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Abstract. We introduce the optimized dynamic mode de-
composition (DMD) algorithm for constructing an adaptive
and computationally efficient reduced-order model and fore-
casting tool for global atmospheric chemistry dynamics. By
exploiting a low-dimensional set of global spatio-temporal
modes, interpretable characterizations of the underlying spa-
tial and temporal scales can be computed. Forecasting is also
achieved with a linear model that uses a linear superposition
of the dominant spatio-temporal features. The DMD method
is demonstrated on 3 months of global chemistry dynamics
data, showing its significant performance in terms of com-
putational speed and interpretability. We show that the pre-
sented decomposition method successfully extracts and fore-
casts chemical patterns for leading chemical indicators, in-
cluding nitric oxide, ozone, nitrogen dioxide, hydroxyl rad-
ical, isoprene, and carbon monoxide. Moreover, the DMD
algorithm allows for rapid reconstruction of the underly-
ing linear model, which can then easily accommodate non-
stationary data and changes in the dynamics.

1 Introduction

The monitoring and forecasting of global atmospheric chem-
istry is critical for understanding the effects of air quality,
chemistry—climate interactions, and global biogeochemical
cycling (Jacob, 1999). The dynamics of atmospheric chem-
istry is characterized by complex interactions among hun-
dreds of chemical species, which can produce kinetics across
temporal scales spanning many orders of magnitude — from
microseconds to years. Accurate monitoring and prediction

require full knowledge of the chemical state of the atmo-
sphere at all locations and times, resulting in a 4-dimensional
data set for longitude, latitude, elevation, and time for each
chemical species that can become massive as the resolu-
tion of each dimension is increased. Dimensionality reduc-
tion is a critically enabling aspect of machine learning and
data science (Brunton and Kutz, 2019) that can be leveraged
to approximate the monitoring and forecasting capabilities
of global chemistry with more readily tractable computa-
tional algorithms (Velegar et al., 2019). Dynamic mode de-
composition (DMD) is a data-driven regression architecture
for adaptively learning linear dynamics models over snap-
shots of temporal data, specifically in a low-dimensional sub-
space. DMD has been broadly used in the scientific commu-
nity due to its ease of use, interpretability, and adaptive na-
ture (Kutz et al., 2016a). When applied to the spatio-temporal
dynamics of atmospheric chemistry, we demonstrate that
the method provides an effective and computationally effi-
cient reduced-order modeling strategy that can be used for
the characterization, monitoring, and forecasting of global
chemical concentrations with either computational or sen-
sor data. Moreover, we show that the optimized DMD al-
gorithm (Askham and Kutz, 2018) and bagging optimized
DMD (BOP-DMD) (Sashidhar and Kutz, 2022) versions of
the DMD algorithm are critical for characterizing the com-
plexities of the chemical interaction dynamics and their un-
certainties.

Characterization of the multiscale phenomenon, such as
that embodied by global atmospheric chemistry, remains
challenging due to the need to resolve spatial and tempo-
ral scales that are separated by many orders of magnitude.
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Computational methods, which are typically based upon the
underlying partial differential equations that model the gov-
erning dynamics, easily become intractable due to the need
to resolve the finest space scales and the fastest time scales.
Thus, numerical stiffness is automatically imposed upon a
numerical scheme in such a spatio-temporal system. Build-
ing models from sensor data directly is no different: sensors
must be placed densely in space in order to resolve spatial
features. This also places significant limits on practicality,
as sensors are not only prohibitively expensive but also re-
quire completely impractical global coverage. Computations
and sensors, however, are typically used in combination and
provide the critical data infrastructure for modeling the mul-
tiscale physics of atmospheric chemistry. Hence, despite the
limitations and cost, many advances have been made in our
ability to characterize, predict, and monitor global chemistry.
Reduced-order models (ROMs) provide an attractive alter-
native to large-scale computing. ROMs provide a mathemati-
cal architecture for reducing the computational complexity of
mathematical models in numerical simulations (Benner et al.,
2015; Antoulas, 2005; Quarteroni et al., 2015; Hesthaven
et al., 2016). Fundamental to rendering simulations compu-
tationally tractable is the construction of a low-dimensional
subspace on which the dynamics can be approximately em-
bedded. Unfortunately, projective-based ROM construction
often produces a low-rank model for the dynamics that can
be unstable (Carlberg et al., 2017.), i.e., the models produced
generate solutions that rapidly go to infinity in time. Machine
learning techniques offer a diversity of alternative methods
for computing the time dynamics in the low-rank subspace,
with a diversity of neural networks showing how to advance
solutions, or learn the flow map from time ¢ to r + Az (Qin
et al., 2019; Liu et al., 2020; Gin et al., 2021). Indeed, deep
learning algorithms provide a flexible framework for con-
structing a mapping between successive time steps. The typ-
ical ROM architecture constrains the dynamics to a subspace
spanned by proper orthogonal decomposition (POD); thus, in
the new POD coordinate system, time evolution can be used
to construct a time-stepping model using neural networks.
Recently, Parish and Carlberg (2020) and Regazzoni et al.
(2021) developed a suite of neural-network-based methods
for learning time-stepping models for tropospheric bromine
chemistry and cardiovascular dynamics, respectively. More-
over, Parish and Carlberg (2020) provided extensive compar-
isons between different neural network architectures along
with traditional techniques for time-series modeling.
Projective ROMs are often unstable and ill-suited for mas-
sive multiscale systems, while deep learning models require
significant time and data for training and also assume sta-
tionarity of the data in order for the results to be valid
for withheld test sets. Both of these limitations make their
use in global atmospheric chemistry modeling problematic.
Certainly, the landscape of models is growing rapidly, with
machine learning techniques especially proving useful in
weather and temperature forecasting. These methods are
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driven by leading tech companies that, at scale, are train-
ing such models with many GPUs over long periods of time
to achieve their exceptional performance. However, a com-
putationally efficient and adaptive ROM approach is em-
bodied by DMD, which is a simple regression requiring no
training, cross-validation, and hyper-parameter tuning. It is
a straight regression, much like a line fit. DMD was intro-
duced as an algorithm by (Schmid, 2010) and has rapidly
become a commonly used data-driven analysis tool. It is the
leading approximation method for the Koopman (linear) op-
erator from data (Rowley et al., 2009). DMD by construc-
tion provides a method for identifying spatio-temporal co-
herent structures in high-dimensional time-series data. DMD
analysis offers a dynamic version of standard dimensionality
reduction methods such as the proper orthogonal decompo-
sition (POD), which highlights low-rank features in spatio-
temporal data (Kutz, 2013). However, DMD not only pro-
vides a low-rank subspace, but each mode is associated with
linear (exponential) behavior in time, often given by oscilla-
tions at a fixed frequency with growth or decay. Thus, DMD
is a regression to solutions of the form

x(t)=) ¢;e”'b; = Dexp(Qn)b. (1)
j=1

where x(¢) is an r-rank approximation to a collection of
state-space measurements x; = x(#;) (k=1,2,---,n). The
algorithm regresses to values of the DMD eigenvalues wj,
DMD modes ¢;, and their loadings b;. w; determines
the temporal behavior of the system associated with a
modal structure ¢ ;. Such a regression can also be learned
from time-series data (Lange et al., 2020). DMD may be
thought of as a combination of singular value decomposi-
tion (SVD)/POD in space with the Fourier transform in time,
combining the strengths of each approach (Chen et al., 2012;
Kutz et al., 2016a). DMD is modular due to its simple for-
mulation in terms of linear algebra, resulting in innovations
related to control (Proctor et al., 2016; Deem et al., 2020),
compression (Erichson et al., 2019; Brunton et al., 2015),
reduced-order modeling (Alla and Kutz, 2017), and multi-
resolution analysis (Kutz et al., 2016b; Liu et al., 2023; Lapo
etal., 2024), among others. The SVD/DMD can even be done
on terabytes of data in seconds (Eiximeno et al., 2025).

2 Atmospheric chemistry data sets, data preprocessing,
and methods

2.1 Atmospheric chemistry model

Many of the dominant spatio-temporal features of atmo-
spheric chemistry are well-understood through extensive
simulation and data collection (Jacob, 1999; Brasseur and Ja-
cob, 2017). This will not be the focus of this work but rather
a robust, computationally efficient, and accurate reduced-
order model for reconstructing and forecasting the dynam-
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ics. Chemical transport models (CTMs) are used to simu-
late the evolution of atmospheric constituents in space and
time (Brasseur and Jacob, 2017). A CTM solves the system
of coupled continuity equations for an ensemble of m species
with number density vector n = (ny,..., nm)T via operator
splitting of transport and local processes:

on i .

a5 = —V-iU)+(Pi—Lj)(n)+E;—D; i€[l,m], (2)
with U being the wind vector, (P; — L;) (n) the (local) chem-
ical production and loss terms, E; the emission rate, and D;
the deposition rate of species i. The transport operator,

Bni

5 =V (uU) iellm], 3)

involves spatial coupling across the model domain but no
coupling between chemical species, while the chemical op-
erator,

dn,- .
EZ(Pi_Li)(")‘i‘Ei_Di i€[l,m], (€]
includes no spatial coupling, but the species are chemically
linked through a system of ordinary differential equations
(ODEs).

Chemistry models repeatedly solve Egs. (3) and (4), which
requires full knowledge of the chemical state of the atmo-
sphere at all locations and times. The resulting 4-dimensional
data sets (longitude, latitude, levels, and species) can be-
come massive, which makes it impractical to output them
at high temporal frequency and refined spatial resolution.
As a consequence, model output is generally restricted to a
few selected species of interest (e.g., ozone), while the full
model state is only output very infrequently, e.g., to archive
the information for future model restarts. We show here that
the chemical state of a CTM such as GEOS-Chem has dis-
tinct low-ranked features and that exploiting these proper-
ties using modern diagnostic tools such as variable reduction
or sub-sampling makes it possible to represent the major-
ity of information in a computationally more efficient man-
ner. While we focus here on identifying low-ranked features
across the spatio-temporal dimension (i.e., for each species
separately), the presented methods could similarly (and in-
dependently) be applied across the species domain.

2.1.1 Global atmospheric chemistry simulations

The reference simulation of the atmospheric composition
was generated using the GEOS-Chem model, as described in
Velegar et al. (2019). GEOS-Chem (https://geoschem.github.
io, last access: 12 June 2025) is an open-source global model
of atmospheric chemistry used for a wide range of applica-
tions. The model can be run in offline mode as a chemical
transport model (CTM) (Bey et al., 2001; Eastham et al.,
2018) or as an online component within the NASA God-
dard Earth Observing System (GEOS) model (Long et al.,
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2015; Hu et al., 2018). The data set used here was pro-
duced using the offline version of GEOS-Chem (v11-01),
driven by archives of assimilated meteorological data from
the GEOS Forward Processing (GEOS-FP) data stream of the
NASA Global Modeling and Assimilation Office (GMAO).
Model chemistry includes detailed HO,-NO,-VOC-ozone-
BrO, tropospheric chemistry as originally described by Bey
et al. (2001), with the addition of BrO,, chemistry by Parrella
et al. (2012) and updates to isoprene oxidation as described
by Mao et al. (2013). Stratospheric chemistry is simulated
using a linearized mechanism as described by Murray et al.
(2012).

The model output covers 1 year (July 2013—June 2014)
at 4° x 5° horizontal resolution, providing a comprehensive
set of atmospheric chemistry model diagnostics. For every
chemistry time step of 20 min, the concentrations of all 143
chemical constituents were archived immediately before and
after chemistry in units of molec.cm™3. The difference be-
tween these concentration pairs is the species tendencies due
to chemistry (expressed in units of molec.cm™>s™!). Be-
cause the solution of chemical kinetics is sensitive to the
environment, we further output key environmental variables
such as temperature, pressure, water vapor, and photolysis
rates. The latter are computed online by GEOS-Chem us-
ing the Fast-JX code of Bian and Prather (2002) as im-
plemented in GEOS-Chem by Mao et al. (2010) and East-
ham et al. (2014). At every time step, the data set thus
consists of 143 chemical concentrations at every grid loca-
tion. We restrict our analysis to the lowest 30 model levels
to avoid influence from the stratosphere. The resulting data
set has dimensions nlon x nlat x nlev x ntimes x nfeatures =
72 x 46 x 30 x 26280 x 380 = 9.9 x 10'!. The value of 380 in
the feature space breaks down as 143 +91 4 3 + 143 = 380,
which refers to the chemical species concentration before in-
tegration, the photolysis rates, the three meteorological vari-
ables, and the tendencies (rate of change) of all species due
to chemistry, as specified in the GEOS-Chem simulations
(https://geoschem.github.io, last access: 12 June 2025).

2.2 Data preprocessing

Many dimensionality reduction techniques rely on an un-
derlying singular value decomposition of the data that ex-
tracts correlated patterns in the data. A fundamental weak-
ness of such SVD-based approaches is the inability to ef-
ficiently handle invariances in the data. Specifically, trans-
lational and/or rotational invariances of low-rank features in
the data are not well captured (Kutz, 2013; Kutz et al., 2016a;
Brunton and Kutz, 2019; Velegar et al., 2019). One of the key
environmental variables driving the chemistry is the photol-
ysis rate — the absolute concentrations of many chemicals of
interest accordingly “turn on” and are non-zero during day-
time and “turn off” or go to zero during the night. Thus,
sunlight activates many of the chemical reactions in the at-
mospheric chemistry dynamics network. The time series of
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absolute chemical concentrations exhibit a translating wave
traversing the globe from east to west with constant velocity.
The time series for the chemical species O3 (ozone) is plotted
with respect to UTC time for one latitude = 30°/elevation =
1 and three different longitudes = [—100, 0, 100°] on the bot-
tom left in Fig. 2, highlighting the translational invariance in
the absolute concentration data. Any SVD-based approach
will be unable to capture this translational invariance and
correlate across snapshots in time, producing an artificially
high dimensionality, i.e., a higher number of modes would be
needed to characterize the dynamics due to translation (Kutz,
2013; Brunton and Kutz, 2019). To overcome this issue, the
time series for each grid point are shifted to align with GMT
time, as shown on the bottom middle in Fig. 2. With the
local times for each grid point aligned, SVD-based dimen-
sionality reduction techniques can now identify and isolate
coherent low-dimensional features in the data. Similarly, the
current season dictates the length of days and nights. For lat-
itudes where the days are very short, i.e., the turn-on times
are very short, the chemistry exhibits “spiky” patterns. SVD-
based approaches would again need an artificially high num-
ber of modes to capture the low-rank features in the data. To
work around this issue, the daytime chemistry can be isolated
and analysis performed on the isolated daytimes, especially if
there is total turn-off of the dynamics at night. The daytime
chemistry is isolated, showing only the non-zero data dur-
ing daytime. We further note that out of the large number of
latitude, longitude, and elevation settings, we highlight sur-
face dynamics (elevation= 1), as this elevation is not only
rich dynamically but also the elevation at which humans are
exposed to the atmospheric chemistry dynamics. As will dis-
cussed in what follows, we have made judicious choices to
demonstrate the dynamics present.

2.3 Optimized dynamic mode decomposition (DMD)

The DMD algorithm schematic is shown in the right panel
of Fig. 1. The DMD algorithm seeks the leading spectral de-
composition of the best-fit linear operator A (Brunton and
Kutz, 2019) that approximately advances the snapshot mea-
surements of the state of a system x € R” forward in time by
step size At:

X'~ AX, 5)

which leads to the mathematical definition of operator A as
the best-fit one-step operator (Tu et al., 2014).

However, the DMD formulated by this regression is rarely
used for the forecasting and/or reconstruction of time-series
data except in cases with noise-free or nearly noise-free data.
This is because the exact DMD (Eq. 5) is extremely sensitive
to noise in the data, causing a bias in the computed DMD
modes and eigenvalues (Bagheri, 2014; Dawson et al., 2016;
Hemati et al., 2017). The optimized DMD (optDMD) algo-
rithm of Askham and Kutz (Askham and Kutz, 2018), which
uses a variable projection method (Golub and Pereyra, 2003)
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for nonlinear least squares to compute the DMD for unevenly
timed samples, provides the best and most optimal perfor-
mance of any algorithm currently available. Indeed, this op-
timal performance is mathematically guaranteed by the expo-
nential fitting procedure of Askham and Kutz (Askham and
Kutz, 2018). The exponential fitting is given by

,
argming, g, X = bedy expn)ll3, (©6)
k=1

where a rank r approximation is estimated. As noted, opti-
mized DMD iterates to a solution of this non-convex prob-
lem by using variable projection (Golub and Pereyra, 2003).
This approach has been shown to provide a superior decom-
position due to its ability to optimally suppress noise bias and
handle snapshots collected at arbitrary times. Figure 3 shows
a comparison of surface nitrogen oxide (NO) as produced
by GEOS-Chem (top panel), reconstructed using classical or
exact DMD (middle panel), and generated using optDMD
(bottom panel). The classical DMD reconstruction dies out
within a few days, failing in the task of even reconstructing
the time-series data, let alone forecasting, as it was originally
regressed to. In contrast, optDMD is able to capture, sustain,
and faithfully reconstruct the original time series.

We can also introduce constraints to the optDMD algo-
rithm, including constraining all the DMD eigenvalues in
Eq. (6) to (i) the imaginary axis:

subject to R(wg) =0 (7
or (ii) the closed left half-plane:
subject to R(wg) < 0. (8)

As discussed below, these constraints further stabilize and
make robust the reproduction and forecast of the time-series
data. The disadvantage of optimized DMD is that one must
solve a nonlinear optimization problem through variable pro-
jection (Golub and Pereyra, 2003), which can often fail to
converge.

2.4 Bagging OPtimized Dynamic Mode Decomposition
(BOP-DMD)

BOP-DMD (Sashidhar and Kutz, 2022) leverages Breiman’s
statistical bagging sampling strategy (Breiman et al., 1984)
in partnership with the optimized DMD algorithm. The BOP-
DMD architecture is presented in Fig. 4. Bagging is designed
to produce an ensemble of models, thereby reducing model
variance and suppressing overfitting by design. Not only does
ensembling improve DMD, but it is also effective in deep
neural network regressions (Allen-Zhu and Li, 2020). Fur-
ther innovations include stabilizing the variable projection
technique used by optDMD so that it converges consistently
to an optimal solution (Sashidhar and Kutz, 2022). Its ability
to converge is often dependent upon a suitable initial guess
for the DMD eigenvalues and eigenvectors.
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Global chemistry discretization
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Figure 1. The spatial grid for atmospheric chemistry data sets on the
are used to regress to the best exponential (linear) solution argmin,,
T fitting the data (Eq. 6).
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Figure 2. Shifting the data for each cell in time to align the local time zones across a latitude to the prime meridian (long = 0°) local time,
shown here for O3 tendency data for lat = 30°. (b) is the raw data for the three highlighted cells, (c) is those data shifted in time, and

(d) shows isolated daytime values only.

The BOP-DMD algorithm accounts for the initialization
process and further provides the optimal solutions to lin-
ear models by using optDMD as the regression architec-
ture. Algorithm 1 shows the algorithmic structure of BOP-
DMD, highlighting the bagging, initialization, and ensem-
bling of the DMD models to produce an ensemble, proba-
bilistic DMD model. The initialization of DMD is accom-
plished by first constructing an optDMD model approxima-
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tion, whose eigenvalues and eigenvectors ®p can be used
to seed the BOP-DMD. p snapshots are randomly selected
from the full data matrix X € R"*"” to form a subset data
matrix X € R"*”. optDMD produces the model for this sub-
set data, and we save the resulting model parameters. The
process is repeated for K trials, producing an ensemble of
optDMD models. The mean {(®), (), (b)} and variance
{(®2), (22), (bz)} of the model parameters @, €, b can now
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Figure 3. Comparing 30 d reconstruction results for classical and optimized DMD at the surface of NO preprocessed data at lat = 30°. The
results are for absolute concentration or CONC data; (a) shows the preprocessed data, (b) shows the reconstruction from classical DMD, and
(c) shows the reconstruction from optimized DMD. Classical DMD is unable to capture the dynamics for the absolute concentration data,
and it decays down to zero. Optimized DMD reconstructs the data and resolves the dynamics accurately.
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Figure 4. Summary of the BOP-DMD architecture, reproduced with permission from Sashidhar and Kutz (2022). The data snapshots x (#;)
are collected over m snapshots into the matrix X. Columns of X are randomly sub-selected into the matrix X®) (o build an optimized DMD
model. Each DMD model x®) = ®) exp(ﬂ(k)t)b(k) is used to compute the statistics (mean and variance) of the DMD parameterizations
®, 2, b, which are used to build the BOP-DMD ensemble solution with uncertainty quantification (UQ).

be computed. Hence, in addition to producing the DMD
model itself, the output of algorithm 1 generates both spa-
tial and temporal uncertainty quantification (UQ) metrics. In
this work, we primarily focus on the temporal UQ metrics
for forecasting.

3 Results

The analysis is performed for preprocessed or time-shifted
raw data for 60 d from 2 July—30 August. This time period is
characterized by very active photo-chemistry in the Northern
Hemisphere. The photolysis rate dictates a different kinetic

Geosci. Model Dev., 18, 4667-4684, 2025

environment for many key species of interest. To simplify the
interpretation, the analysis is performed on surface data (ele-
vation = 1), one latitude at a time, and for all 72 longitudes,
with data shifted in time as described above.

In most of the latitudes in the Southern Hemisphere, the
days are much shorter than the nights; accordingly, the day-
light chemistry period is much shorter than the nighttime
chemistry period. Thus, the data exhibit a spiky pattern that
needs much higher modes to accurately reconstruct it, and/or
we would need to isolate the daytime values only when there
are active chemical kinetics present. Hence, we choose lati-
tude = 30° N for the analysis, which has the longest daytimes

https://doi.org/10.5194/gmd-18-4667-2025
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Algorithm 1 BOP-DMD.

Input: Input (X, p, K)

Procedure: BOPDMD (X, p, K)

Compute $¢. 2. bg

Forke{l,2,--- K}
Choose p of m snapshots (p < m)
optDMD &;.. Q.. by, and Initialize with €
Update ®, 2, b by adding ®;,. Q. by to .Q2.b

Compute mean g = {(®). (), (b)}

Compute variance o = {(®?), (%), (b?)}

return: .o which are optDMD parameters.

for the latitudes considered. The first 40 d of data are used as
training data, and the DMD diagnostics below are presented
for this time period and for latitude = 30°. With 72 snap-
shots per day, we have a data matrix of 72(long) x 2880(time)
for each latitude. optDMD is performed for this data matrix.
We perform the analysis for six different chemical species
of interest (Velegar et al., 2019): nitric oxide NO, ozone
O3, nitrogen dioxide NO;, hydroxyl radical OH, isoprene
ISOP, and carbon monoxide CO. For each species, we have
CONC or absolute concentration data (expressed in units of
molec.cm™3) and TEND or tendency/rate of change data
(expressed in units of molec.cm™3 s~1). Using the diagnos-
tics from the 40d training period (2 July—10 August), we
then forecast the chemical evolution for the following 20d
(11-30 August). The number of days used for fitting (40d)
is one of two hyper-parameters for the DMD regression, the
other being the number of modes (rank) used. A sliding win-
dow approach for sampling for DMD has been shown to be
quite effective for reconstruction and forecasting (Kutz et al.,
2016b; Lapo et al., 2024). Typically, a shorter sampling win-
dow helps in forecasting, as the data is often non-stationary
and long time histories compromise the DMD model. Thus,
we use a fairly representative model history of 40 d for fore-
casting, which also makes the model smaller and thus easier
to manage. In general, this is also in keeping with the DMD
philosophy of a model that can be simply run again due to
its small computational footprint. Although there are hun-
dreds of chemicals whose dynamics can be demonstrated, the
six selected are chemicals commonly associated with atmo-
spheric diagnostics, including pollution and environmental
health. Similarly, out of the large number of latitude, longi-
tude, and elevation settings, we highlighted surface dynam-
ics, as these are often some of the richest and most relevant
for understanding the role of atmospheric chemistry affect-
ing humans. It is an intractable task to show all chemicals
at all locations. Thus, the judicious choices represent those
of greatest impact and which are commonly considered by

https://doi.org/10.5194/gmd-18-4667-2025
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experts in practice. The code provided allows one to con-
sider any chemical at any location desired. There are, of
course, limitations to the methodology presented, especially
when considering chemical dynamics that are highly inter-
mittent and which lack any periodic or quasi-periodic behav-
ior. Ozone is an example of a chemical that is intermittently
active in its dynamics, thus compromising the ability of an
algorithm like DMD to produce quality reconstructions and
forecasts. Such chemicals have been excluded from consider-
ation, as methods for such time-series behavior are currently
lacking.

3.1 DMD diagnostics

The optDMD algorithm decomposes data into time dynamics
represented by the spectrum of eigenvalues 2 and the cor-
responding spatial modes ®. Here, we present diagnostics
from four different DMD approaches: (i) optDMD without
constraining the eigenvalues; (ii) optDMD with eigenvalues
constrained to the left half-plane; (iii) optDMD with eigen-
values constrained to the imaginary axis; and finally (iv) ex-
act DMD. This approach is taken to examine which decom-
position is best suited for the reconstruction and forecast-
ing of the chemistry dynamics. The constraints are impor-
tant in practice, especially for forecasting the atmospheric
chemistry. Without constraints, and often due to noise, the
data can generate eigenvalues that have positive real parts.
Even moderate-length forecasts will blow up artificially due
to the real part being positive. The optDMD algorithm allows
us to remove this unbounded artificial exponential growth.
Growth of the solution is still accommodated by modeling it
as the first part of an oscillatory solution (which looks like it
is growing but is, in reality, an oscillating mode). Similarly,
it has already been noted that noise can also artificially bias
the eigenvalues towards the left half-plane, which makes so-
lutions decay to zero. Thus, a forecast will exponentially die
away to zero. The constraint of the eigenvalue on the imagi-
nary axis guarantees a stable long-term forecast that neither
grows nor decays. Of course, this is a pure regression prob-
lem, which induces its own limitations, but in regards to fore-
casting, it has the important and desirable property of stabil-
ity for long-term forecasting. There is an additional inherent
assumption with constraining the eigenvalues to the imagi-
nary axis: conservation of mass of that chemical species. The
diagnostics are presented for the 40d time series of the hy-
droxyl radical species (OH). The results are consistent for
all chemical species of interest. Specifically, the forecasting
performance and error are agnostic to the specific chemi-
cal species considered, thus suggesting the DMD behavior
is independent of the specific chemistry being modeled. We
have used a hard rank threshold truncation of r = 25 for the
CONC data and r = 50 for the TEND data. Truncating the
rank for the DMD models is described below. These spe-
cific target ranks are chosen through hyper-parameter tuning
of their forecasting performance. Too few modes compro-
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mises the DMD model because there are not enough fea-
tures to accurately reconstruct and forecast the data. Too
many modes causes overfitting to occur on the training data.
Thus, although arbitrary, these specific values show generi-
cally strong performance across chemical species for the task
of forecasting. The diagnostics are presented for both abso-
lute concentration of the chemical species, or OHconc data,
on the left panels and the rate of change of concentrations/-
tendencies due to chemistry, or OHtgnp data, on the right
panels in Figs. 5 and 6. Four different spectra of the DMD
eigenvalues are presented in Fig. 5, and the corresponding
reconstruction of data is shown in panels 2-5 of Fig. 6. The
top two panels in Fig. 6 give the actual OHconc data (left)
and actual OHTgnp data (right), presented for comparison.

i. The spectrum for optDMD with no constraints on the
eigenvalues for OHconc data is presented in the top-left
panel and for OHtgnp data is presented in the top-right
panel of Fig. 5. For both data sets, some eigenvalues fall
on the right half-plane with positive real parts, causing
the corresponding modes to grow in time. The corre-
sponding reconstruction of data is presented in the sec-
ond two panels of Fig. 6. optDMD with no constraints
does a faithful reconstruction of data, but the forecast-
ing results are poor, with the time series growing ex-
ponentially as a result of some eigenvalues on the right
half-plane. This approach is not used henceforth.

ii. optDMD is then constrained to produce only eigenval-
ues with negative or zero real parts, i.e., eigenvalues
on the closed left half-plane (R (w; < 0)). The resulting
spectrum for the two data sets is presented in the second
two panels in Fig. 5. The corresponding reconstruction
of data is presented in the third two panels of Fig. 6.
Not only does optDMD with these constraints faithfully
reconstruct the data, but the forecasting results are also
accurate, as presented in the following section.

iii. optDMD is then constrained to produce only imaginary
eigenvalues with zero real parts ()(w; = 0)). The re-
sulting spectrum for the two data sets is presented in
the third two panels in Fig. 5. The corresponding recon-
struction of data is presented in the fourth two panels
of Fig. 6. optDMD with these constraints is not able to
capture the data dynamics and will not be used hence-
forth.

iv. Finally, results from exact DMD for both data sets are
presented in the bottom two panels of Figs. 5 and 6.
The resulting spectra for the two data sets have most
eigenvalues on the negative real axis, implying decaying
modes. The corresponding reconstruction of data also
decays out with no dynamics from the data captured or
represented faithfully. This approach is not used hence-
forth.
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Thus, we will use optDMD with eigenvalues constrained
on the closed left half-plane %i(w; < 0). When computing
optDMD, we truncate the number of modes to avoid fitting
dynamics to the lowest energy modes, which may cause over-
fitting and may be corrupted by noise. We would be truncat-
ing using hard-thresholding at a rank r at which the rela-
tive error in the reconstruction has an elbow, i.e., the error
graph flattens out without further decrease. Focusing on six
key chemicals of interest — NO, O3, NO,, OH, ISOP, CO -
and the CONC and TEND data, we now compute the relative
error as we increase the number of modes from 1 to 50. The
results for the two data sets and the six chemical species are
presented in Fig. 7. A larger number of modes is needed to re-
construct the TEND data compared to the CONC data. Based
on the results, we use 20-30 modes for optimal diagnostics
of the CONC data, depending on the chemical species. For
the TEND data, we pick between 30 and 50 modes.

Finally, we present the global spatial modes for CO and
NO, computed at 12 latitudes from —14° through 30°, in
Figs. 8 and 9, respectively. The 12 latitudes are selected
for having consistent day lengths across all longitudes and
at least four snapshots during daytime. As described above,
optDMD is performed one latitude at a time to have consis-
tent daytime lengths across all the time series, and the re-
sulting spatial modes are pieced together to present a global
picture. The underlying spatial features of the data sets are
resolved well by the constrained optDMD diagnostics. The
high-variance features at the coastlines and within hot spots
inland for the chemical species are represented clearly (Ja-
cob, 1999; Brasseur and Jacob, 2017).

3.2 Forecasting

As described above, using an appropriate rank truncation,
the optDMD algorithm with eigenvalues constrained to the
closed left half-plane faithfully reconstructs the time-series
data for a 40d training window and a given elevation/lati-
tude. We now forecast the time-series data for future times
beyond the training window. Using Eq. (1), with amplitudes
b, modes @, and eigenvalues 2 computed by optDMD during
the training window, we forecast time series for the subse-
quent 20 d. The results for the CONC and TEND data for two
chemical species OH and NO are presented for six longitudes
and latitude 30° at the surface (elevation = 1) in Figs. 10, 11,
12, and 13.

Constrained optDMD faithfully reconstructs and forecasts
the time series for the 20 d tested. Because we use the fewest
modes possible, spikes in the actual data are sometimes not
reproduced, and we see a sinusoidal best-fit time series in-
stead. The NOtgnp results in Fig. 13 demonstrate this.

We have snapshots of the data every 20 min, hence 72
snapshots per day. We compute the relative error for all lon-
gitudes for each day and average across space and snapshots
for each day. The resulting mean relative errors are presented
for all six chemical species of interest and for both CONC
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Figure 5. Comparing the spectrum for 40 d reconstruction results for classical and optimized DMD at the surface of OH preprocessed data.
On the left four panels are the eigenvalues of OHconc data; on the right four panels are the eigenvalues of OHTgND at lat = 30°. The top
panels show the spectrum from optimized DMD with no constraints, the second set of panels show the spectrum from optimized DMD with
linearized constraints requiring that the eigenvalues be on the left half-plane, the third set of panels show the spectrum from optimized DMD
with linearized constraints requiring that the eigenvalues be imaginary, and the bottom panels show the spectrum from classical or exact
DMD. Note that a hard rank threshold truncation of r = 25 for the CONC data and r = 50 for the TEND data has been used.

and TEND data in Fig. 14, colored in red. The 95-percentile 3.3 Temporal uncertainty quantification

confidence intervals for each day are presented as black bars,

indicating the variance for the mean relative errors. Con-

strained optDMD does an excellent job in forecasting the We now present the results from BOP-DMD in partner-

immediate future snapshots and does consistently well dur- ship with the optimized DMD algorithm to produce ensem-
ing the entire 20 d data tested, with mean errors/uncertainty ble models and compute temporal uncertainty for the eigen-
in forecasting increasing only slightly for some chemical value spectrum of both the CONC and TEND data for the
species as the number of prediction days increases away six chemical species of interest at lat=30°. We use the
from the last snapshot used from training. No exponential constrained optDMD as described above on a full training
growth/decay is observed in the forecast time series, while data set of 60d (2 July-30 August) to create an initial seed
the underlying dynamics are forecast faithfully. Considering %0, $20, bo for the BOP-DMD algorithm. For K = 100 trials,
that the underlying dynamics represent a moving state with we randomly select p = 216 snapshots/columns, i.e., data for
time, the constrained optDMD minimizes model bias with 3d out of the 60d, to create our subset of data, as shown
the variable projection optimization, thus leading to stable in Fig. 4. optDMD now computes the eigenvalues of vari-
forecasting capabilities. The performance is slightly worse ous subsets using the aforementioned initial conditions. The

in forecasting the TEND data compared to the CONC data, eigenvalues for the K =100 f?nsemble models are used. t.O
which is due to the intrinsic rank of the TEND data being ~ Produce the temporal UQ metrics. The UQ metrics are criti-
higher. Increasing the truncation rank of the projection would ~ cal for understanding the ability of the BOP-DMD algorithm

lead to an improvement in forecasting of the TEND data. to perform long-term forecasting. Specifically, BOP-DMD is
The optDMD algorithm performs worst in forecasting the @ low-cost computational tool, as opposed to Monte Carlo

chemical species OH. OH has a very short tropospheric simulations, for evaluating the divergence of future state pre-

lifetime of less than a second and exhibits rapid chemi- dictions from an ensemble of predictions, specifically drawn

cal cycling during the daytime. Consequently, this chemical ~ from the BOP-DMD eigenvalue distribution.

species needs the highest number of modes to capture its dy- Figure 15 shows the BOP-DMD distributions of the abso-

namics (Fig. 7). lute value of the first five eigenvalues for each of the sub-

sets of data for OHcone and OHtenp data at lat = 30°. The
BOP-DMD algorithm quantifies the temporal uncertainty by

https://doi.org/10.5194/gmd-18-4667-2025 Geosci. Model Dev., 18, 4667-4684, 2025
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Figure 6. Comparing 40 d reconstruction results for classical DMD, optimized DMD, and optimized DMD with no constraints at the surface
of OH preprocessed data at lat = 30°. The left panel is for absolute concentration or CONC data, and the right panel is for Tendency data.
The top panels show the preprocessed data, the second panels show the reconstruction from optimized DMD, the third panels show the
reconstruction from optimized DMD with eigenvalues constrained to the left half-plane, the fourth panels show the reconstruction from
optimized DMD with eigenvalues constrained to the imaginary axis, and the bottom panels show the reconstruction from classic DMD.
Classic DMD is unable to reconstruct the dynamics for the absolute concentration and tendency data. Note that a hard rank threshold
truncation of » = 25 for the CONC data and r = 50 for the TEND data has been used.

allowing for a Gaussian fit, shown in red. For both of the
data sets, we see a high temporal uncertainty in eigenvalues,
with outliers skewing the distributions. The temporal uncer-
tainty gets worse for the higher modes in the OHconc data
and for all modes of the OHtgnp data. Then, we trim the
eigenvalue distribution data to exclude the outliers below the
10th percentile and above the 90th percentile to improve the
UQ metrics. Figure 16 shows the distributions of the trimmed
absolute eigenvalues, where the Gaussian fit is clearly better
with lower variances, and only 1 distribution with outliers.
Still, we see that there is significant temporal variability, es-
pecially for higher modes for OHTgnD.-

4 Discussion

Based on the results presented in this work, we conclude that
the constrained optDMD algorithm is the DMD algorithm of
choice for the reconstruction and forecasting of global atmo-
spheric data. Exact DMD fails in the task of reconstructing
the chemistry time series it is regressed to, let alone produc-
ing a reasonable forecast. This is due to the significant bias
in the model from energetic localized convective phenom-
ena present in the atmospheric simulation data. The optDMD

Geosci. Model Dev., 18, 4667-4684, 2025

algorithm casts the regression problem as a nonlinear opti-
mization enabled by variable projection techniques (Askham
and Kutz, 2018), hence providing an optimal de-biasing for
the atmospheric chemistry dynamics. optDMD is thus bet-
ter able to capture hidden dynamics, showing an order of
magnitude improvement in the reconstruction error. optDMD
also produces modes that more accurately describe the lo-
calized energetic convective phenomena in the CONC and
especially the TEND chemistry dynamics. The nonlinear op-
timization problem in optDMD also allows for constraints.
By adding a constraint R (w; < 0) to the optDMD minimiza-
tion, we obtain accurate eigenvalues that are able to produce
high-fidelity stable and robust forecasts. For the entire testing
time window, the forecasts remain accurate as we increase
time away from the training time window, not displaying any
growth, decay, or loss of accuracy. However, computing opt-
DMD requires solving a nonlinear, non-convex optimization
problem, which often fails to converge to a solution. The
computational cost of optDMD is higher; as we increase the
number of snapshots, the cost increase becomes more sig-
nificant. The solutions obtained here nevertheless represent
significant improvements. Partnering the optDMD algorithm
with the statistical bagging and ensembling of BOP-DMD

https://doi.org/10.5194/gmd-18-4667-2025
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Figure 7. Relative error plotted against the number of modes used for optimized DMD with the eigenvalues constrained to the left half-plane
for six different chemical species and the CONC and TEND data at latitude = 30°.

For COconc data For COTEND data
26 2
o 0.8 o 0.5
« 6 e 0.4
§ {\\ \-A -- > & r A --
-14 0.3
26 0.4 )
Lo LT
t o6 «
.g {\ : ‘ \-A - _ 0.2 <\ \-A \ A 0-1
o - L
. 14 ‘0 - ‘0
i 26 \(; . \(;
o 402 o +-0.1
: 6 ' Y
< \ A A. 0.2
; -0.4 . Y
';g \(; \{ -0.3
-0.6
o \ '\' o -0.4
v 6 \
N {\ | b 08 ." | A 05
-14 ™\
-90 0 90 -90 0 90
Long

Figure 8. The 40d reconstruction results for optimized DMD at the surface of CO preprocessed data. The analysis was computed for 12
latitudes from —14° through 30°. The left panel shows the dominant four spatial modes for the CONC data, and the right panel shows four of
the corresponding spatial modes for the TEND data. The complex conjugate pair of DMD modes are denoted by ¢; ;, where, for the pairing,
j =1+ 1. Thus, w1 and w; are the complex conjugate pairs whose real parts are identical.
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Figure 9. The 40d reconstruction results for optimized DMD at the surface of NO preprocessed data. The analysis was computed for
12 latitudes from —14° through 30°. The left panel shows four spatial modes for the CONC data, and the right panel shows four of the
corresponding spatial modes for the TEND data. The complex conjugate pair of DMD modes is denoted by ¢; ;, where, for the pairing,
j =i+ 1. Thus, w1 and w, are the complex conjugate pairs whose real parts are identical.
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Figure 10. Time series of reconstructed and predicted results with OHconc data at lat = 30° and six longitudes —180° : 5° : —155°. Both
the reconstructed data, shown here for 10 d, and the forecasted time series, shown here for the 20 d testing period, faithfully reconstruct and
forecast the actual data for OHconc-
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Figure 11. Time series of reconstructed and predicted results with OHTgND data at lat = 30° and six longitudes —180° : 5° : —155°. Again,
both the reconstructed data, shown here for 10d, and the forecasted time series, shown here for the 20 d testing period, faithfully reconstruct
and forecast the actual data for OHTEND.-
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Figure 12. Time series of reconstructed and predicted results with NOconc data at lat = 30° and six longitudes —180° : 5° : —155°. Both
the reconstructed data, shown here for 10 d, and the forecasted time series, shown here for the 20d testing period, reproduce the actual data
for NOconc well.
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Figure 13. Time series of reconstructed and predicted results with NOTgNp data at lat = 30° and six longitudes —180° : 5° : —155°. Neither
the reconstructed data, shown here for 10 d, nor the forecasted time series, shown here for the 20 d testing period, capture the spikes in the
actual data for NOTgND. Because we are using only 20-30 modes for reconstruction, we get a sinusoidal best fit. In general, spikes in time-
series data are difficult to capture and forecast with any method, including DMD. Although more modes can provide a better reconstruction,
it often is then overfit on training data for forecasting purposes.

For CONC data For TEND data
-3 -3
2><10 . . . 2><1O . . .
rr P a - o
o OpFrrrrrrrERrrrreey O
-2 - & & -2 = 2 2
-3 -3
1><10 2><1O
2 OWO . o P Yo 1T ...
© ; | | | ) e LTI
2x10'3 2><1O'3
( AREEEERERAAREEEEE
ON 0 + 0 -
z _2 o e & _2 A " "
5x10‘3 2x10‘3
. oo
g L N N N NN 1111111 llll l
-5 - - - -2 - 2
2x10‘3 2x10'3
0 MU IS B 0 I BARESEERRAERARES
Q_( e A . -m-.- l‘.‘l’.lll.rlllll.l
°o -2 - - - -2 - - 2
2] -3 -3
1><10 5><1O
8 ?WZ ﬁﬁ‘.*..lmlu
5 10 15 20 5 10 15 20
Time (Days)

Figure 14. Mean relative error with 95-percentile confidence intervals forecasting CONC and TEND data at lat= 30° for a prediction
window of 20 d and for six different chemical species. The relative error stays nearly the same or changes only slightly as the number of days
we are forecasting out to increases. optDMD does better at forecasting the CONC data than for the TEND data.
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Figure 15. Temporal uncertainty quantification for absolute eigenvalues for the OHconc and OHTgNp data at lat = 30°. The red lines
represent a least-squares fit of a normal distribution; 60 d of training data was used, with a sample size of 3d and 100 cycles. The complex
conjugate pair frequencies are denoted by (cut.2 j), where, for the pairing, j =i + 1. Thus, w; and w; are the complex conjugate pairs whose

variance is evaluated jointly.
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produces temporal UQ metrics and highlights the high tem-
poral variance in the eigenvalues produced by optDMD. This
temporal variance gets worse for higher modes of the CONC
data; eigenvalues for the TEND data have quite high tempo-
ral variance.

An interesting further direction would be to apply opt-
DMD to an entire years worth of data, a still computation-
ally tractable problem. In particular, the current study did not
look at the ability of optDMD to faithfully reproduce yearly
patterns in the chemistry data and accurately forecast sea-
sonal variations. The BOP-DMD algorithm can be leveraged
to produce spatial UQ metrics, illustrating the spatial patterns
where optDMD is most uncertain in its ability to provide ac-
curate representations. optDMD can be further empowered
by partnering with BOP-DMD by (i) an initialization proce-
dure to stabilize its convergence, improving the robustness
and accuracy of the regression, (ii) leveraging statistical bag-
ging to produce a stable model with reduced variance in the
model parameters, and (iii) leveraging this stable model to
forecast future states of a spatio-temporal atmospheric chem-
istry system, with Monte Carlo simulations to produce UQ
for future states.

The presented approaches have the potential to produce
reliable estimates of “business-as-usual” patterns of global
atmospheric composition in real time and at very low com-
putational cost. They are not designed to capture unusual
events such as air pollution due to wildfires or sudden pol-
lutant emission changes (as, e.g., experienced in the wake of
the COVID-19 outbreak). However, when combined with ac-
tual atmospheric observations, the presented method can be
used to identify and quantify air pollution anomalies.

Code and data availability. The code is openly available at the fol-
lowing GitHub link: https://github.com/mvelegar/DMDPaper (last
access: 13 November 2023). The code and data are available on
Zenodo: https://doi.org/10.5281/zenodo.12754943 (Velaghar and
Kutz, 2024).
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