Geosci. Model Dev., 18, 4483-4498, 2025
https://doi.org/10.5194/gmd-18-4483-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

FINAM is not a model (v1.0): a new Python-based

model coupling framework

Sebastian Miiller’*, Martin Lange**, Thomas Fischer, Sara Konig, Matthias Kelbling, Jeisson Javier Leal Rojas, and

Stephan Thober

Helmholtz Centre for Environmental Research — UFZ, Leipzig, Germany

X These authors contributed equally to this work.

Correspondence: Sebastian Miiller (sebastian.mueller @ufz.de)

Received: 23 July 2024 — Discussion started: 20 August 2024

Revised: 25 February 2025 — Accepted: 18 March 2025 — Published: 24 July 2025

Abstract. In this study, we present a new coupling frame-
work named FINAM (short for “FINAM is not a model”).
FINAM is designed to facilitate the coupling of models that
were developed as standalone tools in the first place and
to enable seamless model extensions by wrapping existing
models into components with well-specified interfaces. Al-
though established coupling solutions such as Earth System
Modeling Framework (ESMF), Ocean Atmosphere Sea Ice
Soil (OASIS), or Yet Another Coupler (YAC) focus on highly
parallel workflows, complex data processing, and regridding,
FINAM prioritizes usability and flexibility, allowing users to
focus on scientific exploration of coupling scenarios rather
than technical complexities. FINAM emphasizes ease of use
for end users to create, run, and modify model couplings, as
well as for model developers to create and maintain compo-
nents for their models. The framework is particularly suited
for applications where rapid prototyping and flexible model
extensions are desired. It is primarily targeting environmental
models, including ecological models for animal populations,
individual-based forest models, field-scale crop models, eco-
nomical models, and hydrological models. Python’s robust
interoperability features further enhance FINAM’s capabili-
ties, allowing us to wrap and use models written in various
programming languages like Fortran, C, C++-, Rust, and oth-
ers. This paper describes the main principles and modules
of FINAM and presents example workflows to demonstrate
its features. These examples range from simple toy models
to well-established models like OpenGeoSys and Bodium
covering features like bidirectional dependencies, complex
model coupling, and spatiotemporal regridding.

1 Introduction

Environmental models represent specific systems or parts of
the environment, such as the water cycle, the carbon cycle, or
the species distribution. They are usually developed to inves-
tigate specific research questions and phenomena such as hy-
drological droughts or reduced plant productivity. However,
some phenomena are the result of processes that are inter-
linked and often occur at the same time. To study these com-
plex phenomena, it is necessary to combine independently
developed models.

Coupling models means that data are exchanged between
them, which can be established at several levels (Brandmeyer
and Karimi, 2000). There are three main approaches to ex-
change data between independent models: (i) using files,
(i1) using external coupling libraries, and (iii) using model-
ing frameworks. A fourth option, which we will not elabo-
rate further, is custom solutions like merging code bases of
different models or rewriting these from scratch.

File-based coupling means that output files from one
model are used as input for another model, and each model
is run separately for the entire simulation period. The advan-
tage of this approach is that the two models can be executed
asynchronously and that there are no modifications of the
models required. However, this gets impractical if the data
to exchange are large, for example, if the models work with
a high spatial resolution and intermediate results and states
have to be saved unnecessarily for the entire simulation pe-
riod. The even greater disadvantage of a file-based coupling
is that dynamic feedbacks between models require overly
complex workflows to correctly manage the huge amount of

Published by Copernicus Publications on behalf of the European Geosciences Union.

laded [eoiuyoel pue Juswdojaasg

4484

data input/output (I/O). It is an infeasible approach for com-
plex systems with a large volume of data that needs to be
exchanged. To overcome these issues, other approaches have
been developed.

Coupling libraries enable data exchange between indepen-
dently developed models. This is achieved by adding data
exchange calls to the code base of each model. The cou-
pling library then handles the data conversion and regrid-
ding. An example of a widely used coupling library is OA-
SIS (short for “Ocean Atmosphere Sea Ice Soil”), particu-
larly its latest version OASIS3-MCT together with the Model
Coupling Toolkit (MCT) (Craig et al., 2017). It is a power-
ful library designed for climate modeling, known for its ef-
ficient parallel communication and its ability to handle high-
resolution grids. Also Yet Another Coupler (YAC), a general-
purpose coupling library, excels in efficient parallel commu-
nication and time synchronization, written in C with bind-
ings to Fortran and Python supporting diverse applications
(Hanke et al., 2016; Hohenegger et al., 2023). A disadvan-
tage of these libraries is that the coupling needs to be con-
figured explicitly. In other words, the coupler needs to be
configured correctly and, for example, does not derive data
conversion from metadata of the exchanged variables. This
can be an error-prone approach, especially for inexperienced
users who want to focus on the scientific problem rather than
the coupling implementation details. Depending on the soft-
ware design, the maintenance of the data exchange calls in
each model also may create additional work for model de-
velopers because they are not used in the “offline” model
version.

The last approach to be mentioned is the integration of
different model concepts within one larger model frame-
work, resulting in large and complex model systems, such
as earth system models that represent atmospheric, terres-
trial, and marine compartments. The idea is to encapsulate
processes of models in components provided by the cou-
pling framework to have a unified data exchange mecha-
nism. Model coupling frameworks provide a platform for re-
searchers and practitioners to combine different models with
different scales, time horizons, and disciplinary perspectives
to capture complex interactions and feedback mechanisms
between different components of a system. A well-known
example of such a framework is the Earth System Model-
ing Framework (ESMF), which is widely used for its high-
performance capabilities and standardized data structures,
making it suitable for large-scale climate and weather sim-
ulations (Collins et al., 2005; Molod et al., 2015). The disad-
vantage of this approach is that frameworks such as ESMF,
while successfully used to couple independent codes with-
out a complete rewrite in some large-scale applications (e.g.,
a coupling of the atmosphere model ICON and the coastal
ocean model GETM; Bauer et al., 2021), are generally de-
signed to build model systems from the ground up. As a re-
sult, they may be less suitable for independently developed

Geosci. Model Dev., 18, 4483-4498, 2025

S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework

models with existing code bases, where significant restruc-
turing could be required.

There are several other domain-specific coupling solu-
tions like preCICE (Chourdakis et al., 2022), which is an
open-source coupling library specializing in partitioned mul-
tiphysics simulations such as fluid—structure interaction and
heat transfer, or OpenPALM (Buis et al., 2006), which is spe-
cialized on complex systems and highly parallelized compu-
tations. For completeness, we also mention the Basic Model
Interface (BMI) (Hutton et al., 2020), which is not itself a
coupler but rather a standardized, language-agnostic inter-
face specification that models can implement to simplify in-
teroperability and coupling.

Although these existing coupling solutions are power-
ful and well-established, they primarily focus on high-
performance computing environments, emphasizing paral-
lel data processing, efficient regridding, and scalability for
large-scale simulations like global climate models. This fo-
cus can pose challenges for scientists and modelers who wish
to experiment with model couplings in a more flexible and
accessible manner, without the mental overhead of complex
setups and specialized knowledge in parallel computing.

FINAM (short for “FINAM is not a model”) aims to fill
this gap by prioritizing usability and ease of coupling over
extreme computational performance. Our goal is to enable
scientists to couple models with minimal effort, allowing
them to comfortably experiment with model setups and focus
on scientific exploration rather than technical complexities.
FINAM allows for the coupling of independently developed
codes and seamless model extensions by wrapping existing
models into components with well-specified interfaces.

The user can build models with components from scratch
within the FINAM ecosystem, but they can also couple ex-
isting wrapped models, as detailed below. A central goal
of FINAM is to enable self-descriptive coupling scripts by
leveraging the power of Python while offloading computa-
tionally intensive parts to native models. FINAM allows for
the bidirectional coupling of spatial models in an easy and
flexible manner, enabling the exchange of data in memory. It
provides a consistent interface that supports flexible coupling
based on the common assumption that every model operates
with a time loop at its core. This allows for straightforward
model extensions written in Python, enabling rapid prototyp-
ing without the need to alter the original model source code.
Python’s reputation as a “glue” language is well-established,
a characteristic that stems from its robust interoperability
features. This compatibility is based on a suite of libraries,
which facilitate the development of wrappers to integrate
models regardless of their native programming languages, as
detailed in Sect. 2.2.

Within the following, we first describe the main principles
and modules of FINAM and then give examples for work-
flows to show some of the features of FINAM including bidi-
rectional coupling, complex model coupling, and spatiotem-

https://doi.org/10.5194/gmd-18-4483-2025

S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework

poral regridding. We further discuss future extensions and
possible applications.

2 Design
2.1 Principles

The core idea for FINAM is that existing models are wrapped
in components with a well-specified interface to get and set
data and to update the respective model by one internal time
step. Multiple components that are linked to each other, po-
tentially using adapters, are called a composition in FINAM.
A composition can be executed, and it automatically man-
ages updates of the coupled models and the exchange of data
between them.

This concept generally makes it straightforward for devel-
opers to wrap well-structured models (see Sect. 3.2 for de-
tails) and, once wrapped into a FINAM component, for users
to set up and run compositions. Consequently, components
can be developed in isolation without detailed knowledge of
the potential coupling partner models. Models can have their
own temporal and spatial resolution, whereby FINAM medi-
ates between them without user interaction.

There are multiple ways to couple models, like merging
their code bases, rewriting them using a specific framework
like ESMF, modifying source code with getters and setters
from a native coupler like OASIS or YAC, or exchanging
files.

Compared to these approaches, FINAM does not require
framework-specific code in the models except for some very
basic, generally useful functionality (see Sect. 2.2). In addi-
tion, end users need only minimal knowledge about coupled
models, while the specifics are all managed automatically.
Finally, using Python as the common glue language allows
for the coupling of models in virtually any programming lan-
guage. These features may not be unique individually, but
their combination makes FINAM a flexible and easy-to-use
solution for coupling environmental and other models.

As a guiding light, we will use the simple but fully func-
tional FINAM composition shown in Fig. 1. In this exam-
ple, a model is coupled with a NetCDF reader to get the
input data necessary to estimate the potential evapotranspi-
ration (PET) using the Hargreaves—Samani method (Harg-
reaves and Samani, 1985) and with a NetCDF writer to store
the results. The actual source code for this example can be
found at https://github.com/finam-ufz/paper-workflows (last
access: 30 June 2025) in the 00_example_PET folder.

2.1.1 Components and adapters

Components are the main building blocks of a FINAM
composition. Each component encapsulates a self-contained
piece of logic. Typically, a component represents a simula-
tion model that is prepared for FINAM by providing the re-
quired interface like pet in Fig. 1. But other types of compo-

https://doi.org/10.5194/gmd-18-4483-2025

4485

import datetime as dt

import finam as fm

import finam_netcdf as fm_nc

from component import PET

config

start_time = dt.datetime(1990, 1, 1)

end_time = dt.datetime(1991, 1, 1)

day = dt.timedelta(days=1)

components

pet = PET(start_time=start_time, step=day)

reader = fm_nc.NetCdfReader("data/temp.nc")

writer = fm_nc.NetCdfTimedWriter (
"results/pet.nc", inputs=["PET"], step=day)

composition

composition = fm.Composition([pet, reader, writer])

connections

reader.outputs["tmin"] >> pet.inputs["Tmin"]

reader.outputs["tmax"] >> pet.inputs["Tmax"]

reader.outputs["lat"] >> pet.inputs["lat"]

pet.outputs["PET"] >> writer.inputs["PET"]

exzecution

composition.run(end_time=end_time)

Figure 1. A simple but fully working FINAM model consisting
of three components: a reader providing data from a NetCDF
file, a writer storing results in a NetCDF file, and a pet (poten-
tial evapotranspiration) calculator. The model calculates PET from
the minimum and maximum daily air temperature and latitude val-
ues using the Hargreaves—Samani method (Hargreaves and Samani,
1985). First, the components are created, then the composition is
defined, next the data connections are established, and finally the
composition is executed.

Component

e.g. a model) B

Inputs Outputs

> |

Input

Figure 2. Schema of a component and an adapter in FINAM.

Output

nents are also possible, such as I/O components to read and
write files (like reader and writer in Fig. 1), real-time
visualizations, or statistical models.

As indicated in Fig. 2, components can have an arbitrary
number of inputs and outputs, handled by input slots and out-
put slots, respectively. In addition, components can have an
optional internal time step. Examples of components with a
time step are simulation models and components for read-
ing time series data. Examples of components without a time
step are statistical models, static data providers, or analytical
models. Components without a time step can be push-based
or pull-based. This means that they are executed when new

Geosci. Model Dev., 18, 4483-4498, 2025

https://github.com/finam-ufz/paper-workflows

4486

--

\

Figure 3. Example of a complex composition schema built with
four components and several adapters.

class PET(finam.TimeComponent) :
def _next_time(self):
def _initialize(self):
def _connect(self):
def _update(self):

Figure 4. Pseudo-code for implementing the PET component from
the example above in FINAM. The _initialize method con-
figures the model, _connect prepares I/O slots and sets initial
data, and _update executes a single time step of the model. The
_next_time method returns the predicted simulation time of the
next data pull.

input becomes available or when an output is requested, re-
spectively.

The components are linked through their input and out-
put slots, potentially involving adapters (Fig. 3). Adapters
are similar to components in that they encapsulate a piece of
logic in a self-contained way. In contrast to components, an
adapter always has exactly one input slot and one output slot
and does not have a time step (see Fig. 2). Adapters transform
the data that are passed between components. Examples for
adapters are the regridding from one grid specification to an-
other, as well as time interpolation and integration (see also
Sect. 3.3). Multiple adapters can be chained if needed.

The components and adapters use a unified interface re-
quired by FINAM. Both are created by implementing these
respective interfaces, where FINAM provides abstract base
classes for adapters and components with and without a time
step. These base classes implement the interface partially,
so developers can focus on the decisive code while leaving
the boilerplate to the base classes. A minimal implemen-
tation requirement for a component is illustrated in Fig. 4.
The required component methods reflect FINAM’s core idea
of a wrapped model. There needs to be a routine to initial-
ize the model (_initialize), to connect it to other mod-
els it should exchange data with (_connect), and to up-
date (_update) the model for one internal time step. In
order for FINAM to properly schedule the execution of the
composition, a component must provide information about
its estimated next time step (_next_time).

Geosci. Model Dev., 18, 4483-4498, 2025

S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework

hydro["runoff"] >> RegridLinear() >> stream["runoff"]

Figure 5. Data connections are denoted by the overridden bit shift
operator ">>" (for visual reasons).

def _initialize(self):
self .inputs.add(
name="tmin", time=self.time,
grid=None, units="degC")

Figure 6. Excerpt from the _initialize method of the PET
component from the example above. An input "tmin" for mini-
mum temperature is created with metadata like units. The associated
grid specification is undetermined at this point and will be inferred
from the metadata of the connected output in the connect phase.

2.1.2 Linking components

Components are linked through their input and output slots,
with or without one or more adapters in between. For visual
reasons, we overrode the bit shift operator ">>" to create
links between an output of one component and an input of
another component. This makes the coupling configuration
more readable compared to chained calls of linking meth-
ods. The code example in Fig. 5 shows how two models are
linked via a regridding adapter. Note that adapters, such as
regridding or time interpolation, can be chained in place for
minimal coding effort and readability. In Fig. 1 the reader,
writer, and pet components are linked in lines 18-21.

Data exchange between linked components and adapters
takes place purely in memory, and no files are used here. Dur-
ing the initialization process, the compatibility of the coupled
slots is checked (see Sect. 2.1.3), and an error is raised in the
case of incompatibility.

2.1.3 Data and metadata

For all data exchanged, FINAM uses NumPy arrays (Harris
et al., 2020), wrapped in quantities provided by the “pint”
(https://pint.readthedocs.io, last access: 30 June 2025) li-
brary, which handles units automatically. This means that any
exchanged data always have units, which can, however, be
dimensionless.

Each coupling slot has associated metadata and a time
stamp given by a datet ime instance if it is not static data.
Since we use the built-in datet ime module of Python, we
require all models to provide their temporal data on a Gre-
gorian calendar, which is a reasonable restriction for envi-
ronmental models. Obligatory metadata are grid specification
and units. Grid specification types provided by FINAM allow
for spatial and non-spatial data. Spatial data can be defined

https://doi.org/10.5194/gmd-18-4483-2025

https://pint.readthedocs.io

S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework 4487

def _update(self):
Increment model time
self.time = self.next_time
Retrieve inputs
data = {inp: self[inp].pull_data(self.time)
for inp in self.inputs}
calculate PET for the current time step
pet = self._calc_pet(data)
Push model state to outputs
self.outputs["PET"] .push_data(pet, self.time)

Figure 7. The _update method of the PET component from the
example above. First, the component time is updated and the current
required input is pulled. Then, PET is calculated and pushed to the
output.

on structured and unstructured grids (i.e., meshes) in up to
three dimensions. In addition to a grid specification and units,
each coupling slot can have arbitrary custom metadata fields.
All metadata follow the NetCDF Climate and Forecast (CF)
metadata conventions (Hassell et al., 2017).

During the connection phase, the compatibility of linked
slots is checked with respect to their grid specifications and
units. Data with compatible units such as kelvin and degrees
Celsius will be automatically converted. Equivalent units
such as liters per square meter and millimeter will not cause
a conversion. If slots are not compatible regarding grids or
units, an error is raised. However, adapters can be used for
transformations between different grids.

2.1.4 Scheduling algorithm

Component updates are scheduled by a central algorithm that
decides which components will be updated next. A model up-
date, triggered by the scheduling algorithm, involves at least
three steps:

i. advance the internal time step to the next one,
ii. retrieve the input data for the current time step, and

iii. calculate the outputs for the current time step and push
them to notify downstream components.

An example of a component update method is given in Fig. 7.

In particular, the scheduling algorithm ensures that the re-
quired data for a component’s next time step are available.
For that sake, all time components must be able to report their
current simulation time, as well as the (latest) expected time
after the next update, as this is the latest target time for the
inputs of the component. An example of an estimated next
time stamp is given in Fig. 8.

In each iteration, the scheduler starts with the component
with the earliest current time and recursively analyzes its de-
pendencies. The upstream components (the “provider”) are

https://doi.org/10.5194/gmd-18-4483-2025

def _next_time(self):
return self.time + self.step

Figure 8. The _next_time method of the PET component from
the example above. Since this component uses a fixed time step, we
simply advance the current model time by this step.

(@) A Fomrrrrmmrees 9] () o
E:, —e g —&--------)
L { s
Time > Time >
(c) A =@ cccccccccccnncaan o (d) A =@ -cccccccccccccaan o
é — -) é [—o—e-------- 0|
é é =
Time > Time >

Figure 9. Illustration of the FINAM scheduling. Snapshots of a
simulation featuring three components, A, B, and C, with different
time steps are shown. Component A depends on B, and B depends
on C. Solid lines and dots denote already-simulated model steps.
The right-most solid dot of each component shows its current sim-
ulation time. Dashed lines and hollow dots show the predicted next
pull time of a component. The box denotes the active component.

then updated before the downstream components (the “con-
sumer”). This ensures that the data required for the forthcom-
ing time step are available instead of, e.g., outdated data from
the time step before.

Figure 9 illustrates the scheduling algorithm with three
components in FINAM. In Fig. 9a, A is selected as the active
component because it is furthest back in time. The next pull
time is determined, denoted by the hollow dot. A depends
on B, which is not yet at A’s next time, and thus becomes
the active component. In Fig. 9b, B is the active component.
Its next pull time is determined, again denoted by the hol-
low dot. B depends on C, which is not yet at B’s next time,
and thus becomes the active component. In Fig. 9¢c, C is the
active component. It has no dependencies and can thus be
updated. These three steps are repeated until C catches up
with B’s next time. In Fig. 9d, all dependencies of B (i.e., C)
have sufficiently advanced in time for B to update. As illus-
trated by the curly braces, it is guaranteed that the input data
for B are available. Any kind of interpolation between adja-
cent source component time steps can be applied to derive
the input date. This is a responsibility of the adapters. Partic-
ularly for components with large time steps, it is also possible
to integrate over multiple source component time steps. For
example, component B could use the weighted average of the
several steps C has performed since the last updates of B.

The scheduling algorithm is mainly required for two rea-
sons: first, it allows for the coupling of models with arbitrary,

Geosci. Model Dev., 18, 4483-4498, 2025

4488

potentially incompatible time steps and even for model time
steps varying over the course of a simulation run. Second, it
allows models to use input for the upcoming time step instead
of the past one.

The update scheme explained so far only works if there
are no cycles in the dependencies. In the case of circular
or bidirectional coupling, one of the involved components
must use data from the past or extrapolate in time. FINAM
provides dedicated adapters that resolve circular dependen-
cies through delayed data usage or time extrapolation. This
gives users full control over how circular dependencies are
resolved.

As mentioned earlier, there are also components without
an internal time step. These can be updated either on pull
by another component or on push. This allows for compo-
nents like push-based file output or visualizations or pull-
based parametric data generators.

2.1.5 Iterative initialization

The initialization of the components may depend on other
components. Possible examples are

i. components depending on grid specification from a data
source (an I/O component),

ii. a deduction of the regridding transformation from input
and output grid specifications, or

iii. transfer of units of measurements from or to compo-
nents that perform generic operations.

All of these examples require the exchange of metadata be-
tween components (and adapters), potentially in both direc-
tions. To make this possible in an automated way and with-
out requiring a user to manually set all metadata, FINAM
uses an iterative initialization process (Figs. 6 and 10). In this
way, metadata can be exchanged downstream and upstream,
regardless of complex dependencies, as long as dependency
cycles can be resolved.

Implementation-wise, this metadata exchange is realized
by calling the connect method of components multiple
times (see Fig. 11 for an example). Each time the method is
called, the component can try to send or obtain metadata to
or from its slots. Components indicate their connect progress
(ready, something exchanged, or nothing exchanged) to the
scheduler, which can thereby detect unresolvable depen-
dency cycles. In this process, initial data exchange before
the first time step is also handled. The procedure is largely
automated through a helper class ConnectHelper to min-
imize the effort required by component developers. An ex-
ample of the setup of such a connector is given in Figs. 6
and 10. FINAM users who just write coupling scripts do not
need to deal with the connect phase at all.

Geosci. Model Dev., 18, 4483-4498, 2025

S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework

def _initialize(self):

self.outputs.add(name="PET")
self.create_connector(
pull_data=self.inputs.names,
out_info_rules={"PET": [
FromInput("tmin", ["grid", "time"]),
FromValue("units", "mm/day")]1})

Figure 10. Another excerpt from the _initialize method of
the PET component from the example above. An output "PET"
is created along with a connector that is configured with rules to
determine metadata for this output from given inputs (grid and
time specification from "tmin") or hard coded values (units set
to "mm/day").

def _connect(self, start_time):

push_data = {}

if (self.connector.all_data_pulled

and self.connector.data_required["PET"]):
push_data["PET"] = self._calc_pet(

self.connector.in_data)

self.try_connect(
start_time=start_time,
push_data=push_data)

Figure 11. The _connect method of the PET component from the
example above. The initial value for "PET" is calculated as soon as
all required inputs are available.

2.2 Wrapping models

Wrapping an existing model requires (i) providing Python
bindings for it and (ii) implementing FINAM’s Component
interface. Python bindings for an existing model need at least
these features: (i) instantiate/initialize the model, (ii) update
the model by one time step, (iii) access state variables desired
as outputs, and (iv) alter state variables desired as inputs. If
no Python bindings of the model exist, but it can be run as
a black box for a single time step, there is also the possibil-
ity of creating a component that prepares the required input
files for each time step, calls the model, and reads the output
files to provide the data in the FINAM composition. But be
aware that this approach may introduce performance bottle-
necks since it is basically a file-based coupling.

Depending on the code structure of the model, some
refactoring may be required to provide separate routines
for initialization and model stepping that are then exposed
to the Python side with Python bindings. Python bind-
ings can be created using libraries such as Cython (Behnel
et al., 2011), scikit-build (Fillion-Robin et al., 2018), f2py
(Harris et al., 2020), pybind11 (Jakob et al., 2017), pyo3

https://doi.org/10.5194/gmd-18-4483-2025

S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework 4489

(https://github.com/PyO3/pyo3, last access: 30 June 2025),
ctypes (https://docs.python.org/3/library/ctypes, last access:
30 June 2025), swig (https://www.swig.org, last access:
30 June 2025), or cffi (https://github.com/python-cffi/cffi,
last access: 30 June 2025).

As an example, we want to discuss the Python bindings
for the mesoscale hydrological model — mHM (Samaniego
et al., 2010; Kumar et al., 2013) — written in Fortran. The
developers had to take these steps: (i) encapsulating the time
loop in a callable subroutine by copying over code; (ii) en-
capsulating the initialization and finalization of the model by
separating the main driver of mHM into callable subroutines;
and (iii) writing an f2py wrapper that links against the mHM
library and provides routines to call the mentioned initializa-
tion, update, and finalization subroutines as well as routines
to retrieve and alter the internal states. This straightforward
refactoring was done in a manageable number of commits,
and a positive side effect is that mHM is now installable via
pip (https://git.ufz.de/mhm/mhm/-/tree/v5.13.1/pybind, last
access: 30 June 2025).

Using Python bindings of a model, the actual wrapper im-
plementing the component interface can be written with as
few as 50 lines of code for a simple use case similar to the
implementations of the PET example above, where the inter-
action with the wrapped model would be analogous to line 8
in Fig. 7. The mHM wrapper for comparison is provided by
a separate Python package “finam-mhm” (https://git.ufz.de/
FINAM/finam-mhm, last access: 30 June 2025). At its core,
the mHM component is implemented in the same way as in
the PET example above but with more inputs and outputs.
FINAM’s extensive documentation (https://finam.pages.ufz.
de/finam/finam-book/development/components, last access:
30 June 2025) provides a detailed guide and examples for
this task.

2.3 Modules

Following Python’s “batteries included” philosophy, the
FINAM core package, along with its external packages, pro-
vides a wide array of components and adapters designed
to simplify common tasks in environmental modeling. This
modular approach ensures that users can install only the com-
ponents they need, avoiding unnecessary dependencies and
keeping their environment clean and efficient.

FINAM includes regridding adapters based on robust li-
braries such as SciPy (core module) and ESMF (provided as
the separate package “finam-regrid”), facilitating spatial data
transformation between different grids. Temporal interpola-
tion and integration adapters align data from models operat-
ing at different time resolutions, ensuring coherent temporal
data integration.

The framework supports file input/output (I/O) for
commonly used formats in environmental modeling,
such as NetCDF, VTK, and CSV, simplifying data ex-
change and storage. Live plotting capabilities provided by

https://doi.org/10.5194/gmd-18-4483-2025

finam-plot and finam-graph, which are based on
matplotlib, enable real-time visualization of time series
and spatial data, which is useful for monitoring ongoing sim-
ulations and making immediate adjustments. Additionally,
live visualizations for scheduling and coupling composition
provide an intuitive understanding of model interactions.

To address dependency cycles, where components rely
on each other’s data, FINAM includes adapters designed to
break these cycles, ensuring that one component uses past
data to maintain simulation integrity. For rapid prototyping
and testing, FINAM offers components like noise generators
and generic transformations, allowing simulation of various
scenarios and validation of model behavior without altering
the core source code.

Further, these components are provided with the core
package:

CsvReader and CsvWriter for working with CSV
files

— SimplexNoise for generating synthetic (test) data

ParametricGrid for generating synthetic (test) data
from a user function

CallbackGenerators and
CallbackComponent for generating and trans-
forming data using user-defined functions.

Additional adapters in the core package include

— RegridLinear and RegridNearest for regrid-
ding based on SciPy;

LinearTime, StepTime, AvgOverTime, and
SumOverTime for time interpolation and aggregation;

GridToValue, ValueToGrid, and Histogram
for conversion between gridded and non-gridded data;

Callback for arbitrary conversions based on a user
function.

By integrating these components, FINAM enhances its
utility and flexibility, making it a powerful tool for environ-
mental modelers. The modular design simplifies installation
and configuration, supporting the development and execu-
tion of complex simulations with greater ease and efficiency.
This comprehensive suite of tools underscores the commit-
ment of FINAM to providing a user-friendly and adaptable
framework for the environmental modeling community.

3 Coupling examples

In the following, we describe three workflows to demonstrate
different features and fundamental concepts of FINAM. It
should be noted that the focus is not on the scientific out-
come of these coupling examples but rather on the technical
realization.

Geosci. Model Dev., 18, 4483-4498, 2025

https://github.com/PyO3/pyo3
https://docs.python.org/3/library/ctypes
https://www.swig.org
https://github.com/python-cffi/cffi
https://git.ufz.de/mhm/mhm/-/tree/v5.13.1/pybind
https://git.ufz.de/FINAM/finam-mhm
https://git.ufz.de/FINAM/finam-mhm
https://finam.pages.ufz.de/finam/finam-book/development/components
https://finam.pages.ufz.de/finam/finam-book/development/components

4490 S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework

CsvReader

CsvWriter

DelayFixed []

Figure 12. FINAM coupling diagram of a bidirectional model between LAI and SM.

3.1 Bidirectional toy model

FINAM allows us to create circular couplings, enabling com-
positions where the output of one component serves as the in-
put for another, and vice versa. There, iterative data exchange
allows for the development of complex and interconnected
networks of components. This section presents this concept
and provides an illustrative example of the bidirectional cou-
pling features in FINAM using simple toy models.

We couple a toy model that simulates the leaf area in-
dex (LAI) of the plant canopy with a toy model that cal-
culates soil moisture (SM) based on precipitation data. The
toy models represent simplified first-order effects, where LAI
decreases for a dry soil, and new plant biomass can only be
created with sufficient soil moisture. For soil moisture, it is
a simple water balance with precipitation as a source term
and transpiration, represented as a linear function of LAI, as
a sink term. These models are set up purely for demonstra-
tion purposes, and the coupling is illustrated in Fig. 12. To
demonstrate why a bidirectional coupling is beneficial in this
case, a second scenario was built, where SM is calculated us-
ing a fixed LAI value for the entire simulation period (see
Fig. Al).

The two toy models are defined by the following Eq. (1)
for SM and Eq. (2) for LAI:

sm(t) =sm(t — 1) + B - pre(t) — C - lai(r), @))]
lai(t) = A-lai(t — 1)+ (1 — A) - f(sm(?)), 2)

where ¢ is the time step index, sm [-] is the soil moisture,
lai [-] is the leaf area index, pre [mm d=17 is the precipita-
tion, A is a parameter to account for the relationship between
LAI and SM, and B [-] and C [-] are parameters to control
the impact of precipitation and vegetation characteristics on
the evolution of soil moisture. The term f(sm(¢)) represents
the effect of soil moisture on LAI as a piecewise linear func-
tion. For a completely dry soil (sm is 0), it is 0, increasing
to a maximum of 5 at an sm of 0.6 and decreasing to 3 for

Geosci. Model Dev., 18, 4483-4498, 2025

completely saturated soil. Soil moisture is bounded to be be-
tween O and 1.

To enable a bidirectional coupling, we use a time delay
adapter provided by FINAM as seen in Fig. 12. Since the
components implement Eqgs. (1) and (2), where both vari-
ables need the other to be already calculated for the cur-
rent time step, we need to provide one model with past
data to break the dependency cycle. We offset the SM in-
put of the LAI component by one time step, which means
that it uses the soil moisture of the previous day. Integrat-
ing the DelayFixed adapter replaces sm(t) with sm(z — 1)
in Eq. (2), thus delaying the effect of changes by one time
step. A S-year precipitation time series (1989-1993) was
taken from the test domain of the mesoscale hydrological
model (mHM) (Samaniego et al., 2010; Kumar et al., 2013)
by extracting data from a single coordinate in space. These
data were stored as a CSV file for reading by the FINAM
CsvReader component.

The results of both models (unidirectional and bidirec-
tional) are shown in Fig. 13. The upper panel shows the pre-
cipitation data used as input for the SM component in both
models, while the lower panel showcases the two model re-
sults as time series of LAI (dashed) and SM (solid).

A key observation is the deviation from the bidirectional
model (blue) and the unidirectional model (orange), espe-
cially in 1992. A dry period results in a dryer soil that ef-
fectively reduces LAI This then results in less transpiration
and a steeper increase in SM afterwards compared to the con-
stant LAI case. This reflects the bidirectional interaction of
the two toy models. One should note that the cyclic coupling
of the two components only needed two lines of code in the
composition script.

FINAM manages the complexities of time-stepping, data
exchange, and synchronization, allowing users to focus on
model development rather than integration logistics. Imple-
menting bidirectional couplings is notably straightforward
due to the modular design of the framework. In comparison

https://doi.org/10.5194/gmd-18-4483-2025

S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework 4491

el alll hh‘ N

(a)

-—- LAl
Constant LAl
— SM
SM at constant LAI

3.25 4

3.00 4

2.751

2.001

1751

1.50 1

0.6

r0.5

T
o
FS

o
w
SM (mm/mm)

F0.2

F0.1

F 0.0

T T T
1989 1990 1991

T T T
1992 1993 1994

Figure 13. (a) Precipitation and (b) LAI (dashed lines) and SM (solid lines) time series for a FINAM uni- (orange) and bidirectional (blue)

model coupling. Ticks mark the beginning of the year.

to unidirectional coupling, where the data flow is one way
only and feedback loops are ignored, the difference in im-
plementing bidirectional coupling is minimal. Adjusting the
data flow from an LAI generator to the LAI component, for
instance, involves only a few additional lines of code.

3.2 Coupling complex wrapped models

One major application of FINAM is the coupling of com-
plex models to answer scientific research questions where
a single model alone reaches its limits in terms of system
boundaries or implemented processes. To demonstrate the
applicability of FINAM for such tasks, in this section we
present a unidirectional coupling of the systemic soil model
BODIUM (Konig et al., 2023) and the component transport
process implemented in OpenGeoSys (OGS) (Kolditz et al.,
2012). BODIUM simulates the most important processes in
soil and at the plant—soil interface on the field scale, includ-
ing plant growth, and is developed for agricultural systems.
The lower boundary is the rooting layer or a few centime-
ters below. This is the spatial boundary where a coupling to
OGS is of interest. OGS is an open-source simulation soft-
ware for thermo—hydro-mechanical-chemical (THMC) pro-
cesses in porous and fractured media. The partial differential

https://doi.org/10.5194/gmd-18-4483-2025

equations used for modeling are solved numerically using the
finite element method.

Reducing the pollution of waterbodies with nitrate from
agricultural sources is an important challenge. To understand
the fate and transport of nitrate from its application as a fer-
tilizer to its entry into groundwater and rivers, model simu-
lations are a powerful tool. In this coupling example, we use
BODIUM to simulate two hypothetical agricultural fields in
different locations managed with a winter wheat monocul-
ture and different levels of nitrogen fertilization (170 and
340kgha~'a~!). The simulated nitrate leachate from each
time step is passed through FINAM to OGS, where the trans-
port within groundwater and to a nearby river is simulated.

BODIUM and OGS operate on the same temporal scale
(daily time step) but on different spatial scales. While BOD-
IUM is a 1D model simulating on the field scale, OGS simu-
lates on irregular grids on the catchment scale. However, the
exchange variable in this specific coupling example is given
in mass per area and thus is independent of the exact spatial
distribution. Therefore, we can apply a simple linear regrid-
ding within FINAM to overcome the spatial differences be-
tween the coupled models with BODIUM simulating two dif-
ferent instances for the two agricultural field sites. The basic

Geosci. Model Dev., 18, 4483-4498, 2025

4492

S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework

Bodium Nout

RegridLinear ToplA 0GS6Model
4 e
Figure 14. FINAM coupling diagram of BODIUM and OGS.
0.0006 1 —— field1_nitrate_leach |
field2_nitrate_leach ,
0.0005 M
S 0.0004 \
b |
Q<
©0.0003 [\
o
Z 0.0002 i
0.0001 J Y il Vag T -
g \ W=\ LN
@ R AR NN N
0 100 200 300 400 500 600 700
days
Bodium nitrate leach
0.0 0.2 04 0.6 0.8 1 1.2 14 1.6 1.8 2.0

Figure 15. (a) Nitrate leachate computed by BODIUM for the two different fields (fieldl and field2). (b, ¢) Subsurface domain outline
and (for visualization purposes translated as “clouds”) boundary patches above colored by BODIUM nitrate leachate: in the background
(exaggerated 5 times) nitrate concentration computed by OGS (b: after 264 d; c: after 680 d); in the front groundwater flow paths colored by

velocity.

diagram in Fig. 14 shows the components involved (colored
blue) and the linear regridding adapter (colored orange). The
connection lines between the components and adapters indi-
cate data exchange controlled by FINAM, from white outputs
to gray inputs.

The surface of the model domain with x extent of 1830 m,
y extent of 830m, and z extent of 48 m is given by a to-
pography extracted from Shuttle Radar Topography Mission
(SRTM) data. In the bottom panel of Fig. 15, the domain is
exaggerated 5 times and the two agriculture sites are delin-
eated by the two stripes, which are moved up a little for vi-
sualization purposes. In the upper panel of Fig. 15 the nitrate
leachate is plotted over time.

For each agricultural site, a different BODIUM instance
simulates nitrate leachate, which is passed to OGS at the spe-

Geosci. Model Dev., 18, 4483-4498, 2025

cific field locations via the FINAM linear regridding adapter.
At all other parts of the simulation domain, nitrate leachate
passed to OGS is set to zero (assuming negligible nitrate
leaching in non-agricultural fields). The amount of nitrate
leached into groundwater depends on the time of fertilizer
application, precipitation, and nitrogen uptake by plants, re-
sulting in temporal peaks of nitrate passing from BODIUM
to OGS (top panel of Fig. 15). After the nitrate has reached
the subsurface, it is transported along the groundwater flow
field. The subsurface nitrate distribution is shown after 264 d
in the left part and after 680d in the right part of Fig. 15.
In order to create a more dynamic behavior, both fields have
slightly different time series of nitrate leach.

This example demonstrates how established complex
models can be easily coupled via FINAM. However, note

https://doi.org/10.5194/gmd-18-4483-2025

S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework

that both models had to be prepared for model coupling with
existing Python bindings and a FINAM wrapper; i.e., the in-
terface shown in Fig. 4 has to be implemented. In addition,
to apply this coupling for advanced research questions, fur-
ther extensions of the coupling would be of interest, such as
a bidirectional coupling by passing the hydraulic head from
OGS to BODIUM.

3.3 Spatiotemporal regridding

Spatiotemporal regridding is a fundamental concept in the
field of spatial data analysis and processing. Thus, regridding
algorithms are a big part of the mentioned coupling frame-
works and ESMF, OASIS, or YAC libraries. It involves the
transformation of data from one spatiotemporal grid or coor-
dinate system to another. In FINAM the coordinate reference
system (CRS) is part of the grid definition to account for
Cartesian and spherical coordinates. Coordinate transforms
are performed automatically when grids have different CRSs.

FINAM provides built-in regridding adapters for linear
and nearest-neighbor interpolation designed to easily trans-
form data from one model to another. For advanced re-
gridding operations, we provide a dedicated package finam-
regrid, which wraps the regridding algorithms of ESMF
(Collins et al., 2005), covering a wide range of regridding
methods, grid types, and coordinate systems. For details,
we refer to the documentation of finam-regrid (https://finam.
pages.ufz.de/finam-regrid, last access: 30 June 2025). These
adapters are designed to translate data between different grid
formats — structured or unstructured — and adjust resolutions
to ensure compatibility between models. Incorporating re-
gridding capabilities directly within the framework signifi-
cantly reduces the workload on model developers and users.
Performing as a dynamic adapter, it automatically detects the
specifications of the source and target grids and derives the
required transformation for differing CRSs. The regridding
method to be used needs to be specified by the user and is
dependent on the exchanged data. Despite the underlying
complexity of this task, we have engineered the tool to be
user-friendly, ensuring that its advanced capabilities are ac-
cessible without the need for detailed technical knowledge of
regridding.

In this example, we illustrate the spatiotemporal regrid-
ding capabilities of FINAM by converting daily precipitation
data from an unstructured grid, with a cell edge length of
approximately 0.5 km, to a 30 d mean precipitation on a reg-
ular grid with 1km cells, covering an area of 5km x4 km.
To simplify the example, we utilize the finam-vtk package to
read the unstructured data time series stored in the PVD for-
mat and then write the data using the finam-netcdf module.
However, this workflow could also be integrated into a larger
system in which meteorological data from an atmospheric
model serves as input for a crop yield estimator that operates
on monthly data.

https://doi.org/10.5194/gmd-18-4483-2025

4493

import finam as fm
import finam_regrid as fm_rg

Adapters

method = fm_rg.RegridMethod.CONSERVE
regrid = fm_rg.Regrid(regrid_method=method)
mean = fm.adapters.AvgOverTime (step=0)

Connections

reader["pre"] >> regrid >> mean >> writer["pre']

Figure 16. FINAM composition excerpt to regrid and average pre-
cipitation over time. The reader and writer modules specify the spa-
tial and temporal resolutions of the source and target precipitation
data. The writer is pre-configured with a regular mesh and a writing
frequency of 30 d. This implies that the regrid and mean adapters
do not need further information about the data specification, as it is
determined from the connected components. The regridding method
is set to CONSERVE in order to preserve the total amount of precip-
itation, and the averaging adapter is configured to interpret the data
to be valid for the time span right before the time stamp (step=0).

Figure 16 shows the important parts of the coupling setup
script, which shows the ease of configuring the data flow,
while Fig. 17 shows the overall coupling scheme. We em-
ploy a 5-year time series of daily data and apply a rolling
mean with a 30d window after regridding the data to the
structured target grid. Figure 18 shows the averaging of an
extracted time series from the top-right grid cell. The time-
averaging adapter is capable of converting the data on the fly
with almost no configuration. Input and output time-stepping
is purely derived from the connected components, where the
input precipitation is pushed daily by the reader component
and the writer will request data every 30d. This highlights
the ease of creating data streams, where users do not need
to worry about time-stepping compatibilities. Furthermore,
Fig. 19 shows the results of the regridding for a single day on
the unstructured grid and the average of 1 month on the target
grid, which includes that day. To ensure that the total amount
of precipitation is preserved, in this example the conserva-
tive regridding implementation of ESMF was used. Again,
the adapter for spatial regridding will determine its configu-
ration entirely from the data specifications of the connected
components, which avoids sources of error.

This workflow demonstrates the ease of creating data
workflows that connect components operating on different
spatiotemporal scales. By regridding daily precipitation data
from an unstructured grid to a regular grid and aggregating it
into 30 d means, it showcases the integration of various data
formats and the seamless data flow configuration, highlight-
ing the potential for coupling diverse data-driven models.

Geosci. Model Dev., 18, 4483-4498, 2025

https://finam.pages.ufz.de/finam-regrid
https://finam.pages.ufz.de/finam-regrid

4494 S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework

VTK reader

| NetCDF writer

Figure 17. FINAM coupling diagram of the spatiotemporal regrid-
ding of precipitation.

Precipitation time series for a single cell

60 daily
—— 30 day mean

504

Precipitation (mm/d)
w N
o o

N
o

10 1

Date

Figure 18. Temporal aggregation of precipitation data for a single
grid cell. The 5-year input time series of daily data is shown in blue,
and the 30d rolling average is shown in black.

4 Discussion

In the development of the model coupling framework
FINAM, our primary goal was to address the significant chal-
lenges inherent in coupling models written in diverse pro-
gramming languages and operating on different time steps
and grid systems. The selection of Python as the foundational
language for this coupler was predicated on several of its in-
trinsic qualities that make it exceptionally suited for such a
complex task.

Python’s interoperability is enhanced by a variety of li-
braries that facilitate the development of wrappers for in-
tegrating models across different native programming lan-
guages like C, C++, Fortran, or Rust. Additionally, Python’s
extensive ecosystem and library support simplify the process
of model creation and data processing, backed by a strong,
global community of developers and researchers. This sup-
portive environment, combined with the cross-platform na-
ture of Python and the ability to rapidly prototype it, creates
an optimal setting for the development and fast and easy test-
ing of complex model couplings.

Geosci. Model Dev., 18, 4483-4498, 2025

One fundamental idea of FINAM is the assumption that
temporal models inherently contain a time loop within their
code structure. The coupler makes use of this characteristic
by requiring that each model needs to be able to perform a
single time iteration. This should be controlled by interface
routines provided in Python that also provide access to the
internal states between these iterations. Such an approach al-
lows for the seamless implementation of a FINAM compo-
nent to wrap around any model, facilitating its integration
into the coupling framework without necessitating direct fur-
ther modifications to the model’s source code when Python-
bindings are available.

Compared against a pure pull-based approach, where mod-
els are only executed if data are requested by downstream
components, FINAM’s scheduling provides several advan-
tages. Firstly, a pure pull-based approach requires a single
component that is the end point of the coupling, which drives
the complete chain via pull. With FINAM’s approach, this is
not required and a coupling setup can have an arbitrary num-
ber of end points. Secondly, in a pull-based approach, it is
not guaranteed that all components run over the entire sim-
ulation time frame. In FINAM, this is guaranteed. Finally,
the hybrid approach allows for push-based components that
react to new data becoming available.

In contrast, solutions based on coupling libraries like OA-
SIS often involve the integration of routines in their sup-
ported languages directly into the model source code, en-
abling data exchange during runtime (Hanke et al., 2016;
Craig et al., 2017). However, this method may impose a sig-
nificant burden on modelers, who must ensure data compat-
ibility with respect to units, grid definitions, and time refer-
ences, potentially necessitating extensive modifications and
conditional extensions to the original model code. FINAM
distinguishes itself by offering utilities to validate and pro-
cess data on the fly, thereby simplifying the coupling process
and minimizing the need for direct alterations to model code.
However, as described in Sect. 2.2, some refactoring might
be necessary.

To further emphasize the practical advantages of the
FINAM framework, it is essential to highlight the usability
of the adapters provided within the system. These adapters
enable smooth data exchange between models with varying
data requirements and formats without the need for explicit
configuration. As an example, regridding adapters automati-
cally determines their required transformation from the con-
nected source and target components. Regridding is not re-
quired if grids are compatible, in the sense that only trivial
transformations like axis-flipping or transposing are needed.

In addition, FINAM includes a variety of readers and writ-
ers designed to handle multiple file formats, such as NetCDF,
VTK, or CSV. This versatility allows researchers to integrate
models from different domains without the need for time-
consuming conversions or extensive preprocessing. All data
exchanged in FINAM is wrapped by pint to enable automatic
unit conversion and checking. This means that incompatible

https://doi.org/10.5194/gmd-18-4483-2025

S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework

(a) daily mean (30.12.1993)

(b) Grid comparison

(c) 30 d mean (8.12.1993 - 6.1.1994)

Y (km)
Precipitation (mm/d)

Y (km)
Precipitation (mm/d)

4 25
20

3 3
15 2

2 X 22
104 s

1 1
5

0 0

0 1 2 3 4 5 °

X (km)

4 25

20
3

15
2

10
1

5
0 0

0

1 2 3 4 5

2 3
X (km) X (km)

Figure 19. This figure illustrates the regridding process of precipitation data based on ESMF wrapped by finam-regrid. Panel (a) shows the
input unstructured grid for a single day, highlighting the original distribution and variability in the data on an irregular grid. Panel (b) overlays
the unstructured and resulting structured grids, without displaying data, to emphasize the differences in grid configurations and cell outlines.
Panel (c) presents the resulting structured grid with time-averaged precipitation data over 30d, including the single day from the left panel,
demonstrating the transformation and smoothing effect achieved through regridding.

inputs and outputs can never be connected by mistake, and,
if required, a unit conversion is performed on the fly.

However, FINAM still has several limitations and
the potential for improvements and extensions. One
of the main challenges FINAM is currently facing is
the issue of parallelization. Particularly, the integration
of MPI (Message Passing Interface) for parallel com-
puting, to distribute models to different CPU cores,
is a work in progress. There are also Python-based
parallelization approaches (e.g., multiprocessing, https://
docs.python.org/3/library/multiprocessing.html, last access:
30 June 2025; joblib, https://joblib.readthedocs.io, last ac-
cess: 30 June 2025; dask, https://www.dask.org/, last access:
30 June 2025) that could be used in the future to run inde-
pendent parts of the composition in parallel. Other frame-
works like YAC that are built on top of MPI support this
out of the box but follow a different approach of model cou-
pling. Additionally, making a model ready for FINAM can
require a significant investment of time and resources if the
source code is not well-structured. Although Python facili-
tates rapid prototyping and development, preparing a model
to meet FINAM’s requirements can be a demanding process,
particularly for legacy systems or highly complex models,
depending on their internal structure. If the code base is well-
written and its functionality is encapsulated in logical units,
such as executing the time loop as a separate subroutine, the
Python interface is reasonably easy to implement. This is for
example the case when a model already follows the Basic
Model Interface (BMI).

Another technical limitation arises from the nature of
Python itself. Preventing unnecessary data copying within
the FINAM framework can become complicated due to dif-
ferent internal data representations in different models. By
default, NumPy masked arrays are used to exchange data,
but these arrays could hold copies instead of views to the
underlying data. Efficiently managing data without unnec-
essary copying is crucial for maintaining performance, es-
pecially when dealing with large datasets or high-frequency

https://doi.org/10.5194/gmd-18-4483-2025

data exchanges. This challenge underscores the need for on-
going development within the FINAM framework to enhance
its efficiency and reduce overhead, ensuring that it remains a
viable solution for complex model coupling scenarios.

We implemented a set of benchmarks in the test suite of
the FINAM repository to track the computational overhead
of the framework. Using Fromind and mHM, comparisons
between native model runs and model executions via FINAM
without any data exchange have shown negligible differences
in runtime. When data arrays were exchanged by daily time
steps, the tests have shown a 5 % overhead for one exchanged
variable (soil water from the standard test domain of mHM)
compared to standalone runs, which we think is reasonable
with respect to our target use cases.

The last area to mention is the handling of metadata
and configuration. Although the basic infrastructure to track
metadata from components has been implemented, there is
currently no best-practice guide on how to utilize this feature
effectively. Establishing such guidelines would help stan-
dardize metadata usage, making it easier for users to follow
the FAIR data principles (Barker et al., 2022). Together with
metadata, there is the lack of a unified configuration system
for compositions. This can make it challenging to reuse com-
positions in complex computational workflows, potentially
hindering the efficiency and reproducibility of simulations.
Developing a unified configuration approach would stream-
line the setup process and simplify the sharing and replica-
tion of complex model compositions.

A unique feature of FINAM is its support for bidirectional
coupling by temporally delaying circular input/output con-
nections. While other couplers do this implicitly based on the
code position of their getters and setters, FINAM provides
adapters to explicitly control the time offset of the exchanged
data. Using this method, we do not require models to save
and reset states, a process that can be overly demanding for
many models. The gained flexibility is further enhanced by
FINAM'’s approach to time representation. By assuming that
valid time spans for data are defined by timestamps, with the

Geosci. Model Dev., 18, 4483-4498, 2025

https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://joblib.readthedocs.io
https://www.dask.org/

4496

current timestamp indicating the end of the reference period
that started from the previous timestamp, FINAM standard-
izes time representation across models. This method clarifies
the time frame for extensive variables, like total precipitation
of 1d, and provides a precise reference for intensive vari-
ables, such as air temperature for a specific point in time,
without requiring direct modifications to the handling of the
time of the models.

Furthermore, FINAM includes time adapters designed to
bridge models with differing time steps and spans through
techniques such as integration, summation, and temporal dis-
aggregation. This capability not only enhances the frame-
work’s flexibility, but also significantly reduces the complex-
ity involved in model integration, allowing researchers to fo-
cus on the substantial aspects of their work without being
encumbered by technical incompatibilities.

5 Summary and outlook

In this study, we present FINAM, short for “FINAM is not
a model”, which is a Python-based coupling framework de-
signed to connect models written in diverse programming
languages. Models are wrapped in components with a well-
specified interface that facilitates the exchange of data be-
tween them. Additionally, FINAM provides a set of tools to
process data that include functionality such as regridding and
unit conversion but also reading and writing different file for-
mats (such as NetCDF, VTK, and CSV). FINAM handles
data compatibility checks, unit conversion, and component
scheduling, which makes the model coupling process less
error-prone. It provides a unique and intuitive mechanism to
link components, which makes it easy to set up a coupled
model. We presented three examples that highlight differ-
ent features of FINAM. The first example consisted of two
toy models, simulating soil moisture and LAI with cyclic de-
pendencies on each other to demonstrate the capabilities of
FINAM to handle dynamic feedbacks between components.
The second example illustrates the usage of FINAM to cou-
ple the separately developed models BODIUM and OGS to
simulate the transport of nitrate leachate in groundwater. In
a third workflow, we demonstrated important features to spa-
tiotemporally regrid data within a FINAM coupling. To do
so, we remapped daily precipitation data given on an unstruc-
tured grid to a coarser structured grid and applied a rolling
average of 30d.

Geosci. Model Dev., 18, 4483-4498, 2025

S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework

In summary, FINAM provides a flexible and user-oriented
approach to model coupling, leveraging Python’s versatility
to integrate a wide range of models, such as environmental
models, including ecological models for animal populations,
individual-based forest models, field-scale crop models, eco-
nomical models, and hydrological models, but also surro-
gate models or machine learning models. By minimizing the
need for direct modifications to the model code and offering
innovative solutions to handle time representation and data
compatibility, FINAM represents a significant advancement
in the field of computational modeling.

https://doi.org/10.5194/gmd-18-4483-2025

S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework

Appendix A: Unidirectional coupling of LAI and SM

CsvReader pre

CallbackGen

4497

CsvWriter

Figure A1. FINAM coupling diagram of a unidirectional model between LAI and SM.

Code availability. The code of FINAM is developed at
https://git.ufz.de/FINAM/finam (FINAM-Developers, 2025d)
and the release for version 1.0 has been archived on Zenodo
(https://doi.org/10.5281/zenodo.15018092, FINAM-Developers,
2025a). It is distributed under the GNU LGPL v3.0 license.
The documentation, which includes a quick start guide, a more
in-depth hand book, and a complete overview of the API, can
be accessed via https://finam.pages.ufz.de (FINAM-Developers,
2025b). All mentioned expansion modules and examples are hosted
at https://git.ufz.de/FINAM (FINAM-Developers, 2025c).

Data availability. All data and source code underlying
the presented workflows and results from this paper are
openly available. The complete set of input data, scripts,
and workflow examples has been deposited on Zenodo
(https://doi.org/10.5281/zenodo.15774026, Miiller et al., 2025).
All data are licensed for open access and reuse as specified in the
repository.

Author contributions. ML and SM are the main developers of
FINAM and contributed both equally to all sections of the text.
SK and TF wrote the section about coupling complex wrapped mod-
els and helped proofread the text. JJLR wrote the section on the
bidirectional toy model. ST wrote the introduction and the summary
and supervised the project. MK helped with implementation details
and helped to improve the text.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes

https://doi.org/10.5194/gmd-18-4483-2025

every effort to include appropriate place names, the final responsi-
bility lies with the authors.

Acknowledgements. Sara Konig was funded by the German Federal
Ministry of Education and Research (BMBF) in the framework of
the funding measure “Soil as a Sustainable Resource for the Bioe-
conomy — BonaRes”, project “BonaRes (Module B): BonaRes Cen-
tre for Soil Research”. This work is a contribution to the LandTrans
simulator initiative at the Helmholtz Centre for Environmental Re-
search — UFZ.

Financial support. The article processing charges for this open-
access publication were covered by the Helmholtz Centre for En-
vironmental Research — UFZ.

Review statement. This paper was edited by Le Yu and reviewed by
Moritz Hanke, Jannes Breier, Puyu Feng, and Nils-Arne Dreier.

References

Barker, M., Chue Hong, N. P, Katz, D. S., Lamprecht, A.-L.,
Martinez-Ortiz, C., Psomopoulos, F., Harrow, J., Castro, L. J.,
Gruenpeter, M., Martinez, P. A., and Honeyman, T.: Introduc-
ing the FAIR Principles for research software, Sci. Data, 9, 622,
https://doi.org/10.1038/s41597-022-01710-x, 2022.

Bauer, T. P, Holtermann, P., Heinold, B., Radtke, H., Knoth,
0., and Klingbeil, K.: ICONGETM v1.0 — flexible NUOPC-
driven two-way couplingn via ESMF exchange grids between the
unstructured-grid atmosphere model ICON and the structured-
grid coastal ocean model GETM, Geosci. Model Dev., 14, 4843—
4863, https://doi.org/10.5194/gmd-14-4843-2021, 2021.

Geosci. Model Dev., 18, 4483-4498, 2025

https://git.ufz.de/FINAM/finam
https://doi.org/10.5281/zenodo.15018092
https://finam.pages.ufz.de
https://git.ufz.de/FINAM
https://doi.org/10.5281/zenodo.15774026
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.5194/gmd-14-4843-2021

4498

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and
Smith, K.: Cython: The Best of Both Worlds, Comput. Sci. Eng.,
13, 31-39, https://doi.org/10.1109/MCSE.2010.118, 2011.

Brandmeyer, J. E. and Karimi, H. A.: Coupling methodologies for
environmental models, Environ. Model. Softw., 15, 479-488,
https://doi.org/10.1016/S1364-8152(00)00027-X, 2000.

Buis, S., Piacentini, A., and Déclat, D.: PALM: a com-
putational framework for assembling high-performance
computing applications, Concurr. Comput. 18, 231-245,
https://doi.org/10.1002/cpe.914, 2006.

Chourdakis, G., Davis, K., Rodenberg, B., Schulte, M., Si-
monis, F., Uekermann, B., Abrams, G., Bungartz, H., Che-
ung Yau, L., Desai, I, Eder, K., Hertrich, R., Lind-
ner, F, Rusch, A., Sashko, D., Schneider, D., Totounfer-
oush, A., Volland, D., Vollmer, P., and Koseomur, O.: pre-
CICE v2: A sustainable and user-friendly coupling library [ver-
sion 2; peer review: 2 approved], Open Research Europe, 2,
https://doi.org/10.12688/openreseurope.14445.2, 2022.

Collins, N., Theurich, G., DeLuca, C., Suarez, M., Trayanov, A.,
Balaji, V., Li, P., Yang, W., Hill, C., and da Silva, A.: Design and
Implementation of Components in the Earth System Modeling
Framework, Int. J. High Perform. Comput. Appl., 19, 341-350,
https://doi.org/10.1177/1094342005056120, 2005.

Craig, A., Valcke, S., and Coquart, L.: Development and
performance of a new version of the OASIS coupler,
OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297-3308,
https://doi.org/10.5194/gmd-10-3297-2017, 2017.

Fillion-Robin, J.-C., McCormick, M., Padron, O., Smolens, M.,
Grauer, M., and Sarahan, M.: jcfr/scipy_2018_scikit-build_talk:
SciPy 2018 Talk| scikit-build: A Build System Generator for
CPython C/C++-/Fortran/Cython Extensions, Zenodo [code],
https://doi.org/10.5281/zenodo.2565368, 2018.

FINAM-Developers: FINAM is not a model v1.0.0, Zenodo [code],
https://doi.org/10.5281/zenodo.15018092, 2025a.

FINAM-Developers: FINAM landing page, https://finam.pages.ufz.
de (last access: 30 June 2025), 2025b.

FINAM-Developers: FINAM UFZ GitLab Group, https://git.ufz.de/
FINAM (last access: 30 June 2025), 2025c.

FINAM-Developers: FINAM UFZ GitLab Repository, https:/git.
ufz.de/FINAM/finam (last access: 30 June 2025), 2025d.

Hanke, M., Redler, R., Holfeld, T., and Yastremsky, M.: YAC 1.2.0:
new aspects for coupling software in Earth system modelling,
Geosci. Model Dev., 9, 2755-27609, https://doi.org/10.5194/gmd-
9-2755-2016, 2016.

Hargreaves, G. H. and Samani, Z. A.: Reference Crop Evapo-
transpiration from Temperature, Appl. Eng. Agricult., 1, 96-99,
https://doi.org/10.13031/2013.26773, 1985.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg,
S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerk-
wijk, M. H., Brett, M., Haldane, A., Ferniandez del Rio, J.,
Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K.,
Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E.: Array programming with NumPy, Nature, 585, 357-362,
https://doi.org/10.1038/s41586-020-2649-2, 2020.

Hassell, D., Gregory, J., Blower, J., Lawrence, B. N., and
Taylor, K. E.: A data model of the Climate and Forecast
metadata conventions (CF-1.6) with a software implementa-

Geosci. Model Dev., 18, 4483-4498, 2025

S. Miiller et al.: FINAM - is not a model (v1.0): a new Python-based model coupling framework

tion (cf-python v2.1), Geosci. Model Dev., 10, 4619-4646,
https://doi.org/10.5194/gmd-10-4619-2017, 2017.

Hohenegger, C., Korn, P., Linardakis, L., Redler, R., Schnur, R.,
Adamidis, P., Bao, J., Bastin, S., Behravesh, M., Bergemann,
M., Biercamp, J., Bockelmann, H., Brokopf, R., Briiggemann,
N., Casaroli, L., Chegini, F., Datseris, G., Esch, M., George,
G., Giorgetta, M., Gutjahr, O., Haak, H., Hanke, M., Ilyina, T.,
Jahns, T., Jungclaus, J., Kern, M., Klocke, D., Kluft, L., Kolling,
T., Kornblueh, L., Kosukhin, S., Kroll, C., Lee, J., Mauritsen,
T., Mehlmann, C., Mieslinger, T., Naumann, A. K., Paccini, L.,
Peinado, A., Praturi, D. S., Putrasahan, D., Rast, S., Riddick,
T., Roeber, N., Schmidt, H., Schulzweida, U., Schiitte, F., Se-
gura, H., Shevchenko, R., Singh, V., Specht, M., Stephan, C. C.,
von Storch, J.-S., Vogel, R., Wengel, C., Winkler, M., Ziemen,
F., Marotzke, J., and Stevens, B.: ICON-Sapphire simulating the
components of the Earth system and their interactions at kilome-
ter and subkilometer scales, Geosci. Model Dev., 16, 779-811,
https://doi.org/10.5194/gmd-16-779-2023, 2023.

Hutton, E. W., Piper, M. D., and Tucker, G. E.: The Basic
Model Interface 2.0: A standard interface for coupling numer-
ical models in the geosciences, J. Open Sour. Softw., 5, 2317,
https://doi.org/10.21105/joss.02317, 2020.

Jakob, W., Rhinelander, J., and Moldovan, D.: pybind11 — Seam-
less operability between C++11 and Python, https://github.com/
pybind/pybind11 (last access: 30 June 2025), 2017.

Kolditz, O., Bauer, S., Bilke, L., Bottcher, N., Delfs, J.-O., Fis-
cher, T., Gorke, U. J., Kalbacher, T., Kosakowski, G., McDer-
mott, C. 1., Park, C. H., Radu, F.,, Rink, K., Shao, H., Shao,
H. B, Sun, F, Sun, Y. Y., Singh, A. K., Taron, J., Walther,
M., Wang, W., Watanabe, N., Wu, Y., Xie, M., Xu, W., and
Zehner, B.: OpenGeoSys: An open-source initiative for numer-
ical simulation of thermo-hydro-mechanical/chemical (THM/C)
processes in porous media, Environ. Earth Sci., 67, 589-599,
https://doi.org/10.1007/512665-012-1546-x, 2012.

Konig, S., Weller, U., Betancur-Corredor, B., Lang, B., Reitz, T.,
Wiesmeier, M., Wollschlédger, U., and Vogel, H.-J.: BODIUM —
A systemic approach to model the dynamics of soil functions,
Eur. J. Soil Sci., 74, e13411, https://doi.org/10.1111/ejss.13411,
2023.

Kumar, R., Samaniego, L., and Attinger, S.: Implications of dis-
tributed hydrologic model parameterization on water fluxes at
multiple scales and locations, Water Resour. Res., 49, 360-379,
https://doi.org/10.1029/2012WR012195, 2013.

Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development
of the GEOS-5 atmospheric general circulation model: evolution
from MERRA to MERRA2, Geosci. Model Dev., 8, 1339-1356,
https://doi.org/10.5194/gmd-8-1339-2015, 2015.

Miiller, S., Lange, M., Fischer, T., Konig, S., Kelbling,
M., Leal Rojas, J. J.,, and Thober, S.: FINAM Pa-
per Workflows (v1.0), Zenodo [code and data set],
https://doi.org/10.5281/zenodo.15774026, 2025.

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale pa-
rameter regionalization of a grid-based hydrologic model
at the mesoscale, Water Resour. Res., 46, WO05523,
https://doi.org/10.1029/2008 WR007327, 2010.

https://doi.org/10.5194/gmd-18-4483-2025

https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1016/S1364-8152(00)00027-X
https://doi.org/10.1002/cpe.914
https://doi.org/10.12688/openreseurope.14445.2
https://doi.org/10.1177/1094342005056120
https://doi.org/10.5194/gmd-10-3297-2017
https://doi.org/10.5281/zenodo.2565368
https://doi.org/10.5281/zenodo.15018092
https://finam.pages.ufz.de
https://finam.pages.ufz.de
https://git.ufz.de/FINAM
https://git.ufz.de/FINAM
https://git.ufz.de/FINAM/finam
https://git.ufz.de/FINAM/finam
https://doi.org/10.5194/gmd-9-2755-2016
https://doi.org/10.5194/gmd-9-2755-2016
https://doi.org/10.13031/2013.26773
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5194/gmd-10-4619-2017
https://doi.org/10.5194/gmd-16-779-2023
https://doi.org/10.21105/joss.02317
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
https://doi.org/10.1007/s12665-012-1546-x
https://doi.org/10.1111/ejss.13411
https://doi.org/10.1029/2012WR012195
https://doi.org/10.5194/gmd-8-1339-2015
https://doi.org/10.5281/zenodo.15774026
https://doi.org/10.1029/2008WR007327

	Abstract
	Introduction
	Design
	Principles
	Components and adapters
	Linking components
	Data and metadata
	Scheduling algorithm
	Iterative initialization

	Wrapping models
	Modules

	Coupling examples
	Bidirectional toy model
	Coupling complex wrapped models
	Spatiotemporal regridding

	Discussion
	Summary and outlook
	Appendix A: Unidirectional coupling of LAI and SM
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

