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Abstract. Numerical integration of multiphase chemical ki-
netics in atmospheric models is challenging. The underly-
ing system of ordinary differential equations (ODEs) is stiff
and thus difficult to solve. Rosenbrock solvers are a popu-
lar choice for such tasks. These solvers provide the desired
stability and accuracy of results at an affordable yet large
computational cost. The latter is crucially dependent on the
efficiency of the step size control. Our analysis indicates that
the local error, which is the key factor for the step size selec-
tion, is often overestimated, leading to very small substeps.
In this study, we optimized the first-order step size controller
most commonly employed in Rosenbrock solvers. Further-
more, we compared its efficiency to a second-order step size
controller. We assessed the performance of the controllers in
both a box and a global model for very stiff ODEs. Signifi-
cant reductions in the computation time were accomplished
with only marginal deviations in the results compared to the
standard first-order controller. This was achieved not only for
gas-phase chemistry but also for the more complex aqueous-
phase chemistry in cloud droplets and deliquescent aerosols.
Depending on the selected chemical mechanism, significant
improvements were already achieved by simply adjusting
heuristic parameters of the default controller. However, es-
pecially for the global model, the best results were achieved
with the second-order controller, which reduced the num-
ber of function evaluations by 43%, 27% and 13% for gas-
phase, cloud and aerosol chemistry, respectively. The overall
computational time was reduced by over 11% while requir-
ing only minimal adjustments to the original code. Analysis

of a 1-year integration period showed that with the second-
order controller, the deviations from the reference simulation
stay below 1% for the main tropospheric oxidants. The re-
sults presented here show the possibility of more efficient at-
mospheric chemistry simulations without compromising ac-
curacy.

1 Introduction

Atmospheric chemistry modeling plays an essential part in
understanding and predicting air composition and its interac-
tions within the Earth’s system. The chemical kinetics used
in these models can be very complex (e.g., Rosanka et al.,
2021a; Pozzer et al., 2022) and rely on the numerical solution
of stiff systems of ordinary differential equations (ODEs),
normally responsible for the largest part of the computing
time (Christou et al., 2016). The systems of ODEs can be
written as

y′ = P(t,y)−L(t,y), (1)

where y is the array of concentrations (in cm−3); y′ is the
derivative of y with respect to time t ; and P(t,y) and L(t,y)
are the production and loss terms of the species, respectively.
For stiff ODEs, implicit solvers with adaptive time stepping
are preferably used (Sandu et al., 1997b). Stiffness refers to
a situation in which an explicit ODE solver needs a time step
that is “too small”, resulting in too many discretization steps
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to approximate the solution at the desired precision. How-
ever, a more objective definition of stiffness exists, and a cri-
terion for identifying a problem as stiff has been defined by
Spijker (1996):

maxRe(λj ) < 0,
max|Re(λj )|
min|Re(λj )|

>>1, (2)

where Re(λj ) values are the real parts of the eigenvalues of
the Jacobian matrix, J(t,y), associated with the ODE system
from Eq. (1). Atmospheric chemical kinetic models satisfy
this criterion because the mechanisms always contain very
fast and very slow reactions that occur on drastically different
timescales (Sandu et al., 1997b). In a typical operator split-
ting framework, chemical kinetics has to be solved every few
minutes after many non-chemical processes, e.g., emissions,
which perturb the chemical composition. Thus, numerical in-
tegrators are not efficient because at every starting point, for a
model time step of 10–20 min, they require very short initial
substeps (10−5 s or shorter). In chemical kinetic terms, this
is generally related to the perturbation of the chemical envi-
ronment (long-lived species) that determines the concentra-
tions of short-lived species. In mathematical terms, stiffness
is related to the large negative values of λj that are associated
with the diagonal elements of the Jacobian matrix (Jjj (t,y)).
The latter are usually related to the loss term Lj (t,y) and
thus to the lifetime of the species j (Turanyi et al., 1993).
However, this is not the case for multiphase chemical mech-
anisms, for which large negative values of λj cannot always
be associated with a single short-lived species but rather with
fast acid-base equilibria or phase-transfer reactions (Sandu
et al., 1997b). The ODE systems describing chemical kinet-
ics in deliquescent aerosols with low liquid water content
(LWC) and extremely fast outgassing of dissolved species are
particularly stiff. This has strongly limited the ability to per-
form multiphase chemistry simulations with explicit kinetics
(Kerkweg et al., 2007). Only recently has it become possi-
ble to perform numerical integration of chemical kinetics in
deliquescent aerosols throughout the troposphere in a global
model for LWC as low as 10−14 m3(aq)m−3(air) (Rosanka
et al., 2024). However, such simulations pose a large burden
on the computational resources needed and limit the under-
standing of the role of multiphase chemistry in atmospheric
composition. Thus, there is a need for more efficient ODE in-
tegrators. Many numerical integrators are available and have
been used for atmospheric applications (Zhang et al., 2011).
At the maximal error that is usually accepted (1 %), Rosen-
brock methods have proven to be the most efficient among
the implicit solvers that offer the required stability for stiff
problems (Sandu et al., 1997a). Linearly implicit Rosenbrock
methods are a popular choice for solving such stiff ODE sys-
tems because of their suiting stability while not relying on
costly solutions of nonlinear equations (Zhang et al., 2011).
However, the precision and efficiency of these discretization
methods depend on the control strategy used to adaptively
adjust the integration step size. Ways of making these inte-

grators more efficient have involved, for instance, manual or
semi-automatic reduction of the ODE system size (Sander
et al., 2019; Wiser et al., 2023; Lin et al., 2023). What is
less explored are the improvements in efficiency by using a
more sophisticated step size control. The adaptive time step
controller that is usually employed in many applications, in-
cluding chemical solvers, controls the locally produced error
ri to be within a tolerable threshold ε. The asymptotic behav-
ior of the numerical solver is used to adaptively approximate
the largest possible step size that is within the tolerance. The
resulting step size controller

hi+1 = hi
k

√
ε

ri
(3)

was introduced by Hairer et al. (1993), where hi is the time
step size for the ith step and k is usually the order of conver-
gence of the solver plus 1 (k = p+1). Here, ε is a predefined
relative error tolerance, and ri is the local error produced
by the solver’s solution yi compared to the real solution y

at the corresponding point in time ti . Chemical solvers usu-
ally make use of low values of p (Shampine and Witt, 1995;
Sandu et al., 1997b). Additionally, Rosenbrock solvers, as
part of the Runge–Kutta solver family, offer an efficient ap-
proximation of the local error with the help of a second em-
bedded solver, which yields a second solution ŷ of lower or-
der p̂ with nearly no extra effort (Hairer et al., 1993). This
approximation is denoted as li = yi− ŷi from now on and is
a substitute for the exact local error ri . In practice, this con-
troller is extended with some heuristic measures to ensure
stability. Equation (4) shows the heuristic extensions and rep-
resents the controller we investigate in this work:

hi+1 = hi ·min

(
qmax,max

(
qmin,δ

p̂+1

√
1
||li ||

))
. (4)

The new step size is multiplied by a safety factor δ, and the
step size growth is limited with an upper and a lower value,
called qmin and qmax, respectively. This practice was also pro-
posed by Hairer et al. (1993) and also deemed appropriate
for Rosenbrock solvers in Hairer and Wanner (1996). Nev-
ertheless, a small difference to the implementation we use is
that ε in the numerator is replaced by 1 because the tolerance
is incorporated into the local error norm ||li ||. Equation (5)
shows the implemented error norm ||li ||, which is similar to
the scaled Euclidean norm from Hairer et al. (1993). There
yi,j is the j th component of the solver solution for the ith
time step, and ŷi,j is the corresponding solution of the em-
bedded, lower-order integrator. The scaling factor of the dif-
ference contains the absolute and relative tolerances, εabs and
εrel, which have to be specified by the user. This normalizes
the error, which means that steps are accepted if the error
norm is equal to or less than 1. In the context of atmospheric
chemistry, rather large tolerances as high as εrel = 10−2 and
εabs = 100cm−3 are used (Zhang et al., 2011) because other
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uncertainties in Earth system models are considered to be
larger.

||li || =

√√√√1
n

n∑
j=1

(
yi,j − ŷi,j

εabs+ εrel ·max(|yi−1,j |, |yi,j |)

)2

(5)

However, Söderlind (2003) developed a suite of time step
controllers based on control theory aspects. This idea is prac-
ticable because the aspired relative tolerance given by the
user can be interpreted as a target value and the local error
in each step as the actual value that the controller needs to
adjust by reacting to the behavior of the ODE system. Many
of these controllers are of a higher order of adaptivity than the
first-order controller presented in Eq. (4). One of the second-
order controllers is the H211b:

hi+1 = hi

(
ε

||li ||

)1/(b·k)(
ε

||li−1||

)1/(b·k)(
hi

hi−1

)−1/b

, (6)

with b and k being free parameters of the controller. The pa-
rameter k is the root exponent that is already known from
the currently used controller, where it was set to p̂+ 1. This
means that one could set k = p̂+ 1. However, Söderlind
(2003) suggests that this selection is in no way predeter-
mined. To be more precise, the value should not be lower
than p̂+1

2 and not too large; p̂+ 1 is just a value that al-
ways produces a converging step size control (Deuflhard and
Bornemann, 2008). The second parameter should be b > 1
for stability, with increasing values creating a smoother and
more robust step size sequence.

In this article, we improve the step size control imple-
mented in the Rosenbrock solvers available with the Ki-
netic Pre-Processor (KPP) version 2.2.3 (Sandu et al., 1997a;
Sandu and Sander, 2006). The KPP software is mainly used
to solve the very stiff sets of ODEs resulting from the
kinetics of atmospheric chemical mechanisms of varying
complexity in the gas phase (e.g., Pozzer et al., 2022), in
cloud droplets (e.g., Rosanka et al., 2021a) and deliques-
cent aerosols (Rosanka et al., 2024). In brief, KPP trans-
lates input files containing chemical reactions and rate con-
stants into source code files containing the resulting ODE
system, as well as an integrator chosen by the user. KPP
is frequently applied in atmospheric models across multiple
scales, ranging from simple box models (e.g., Chemistry As
A Boxmodel Application (CAABA) by Sander et al., 2019)
to complex regional and global atmospheric chemistry mod-
els (e.g., ECHAM/MESSy Atmospheric Chemistry (EMAC)
by Jöckel et al., 2010). We first evaluate the step size con-
trol within the CAABA box model. Based on the results,
we present adjustments to the first-order controller and com-
pare its performance to the second-order step size controller
H211b presented by Söderlind (2003). To evaluate our ad-
justments under varying atmospheric conditions, we also per-
formed global simulations with EMAC.

2 Methodology

2.1 Chemical kinetic model

Multiphase chemistry is represented by the kinetic model in
the Module Efficiently Calculating the Chemistry of the At-
mosphere (MECCA) (Sander et al., 2019). The rate of phase-
transfer reactions is governed by the liquid water content
(LWC), water solubility and the mass-transfer coefficient ac-
cording to Kerkweg et al. (2007) following the formulation
by Sander (1999). The inorganic gas-phase chemistry mainly
follows the recommendations by JPL (Burkholder and et al.,
2019) and IUPAC (Wallington et al., 2018). The organic gas-
phase chemistry in MECCA is represented by the Mainz Or-
ganic Mechanism (MOM), which includes organics up toC10
molecules for isoprene (Taraborrelli et al., 2012; Nölscher
et al., 2014; Novelli et al., 2020), monoterpenes (Hens et al.,
2014; Mallik et al., 2018) and aromatics (Cabrera-Perez
et al., 2016; Taraborrelli et al., 2021). In total, MOM repre-
sents 735 chemical species and 2196 reactions. The inorganic
aqueous-phase chemistry is represented by a comprehensive
set of reactions for species containing oxygen, nitrogen, sul-
fur and halogens (Kerkweg et al., 2008). The aqueous-phase
chemistry of organics up to C4 molecules is represented by
the Jülich Aqueous-phase Mechanism of Organic Chemistry
(JAMOC; Rosanka et al., 2021b). JAMOC represents 792
chemical species and 1148 reactions (Rosanka et al., 2021b).

2.2 Box model

We used the community box model Chemistry As A Box-
model Application (CAABA) in this study (Sander et al.,
2019). It represents chemical and physical (emission, dry
deposition, entrainment, photolysis) processes in the atmo-
sphere in a simplified manner. CAABA is coupled to the sub-
model MECCA, which contains a comprehensive set of mul-
tiphase chemical reactions. Based on these, KPP creates one
large system of ODEs for the gas phase and two condensed
phases, representing populations of deliquescent aerosols
(LWC= 1.08× 10−12 m3(aq)m−3(air), r = 8.8210−8 m)
and cloud droplets (LWC= 3.04× 10−11 m3(aq)m−3(air),
r = 1.67 10−6 m). The Rosenbrock integrator used is Ros3
with relative and absolute tolerances of εrel = 10−2 and
εabs = 1cm−3, respectively. We have defined three scenarios
which emphasize different parts of the chemical mechanism
by changing initial concentrations and emissions:

1. The marine boundary layer (marine). Gas-phase chem-
istry interacts with aqueous-phase chemistry in marine
aerosol particles. The initial concentrations and emis-
sions are based on Vogt et al. (1996) with modifications
available in CAABA for the MBL case.

2. A coastal megacity (megacity). Anthropogenic emis-
sions of hydrocarbons interact with halogen- and sulfur-
containing compounds from the sea. The initial con-
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centrations and emissions are taken from Crippa et al.
(2018) and Huang et al. (2015).

3. A pristine tropical rain forest (forest). Biogenic isoprene
and terpenes are emitted into the air and then oxidized
in a complex degradation scheme. The initial concentra-
tions are taken from Table 2 in Taraborrelli et al. (2009).

2.3 Global model

The ECHAM/MESSy Atmospheric Chemistry (EMAC)
model is a numerical chemistry and climate simulation sys-
tem that includes submodels describing tropospheric and
middle-atmospheric processes and their interaction with
oceans, land and human influences (Jöckel et al., 2010). It
uses the second version of the Modular Earth Submodel Sys-
tem (MESSy2) to link multi-institutional computer codes.
The core atmospheric model is the fifth-generation Euro-
pean Centre Hamburg general circulation model (ECHAM5;
Roeckner et al., 2006). The physics subroutines of the orig-
inal ECHAM code have been modularized and reimple-
mented as MESSy submodels and have continuously been
further developed. Only the spectral transform core, the flux-
form semi-Lagrangian large-scale advection scheme and
the nudging routines for Newtonian relaxation remain from
ECHAM. For the present study we applied EMAC (MESSy
version 2.55.2) in the T42L31 resolution, i.e., with a spheri-
cal truncation of T42 (corresponding to a quadratic Gaussian
grid of approx. 2.8 by 2.8° in latitude and longitude) and with
31 vertical hybrid pressure levels up to 10 hPa. The global
model is run in a quasi-chemical transport mode (QCTM)
without feedbacks between chemistry and physics (Deckert
et al., 2011). This ensures that the meteorology of the model
and its influence on tracer concentration remain identical in
all the simulations performed. Therefore, any difference in
tracer abundance is purely attributable to the different inte-
gration of the chemical ODE.

Like CAABA, EMAC uses MECCA to represent chemi-
cal kinetics. The same parameter space of the box model can
be explored for testing in the global model. Unlike the box
model and early EMAC simulations (Kerkweg et al., 2007),
EMAC now relies on so-called operator splitting to represent
chemistry in the gas phase and in deliquescent aerosols sep-
arately, in series (Rosanka et al., 2024, their Fig. 1a). In the
simulations performed in this study, we use MECCA to rep-
resent gas-phase chemistry, including some heterogeneous
reactions, whereas aqueous-phase chemistry in convective
and large-scale clouds and rain is represented using the
SCAvenging (SCAV) submodel (Tost et al., 2006). Aerosol
processes are represented using MESSy’s Global Modal-
aerosol eXtension (GMXe; Pringle et al., 2010) submodel.
Here, aqueous-phase chemistry in accumulation and coarse
deliquescent aerosols is represented by the sub-submodel
AERosol CHEMistry (AERCHEM; Rosanka et al., 2024),
which is part of the GMXe submodel. AERCHEM is ex-

ecuted only when the liquid water content of the aerosols
is larger than 5× 10−13 m3(aq)m−3(air). From the avail-
able KPP Rosenbrock methods, we chose Ros3 for MECCA
(gas phase) and Rodas3 for SCAV and GMXe-AERCHEM
(aqueous phase) due to favorable performance and stabil-
ity (Rosanka et al., 2024). For the tolerances, MECCA and
SCAV both use εrel = 10−2 and εabs = 10cm−3. Due to
higher stiffness and lower stability when solving aqueous-
phase chemistry in deliquescent aerosols, AERCHEM uses a
relative tolerance of εrel = 10−3 and an absolute tolerance of
εabs = 1cm−3.

For all EMAC simulations performed in this study, bio-
genic emissions are represented by the Model of Emissions
of Gases and Aerosols from Nature (MEGAN; Guenther
et al., 2012). Biomass-burning-related emissions are calcu-
lated by MESSy’s BIOBURN submodel, which combines
biomass burning emission factors with dry-matter combus-
tion rates obtained from the Global Fire Assimilation System
(GFAS) based on Moderate Resolution Imaging Spectrora-
diometer (MODIS) satellite instruments (Kaiser et al., 2012).
Sea-spray aerosol emissions are calculated online following
the methodology by Kerkweg et al. (2006). We represent
mineral dust as bulk inert dust; i.e., no crustal elements are
emitted, with online emissions calculated following Astitha
et al. (2012). All anthropogenic emissions follow the Emis-
sions Database for Global Atmospheric Research (EDGAR
v4.3.2; Crippa et al., 2018).

2.4 Simulations performed

Global model simulations are much more complex than box
model ones, and more efficient simulations would save costly
computation time on high-performance computing (HPC)
systems, which offers the opportunity for longer simulation
periods or more complex chemistry mechanisms. However,
we started with CAABA box model simulations because
their reduced complexity allows for an easier analysis of the
step size selection and local error behavior of the step size
controllers.

The box model simulations covered a simulation period
of 12 h, and output was written at every model time step of
10 min. We also added output of the local error, step size and
number of function evaluations for every integrator time step.
All simulations were done for all three presented scenarios.
Besides reference simulations with the default values of the
first-order controller, we made simulations for every single
parameter change, like an increased safety factor. To eval-
uate changes in precision, we also made another reference
simulation with a fully implicit fifth-order Radau integrator
and a relative tolerance of εrel = 10−7 and absolute tolerance
of εabs = 1cm−3.

Given that global model simulations require much more
computational effort, we reduced the number of values tested
for each parameter, and the simulation period for the first
set of simulations only covers the first day of the year 2009.
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Table 1. Overview of the (sub)models used and the corresponding specifications of the chemistry and integrator for the performed simula-
tions.

Model/submodel Phase LWCmin Radiusmin Integrator εrel εabs
(m3(aq)m−3(air)) (m) (molec.cm−3)

CAABA/MECCA gas+ aqueous 1.08× 10−12 8.82× 10−8 Ros3 10−2 1
EMAC/MECCA gas – – Ros3 10−2 10
EMAC/SCAV aqueous 1× 10−9 – Rodas3 10−2 10
EMAC/GMXe-AERCHEM aqueous 5× 10−13 1× 10−8 Rodas3 10−3 1

MECCA, SCAV and AERCHEM produce a single ODE sys-
tem each. Therefore, in each 1 d simulation we changed one
parameter of one submodel. Output was produced after each
model time step of 15 min. After exploring the influence of
the different parameters, we also made 1-year simulations
for the year 2009 with the best-performing parameters of
the first-order controller and the second-order controller. For
runtime and error comparisons, a reference 1-year simulation
which contains the current default settings was made as well.
To have an acceptable amount of I/O, we only wrote output
every 23rd hour. With this selection we have output for every
day of the year, and after 24 d there is output for each hour
(0 to 23). The global simulations were done on the JUWELS
cluster supercomputer from the research center in Jülich. We
used eight nodes with 48 cores each.

3 Step size control in the box model

3.1 First-order controller

In this section, the efficiency of the standard first-order step
size controller from Eq. (4) is assessed on the basis of
the CAABA simulations for the three presented scenarios.
Hereby, we focus on two key aspects: (1) the step size and
(2) the local error. The specific KPP implementation of the
controller and the error norm used are also described in
Sandu et al. (1997a). Further, we provide the pseudocode of
the implementation in Appendix A.

3.1.1 Evaluation

The local error estimation is quite crucial for an efficient so-
lution because it is the main factor influencing the next step
size. If the estimated value is too large, this could lead to an
inefficient step size sequence with unnecessarily small step
sizes. For this reason, we compared a more accurate approx-
imation of the local error to the one calculated by the in-
tegrator. To obtain this precise estimation, we proceeded as
follows:

1. step size h is calculated as usual;

2. the area [t, t +h] is divided into five equally distant ar-
eas;

3. each of the five areas is viewed as its own local integra-
tion problem, starting at t+ j

5h and ending at t+ j+1
5 h,

j ∈ {0,1,2,3,4};

4. the local problems are solved one after another with the
same solver and parameters used for the actual ODE;

5. the result of the fifth local problem is a precise approxi-
mation of the solution at position t +h;

6. instead of the embedded solution ŷ, we can now use
this solution to calculate a more precise local error norm
||l||.

The division into five equally distant areas produces a solu-
tion with a precision of ε5

rel, which is sufficient for our in-
vestigations. This procedure obviously required much more
computation time and is not practical in real applications but
provides a very precise local error. For simplification, we re-
fer to this estimation in the following as the real local error.

Exemplified by the marine scenario, Fig. 1 shows that the
general course of the estimated local error is fairly good and
closely follows the one of the real local error. However, it
can be seen that the solver nearly always overestimates the
local error for accepted steps. Furthermore, the error fre-
quently becomes very small, sometimes going below 10−6,
even though the border for acceptance is 1. Both of these
findings show potential to increase the efficiency of the con-
troller while staying within the desired tolerances. The over-
estimation leads to smaller step sizes than necessary for the
majority of the steps, leading to many avoidable computa-
tions. This is because, by the definition of the controller in
Eq. (4), ||la||> ||lb|| implies ha < hb. In addition, in some
cases the overestimation led to step rejections even though
the real error would have been accepted; however, this hap-
pened in less than 5% of the visualized 250 steps. Moreover,
the regularly occurring local error dips indicate that there
were areas where the selected step size was much smaller
than necessary. Focusing on the local error dips, Fig. 2 illus-
trates that the decreases in the local error occurred in areas
where the step size drastically increased after the step size
dropped to a very small value. This indicates that the step
size could grow faster in these areas than it does currently.

Generally, our findings indicate that a more aggressive
strategy with higher step size selection could work to re-
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duce the required computations while still being within the
accepted error margin. To be able to verify this, we com-
pared the simulations with changed parameters to the sim-
ulation with the Radau integrator. With these reference re-
sults, the number of significant digit places was calculated
(see Appendix B). Evaluations of the precision of the stan-
dard first-order controller showed that the component-wise
median number of significant digits for the marine scenario
was as high as 4, instead of the aspired 2 (see Table B1). The
average was also noticeably above the target of 1%.

3.1.2 Optimization

The investigations from the previous section demonstrated
that there is considerable potential to improve the step size
selection to speed up the integration process without losing
the aspired precision. This led to the idea of adjusting the step
size controller to be more generous with the step size in some
areas, considering the overestimation of the local error and its
regular decreases to small orders of magnitude. The easiest
way to adjust the behavior of the standard controller was with
the heuristic parameters listed in Table 2. Most of the default
values have already been suggested by Hairer et al. (1993) as
universally valid options because they are more conservative
and focus on stability. Our goal was to find values that suit
the ODE systems of the tested mechanisms, yielding a lower
numerical workload. Therefore, a range of appropriate val-
ues was tested for each parameter independently. As a mea-
sure of the computational effort of the integrator, the number
of function evaluations was taken because it is independent
of hardware and computations outside the ODE system, in
contrast to other measures, e.g., the simulation runtime. Op-
timally, the number of computations should decrease without
the single-digit accuracy (SDA) dropping below 2. SDA rep-
resents the number of significant digits.

The historically developed heuristic assumption of de-
creasing the step size with a safety factor (δ < 1) for precau-
tionary reasons is in contrast to the results of our local error
analysis. Based on our analysis in Sect. 3.1.1, we now know
the actual ratio between the estimated and the real local error.
This made it possible to obtain a well-founded estimation of
the safety factor. Equation (7) shows how we estimated the
values used for this work.

δ p+1

√
1
||l||

!
= p+1

√
1

1
V
||l||

(7)

The leftmost side of the equation shows the relevant part
of the controller in Eq. (4). If we assume that the estimated
local error is larger than the real local error by a factor of
V , we can incorporate this factor into the controller equation
by using 1

V
||l|| as the denominator. By factoring V out of

the root in Eq. (7), we get p+1√
V as an estimation for a new

safety factor.

δ =
p+1√

V (8)

This results in a safety factor of δ ≈ 1.4, slightly varying
for each CAABA scenario. Simulations with various values
for δ ∈ [0.9,1.7] showed that values near the calculated op-
timum led to a quite significant reduction in function evalu-
ations without a meaningful decrease in precision, as shown
in Fig. 3 for the megacity and marine scenarios. The figures
display work–precision diagrams similarly to Sandu et al.
(1997b). Instead of the CPU time, the number of function
evaluations is plotted against the SDA of the least precise
component with the largest relative error. Details on how
SDA is calculated can be found in Appendix B. Overall,
values in the range of δ ∈ [1.3,1.5] seemed to be the most
promising because they provide a significant reduction in
function evaluations of up to 31% while ensuring a smoother
step size sequence than higher values. The most notable find-
ing was that the first increases had a big impact on the reduc-
tion in work, but as the safety factor grew larger, its influence
diminished.

The analysis of the local error led to the assumption that
the step size may grow faster in certain situations to address
the significant drops in the local error. Therefore, increas-
ing the upper growth limit factor qmax appeared to be a fit-
ting measure to reduce the numerical burden. Figure 4 seems
to support this theory. It shows the calculated growth factor
and the upper limit qmax that clips exceeding values. The re-
sults were taken from the marine scenario simulation. There
seems to be a correlation between areas where the calculated
growth factor exceeded qmax and areas where the local error
became very small (compare Fig. 1). Model runs with qmax
values between 6 and 30 were made, but the results showed
that nearly no reduction in the number of function evalua-
tions was achieved – the best was a reduction of 3 %, but in
most cases it was much less. This was most likely the case
because this increase only saved a few evaluations per peak.
Considering that there were only four peaks within the first
250 steps, the benefit was small. The nearly constant over-
estimation of the local error seems to impact the efficiency
of the solver more than the significant drops within the local
error. The parameter qmax is not able to compensate for the
nearly constant overestimation of the local error because it
only influences a small part of the step sizes. Thus, param-
eters that have an impact on the majority of steps, like the
safety factor, can achieve better improvements and indirectly
reduce the decreases in the local error.

Changes in the lower growth limit factor qmin showed
nearly no influence on the performance, mainly because the
reduction factor r is the key parameter for step size reduction.
Compared to the known default step size control proposed
by Hairer et al. (1993), the reduction factor r is an addition
in KPP. It helps decrease the step size faster in the very stiff
scenarios we are working with. When the step size is rejected
more than twice in a row, then the next rejected step size is
multiplied by this factor; by default it is r = 0.1. By looking
at Fig. 2, one could assume that a smaller reduction factor
may help to decrease the step size faster in the areas where
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Table 2. Default heuristic parameters of the standard first-order controller as from KPP2 (Sandu and Sander, 2006).

Parameter Default value Description

δ 0.9 Safety factor: considers that the local error is just estimated
qmax 6 Upper limit for the growth of the step size
qmin 0.2 Lower limit for the decrease in the step size
r 0.1 Reduction factor: multiplied by the step size after consecutive rejections
hstart 10−5 Starting step size

Figure 1. Comparison between the estimated local error of the embedded Rosenbrock solver (blue) and the more precise approximation of
local error (orange) for the marine scenario. The figure shows a nearly constant overestimation of the local error for accepted steps. Moreover,
regular sharp drops in the local error occur. Both findings mark potential for efficiency improvements. The red line marks the acceptance
threshold of each sub-time step.

it drops off drastically. Tests showed that this is true, but the
difference is only marginal. Nevertheless, we found that in
combination with a larger safety factor δ, the reduction fac-
tor may even be increased. In the marine scenario, this led to
an additional 10% reduction in function evaluations. How-
ever, in the megacity and forest scenarios, this also had no
meaningful impact. The tests showed that there were no con-
sistent performance changes in one direction for increases or
decreases in the reduction factor, but overall, values in the
range r ∈ [0.05,0.2] performed well.

Lastly, we did some rudimentary tests with the starting
step size hstart. It is used at the beginning of each model
step, so it can have a meaningful impact on the efficiency
of the integration even though it is not part of the step size
controller itself. Figure 2 shows that in the first model time
step, the current value of 10−5 was too high because the con-
troller started with multiple rejections. However, for the fol-
lowing model steps, the step size always grew at the begin-
ning; thus higher values also seemed to be reasonable. Be-
cause of that, we tested lower and higher values, namely
10−9,10−8,10−7,10−6,10−4 and 10−3. Larger values re-
sulted in unstable model runs, leading to crashes. On the
other hand, smaller values yielded a slight increase in the

number of function evaluations. Therefore, in short, chang-
ing this parameter did not help to increase the efficiency in
our cases. Overall, the default value of 10−5 showed the best
results, although better results may be achieved with an au-
tomatic starting step size selection (Watts, 1983).

3.2 Second-order controller

The adjustment of multiple heuristic parameters of the stan-
dard step size controller by Hairer et al. (1993) gave promis-
ing results. However, this makes adjusting the controller’s
behavior rather inconvenient and too specific for the ODE
system at hand. In search of a more general and flexible step
size control, we implemented the H211b controller by Söder-
lind (2003) from Eq. (6) and tested it with the same CAABA
scenarios. The pseudocode of the implementation is shown
in Appendix A.

We varied k over the range of [1.5,3], which equals the
lower bound of p̂+1

2 and the default root exponent of p̂+ 1.
Since higher values of parameter b create a smoother and
more robust step size sequence, which somewhat stands in
contrast to a more efficient step size sequence, we decided
to use the lowest possible value b = 1 for our tests. Sim-
ulations with higher values for b always resulted in more
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Figure 2. The estimated local error (blue) and the selected step size (green) for each substep of the marine scenario simulation. The strong
local error dips occur when the step size increases after a strong decrease. This indicates that faster step size growth may be suitable. The red
dots mark the beginning of a model time step. The first model step requires significantly more substeps than the other model steps.

function evaluations. Even though Söderlind (2003) recom-
mended b > 1, we did not encounter any issues with b = 1.
However, this should be kept in mind if stability issues arise
in other cases.

Figure 5 shows that with decreasing values of k, the num-
ber of function evaluations dropped quite significantly in the
megacity and marine scenarios. These reductions were about
the same as with the increased safety factor in the default
step size controller (cf. Fig. 3). Furthermore, the forest sce-
nario also showed a meaningful reduction in the number of
function evaluations, even though it is not as strong as in the
two scenarios displayed. The marine scenario showed that
setting k to the lowest possible value (1.5) might not be op-
timal because the error grew stronger compared to the com-
putational saving. For the forest scenario, this value even in-
creased the costs slightly. This leads to the conclusion that
slightly higher values, around k ≈ 2

3

(
p̂+ 1

)
, seem more ap-

propriate as a rule of thumb.

4 Step size control in the global model

We applied the findings of the CAABA simulations to the
EMAC model and investigated if they yielded similar reduc-
tions in the number of required function evaluations. Here,
we present the results of the 1 d global simulations with the
setup described in Sect. 2.4. The controller parameters were
changed for each submodel independently, and each simula-
tion included only one parameter change.

4.1 First-order controller

Starting with simulation parameters for MECCA, it could be
observed that changes in the reduction factor and the starting
step size did not result in fewer function evaluations. Modifi-
cations to all other parameters provided improvements. The
changes in the safety factor resulted in up to 10% fewer
function evaluations, which is less than in the box model.
Interestingly, the upper growth boundary qmax showed even
more improvement with a reduction of about 17%. In the
box model, this parameter had nearly no impact. Overall, the
efficiency gains were smaller than in the box model but still
have a high potential to reduce the computational burden of
long global simulations. Looking into the simulations with
changed parameters for SCAV, the results did not differ too
much from the MECCA results. Again, the reduction fac-
tor and the starting step size yielded no improvements, but
here qmax also showed no decrease. The different safety fac-
tors resulted in reductions between 13% and 20%, which
is slightly better than in MECCA. Lastly, we changed the
parameters for AERCHEM. The results for the default con-
troller showed nearly no improvements; the only change that
resulted in a small decrease in the function evaluations of
3% was the starting step size of 10−4. In contrast to the box
model results, changing the safety factor increased the num-
ber of function evaluations. For the largest value, the increase
was quite significant. The reasons for this might be the lower
tolerance used by AERCHEM (10−3 instead of 10−2) and
stronger chemical perturbations compared to the box model.
A more detailed overview of the tests with the first-order con-
troller can be seen in Table 3. Table C1 in Appendix C shows
the workload for each ODE system.
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Figure 3. Work–precision diagrams for (a) the megacity scenario and (b) the marine scenario. Generally, a larger safety factor δ produces
fewer function calls. For the megacity scenario, the SDA decreases slightly with each reduction in k. For the marine scenario, only δ = 1.1
results in a decreased SDA. The computational amount could be decreased by up to 31% for the megacity scenario and 26% for the marine
scenario, with δ = 1.3.

Table 3. Overview of EMAC results for different first-order controller parameter values derived from the investigations of the box model.
Concrete percentages are only displayed for meaningful reductions in the number of function evaluations. The percentage numbers refer to
the reduction within the corresponding ODE system, not to the total accumulated number of function evaluations. The + symbol indicates
an increase, and ≈ represents nearly no changes. Good improvements were achieved by increasing qmax and δ for MECCA and δ for SCAV
but not for AERCHEM. The values in the brackets represent the default value of the parameter.

Safety factor δ (0.9) Growth limit Reduction Hstart (10−5)
qmax (6) factor r (0.1)

1.2 1.5 1.7 50 100 0.05 0.2 10−6 10−4

MECCA −6% −9% −10% −16% −17% ≈ ≈ + +

SCAV −13% −19% −20% ≈ ≈ + ≈ + +

AERCHEM + + + ≈ ≈ ≈ ≈ + −3%

Figure 4. Visualization of the calculated growth factor (blue) that
is limited by qmax (orange). The limit is only exceeded for a few
substeps, but when it is, the value becomes much higher, up to 80.
Exceeding the limit strongly correlates with the strong drops in the
local error.

4.2 Second-order controller

We performed the same 1 d simulations with the second-
order controller. We tested k = 2 and k = 1.7 because these
values cover the range where the best reductions in the box
model investigations were found. A detailed overview of

Table 4. Overview of EMAC results with the H211b controller, sim-
ilar to Table 3. Overall, the H211b controller performed much better
than the current controller and had the only meaningful improve-
ment for AERCHEM.

H211b (b = 1)

k = 2 k = 1.7

MECCA −38% −43%
SCAV −22% −27%
AERCHEM −8% −13%

the impacts is presented in Table 4. For MECCA, up to
43% fewer function evaluations were achieved, which was
much better than the reduction in the default controller. For
SCAV, the reduction with the second-order controller was
also higher than with the first-order controller, with a 27%
reduction. Finally, for AERCHEM, it can be seen that with
the H211b controller a reduction of 13% was possible, with
b = 1 and k = 1.7. In contrast to the first-order controller, the
second-order controller showed significant improvements in
this case. The comparison between the columns of Table 4
generally shows that a smaller value of k also performed bet-
ter throughout for the global model simulations.
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Figure 5. Work–precision diagrams for (a) the megacity scenario and (b) the marine scenario. Generally, lower values for k produce fewer
function calls. For the megacity scenario, the SDA decreases slightly with each reduction in k. For the marine scenario, only k = 1.5 results
in a decreased SDA. The computational amount could be decreased by up to 31.7% for the megacity scenario and 24.1% for the marine
scenario, with k = 2 and k = 1.75, respectively.

In conclusion, we were also able to reduce the number of
required function evaluations in EMAC simulations with the
help of the CAABA investigations. However, in the global
model simulations, the H211b controller was superior to the
default controller, whereas for the box model, the perfor-
mance gains were similar.

5 Long-term global simulations

Typically, global atmospheric simulations cover a period
much larger than a single day. Therefore, there is a need to
assess the accuracy of the results for much longer integration
times. We hence made three 1-year simulations, as described
in Sect. 2.4. We first highlight how much runtime can be
saved with better parameters for the first-order controller and
the second-order controller compared to the currently used
setup over the longer simulation period. Secondly, we show
that this was achieved with a minimal loss in the quality of
the integration results.

5.1 Runtime comparison

Table 5 gives an overview of the required computation time
for each simulation and the reduction that was achieved with
the new changes. The results show that with the simple pa-
rameter changes in the current step size controller, a runtime
reduction of roughly 1500 core hours was achieved com-
pared to the reference, which equals a reduction of 4%. The
reference simulations used the default parameters presented
in Sect. 3.1.2 for each submodel, while in the improved first-
order controller, qmax = 100 was used for MECCA, δ = 1.5
for SCAV and hstart = 10−4 for AERCHEM. With the newly
tested H211b controller, the reduction was about 3 times as
high. The corresponding simulation required over 4000 core
hours less than for the reference one, which is about 11.4%.
In addition to the runtime, the last table column also shows
the estimated overall reduction for the number of function

evaluations, which was up to 20.6% with the second-order
controller. Given that output was only written every 23rd
hour, this reduction can only be estimated. Furthermore, it
should be noted that the percentage runtime reduction will al-
ways be below the function call reduction because the model
calculates many processes that are not influenced by our
changes, like I/O or atmospheric physics.

5.2 Error analysis

It is important to note that we do not have a meaningful
reduction in the accuracy of the calculated chemical abun-
dances. In this respect, we want to stress that not a single
change was made that would influence the precision control
behavior of the integrator. The controller changes only in-
fluenced the calculation of the step size candidate to use for
the next step. The estimation of the local error and the veri-
fication that the step calculated last fits the desired tolerance
were not changed in any way. Nonetheless, given the com-
plexity of the chemical ODE systems and all the uncertain-
ties in such models, we carried out a few investigations with
respect to the quality of the results.

Given the superiority of the H211b controller, the follow-
ing results only refer to a comparison between the 1-year
simulation with this new controller and the reference simu-
lation. Note that this comparison does not reflect a precision
comparison as for CAABA, where we used a Radau inte-
grator with a much stricter tolerance as reference. A global
simulation with the Radau integrator would simply not be
feasible with our setup for this time span.

Figure 6 shows the absolute and relative difference for
the main atmospheric oxidants, O3, OH and NO3, in the
gas phase. All plots show ground level, instantaneous values
from the last model time step. For ozone, it can be seen that
the relative difference was well below 1% across the whole
globe and thus smaller than the relative tolerance used.

For OH, the relative difference was overall still below 1%,
but some areas had higher values than others. For example,
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Figure 6. Instantaneous mixing ratio differences between the H211b and the reference 1-year simulations for the last simulation day (31
December 2009, 04:00:00 UTC). The shaded area represents nighttime. (a) Absolute difference for O3. (b) Relative difference for O3. All
values are far below 1%, which is below the relative tolerance used. (c) Absolute difference for OH. (d) Relative difference for OH. Nearly all
values are below 1%. A few boxes slightly exceed this value, but only in nighttime areas with small absolute values. (e) Absolute difference
for NO3. (f) Relative difference for NO3. Again, most values are below 1%, but some larger areas exceed this value. There, a few boxes go
up to 20%.

above northern Africa the differences were all comparatively
high, and a handful of boxes even slightly exceeded 1%.
However, this is in no way significant because they mainly
occurred in nighttime areas where OH was very close to
zero. Because of this, the absolute difference was also very

small, which makes the relative error very sensitive to small
changes.

For NO3, the relative error was below 1% in most ar-
eas. However, there were a few regions where it exceeded
1%, notably northern Africa. Most of these values were only
slightly higher, but a handful of outliers were above 10% or
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Table 5. Comparison of runtimes for 1-year EMAC simulations with the reference and two optimized controllers. The reference is the first-
order controller with default parameters. The improved first-order controller has the following modified parameters: qmax = 100 was used for
MECCA, δ = 1.5 for SCAV and hstart = 10−4 for AERCHEM. The second-order controller was used with b = 1 and k = 1.7 for MECCA,
SCAV and AERCHEM.

Runtime Runtime Function evaluation
(core hours) reduction reduction (estimated)

Reference (default parameters) 36 968 – –
Improved first-order controller 35 501 4% 6.3%
Second-order controller 32 743 11.4% 20.6%

Figure 7. Time series of the relative differences for the tropospheric globally averaged concentrations for all species between the reference
and the H211b global 1-year simulations.

even 20%. For earlier time steps, similar relative differences
were produced in this area, especially during nighttime. This
indicates that the observed difference was not caused by error
propagation.

Following this, Fig. 7 shows the time series of the rela-
tive differences in the mean concentrations within the tro-
pospheric levels. O3, OH and NO3 are highlighted, while
all other species are shown in gray. In addition, the black
lines mark the median and the 95% quantile levels. It can
be seen that for the vast majority of species, the differences
were always below the desired 1% tolerance, especially for
the gas-phase species in MECCA. Species from SCAV and
AERCHEM produced slightly higher differences, but only a

few outliers were above 1%. Furthermore, the differences did
not grow over time. This also supports the suggestion that the
quality of the results did not decrease. Larger deviations for
NO3 are not surprising, given that NO3 chemistry is coupled
directly to extremely fast phase-transfer and dissociation re-
actions of N2O5 in cloud droplets and aerosols.

Because the mechanism used simulates more than just gas-
phase chemistry, we also looked into the cloud and aerosol-
phase mixing ratios, focusing on OH. Figure 8 shows ab-
solute and relative differences for the cloud phase (OHl)
and aerosol phase in the accumulation-soluble mode (OHas)
and coarse-soluble mode (OHcs). The mixing ratios in these
phases were generally much lower and were distributed on
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Figure 8. Instantaneous mixing ratio differences between the H211b and the reference 1-year simulations for the last simulation day (31
December 2009, 04:00:00 UTC). The shaded area represents nighttime. Absolute differences (a, c, f) and relative differences (b, d, e) for OH
in the accumulation-aerosol mode, the coarse-aerosol mode and cloud droplets, respectively. Higher mixing ratios have a relative difference
below 1%. For very small mixing ratios, the high relative difference is a result of single-precision limitations.

a wider range of values than in the gas phase. This made
the error investigation and interpretation of the results more
complex.

For the cloud-phase chemistry in particular, the relative
difference seemed to be extremely high for the majority of
the grid boxes. The reason for this is the very small mix-
ing ratios and the correspondingly very small absolute dif-
ferences, down to 10−44. For single precision, values be-

low 10−38 are represented as subnormal numbers, which
have a significantly reduced precision (IEEE, 2019). Further-
more, the data also contained missing values for areas with-
out clouds. We therefore greyed out areas without clouds and
with concentrations below 10−32 in Fig. 8f. In areas with rel-
evant mixing ratios, colored in yellow and green, the relative
difference was below 1%.
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Figure 9. The histogram shows the number of grid boxes (y axis,
logarithmic scale) that require a certain number of function evalua-
tions (x axis). The blue bars represent the reference 1-year simula-
tion with the default parameters, and the orange bars represent the
1-year simulation with the H211b controller.

The aerosol chemistry showed overall higher relative dif-
ferences compared to the gas phase, which is why we
changed the displayed range to 10%. A few boxes also ex-
ceed this value; however the vast majority is still below 10%,
and over 75% of the boxes are even below 1% relative error.
For completeness, we added the relative differences for NO−3
and Cl− (Fig. S1 in the Supplement) and for SO2−

4 and NH+4
(Fig. S2) in their respective aqueous and aerosol phases in
the Supplement.

6 Load imbalance

One aspect that differs from the CAABA simulations was
that EMAC simulations heavily utilize parallelization by dis-
tributing grid cells onto multiple CPUs and their cores. For
the box model, we had no parallelization. This made the
number of function evaluations a perfect metric that solely
represents the workload of the chemical ODE system. In the
case of the global model, the parallelization could cause the
additional issue of unequal distribution of workload (load im-
balance). In MESSy, the parallel decomposition depends on
the dynamical core that is used (ECHAM5 in the EMAC con-
figuration). The model grid is split horizontally by selecting
the number of processes in lat–long rectangular sets of grid
points. Two diametrically opposed sets are assigned to one
processor. This is done to counteract the load imbalance as-
sociated with radiation transfer and photochemistry (Chris-
tou et al., 2016).

With the new changes, we observed that while most ar-
eas require fewer function evaluations, there are very few
boxes where the number of function evaluations increased,

as can be seen in Fig. 9. In the worst case, this could lead to
an overall increase in load imbalance and thus computation
time if a single CPU core gets all boxes where the number
increases, as all other cores would need to wait, without any
overall benefit. Nevertheless, as seen in the runtime reduc-
tions from Sect. 5, this problem did not occur in our sim-
ulations, or at least not to a meaningful extent. However, it
could occur for a different setup and should be kept in mind.
As shown in Fig. 10, an increase in the number of func-
tion evaluations (the corresponding variable is called nfun)
only happened in areas where day–night transitions occurred.
The grid decomposition algorithm does distribute these grid
boxes with high workload evenly across the cores. The unin-
tended worsening of the load imbalance is likely associated
with the rapid change in chemical regime from OH- to NO3-
dominated chemistry. NO3 chemistry is closely coupled to
N2O5, which is very reactive in both the gas and the aque-
ous phase, leading to enhanced ODE stiffness. This issue is
already known. At dusk and dawn the strong perturbation to
the chemical regime via changing photolysis rates enhances
the ODE stiffness, and the chemical solver therefore needs
the largest number of substeps for the integration (Christou
et al., 2016).

Nevertheless, porting the chemical solver to GPUs makes
the load imbalance a minor issue because of the much higher
degree of parallelization. The integration of the chemical
ODE system can be ported to GPUs with a Fortran-to-CUDA
parser (Alvanos and Christoudias, 2017; Christoudias et al.,
2021).

7 Conclusions

This work highlighted that the commonly used default step
size controller for Rosenbrock solvers poses many inefficien-
cies in the context of atmospheric chemical ODE systems.
For box model simulations with CAABA, we found a near-
constant overestimation of the local error, as well as regular
decreases to very small values. Both indicated the possibility
for improvement by using a more efficient step size selec-
tion. Based on this, we also showed that we were able to de-
crease the workload of the ODE solver by simply changing
the heuristic parameters of the controller. Furthermore, for
the global model EMAC, even better results were achieved
with the new H211b controller, where the computation time
of a simulation with multiphase chemistry was reduced by
11.4%. Lastly, we also ensured that the results of the solver
continue to be trustworthy in terms of accuracy.

Given the good performance, we recommend this con-
troller as the new default choice. Generally, it could be worth-
while to test higher-order step size controllers, such as that
of Söderlind (2003), for further speedups of atmospheric
chemistry simulations. Additional efficiency gains might be
achieved by applying the quasi-steady-state approximation
(Turanyi et al., 1993, QSSA;) for stiffness reduction. This
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Figure 10. The number of function evaluations for the MECCA ODE system is summed up across all levels for the reference and the H211b
simulation, with the difference calculated afterward. The dominating negative values show a decrease with the new controller. The few red
boxes mark an increase in this area. Load imbalance could increase in the worst case if many red boxes are calculated by the same CPU core.
However, in practice, there is no meaningful impact. GPU usage should further decrease this issue. The shaded area represents nighttime.

option is available in our modified Rosenbrock integrator as
well and allows for a dynamical choice of the initial step size.
However, this option is recommended only for gas-phase
chemistry calculations, and its impact on accuracy and ef-
ficiency still needs to be assessed.

Appendix A: Controller implementations

Algorithm A1 Pseudocode of the default first-order con-
troller implementation.

We present the pseudocode of our implementations of the
standard first-order controller and the second-order H211b
controller. Our default controller implementation only dif-
fers with respect to two minor aspects compared to the one
in Hairer et al. (1993). Given that the error tolerances are part
of the local error estimation (see Eq. 5), the value of ε in the
numerator has to be set to 1. Furthermore, we highlighted

Algorithm A2 Pseudocode of the H211b controller imple-
mentation.

the use of a reduction factor that is applied when a step size
is rejected twice or more in a row. For the H211b controller,
we also make use of the reduction factor. Besides initializ-
ing two new variables, we only need to change the line of
code that calculates the growth factor. The factor calculation
is nearly identical to Eq. (6), with only two minor modifica-
tions. Instead of storing the last step size, the quotient hi

hi−1
,

which equals the last growth factor, is stored in a new vari-
able. In the numerator, ε is again set to 1 for the same reason
as above.
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Appendix B: Single-digit accuracy (SDA)

Table B1. Median, mean and lowest single-digit accuracy for each
box model scenario.

Scenario SDAmedian SDAmean SDAmin

Marine 4.0688 3.1153 2.2506
Megacity 3.7607 3.0697 2.2678
Forest 2.7810 2.4362 1.6478

As a measure of accuracy, we used single-digit accuracy
(SDA), similar to Sandu et al. (1997b). It expresses the num-
ber of significant digits and can be calculated in the following
way:

SDA=−log10 (relativeError) . (B1)

To calculate the relative error of the CAABA results, we took
the reference values from a fully implicit Radau-5 integrator
with a relative tolerance of 10−7. We calculated the SDA of
the mean, median and largest relative error over a selection
of 86 components. The aspired mean should be a value of
approximately 2, but the mean and median accuracies were
much better, as shown in Table B1. In the work–precision
diagrams, we used SDAmin, which reflects the least precise
component with the largest relative error. Only the forest sce-
nario had an SDAmin below 2; all other values were notice-
ably above this value.

Appendix C: Workload of each ODE system in EMAC

Table C1 shows the number of function evaluations needed
for each system for the first simulation day of the global ref-
erence run. AERCHEM requires the most function evalua-
tions, totaling about 2.17 billion, followed by MECCA with
just over 1 billion. Finally, SCAV requires the least number
of function evaluations, totaling 481 million.

Table C1. Comparison between the amount of work required in the
three ODE systems in our global model setup.

Number of function Relative
evaluations (first day) proportion

MECCA 1 043 786 432 28.2 %
SCAV 481 043 572 13.0 %
AERCHEM 2 172 031 552 58.8 %

Code and data availability. The CAABA/MECCA model code
is available as a community model published under the GNU
General Public License (http://www.gnu.org/copyleft/gpl.html,
last access: 31 May 2024). The model code can be found in
the Supplement. We have made the H211b controller available in
EMAC version 2.55.0 and also in KPP3 branch feature/h211b.
The Rosenbrock integrator used in this study, https://gitlab.com/
RolfSander/caaba-mecca/-/blob/develop/caaba/mecca/kpp/int/
rosenbrock_posdef_h211b_qssa.f90 (last access: 31 May 2024),
is available in CAABA/MECCA version 4.5.4 and MESSy
version 2.55.0. The same integrator is also available in KPP3 at
https://github.com/KineticPreProcessor/KPP/blob/feature/h211b/
int/rosenbrock_h211b_qssa.f90 (last access: 31 May 2024). MESSy
is licensed to all affiliates of institutions which are members of
the MESSy Consortium. Institutions can become a member of
the MESSy Consortium by signing the MESSy Memorandum of
Understanding. More information can be found on the MESSy
Consortium website: http://www.messy-interface.org (last access:
2 September 2024). The zip file containing the code to reproduce
the global modeling results of this study is archived with a
restricted-access DOI (https://doi.org/10.5281/zenodo.13768443,
The MESSy Consortium, 2024). The file contains the code of the
main development branch of MESSy and a patch file containing
the AERCHEM-H211b namelist setup. A cleaned-up version of
the modifications is in the main development branch. The data
produced in this study with the CAABA/MECCA box model are
available at https://doi.org/10.5281/zenodo.13828706 (Dreger,
2024).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-4273-2025-supplement.

Author contributions. RD: conceptualization, formal analysis, soft-
ware, visualization, writing – original draft preparation; TK: con-
ceptualization, software, writing – review and editing; AP: software,
writing – review and editing; SR: software, writing – review and
editing; RS: software, writing – review and editing; DT: conceptu-
alization, methodology, software, writing – review and editing.

Competing interests. At least one of the (co-)authors is a mem-
ber of the editorial board of Geoscientific Model Development. The
peer-review process was guided by an independent editor, and the
authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We thank Gustaf Söderlind (University of
Lund) for his advice on implementing the H211b time step con-
troller. We thank Matthias Grajewski (FH Aachen) for helpful dis-

Geosci. Model Dev., 18, 4273–4291, 2025 https://doi.org/10.5194/gmd-18-4273-2025

http://www.gnu.org/copyleft/gpl.html
https://gitlab.com/RolfSander/caaba-mecca/-/blob/develop/caaba/mecca/kpp/int/rosenbrock_posdef_h211b_qssa.f90
https://gitlab.com/RolfSander/caaba-mecca/-/blob/develop/caaba/mecca/kpp/int/rosenbrock_posdef_h211b_qssa.f90
https://gitlab.com/RolfSander/caaba-mecca/-/blob/develop/caaba/mecca/kpp/int/rosenbrock_posdef_h211b_qssa.f90
https://github.com/KineticPreProcessor/KPP/blob/feature/h211b/int/rosenbrock_h211b_qssa.f90
https://github.com/KineticPreProcessor/KPP/blob/feature/h211b/int/rosenbrock_h211b_qssa.f90
http://www.messy-interface.org
https://doi.org/10.5281/zenodo.13768443
https://doi.org/10.5281/zenodo.13828706
https://doi.org/10.5194/gmd-18-4273-2025-supplement


R. Dreger et al.: Time stepping for stiff chemical ODEs 4289

cussions on the local error. We also thank the Federal Ministry of
Education and Research in Germany (BMBF) through the MiKlip
research program. The authors gratefully acknowledge the Gauss
Centre for Supercomputing e.V. (https://www.gauss-centre.eu, last
access: 31 May 2024) for funding this project by providing com-
puting time on the GCS supercomputer JUWELS (Alvarez, 2021),
as well as the John von Neumann Institute for Computing (NIC)
for computing time on the supercomputer JURECA-DC (Thörnig,
2021) at the Jülich Supercomputing Centre (JSC). The authors
gratefully acknowledge the Earth System Modelling (ESM) project
for funding this work by providing computing time on the ESM
partition of the supercomputer JUWELS at the JSC.

Financial support. This research has been supported by the
Bundesministerium für Bildung und Forschung (grant no. 01 LP
1128A).

The article processing charges for this open-access
publication were covered by the Forschungszentrum Jülich.

Review statement. This paper was edited by Jason Williams and re-
viewed by two anonymous referees.

References

Alvanos, M. and Christoudias, T.: GPU-accelerated atmospheric
chemical kinetics in the ECHAM/MESSy (EMAC) Earth sys-
tem model (version 2.52), Geosci. Model Dev., 10, 3679–3693,
https://doi.org/10.5194/gmd-10-3679-2017, 2017.

Alvarez, D.: JUWELS Cluster and Booster: Exascale Pathfinder
with Modular Supercomputing Architecture at Juelich Super-
computing Centre, Journal of Large-Scale Research Facilities, 7,
183, https://doi.org/10.17815/jlsrf-7-183, 2021.

Astitha, M., Lelieveld, J., Abdel Kader, M., Pozzer, A., and de
Meij, A.: Parameterization of dust emissions in the global at-
mospheric chemistry-climate model EMAC: impact of nudg-
ing and soil properties, Atmos. Chem. Phys., 12, 11057–11083,
https://doi.org/10.5194/acp-12-11057-2012, 2012.

Burkholder, J. B. , Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C.,
Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo,
M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., and Wine,
P. H.: Chemical Kinetics and Photochemical Data for Use in
Atmospheric Studies, Evaluation No. 19, JPL Publication 19-
5, p. 1610, http://jpldataeval.jpl.nasa.gov (last access: 31 May
2024), 2019.

Cabrera-Perez, D., Taraborrelli, D., Sander, R., and Pozzer,
A.: Global atmospheric budget of simple monocyclic aro-
matic compounds, Atmos. Chem. Phys., 16, 6931–6947,
https://doi.org/10.5194/acp-16-6931-2016, 2016.

Christou, M., Christoudias, T., Morillo, J., Alvarez, D., and Merx,
H.: Earth system modelling on system-level heterogeneous ar-
chitectures: EMAC (version 2.42) on the Dynamical Exascale
Entry Platform (DEEP), Geosci. Model Dev., 9, 3483–3491,
https://doi.org/10.5194/gmd-9-3483-2016, 2016.

Christoudias, T., Kirfel, T., Kerkweg, A., Taraborrelli, D.,
Moulard, G.-E., Raffin, E., Azizi, V., van den Oord, G.,

and van Werkhoven, B.: GPU Optimizations for Atmo-
spheric Chemical Kinetics, in: The International Confer-
ence on High Performance Computing in Asia-Pacific Re-
gion, HPC Asia 2021, Association for Computing Machin-
ery, New York, NY, USA, ISBN 978-1-4503-8842-9, 136–138,
https://doi.org/10.1145/3432261.3439863, 2021.

Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener,
F., van Aardenne, J. A., Monni, S., Doering, U., Olivier,
J. G. J., Pagliari, V., and Janssens-Maenhout, G.: Grid-
ded emissions of air pollutants for the period 1970–2012
within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013,
https://doi.org/10.5194/essd-10-1987-2018, 2018.

Deckert, R., Jöckel, P., Grewe, V., Gottschaldt, K.-D., and Hoor,
P.: A quasi chemistry-transport model mode for EMAC, Geosci.
Model Dev., 4, 195–206, https://doi.org/10.5194/gmd-4-195-
2011, 2011.

Deuflhard, P. and Bornemann, F.: [Band] 2 Gewöhnliche Dif-
ferentialgleichungen, De Gruyter, ISBN 978-3-11-020357-8,
https://doi.org/10.1515/9783110203578, 2008.

Dreger, R.: CAABA/MECCA model output for evaluating opti-
mized step size control in Rosenbrock solvers for stiff ODEs,
Zenodo [data set], https://doi.org/10.5281/zenodo.13828706,
2024.

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya,
T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of
Emissions of Gases and Aerosols from Nature version 2.1
(MEGAN2.1): an extended and updated framework for mod-
eling biogenic emissions, Geosci. Model Dev., 5, 1471–1492,
https://doi.org/10.5194/gmd-5-1471-2012, 2012.

Hairer, E. and Wanner, G.: Solving Ordinary Differential Equa-
tions II, vol. 14, Springer Series in Computational Mathe-
matics, Springer, Berlin, Heidelberg, ISBN 978-3-642-05220-0,
https://doi.org/10.1007/978-3-642-05221-7, 1996.

Hairer, E., Wanner, G., and Nørsett, S. P.: Solving Ordinary Dif-
ferential Equations I, vol. 8, Springer Series in Computational
Mathematics, Springer, Berlin, Heidelberg, ISBN 978-3-540-
56670-0, https://doi.org/10.1007/978-3-540-78862-1, 1993.

Hens, K., Novelli, A., Martinez, M., Auld, J., Axinte, R., Bohn,
B., Fischer, H., Keronen, P., Kubistin, D., Nölscher, A. C., Os-
wald, R., Paasonen, P., Petäjä, T., Regelin, E., Sander, R., Sinha,
V., Sipilä, M., Taraborrelli, D., Tatum Ernest, C., Williams, J.,
Lelieveld, J., and Harder, H.: Observation and modelling of HOx
radicals in a boreal forest, Atmos. Chem. Phys., 14, 8723–8747,
https://doi.org/10.5194/acp-14-8723-2014, 2014.

Huang, Y., Ling, Z. H., Lee, S. C., Ho, S. S. H., Cao, J. J., Blake,
D. R., Cheng, Y., Lai, S. C., Ho, K. F., Gao, Y., Cui, L., and Louie,
P. K. K.: Characterization of volatile organic compounds at a
roadside environment in Hong Kong: An investigation of influ-
ences after air pollution control strategies, Atmos. Environ., 122,
809–818, https://doi.org/10.1016/j.atmosenv.2015.09.036, 2015.

IEEE: IEEE Standard for Floating-Point Arithmetic, IEEE
Std 754-2019 (Revision of IEEE 754-2008), 84 pp.,
https://doi.org/10.1109/IEEESTD.2019.8766229, 2019.

Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede,
H., Baumgaertner, A., Gromov, S., and Kern, B.: Development
cycle 2 of the Modular Earth Submodel System (MESSy2),
Geosci. Model Dev., 3, 717–752, https://doi.org/10.5194/gmd-3-
717-2010, 2010.

https://doi.org/10.5194/gmd-18-4273-2025 Geosci. Model Dev., 18, 4273–4291, 2025

https://www.gauss-centre.eu
https://doi.org/10.5194/gmd-10-3679-2017
https://doi.org/10.17815/jlsrf-7-183
https://doi.org/10.5194/acp-12-11057-2012
http://jpldataeval.jpl.nasa.gov
https://doi.org/10.5194/acp-16-6931-2016
https://doi.org/10.5194/gmd-9-3483-2016
https://doi.org/10.1145/3432261.3439863
https://doi.org/10.5194/essd-10-1987-2018
https://doi.org/10.5194/gmd-4-195-2011
https://doi.org/10.5194/gmd-4-195-2011
https://doi.org/10.1515/9783110203578
https://doi.org/10.5281/zenodo.13828706
https://doi.org/10.5194/gmd-5-1471-2012
https://doi.org/10.1007/978-3-642-05221-7
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.5194/acp-14-8723-2014
https://doi.org/10.1016/j.atmosenv.2015.09.036
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.5194/gmd-3-717-2010
https://doi.org/10.5194/gmd-3-717-2010


4290 R. Dreger et al.: Time stepping for stiff chemical ODEs

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova,
N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G.,
Suttie, M., and van der Werf, G. R.: Biomass burning emis-
sions estimated with a global fire assimilation system based
on observed fire radiative power, Biogeosciences, 9, 527–554,
https://doi.org/10.5194/bg-9-527-2012, 2012.

Kerkweg, A., Buchholz, J., Ganzeveld, L., Pozzer, A., Tost, H., and
Jöckel, P.: Technical Note: An implementation of the dry removal
processes DRY DEPosition and SEDImentation in the Modu-
lar Earth Submodel System (MESSy), Atmos. Chem. Phys., 6,
4617–4632, https://doi.org/10.5194/acp-6-4617-2006, 2006.

Kerkweg, A., Sander, R., Tost, H., Jöckel, P., and Lelieveld, J.:
Technical Note: Simulation of detailed aerosol chemistry on
the global scale using MECCA-AERO, Atmos. Chem. Phys., 7,
2973–2985, https://doi.org/10.5194/acp-7-2973-2007, 2007.

Kerkweg, A., Jöckel, P., Pozzer, A., Tost, H., Sander, R., Schulz,
M., Stier, P., Vignati, E., Wilson, J., and Lelieveld, J.: Consis-
tent simulation of bromine chemistry from the marine bound-
ary layer to the stratosphere – Part 1: Model description, sea
salt aerosols and pH, Atmos. Chem. Phys., 8, 5899–5917,
https://doi.org/10.5194/acp-8-5899-2008, 2008.

Lin, H., Long, M. S., Sander, R., Sandu, A., Yantosca, R. M.,
Estrada, L. A., Shen, L., and Jacob, D. J.: An Adaptive
Auto-Reduction Solver for Speeding Up Integration of Chem-
ical Kinetics in Atmospheric Chemistry Models: Implementa-
tion and Evaluation in the Kinetic Pre-Processor (KPP) Ver-
sion 3.0.0, J. Adv. Model. Earth Sy., 15, e2022MS003293,
https://doi.org/10.1029/2022MS003293, 2023.

Mallik, C., Tomsche, L., Bourtsoukidis, E., Crowley, J. N., Der-
stroff, B., Fischer, H., Hafermann, S., Hüser, I., Javed, U., Keßel,
S., Lelieveld, J., Martinez, M., Meusel, H., Novelli, A., Phillips,
G. J., Pozzer, A., Reiffs, A., Sander, R., Taraborrelli, D., Sauvage,
C., Schuladen, J., Su, H., Williams, J., and Harder, H.: Oxidation
processes in the eastern Mediterranean atmosphere: evidence
from the modelling of HOx measurements over Cyprus, Atmos.
Chem. Phys., 18, 10825–10847, https://doi.org/10.5194/acp-18-
10825-2018, 2018.

Novelli, A., Vereecken, L., Bohn, B., Dorn, H.-P., Gkatzelis, G. I.,
Hofzumahaus, A., Holland, F., Reimer, D., Rohrer, F., Rosanka,
S., Taraborrelli, D., Tillmann, R., Wegener, R., Yu, Z., Kiendler-
Scharr, A., Wahner, A., and Fuchs, H.: Importance of isomer-
ization reactions for OH radical regeneration from the photo-
oxidation of isoprene investigated in the atmospheric simula-
tion chamber SAPHIR, Atmos. Chem. Phys., 20, 3333–3355,
https://doi.org/10.5194/acp-20-3333-2020, 2020.

Nölscher, A. C., Butler, T., Auld, J., Veres, P., Muñoz, A.,
Taraborrelli, D., Vereecken, L., Lelieveld, J., and Williams, J.:
Using total OH reactivity to assess isoprene photooxidation
via measurement and model, Atmos. Environ., 89, 453–463,
https://doi.org/10.1016/j.atmosenv.2014.02.024, 2014.

Pozzer, A., Reifenberg, S. F., Kumar, V., Franco, B., Kohl, M.,
Taraborrelli, D., Gromov, S., Ehrhart, S., Jöckel, P., Sander, R.,
Fall, V., Rosanka, S., Karydis, V., Akritidis, D., Emmerichs,
T., Crippa, M., Guizzardi, D., Kaiser, J. W., Clarisse, L.,
Kiendler-Scharr, A., Tost, H., and Tsimpidi, A.: Simulation of
organics in the atmosphere: evaluation of EMACv2.54 with
the Mainz Organic Mechanism (MOM) coupled to the OR-
ACLE (v1.0) submodel, Geosci. Model Dev., 15, 2673–2710,
https://doi.org/10.5194/gmd-15-2673-2022, 2022.

Pringle, K. J., Tost, H., Message, S., Steil, B., Giannadaki, D.,
Nenes, A., Fountoukis, C., Stier, P., Vignati, E., and Lelieveld, J.:
Description and evaluation of GMXe: a new aerosol submodel
for global simulations (v1), Geosci. Model Dev., 3, 391–412,
https://doi.org/10.5194/gmd-3-391-2010, 2010.

Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann,
S., Kornblueh, L., Manzini, E., Schlese, U., and Schulzweida,
U.: Sensitivity of Simulated Climate to Horizontal and Vertical
Resolution in the ECHAM5 Atmosphere Model, J. Climate, 19,
3771–3791, https://doi.org/10.1175/JCLI3824.1, 2006.

Rosanka, S., Sander, R., Franco, B., Wespes, C., Wahner, A.,
and Taraborrelli, D.: Oxidation of low-molecular-weight or-
ganic compounds in cloud droplets: global impact on tro-
pospheric oxidants, Atmos. Chem. Phys., 21, 9909–9930,
https://doi.org/10.5194/acp-21-9909-2021, 2021a.

Rosanka, S., Sander, R., Wahner, A., and Taraborrelli, D.: Oxi-
dation of low-molecular-weight organic compounds in cloud
droplets: development of the Jülich Aqueous-phase Mecha-
nism of Organic Chemistry (JAMOC) in CAABA/MECCA
(version 4.5.0), Geosci. Model Dev., 14, 4103–4115,
https://doi.org/10.5194/gmd-14-4103-2021, 2021b.

Rosanka, S., Tost, H., Sander, R., Jöckel, P., Kerkweg, A.,
and Taraborrelli, D.: How non-equilibrium aerosol chem-
istry impacts particle acidity: the GMXe AERosol CHEMistry
(GMXe–AERCHEM, v1.0) sub-submodel of MESSy, Geosci.
Model Dev., 17, 2597–2615, https://doi.org/10.5194/gmd-17-
2597-2024, 2024.

Sander, R.: Modeling Atmospheric Chemistry: In-
teractions between Gas-Phase Species and Liquid
Cloud/Aerosol Particles, Surv. Geophys., 20, 1–31,
https://doi.org/10.1023/A:1006501706704, 1999.

Sander, R., Baumgaertner, A., Cabrera-Perez, D., Frank, F., Gro-
mov, S., Grooß, J.-U., Harder, H., Huijnen, V., Jöckel, P., Kary-
dis, V. A., Niemeyer, K. E., Pozzer, A., Riede, H., Schultz,
M. G., Taraborrelli, D., and Tauer, S.: The community atmo-
spheric chemistry box model CAABA/MECCA-4.0, Geosci.
Model Dev., 12, 1365–1385, https://doi.org/10.5194/gmd-12-
1365-2019, 2019.

Sandu, A. and Sander, R.: Technical note: Simulating chem-
ical systems in Fortran90 and Matlab with the Kinetic
PreProcessor KPP-2.1, Atmos. Chem. Phys., 6, 187–195,
https://doi.org/10.5194/acp-6-187-2006, 2006.

Sandu, A., Verwer, J. G., Blom, J. G., Spee, E. J., Carmichael, G. R.,
and Potra, F. A.: Benchmarking stiff ode solvers for atmospheric
chemistry problems II: Rosenbrock solvers, Atmos. Environ.,
31, 3459–3472, https://doi.org/10.1016/S1352-2310(97)83212-
8, 1997a.

Sandu, A., Verwer, J. G., Van Loon, M., Carmichael, G. R.,
Potra, F. A., Dabdub, D., and Seinfeld, J. H.: Benchmark-
ing stiff ode solvers for atmospheric chemistry problems-
I. implicit vs explicit, Atmos. Environ., 31, 3151–3166,
https://doi.org/10.1016/S1352-2310(97)00059-9, 1997b.

Shampine, L. F. and Witt, A.: A simple step size selection algo-
rithm for ODE codes, J. Comput. Appl. Math., 58, 345–354,
https://doi.org/10.1016/0377-0427(94)00007-N, 1995.

Spijker, M. N.: Stiffness in numerical initial-value
problems, J. Comput. Appl. Math., 72, 393–406,
https://doi.org/10.1016/0377-0427(96)00009-X, 1996.

Geosci. Model Dev., 18, 4273–4291, 2025 https://doi.org/10.5194/gmd-18-4273-2025

https://doi.org/10.5194/bg-9-527-2012
https://doi.org/10.5194/acp-6-4617-2006
https://doi.org/10.5194/acp-7-2973-2007
https://doi.org/10.5194/acp-8-5899-2008
https://doi.org/10.1029/2022MS003293
https://doi.org/10.5194/acp-18-10825-2018
https://doi.org/10.5194/acp-18-10825-2018
https://doi.org/10.5194/acp-20-3333-2020
https://doi.org/10.1016/j.atmosenv.2014.02.024
https://doi.org/10.5194/gmd-15-2673-2022
https://doi.org/10.5194/gmd-3-391-2010
https://doi.org/10.1175/JCLI3824.1
https://doi.org/10.5194/acp-21-9909-2021
https://doi.org/10.5194/gmd-14-4103-2021
https://doi.org/10.5194/gmd-17-2597-2024
https://doi.org/10.5194/gmd-17-2597-2024
https://doi.org/10.1023/A:1006501706704
https://doi.org/10.5194/gmd-12-1365-2019
https://doi.org/10.5194/gmd-12-1365-2019
https://doi.org/10.5194/acp-6-187-2006
https://doi.org/10.1016/S1352-2310(97)83212-8
https://doi.org/10.1016/S1352-2310(97)83212-8
https://doi.org/10.1016/S1352-2310(97)00059-9
https://doi.org/10.1016/0377-0427(94)00007-N
https://doi.org/10.1016/0377-0427(96)00009-X


R. Dreger et al.: Time stepping for stiff chemical ODEs 4291

Söderlind, G.: Digital filters in adaptive time-
stepping, ACM T. Math. Software, 29, 1–26,
https://doi.org/10.1145/641876.641877, 2003.

Taraborrelli, D., Lawrence, M. G., Butler, T. M., Sander, R.,
and Lelieveld, J.: Mainz Isoprene Mechanism 2 (MIM2): an
isoprene oxidation mechanism for regional and global at-
mospheric modelling, Atmos. Chem. Phys., 9, 2751–2777,
https://doi.org/10.5194/acp-9-2751-2009, 2009.

Taraborrelli, D., Lawrence, M. G., Crowley, J. N., Dillon,
T. J., Gromov, S., Groß, C. B. M., Vereecken, L., and
Lelieveld, J.: Hydroxyl radical buffered by isoprene ox-
idation over tropical forests, Nat. Geosci., 5, 190–193,
https://doi.org/10.1038/ngeo1405, 2012.

Taraborrelli, D., Cabrera-Perez, D., Bacer, S., Gromov, S.,
Lelieveld, J., Sander, R., and Pozzer, A.: Influence of aromatics
on tropospheric gas-phase composition, Atmos. Chem. Phys., 21,
2615–2636, https://doi.org/10.5194/acp-21-2615-2021, 2021.

The MESSy Consortium: The Modular Earth Submodel System,
Zenodo [code], https://doi.org/10.5281/zenodo.13768443, 2024.

Thörnig, P.: JURECA: Data Centric and Booster Modules imple-
menting the Modular Supercomputing Architecture at Jülich Su-
percomputing Centre, Journal of Large-Scale Research Facili-
ties, 7, 182, https://doi.org/10.17815/jlsrf-7-182, 2021.

Tost, H., Jöckel, P., Kerkweg, A., Sander, R., and Lelieveld, J.: Tech-
nical note: A new comprehensive SCAVenging submodel for
global atmospheric chemistry modelling, Atmos. Chem. Phys.,
6, 565–574, https://doi.org/10.5194/acp-6-565-2006, 2006.

Turanyi, T., Tomlin, A. S., and Pilling, M. J.: On the error of the
quasi-steady-state approximation, J. Phys. Chem., 97, 163–172,
https://doi.org/10.1021/j100103a028, 1993.

Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halo-
gen release from sea-salt aerosol in the remote marine boundary
layer, Nature, 383, 327–330, https://doi.org/10.1038/383327a0,
1996.

Wallington, T. J., Ammann, M., Cox, R. A., Crowley, J. N., Her-
rmann, H., Jenkin, M. E., McNeill, V. F., Mellouki, A., Rossi,
M. J., and Troe, J.: IUPAC Task group on atmospheric chemi-
cal kinetic data evaluation: Evaluated kinetic data, AERIS, http:
//iupac.pole-ether.fr (last access: 31 May 2024), 2018.

Watts, H. A.: Starting step size for an ODE solver, J. Com-
put. Appl. Math., 9, 177–191, https://doi.org/10.1016/0377-
0427(83)90040-7, 1983.

Wiser, F., Place, B. K., Sen, S., Pye, H. O. T., Yang, B., West-
ervelt, D. M., Henze, D. K., Fiore, A. M., and McNeill, V.
F.: AMORE-Isoprene v1.0: a new reduced mechanism for gas-
phase isoprene oxidation, Geosci. Model Dev., 16, 1801–1821,
https://doi.org/10.5194/gmd-16-1801-2023, 2023.

Zhang, H., Linford, J. C., Sandu, A., and Sander, R.: Chemical
Mechanism Solvers in Air Quality Models, Atmosphere, 2, 510–
532, https://doi.org/10.3390/atmos2030510, 2011.

https://doi.org/10.5194/gmd-18-4273-2025 Geosci. Model Dev., 18, 4273–4291, 2025

https://doi.org/10.1145/641876.641877
https://doi.org/10.5194/acp-9-2751-2009
https://doi.org/10.1038/ngeo1405
https://doi.org/10.5194/acp-21-2615-2021
https://doi.org/10.5281/zenodo.13768443
https://doi.org/10.17815/jlsrf-7-182
https://doi.org/10.5194/acp-6-565-2006
https://doi.org/10.1021/j100103a028
https://doi.org/10.1038/383327a0
http://iupac.pole-ether.fr
http://iupac.pole-ether.fr
https://doi.org/10.1016/0377-0427(83)90040-7
https://doi.org/10.1016/0377-0427(83)90040-7
https://doi.org/10.5194/gmd-16-1801-2023
https://doi.org/10.3390/atmos2030510

	Abstract
	Introduction
	Methodology
	Chemical kinetic model
	Box model
	Global model
	Simulations performed

	Step size control in the box model
	First-order controller
	Evaluation
	Optimization

	Second-order controller

	Step size control in the global model
	First-order controller
	Second-order controller

	Long-term global simulations
	Runtime comparison
	Error analysis

	Load imbalance
	Conclusions
	Appendix A: Controller implementations
	Appendix B: Single-digit accuracy (SDA)
	Appendix C: Workload of each ODE system in EMAC
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

