ |uE|uE−f vE

h̃=
Fv−α|uE|vE

∂tvE−ζ |uE|vE+f uE

. (C7)

The discretization gives{
h̃(ti)=

Fu(ti )−α(ti ) |uE(ti )| uE(ti )
[uE(ti+1t)−uE(ti−1t)]/21t−ζ(ti ) |uE(ti )| uE(ti )−f vD(ti )

h̃(ti)=
Fv(ti )−α(ti ) |uE(ti )| vE(ti )

[vE(ti+1t)−vE(ti−1t)]/21t−ζ(ti ) |uE(ti )| vE(ti )+f uE(ti )

. (C8)

The two expressions in Eq. (C8) should give a unique value
for h̃ as a function of time directly from the daily averaged
observed currents and the daily averaged wind forcing. In
practice, they almost agree, and we calculated h̃(ti) as the
average of these two expressions. From h̃(ti), it is also pos-
sible to obtain CB(ti):

CB(ti)= α(ti)− ζ(ti) · h̃(ti). (C9)

Having the h̃, CB and wind speed time series, it is possible
to calculate the mean values of h̃ and CB as a function of
the wind speed, obtaining a linear fit after deleting the values
exceeding 1 standard deviation (Fig. C1).
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Figure C1. Dependence on wind speed of the model coefficients CB and h̃, calculated according to Eq. (C9) and to the mean of Eq. (C8),
respectively, and their linear regressions.

Appendix D: On the Ekman angle standard deviation

In this study, the Ekman angle is defined as the angle between
the daily wind and the daily sea surface current; it is positive
if the sea surface current is on the right with respect to the
wind direction. For simplicity, it is assumed that the wind
does not contribute with any error and is perfectly known. It
follows that the standard deviation of the Ekman angle co-
incides with the standard deviation of the daily sea surface
current angle. Under this assumption, the given Ekman an-
gle standard deviation is an underestimation of its real error.
Thus, in order to obtain this estimation of the Ekman angle
standard deviation, starting from the modelled (HFR mea-
sured) sea surface current components with a 5 min (30 min)
time resolution and their stochastic variability (measure ac-
curacy), two points must be followed: (i) the daily average
transformation and (ii) the polar coordinates transformation.

Let’s take into consideration the sea surface currents time
series of a single day x = {u1, . . .,un,v1, . . .vn}, where n=
288 for the 5 min time resolution modelled sea surface cur-
rents and n= 48 for the 30 min HFR observed sea surface
currents, with their 2n× 2n symmetric covariance matrix:

6x =



σ 2
u1

· · · σu1un σu1v1 · · · σu1vn
...

. . .
...

...
...

σunu1 · · · σ 2
un

σunv1 · · · σunvn
σv1u1 · · · σv1un σ 2

v1
· · · σv1vn

...
...

...
. . .

...

σvnu1 · · · σvnun σvnv1 · · · σ 2
vn


=

(
6xuu 6xuv
6xuv 6xvv

)
. (D1)

Here, the sea surface currents are the ensemble averaged val-
ues for each time, and the covariance matrix values are the
relative ensemble variances and covariances, while for the
observations, the sea surface currents are simply the indepen-
dent HFR measured sea surface currents (each measurement
is independent from the others) with their HFR accuracy and
zero covariances (thus, 6x reduces to a diagonal matrix).

Calling f =
(
ū

v̄

)
the daily average sea surface currents

for a single day, its linear transformation (here, the transfor-
mation matrix is called A) can be written as
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f = A · x, (D2)

(
ū

v̄

)
=

1
n


n︷︸︸︷

1· · ·1

n︷︸︸︷
0· · ·0

0· · ·0︸︷︷︸
n

1· · ·1︸︷︷︸
n





u1
...

un
v1
...

vn


. (D3)

Thus, the covariance matrix of the transformed variable

6f =

(
σ 2
ū σūv̄
σūv̄ σ 2

v̄

)
can be obtained in the following way:

6f = A ·6x ·AT

=
1
n2

(
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1

)


σ 2
u1

· · · σu1un σu1v1 · · · σu1vn

.

.

.
. . .

.

.

.
.
.
.

.

.

.

σunu1 · · · σ 2
un

σunv1 · · · σunvn
σv1u1 · · · σv1un σ 2

v1
· · · σv1vn

.

.

.
.
.
.

.

.

.
. . .

.

.

.

σvnu1 · · · σvnun σvnv1 · · · σ 2
vn





1 0
.
.
.

.

.

.
1 0
0 1
.
.
.

.

.

.
0 1


=

1
n2

(
sum

(
6xuu

)
sum

(
6xuv

)
sum

(
6xuv

)
sum

(
6xvv

) ) . (D4)

Once the daily sea surface current components
(
ū

v̄

)
and

their covariance matrix
(
σ 2
ū σūv̄
σūv̄ σ 2

v̄

)
are obtained, it is pos-

sible to change from Cartesian to polar coordinates:{
r =
√
ū2+ v̄2

θ = arctan
(
v̄
ū

) . (D5)

The transformation now is not linear, and one must resort to
the Jacobian matrix:

J =

(
∂r
∂ū

∂r
∂v̄

∂θ
∂ū

∂θ
∂v̄

)
=

(
ū√
ū2+v̄2

v̄√
ū2+v̄2

−
v̄

ū2+v̄2
ū

ū2+v̄2

)
(D6)

to obtain the new covariance matrix (θ and σθ are in radians):(
σ 2
r σrθ
σrθ σ 2

θ

)
= J

(
σ 2
ū σūv̄
σūv̄ σ 2

v̄

)
J T

=

(
ū√
ū2+v̄2

v̄√
ū2+v̄2

−
v̄

ū2+v̄2
ū

ū2+v̄2

)(
σ 2
ū σūv̄
σūv̄ σ 2

v̄

) ū√
ū2+v̄2

−
v̄

ū2+v̄2

v̄√
ū2+v̄2

ū

ū2+v̄2



=

 ū2σ 2
ū+2ūv̄σūv̄+v̄2σ 2

v̄

ū2+v̄2
−ūv̄σ 2

ū+
(
ū2
−v̄2)2σūv̄+ūv̄σ 2

v̄

(ū2+v̄2)
3/2

−ūv̄σ 2
ū+

(
ū2
−v̄2)2σūv̄+ūv̄σ 2

v̄

(ū2+v̄2)
3/2

v̄2σ 2
ū−2ūv̄σūv̄+ū2σ 2

v̄

(ū2+v̄2)
2

 . (D7)

The Ekman angle standard deviation is then taken as follows:

σθE =min(σθ ,π) . (D8)
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