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Abstract. The study presents a novel approach for fault
detection on subsurface geological homoclinal interfaces
(slopes) using a supervised learning algorithm and careful
input variable (feature) selection. Synthetic faulted slopes
are generated using Delaunay triangulation via the Com-
putational Geometry Algorithms Library (CGAL), allowing
for adjustments of parameters. We introduce 24 features, in-
cluding local geometric features and neighborhood analy-
sis, for classification. Support Vector Machine (SVM) is em-
ployed as the classification algorithm, achieving high preci-
sion and recall rates for fault-related observations. Applica-
tion to real borehole data (elevations of buried stratigraphic
contacts) demonstrates the effectiveness of the method in
detecting fault orientations; the challenges remain with re-
spect to distinguishing faults with opposite dip directions.
The study highlights the need to address 3D fault zone com-
plexities and their identification. Despite limitations, the pro-
posed supervised approach offers significant advancement
over clustering-based methods, showing promise in detect-
ing faults of various orientations. Future research directions
include exploring more complex geological scenarios and re-
fining fault detection methodologies.

1 Introduction

Geological engineers and structural geologists aim to iden-
tify fault-related structures, as knowledge about faults is cru-
cial in 3D geological modeling. Geological models are typi-
cally constructed by interpolating sparse (scattered) borehole
data (de la Varga et al., 2019). However, due to the localized
nature of boreholes, faults not directly intersected by them
are often overlooked. As a result, interpolation may produce
horizons that appear continuous across these faults. This pa-
per introduces a method to detect the presence of faults under
such circumstances.

Classification methods can play a crucial role in this pro-
cess by helping to analyze and interpret geological data for
identifying potential faults or structural features. However,
current classification methods are typically tailored for seis-
mic data rather than scattered data related to subsurface in-
terfaces (An et al., 2021; Kaur et al., 2023). Additionally,
supervised methods for fault detection can encounter chal-
lenges related to subjectivity, ambiguity, or time-consuming
processes such as manual labeling of training data (Mattéo et
al., 2021; Vega-Ramirez et al., 2021).

In this study, we focus on detecting faults on triangu-
lated models of subsurface geological interfaces with pre-
ferred orientation (Fig. 1). The interfaces can be thought of
as boundaries between conformal (sub-parallel) geological
units or buried stratigraphic contacts often investigated in ge-
ological modeling (de la Varga et al., 2019). Data used in our
study come from an irregular network of boreholes that doc-
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Figure 1. The supervised fault detection method developed in this
study is designed for surfaces with preferred orientation (slopes).
An example of such a slope can be a portion of the boundary be-
tween folded strata. The model with two folded surfaces and one
erosive surface presented in this figure was generated using GemPy
and GemGis software (Jüstel et al., 2022, 2023; de la Varga et al.,
2019).

ument the transition between geological units. Consequently,
the fault-related deviations from the preferred orientation are
investigated using a supervised framework. In this approach,
faces of the triangulation are observations described by fea-
tures such as their orientation and geometric relationships
with neighbors.

Our goal is to expedite the process of generating ground
truth data for faulted triangulated slopes using the Computa-
tional Geometry Algorithms Library (CGAL.org, 2023). We
will employ supervised machine learning algorithms for bi-
nary classification to predict possible fault presence within
faulted subsurface slopes (Fig. 2). Our hypothesis posits that
while traditional geometric attributes such as normal or dip
vectors can still be useful for classification, integrating fea-
tures reflecting angular relationships between triangles and
their neighbors is crucial for accurate classification, espe-
cially for fault detection on homoclines. We assert that an-
alyzing distances for neighbors (Fig. 3) is advantageous due
to its insensitivity to surface rotation, unlike traditional ge-
ometric attributes such as dip direction (Hu et al., 2021) or
the orientation of normal vectors (Michalak et al., 2022). As
such, neighborhood analysis can be linked, e.g., to curvature
in seismic data (de Oliveira Neto et al., 2023) in terms of its
insensitivity to surface rotation.

The main challenges relate to the effectiveness of machine
learning algorithms, feature selection and the applicability of
the method to diverse geological structures, potentially im-
pacting classification accuracy and generalizability. To miti-
gate these challenges, we will conduct optimization of the al-
gorithm’s performance and feature selection (see Methods).
Validation across various geological surfaces will ensure the
method’s robustness and applicability for fault detection on
homoclines. This structured approach aims to enhance clas-
sification accuracy and the method’s utility in practical ge-

Figure 2. A triangulated model of a faulted geological subsurface
interface: (a) we can see an inclined surface and triangles that inter-
sect a fault. (b) A set of slopes with different parameters (dip angle
and dip direction) can be used as training data in the classification
task. In this panel, we showed only three slopes, but in practice an
arbitrary number can be generated.

ological applications. For example, the preferred orientation
of geological horizons can significantly influence groundwa-
ter flow directions in the Kraków-Silesian homocline (Ra-
zowska et al., 1997). Faults that shape the geometry of the
homocline are also believed to act as barriers or preferen-
tial pathways for groundwater (Razowska et al., 1997; Ra-
zowska, 2001). The overall workflow of the study is pre-
sented in Fig. 4.

2 Background

In geological mapping, machine learning methods have been
applied in the supervised lithology classification (Cracknell
and Reading, 2014; Kuhn et al., 2018; Xiong and Zuo, 2021;
Wang et al., 2020). In geological engineering, unsupervised
methods were used to delineate subsets of observations rep-
resenting discontinuities (Hammah and Curran, 1999; Zhan
et al., 2017). In subsurface geological modeling, neural net-
works were used to delineate paleovalleys using topographic
data as input data (Jiang et al., 2021), and convolutional
neural networks were used to create geological models with
structural features controlled by a set of random parameters
(Bi et al., 2022). In the problem of fault detection, the ma-
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Figure 3. Because the fault introduced changes in the angular re-
lationships between the orientation of fault-related triangles (t) and
their neighbors (n1, n2, n3), the analysis of these relationships is
essential for a successful classification. For example, we can mea-
sure the angular distance between normal vectors for three pairs,
corresponding to a specific triangle and its neighbors. The resulting
value of angular distance can serve as a feature in the classification
task.

jority of available supervised methods are primarily tailored
for seismic data (An et al., 2021; Kaur et al., 2023). For to-
pographic data, supervised methods were utilized for fault-
scarp prediction (Vega-Ramirez et al., 2021) using Fisher lin-
ear discriminant analysis. However, this analysis relied on
high-resolution bathymetric data based on a small training
data set (163 samples). Another example involves the use of
topographic attributes such as DEM, slope, aspect and faults
and environmental features such as vegetation and climate
for monitoring of ground deformation (Hu et al., 2021).

In the study of triangulated models of geological surfaces
(Michalak et al., 2022), one of the unsupervised learning
methods such as the k-means algorithm generates partitions
comprising geometrically similar observations (Choi et al.,
2014). However, the unsupervised methods place the burden
on the user to determine whether a specific observation rep-
resents a fault. This can pose challenges, as some anomalous
orientations may be associated with other structures or mea-
surement errors. Moreover, applying unsupervised learning
to 3D orientations reveals sensitivity to the choice of vecto-
rial representation (Michalak et al., 2022), resulting in vary-
ing clustering results for dip and normal vectors.

3 Methods

In this section, we present our fault detection method, start-
ing with the general description of Support Vector Machines
for the classification. We detail the workflow, including the
integration of features and geometric attributes such as the
local orientation and the relationships with neighbors. Then,
we describe the generation of synthetic data for model train-

ing and the final evaluation on real data. The stages of the
method are summarized in Figs. 4 and 5.

3.1 Support Vector Machine

Several classification algorithms are available in the scikit-
learn library (Pedregosa et al., 2011), which can be tested
in terms of classification success metrics. However, in this
study, we work with a single algorithm to keep focus on
the new classification method. We selected the Support Vec-
tor Machine, a two-class classifier, which is considered
a suitable tool for binary classification problems in high-
dimensional spaces (Bishop, 2006; Vapnik, 2000) and which
performed well in terms of precision and recall in our pre-
liminary research. The Support Vector Machines algorithm
can be considered an optimization algorithm because the de-
cision is based on a hyperplane with the maximum margin.
The margin is defined to be the minimal distance between
a point in the training set and the hyperplane. The motiva-
tion behind the concept of margin is that if a margin is large,
then it will be capable of separating the training set even af-
ter small perturbation of the instances (Shalev-Shwartz and
Ben-David, 2013). Formally, the optimization objective is as
follows (Bishop, 2006):

arg{
[
tn

(
wT f (xn)+ b

||w||

)]
}, (1)

where tn ∈ {−1,1} denotes the target values, and f (x) de-
notes a fixed feature-space transformation. This transforma-
tion is expected to facilitate separation of instances which
were not linearly separable in the original space. Common
choices of transformations (kernel functions) include linear,
polynomial and radial basis functions. Next, w is the vector
of weights which determines the orientation of the decision
surface, and b is the bias parameter (not to be confused with
bias in the statistical sense). The expression

(
wT f (xn)+b
||w||

)
denotes the perpendicular distance of a point xn to the de-
cision surface y (x)= wT f (x)+ b = 0. This decision sur-
face separates points with different labels: −1 and 1. The
multiplication tny (xn) visible in the optimization task fil-
ters solutions for which all data points are correctly clas-
sified, i.e. tny (xn) > 0 . We note that in some formulations
of the optimization problem, the vector of weights has unit
length (Shalev-Shwartz and Ben-David, 2013). Because all
N points lie beyond the margin area, they are at some dis-
tance from the hyperplane corresponding to the size of the
margin. While the distances of N points relative to the de-
cision boundary can be different, they are all greater than a
fixed number, corresponding to the size of the margin which
can be expressed by a set of N inequalities. Therefore, the
optimization objective (Eq. 1) together with the set of N in-
equalities forms a constrained optimization problem which
can be solved be using the Lagrange multipliers (Bishop,
2006 – Appendix E).
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In the presence of outliers, a soft margin classifier can
be applied, which allows some samples to be classified in-
correctly (Shalev-Shwartz and Ben-David, 2013). For the
soft margin classifier and radial basis function kernel, C and
gamma parameters are considered. The parameter C, com-
mon to all SVM kernels, is a penalty parameter: a low C

tends to make the decision surface simple (thus, avoiding
overfitting but possibly affecting the correct classification of
the training data), while setting a high C will result in clas-
sifying training examples more correctly (possibly leading
to poorer generalizability). Gamma defines the radius of the
similarity of a single training sample. The lower gamma is,
the greater the similarity radius of a sample (Pedregosa et al.,
2011).

We use the following metrics as evaluation metrics:

precision=
true positive

true positive+false positive

and recall=
true positive

true positive+false negatives
. (2)

The definition implies that precision is maximized if there are
no false positives and the recall is maximized when there are
no false negatives. Based on these definitions the harmonic
mean of both can be defined as follows:

F1 = 2 ·
1

1
precision +

1
recall

= 2 ·
precision · recall
precision+recall

. (3)

3.2 Selecting meaningful and consistent features

In this study, to predict the correct label (label= 1 for fault-
related observations and label=−1 for non-fault-related ob-
servations), we used 24 features (the features are denoted as
x in Sect. 3.1). The set consists of six local geometric features
and 18 features corresponding to the neighborhood analysis.
The first group consists of coordinates of normal and dip vec-
tors.

In fact, there can be even more geometric features used for
the purpose of classification such as dip angle or dip direction
(Hu et al., 2021; Wang et al., 2021). However, including dip
direction for classification as a value within the [0, 360] range
may not always be successful. This is because northern direc-
tions indicate great numerical difference (e.g. 358−2= 356)
but very small geometric difference (4°). Sometimes the lim-
itations of using dip direction are acknowledged, and the fea-
ture is removed from the analysis (Yang et al., 2023). There-
fore, in this study we did not use dip direction as a feature
for classification. The second group includes features corre-
sponding to the neighborhood component of the analysis and
the set of features is as follows: angular distance, Euclidean
distance and cosine distance applied to both normal and dip
vector representations of the adjacent triangles. The formulas
for angular (da), Euclidean (de) and cosine distances (dc) are

Figure 4. Workflow applied in this study: (a) we create 1000 ran-
dom faulted geological slopes controlled by random parameters.
(b) Then, for each triangle, we sort the distances between neighbors
to reduce randomness (see Sect. 3.2 for a more detailed explana-
tion). (c) In the next step, we train and test the machine learning
algorithm for synthetic data. (d) At the end of the procedure, we
evaluate the proposed approach for real data to test generalizability.

given in the below equations, respectively:

da
(
u, u′

)
= acos(

|u ·u′|

||u|| · ||u′||
), (4)

where · is the dot product, and ||u|| is the length of the vector
u. In our case, the vectors have unit length. The use of ab-
solute value in the numerator reflects the use of acute angles
between vectors.

de
(
u, u′

)
= ||u−u′|| (5)

dc
(
u, u′

)
= 1−u ·u′ (6)

However, in relation to the proposed neighborhood analysis,
an obstacle arises in processing these data due to the lack of a
clear distinction between first, second and third neighboring
triangles (Figs. 3, 4b). This lack of order introduces random-
ness or arbitrariness into the analysis and compromises the
consistency of data processing, which is crucial for the accu-
racy and reliability of the results.

To address this, we sort the distances to neighboring trian-
gles in decreasing order. Sorting these values eliminates ran-
domness from the analysis and ensures consistency in data
processing, thereby enhancing the correctness and credibil-
ity of the results. From a technical viewpoint, the features
are represented by columns in a data frame, and sorting the
distances introduces their rearrangement.
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3.3 Generation of training data

In our study, the synthetic training data consist of triangu-
lated models of subsurface interfaces using the Delaunay tri-
angulation (De Berg et al., 2008). A user has the flexibility
to adjust parameters of the resulting data set in the following
fields: the number of files to generate, the lower and upper
bound of slope sizes, the left and right range of the dip direc-
tion, the lower and upper bound of the dip angle, the lower
and upper bound of the number of points in the triangula-
tion, the lower and upper bound of the surface noise, and the
lower and upper bound of the fault throw. The user-defined
parameters and their admissible ranges are specified in Ta-
ble 1. However, if a constant value of a parameter should
be investigated, it is possible to set the same value for the
lower and upper bound. In the next step, tools from the C++
random number library generate random numbers from the
uniform distribution using the bounds entered by a user. The
information about parameters is saved to a text file to allow
further inspection.

The faulted triangulated models of subsurface slopes are
created in the following sequence, which is also summarized
in Fig. 5 (numbers 1–6 below correspond to letters e–f in
Fig. 5).

1. A container with 2D points is generated within a square
of a given size.

2. A new container of 3D points is created with the Z co-
ordinate corresponding to the random value of dip and
dip direction (ranges specified by a user).

3. Noise is introduced to the surface, defined as a random
fraction (ranges specified by a user) of the elevation dif-
ference within the slope.

4. A fault is introduced with the throw, defined as a ran-
dom fraction (ranges specified by a user) of the maxi-
mum elevation difference within the generated slopes.
The orientation of the fault is determined by two points
randomly selected from the boundary of the square.

5. Triangulation of the slope is performed, and the at-
tributes including relationships with neighbors are cal-
culated.

6. Classification task involves labeling each observation
based on whether it is a fault-related observation (la-
bel= 1) or not (label=−1). Therefore, we use the in-
tersection predicate (CGAL.org, 2023) to test whether a
specific triangle intersects the line representing a fault.

Following this approach, we are capable of generating a great
number of synthetic and labeled ground truth data.

The parameters used in this study are given in the Table 2.
To ensure that the training is performed on good-quality data,
we removed triangles with a high degree (0.90 and greater) of

collinearity, defined as a ratio between the longest triangle’s
edge and the sum of remaining lengths (Michalak, 2018).
This coefficient lies in the interval [0.5, 1], with lower and
higher values pointing to equilateral and collinear configura-
tions, respectively (Michalak et al., 2021; Michalak, 2018).

3.4 Spatial clustering

In our study, we visualize the classification results for real
data using the concept of spatial clustering (Fisher, 1993;
Fisher et al., 1985). The definition of spatial clustering is
first studying the directional information of the data without
taking into account spatial information. This study aims to
group geometrically similar observations, and at the end the
resulting clusters of directions are put back into their spa-
tial context (Fisher, 1993). Indeed, in our case the Support
Vector Machine algorithm performs the classification ignor-
ing spatial information. It only uses geometric information
such as the orientation of a triangle and the relationships
between a triangle and its neighbors. The labels of clusters
grouping similar triangles are recorded initially as integers
corresponding to fault-related triangles (label= 1) or trian-
gles belonging to the homocline (label=−1). Then, the inte-
gers are converted to colors and presented on a map receiving
again spatial information. As Fisher (1993) notes, the spatial
clustering is somewhat paradoxical: “to perform the desired
directional-spatial clustering, it may be necessary to decou-
ple the directional from the spatial information initially”.

4 Geological setting (corresponding to real data)

4.1 Regional and geometric background

As a relevant case study, we selected Kraków-Silesian Ho-
mocline (KSH) – a geological structure considered to be a
limb of the Szczecin-Łódź-Miechów Synclinorium. The for-
mation of KSH is mainly attributed to the inversion of the
Permian–Mesozoic Polish Basin (Dadlez et al., 1995; Słonka
and Krzywiec, 2020). From a geometric perspective, KSH
dips at low angles to NE (Matyszkiewicz et al., 2015). Sev-
eral attempts have been made to quantify this orientation:

– dip angle < 2° with NE dip direction (Znosko, 1960;
Marynowski et al., 2007),

– 2–5° with NE dip direction (Bardziński et al., 1986),

– 0.98–1.35° as lower and upper bounds for dip angle
with 53.47–54.86 as left and right bounds for dip di-
rection; these values were calculated as mean orien-
tation corresponding to the cluster associated with re-
gional trend using two variants of hierarchical cluster-
ing (Michalak et al., 2019)

It is generally assumed that the faults form a unimodal set
of sub-parallel faults trending NE–SW (Fig. 6a, Hermański,
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Table 1. Input parameters. The parameters given in the table are specified by the user by providing ranges. To generate a single model, a
number from the uniform distribution is drawn using the provided ranges. Please note that dip angle and dip direction are not used directly
in the later stages as features for classification but first are converted into normal and dip vectors.

Name of the parameter Range of possible values Name of the variable in the code

Number of files >=1 number_of_files
Slope sizes > 0 left_subsurface_slope_size, right_subsurface_slope_size
Dip angle 0–90° min_subsurface_slope_dip, max_subsurface_slope_dip
Dip direction 0–360° left_range_azimuth, right_range_azimuth
Number of points in the triangulation >=3 left_number_triangulation, right_number_triangulation
Noise of the surface 0.00–1.00 left_surface_noise, right_surface_noise
Fault throw 0.00–1.00 left_fault_throw, right_fault_throw

Figure 5. Depiction of sequence of processes applied to generate training data: (a) creating points in 2D space, (b) assigning elevation to the
data depending on the randomly generated dip angle and dip direction, (c) adding noise (ε) to the data, (d) introducing faults and resulting
elevation changes, (e) applying triangulation to the data and (f) labeling the data according to the location relative to the fault plane.

Table 2. Values or ranges for parameters used in this study.

Name of the parameter Value

Number of files 1000
Slope sizes 1
Dip angle 0.5–2.0°
Dip direction 20–70°
Number of points in the triangulation 100
Noise of the surface 0.02–0.04
Fault throw 0.05–0.25

1993; Więckowski et al., 1985). However, later clustering ex-
periments with two or three clusters (Michalak et al., 2022)
added knowledge about geometric anomalies also aligned
with the N–S direction (Fig. 6b, c). To investigate general-

izability of the proposed method for real data, we used bore-
hole data (Michalak, 2024) corresponding to a horizon sep-
arating Middle Jurassic rock units: Aalenian–Early Bajocian
Kościeliska sandstones from Late Bajocian–Late Bathonian
ore-bearing clay deposits (Matyja and Wierzbowski, 2000;
Kopik, 1998).

4.2 Discussion of previous results

Little is known about faults trending perpendicular to the pre-
ferred dip direction. While the results (Fig. 6b, c) suggest that
they may not exist, we note that this negative effect could be
due to limitations of unsupervised learning methods: the spa-
tial distribution of labels depends on the partition induced by
clustering algorithms. This dependence may result in visual
disintegration of rare structures represented by observations
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Table 3. Confusion matrix for the classification task before hyper-
parameter tuning. The sum of the entries is equal to the number of
samples in the test data.

2993 (true negatives) 243 (false positives)

123 (false negatives) 2847 (true positives)

being in different clusters. For example, the boundary be-
tween blue and purple labels may be related to faults dipping
to SW (Fig. 6). Likewise, it is unlikely that all observations
dipping to NE are genetically related to the homocline; in-
stead, observations dipping to NE but with a dip angle greater
than that of the homocline may be related to faults dipping to
NE.

5 Results

5.1 Synthetic data

In our study, we used 1000 triangulated interfaces (slopes)
with 100 points in every slope (see also Table 2). This config-
uration resulted in the initial number of 185 980 triangles. We
removed collinear configurations (collinearity > 0.90) and
triangles which did not have three finite neighbors. As a re-
sult, 145 297 triangles remained. And only a small fraction
of triangles are fault-related triangles (12 411 vs 132 886).
Therefore, to reduce class imbalance, we randomly select
12 411 observations from the class with non-fault observa-
tions. Taking all considerations into account, we have 24 822
samples with 12 411 observations for each class (−1 and 1).
Then, the set was divided into a training (18 616) and test
(6206) set.

For arbitrarily selected hyperparameters (C= 0.05,
gamma= 0.042), with radial basis function as kernel
function) in the scikit-learn framework, we achieved the
confusion matrix for the test data as shown in Table 3.

The values of precision and recall for the fault-related ob-
servations are 0.92 and 0.96, respectively (Table 4). How-
ever, the arbitrarily selected hyperparameters are not guaran-
teed to give the best performance of the algorithm. To further
increase the values of the classification metrics, we tested
many combinations of the hyperparameters as a part of the
grid search optimization (Pedregosa et al., 2011). The grid
is defined by the following values of parameters: 0.1, 1, 10,
100, 1000 (for C), 1, 0.1, 0.01, 0.001, 0.0001 (for gamma)
and “rbf” with “linear” (for kernel). These values were se-
lected to cover a wide range of potential hyperparameter set-
tings during grid search optimization. The optimal combina-
tion of hyperparameters turned out to be as follows: C = 10,
gamma= 0.01 with radial basis function as the kernel func-
tion. The classification results change slightly after the grid
optimization stage (Tables 5 and 6).

Figure 6. Progressing knowledge about tectonics of the Kraków-
Silesian Homocline. (a) Due to abandoned mining activity in the
area, it was possible to confirm some of the faults and their proper-
ties such as fault throw in underground mines (Hermański, 1993).
Later experiments based on cluster analysis (k-means algorithm,
Michalak et al., 2022) of normal and dip vectors provided evidence
about the orientation of geometric anomalies. (b) Clustering of dip
vectors for two clusters. The spatial distribution of labels suggests
presence of geometric anomalies trending from S–N to SW–NE.
(c) Clustering of dip vectors for three clusters. The spatial distribu-
tion of labels in the NW part of the study area suggests presence of
more than one fault trending SW–NE with opposite dip direction.
However, the partition induced by the clustering makes it impos-
sible to identify faults dipping to NE steeper than the homocline.
Data used to generate labels in panels (b) and (c) are borehole data
(buried stratigraphic contacts) used in this study, as well. The figure
is a modified figure from using unsupervised classification of trian-
gulated models of borehole data used in this study (Michalak et al.,
2022).
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Table 4. Results for the classification of test data (unseen slopes) for
arbitrarily selected hyperparameters (before hyperparameter tun-
ing).

Class Precision Recall F1 score

Non-fault 0.96 0.92 0.94
Fault 0.92 0.96 0.94

Table 5. Confusion matrix for the classification task after hyperpa-
rameter tuning. The sum of the entries is equal to the number of
samples in the test data.

2982 (true negatives) 163 (false positives)

134 (false negatives) 2927 (true positives)

5.2 Real data

The results of supervised classification using SVM are sim-
ilar to those obtained using unsupervised (Michalak et al.,
2022) classification (compare Figs. 6 and 7) in that the ma-
jority of faults have the SW–NE, SSW–NNE or S–N orienta-
tion. However, there are significant differences which relate
to visibility of new potential faults trending perpendicular to
the preferred dip direction. For example, Fig. 7a in the central
part (near coordinates 921500, 251000) shows two potential
faults trending NW–SE at the termination of S–N and SSW–
NNE-trending potential faults. Another difference is that the
unsupervised classification presented the major fault in the
NW part of the study area as possibly composed of smaller
faults with opposite dip direction (Fig. 6c, near coordinates
922000, 248500). In contrast, the binary classification can-
not distinguish between faults with opposite dip directions.
Therefore, the zone of fault-related labels near the discussed
fault zone appears relatively wide.

6 Discussion

6.1 Advantages of using faces of triangulation

In our study, we used local geometric attributes of triangles
and neighborhood analysis to predict faults on triangulated
models of subsurface slopes representing buried stratigraphic
contacts. In subsurface geological modeling, the neighbor-
hood analysis was already applied for individual boreholes of
triangulated surfaces to analyze connectivity of strata (Guo et
al., 2024). From a viewpoint of graph theory, in our case the
neighborhood analysis is performed on finite faces of the tri-
angulation rather than on its finite vertices (boreholes). Be-
cause, for every triangulation, with k being the number of
points on the edge of the convex hull, the relationship be-
tween vertices (n) and triangles (m) is m= 2n− 2− k (De
Berg et al., 2008), our approach will usually (except very

Table 6. Results for the classification of test data (unseen slopes)
after the fine tuning of the hyperparameters during grid search opti-
mization.

Class Precision Recall F1 score

Non-fault 0.96 0.95 0.95
Fault 0.95 0.96 0.95

small data sets) result in a greater number of observations
compared to a potential approach of considering boreholes
as observations. Moreover, our approach ensures that every
observation has three finite neighbors, which testifies that
observations are comparable. When neighbors of points are
considered, this is not the case because the degree of a vertex
usually is not a constant number.

6.2 Comparison with unsupervised approaches

The improvement of the supervised approach over the un-
supervised method (Michalak et al., 2022) is that the clus-
tering results depend on the partition generated by cluster-
ing algorithms. Therefore, the unsupervised version offers to
examine spatial distribution of clusters. But it does not of-
fer the examination of spatial distribution of structures re-
lated to different clusters. Moreover, the empirical results
showed that clustering algorithms often struggle to separate
regional trend from faults striking perpendicular to the re-
gional trend on homoclines (Fig. 6b, c). Therefore, the so-
lution of the binary classification task obtained in this study
could also have implications for previous research regarding
the calculation of the regional trend (Michalak et al., 2019).
In that study, the regional trend was calculated by averag-
ing the orientation of triangles classified within the most nu-
merous cluster. However, this cluster also included triangles
with dip angles steeper than those characteristic of the homo-
cline, which could have influenced the accuracy of the calcu-
lated regional trend. Compared to the unsupervised method
(Fig. 6c, the NW part of the study area), the main draw-
back of the supervised approach is that the algorithm can-
not distinguish between different dip directions of a fault.
Therefore, a zone of fault-related labels may consist of many
sub-parallel sequences of labels corresponding to more than
one sub-parallel faults possibly with opposite dip direction
(Fig. 7, the NW part of the study area).

6.3 Complexities of real data

The borehole data set documenting the interface between
Kościeliska sandstones and ore-bearing clays has been tra-
ditionally used for inferring tectonics (Znosko, 1960). How-
ever, it should be admitted that there is a hiatus covering
the earliest Late Bajocian, confirmed by the lack of Streno-
ceras subfurcatum Ammonite Zone (Garbowska, 1978). It
is unclear whether some of the identified structures (Fig. 7)
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Figure 7. Classification results for the Kraków-Silesian Homocline: (a) the optimal combination of the hyperparameters as suggested by
the grid search optimization (C = 10, gamma= 0.01, with radial basis function as the kernel function), (b) a custom combination of the
hyperparameters (C = 1, with linear kernel), (c) a custom combination of the hyperparameters (C = 10, with linear kernel) and (d) a custom
combination of the hyperparameters (C = 10, gamma= 0.01, with the radial basis function as the kernel function). In panel (a), we marked
structures known from the unsupervised learning revealed in previous studies (Michalak et al., 2022). The new structures revealed in this
study using the supervised classification and the area where both groups intersect are marked, as well.

can be attributed to erosion. For example, some researchers
point out that erosion took place during the earliest Late Ba-
jocian (Dayczak-Calikowska and Moryc, 1988). However,
some underground observations did not confirm deviations
from the general parallelism between older Kościeliska sand-
stones and younger ore-bearing clays. Moreover, the orienta-
tion of the interface separating Kościeliska sandstones from
ore-bearing clays was assumed to be uniformly inclined to
the northeast in hydrogeological models during exploitation
(Hermański, 1971).

6.4 Modeling assumptions

The main assumption for generating the triangulated mod-
els of surface data (Sect. 3.3) is that the interfaces are ho-
moclinal (Singleton and Gans, 2008), which can correspond
to limbs of folded stratigraphy. Therefore, the proposed tool
should be used with caution in areas near fold hinges or limbs
with opposing dip directions. It appears that the orientation
of normal or dip vectors allows the orientation of only one
limb to be constrained, posing a risk that non-faulted limbs

could be misidentified as faulted. We hypothesize that the
neighborhood component of the analysis, which is not sensi-
tive to rotation, could potentially extend the applicability of
the method. However, confirming or rejecting this hypothe-
sis would require additional data, particularly from regions
containing small-scale folds.

Another major assumption is that a fault is always repre-
sented by a vertical plane. In our case, we assume that any
surface point lies either on one or on the other side of the
fault, and it is not possible that any surface point is located
on the fault. When these surface points are triangulated, each
fault-related triangle connects points from both sides of the
fault. Every fault-related triangle has at least one neighbor
that is not associated with the fault. The fault is represented
by a stripe of the fault-related triangles (see triangles with
green markers in Fig. 8a).

This main assumption is a simplification. In reality, a fault
structure is never a purely planar object. It is mostly a 3D
structure that has an extension perpendicular to the fault
strike (Childs et al., 2009). Therefore, it is possible that at
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Figure 8. (a) Example of a slope generated as explained in Sect. 3.3, with the fault being represented by a plane. (b) Example of a slope
generated as explained in Sect. 3.3 with the extended fault zone. Triangles with green markers show at least one non fault-related triangle as
a neighbor. Triangles with blue markers only have fault-related triangles as neighbors. Grey planes represent the border of the extended fault
zone.

least some surface points may be located inside the fault
zone. When triangulating these points, there is the possibil-
ity to create fault-related triangles, all of whose neighbors
are fault-related triangles as well (see Fig. 8b, triangles with
violet markers).

These “internal fault-related” triangles show a combina-
tion of patterns that was never trained. Triangles that ex-
hibit patterns that were actually trained are still present (see
Fig. 8b, triangles with green markers) but are only located at
the borders of the fault zone (grey rectangles in Fig. 8b). This
leads to the assumption that the presented classification sys-
tem may classify the extended fault zone not by one sequence
of color-coded labels but by two quasi-parallel sequences of
this type. Whether the “internal fault-related triangles” can
be successfully classified is an open question. In terms of
local geometric features specific to a single triangle such as
coordinates of normal vectors, the “internal fault-related” tri-

angles are more similar to the classical fault-related triangles.
In contrast, the neighborhood analysis alone would likely
classify these triangles as non-fault-related triangles (trian-
gles with grey marker in Fig. 8a and b). A comprehensive
answer to this question would require additional experiments
or substantial modifications of modeling assumptions (intro-
ducing non-vertical faults in the training), which lies beyond
the scope of our research.

The influence of 3D fault zones for the classification re-
sult needs to be further studied. Nevertheless, in the context
of this study the data points are assumed to be sparsely scat-
tered. If the fault shows an extension significantly lower than
the mean data point spacing, the simplified assumption of
purely planar faults is valid. The problem of identifying in-
ternal fault triangles could possibly be ameliorated by includ-
ing not only the direct neighbors of a triangle in the training
procedure but also triangles that are second- or third-degree
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neighbors or neighbors with an even higher number of de-
grees. Using this approach, it is more likely that the extended
neighborhood of an “internal fault-related” triangle also con-
tains non-fault-related triangles. However, the concept of the
suggested approach would stay the same. For illustration pur-
poses we, therefore, stick to the simplest setup.

7 Conclusions

In this study, we developed a supervised fault detection
method for triangulated models of subsurface slopes repre-
senting buried stratigraphic contacts. The novelty lies in gen-
erating a large number of synthetic slopes using the CGAL
library and their triangulated models using Delaunay trian-
gulation. The orientation of individual triangles combined
with geometric relationships with neighbors is used as fea-
tures for classification. The proposed supervised method has
the potential to identify fault-related structures of any orien-
tation, which can be considered improvement over unsuper-
vised classification approaches. The main challenge of the
workflow is to eliminate arbitrariness in feature selection in
relation to neighborhood analysis. Sorting distances among
neighbors eliminates arbitrariness from the analysis, but it is
also the most computationally intensive part of the workflow.
We believe that the classification approach can be used by
geologists interested in geological complexity of subsurface
environments with limited availability of data. Further stud-
ies can focus on considering more complex geological sce-
narios, including the influence of 3D fault zones and physics-
based models (compare with Conclusions in Reichstein et al.,
2019).
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Rejon Żarki-Wieluń. Skala 1:100000, in: Razowska, L., Pac-
holewski, A., and Zembal, M.: Badania procesów hydrogeo-
chemicznych w obszarach wypełniania się kopalnianych lejów
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Marynowski, L., Zatoń, M., Simoneit, B., and Otto, A.: Composi-
tions, sources and depositional environments of organic matter
from the Middle Jurassic clays of Poland, Appl. Geochem., 22,
2456–2485, https://doi.org/10.1016/j.apgeochem.2007.06.015,
2007.

Mattéo, L., Manighetti, I., Tarabalka, Y., Gaucel, J. M., van den
Ende, M., Mercier, A., Tasar, O., Girard, N., Leclerc, F., Gi-
ampetro, T., Dominguez, S., and Malavieille, J.: Automatic Fault
Mapping in Remote Optical Images and Topographic Data With
Deep Learning, J. Geophys. Res.-Sol. Ea., 126, e2020JB021269,
https://doi.org/10.1029/2020JB021269, 2021.

Matyja, B. A. and Wierzbowski, A.: Ammonites and stratigraphy of
the uppermost Bajocian and Lower Bathonian between Często-
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