
Geosci. Model Dev., 18, 4247–4271, 2025
https://doi.org/10.5194/gmd-18-4247-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperDECIPHeR-GW v1: a coupled hydrological model with improved
representation of surface–groundwater interactions
Yanchen Zheng1,2, Gemma Coxon1, Mostaquimur Rahman2, Ross Woods2, Saskia Salwey1,2,3, Youtong Rong1, and
Doris E. Wendt1

1School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
2School of Civil, Aerospace and Design Engineering, University of Bristol, Bristol, BS8 1TR, UK
3Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands

Correspondence: Yanchen Zheng (yanchen.zheng@bristol.ac.uk)

Received: 14 November 2024 – Discussion started: 19 November 2024
Revised: 26 February 2025 – Accepted: 14 April 2025 – Published: 15 July 2025

Abstract. Groundwater is a crucial part of the hydrologic cy-
cle and the largest accessible freshwater source for humans
and ecosystems. However, most hydrological models lack
explicit representation of surface–groundwater interactions,
leading to poor prediction performance in groundwater-
dominated catchments. This study presents DECIPHeR-GW
v1 (Dynamic fluxEs and ConnectIvity for Predictions of
HydRology and GroundWater), a new surface–groundwater
hydrological model that couples a model based on hydro-
logical response units (HRUs) and a two-dimensional grid-
ded groundwater model. Using a two-way coupling method,
the groundwater model component receives recharge from
HRUs, simulates surface–groundwater interactions, and re-
turns groundwater levels and groundwater discharge to
HRUs, where river routing is then performed. Depending
on the storage capacity of the surface water model com-
ponent and the position of the modelled groundwater level,
three scenarios are developed to derive recharge and capture
surface–groundwater interactions dynamically. Our coupled
model was set up at 1 km spatial resolution for the ground-
water model, and the average size of the surface water HRUs
was 0.31 km2. The coupled model was calibrated and evalu-
ated against daily flow time series from 669 catchments and
groundwater level data from 1804 wells across England and
Wales. The model provides streamflow simulation with a me-
dian Kling–Gupta efficiency (KGE) of 0.83 across varying
hydro-climates, such as wetter catchments with a maximum
mean annual rainfall of 3577 mmyr−1 in the west and drier
catchments with a minimum of 562 mmyr−1 in the east of
Great Britain, as well as diverse hydrogeological conditions

including chalk, sandstone, and limestone. Higher KGE val-
ues are found in particular for the drier chalk catchments in
southeast England, where the average KGE for streamflow
increased from 0.49 in the benchmark DECIPHeR model to
0.7. Furthermore, our model reproduces temporal patterns
of the groundwater level time series, with more than half
of the wells achieving a Spearman correlation coefficient of
0.6 or higher when comparing simulations to observations.
Simulating 51 years of daily data for the largest catchment,
the Thames at the Kingston River basin (9948 km2), takes
approximately 17 h on a standard CPU, facilitating multi-
ple simulations for model calibration and sensitive analysis.
Overall, this new DECIPHeR-GW model demonstrates en-
hanced accuracy and computational efficiency in reproduc-
ing streamflow and groundwater levels, making it a valuable
tool for addressing water resources and management issues
over large domains.

1 Introduction

Groundwater systems are a vital component of the hydro-
logic cycle, connecting recharge zones and discharge and
facilitating complex interactions between the surface and
subsurface (Kuang et al., 2024; Gleeson et al., 2016; Gior-
dano, 2009). As the main freshwater storage component
of the hydrologic cycle (Aeschbach-Hertig and Gleeson,
2012), groundwater systems support baseflow levels in rivers
(Miller et al., 2016; Gleeson and Richter, 2018) and provide
key water supplies for industry, agriculture, and public use,
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especially during droughts (Famiglietti et al., 2011; Siebert
et al., 2010; Giordano, 2009). As such, they are a critical re-
source for people, economies and the environment (Loaiciga
and Doh, 2024) and play a vital role in water management.
Often, groundwater models support groundwater manage-
ment decision-making at the local (Wang et al., 2019; Wendt
et al., 2021a), national (Dobson et al., 2020; Lee et al., 2007),
continental (Rama et al., 2022; Condon and Maxwell, 2015),
and global scales (De Graaf et al., 2019; Turner et al., 2019;
Gorelick and Zheng, 2015).

Groundwater systems and their interactions with surface
water form an active component of the hydrologic water
cycle, which can have significant effects on climate, sur-
face energy, and water partitioning (Gleeson et al., 2021;
Kuang et al., 2024). The importance of representing surface–
groundwater interactions in hydrological models is widely
acknowledged (Gleeson et al., 2021; Condon et al., 2021;
Bierkens et al., 2015; Clark et al., 2015), especially under
the influence of climate change and intense anthropogenic
activities (Benz et al., 2024; De Graaf et al., 2019; Condon
and Maxwell, 2019). Neglecting these important surface–
groundwater interactions may lead to unrealistic partition-
ing of precipitation between runoff and other water balance
terms, such as significant evapotranspiration biases (Famigli-
etti and Wood, 1994; Condon and Maxwell, 2019), causing
inaccurate prediction of the hydrologic states and fluxes (Naz
et al., 2022; Wada et al., 2010). Gnann et al. (2023) demon-
strated strong disagreement among many models in describ-
ing groundwater recharge, indicating potential errors in esti-
mating the contribution of groundwater to evapotranspiration
and streamflow. Moreover, many hydrological models across
regions and countries globally struggle to reproduce stream-
flow dynamics in groundwater-dominated catchments (Mass-
mann, 2020; Coxon et al., 2019; Badjana et al., 2023; McMil-
lan et al., 2016; Lane et al., 2019; Hartmann et al., 2014)
due to either oversimplified groundwater processes (Yang
et al., 2017; Guimberteau et al., 2014; Gascoin et al., 2009)
or complex groundwater components that are challenging to
calibrate at large scales (Maxwell et al., 2015; Ewen et al.,
2000; Naz et al., 2022), leading to difficulties in predicting
and managing water resources in these regions.

To counter these problems, there has been a growing in-
terest in integrating groundwater models into hydrological
models, accompanied by notable progress in groundwater
modelling analysis and evaluation at various scales (Glee-
son et al., 2021; Condon et al., 2021). A variety of cou-
pled surface–groundwater models has emerged across dif-
ferent scales (summarized in Table S1 in the Supplement).
Examples at the regional scale include SWAT-MODFLOW
(Bailey et al., 2016), TopNet-GW (Yang et al., 2017), mHM-
OGS (Jing et al., 2018), CWatM-MODFLOW (Guillaumot
et al., 2022), GSFLOW-GRASS (Ng et al., 2018), JULES-
GFB (Batelis et al., 2020), SHETRAN (Ewen et al., 2000),
CLSM-TOPMODEL (Gascoin et al., 2009), CaWaQS3.02
(Flipo et al., 2023), ORCHIDEE (Guimberteau et al., 2014),

and HydroGeoSphere (Ala-Aho et al., 2017; Brunner and
Simmons, 2012); at the continental scale, they include mod-
els such as ParFlow (Maxwell et al., 2015) and ParFlow-
CLM (Naz et al., 2022); and at the global scale, models like
GLOBGM (PCR-GLOBWB-MODFLOW) (Verkaik et al.,
2022; De Graaf et al., 2017) and WaterGAP2-G3M (Rei-
necke et al., 2019; Müller Schmied et al., 2014). The con-
figurations of these models are tailored to their specific pur-
pose and simulation objectives, with each adopting distinct
and diverse methodologies for coupling groundwater models.
These coupling methodologies range from more simple con-
ceptual approaches to highly sophisticated fully physically
based coupling techniques.

Many conceptual coupled models employ simplified
groundwater representations. For example, groundwater is
described as a linear reservoir or additional storage (Yang
et al., 2017; Gascoin et al., 2009; Guimberteau et al.,
2014; Müller Schmied et al., 2014), receiving groundwater
recharge and discharging into a river within the same grid cell
or other computation unit. These models typically compute
time series of groundwater storage rather than groundwater
hydraulic heads. Although representing groundwater as wa-
ter storage could enable global-scale assessment of ground-
water resources and stress (Turner et al., 2019; Wada et al.,
2014; De Graaf et al., 2014), the absence of groundwater hy-
draulic head simulations may hinder effective local and re-
gional water resource management (White et al., 2016; Gore-
lick and Zheng, 2015). Moreover, lateral groundwater flow
between grid cells or between the surface and the groundwa-
ter is critical, as absent lateral flows result in large inaccu-
racies (Ferguson et al., 2016; Fleckenstein et al., 2010; Xin
et al., 2018; Wada et al., 2010). In contrast, some physically
based coupled models integrate three-dimensional (3D) cou-
pled surface–groundwater flow models (Ewen et al., 2000) or
adopt the pseudo 3D diffusivity equation (Flipo et al., 2023)
or the two-dimensional (2D)/3D Richard equation (Maxwell
et al., 2015; Naz et al., 2022; Brunner and Simmons, 2012;
Ala-Aho et al., 2017) to simulate the groundwater flow. How-
ever, such complex model structure significantly increases
numerical complexity and computation time (Jing et al.,
2018; Gleeson et al., 2021), resulting in many coupled mod-
els remaining uncalibrated or requiring extensive computa-
tion time for calibration and validation (Reinecke et al., 2019;
Verkaik et al., 2022; Ewen et al., 2000; Maxwell et al., 2015;
Naz et al., 2022). Calibrating these models within a stochas-
tic framework is computationally infeasible, leading to sig-
nificant uncertainty in simulation results, which further hin-
ders an application in large-scale simulations and water man-
agement.

This paper proposes a coupled hydrological model,
DECIPHeR-GW (Dynamic fluxEs and ConnectIvity for Pre-
dictions of HydRology and GroundWater), with a spe-
cific focus on enhancing the representation of surface–
groundwater interactions whilst maintaining computational
efficiency for national or large-scale modelling applications.
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This study presents the first attempt to couple the DECI-
PHeR hydrological-response-unit-scale (HRU-scale) model
with a new 2D gridded groundwater model and expands
the diversity of coupling approaches available for integrat-
ing HRU-scale surface models with grid-based groundwater
models. The novelty of our coupled method lies in the intro-
duction of three dynamic scenarios to simulate the surface–
groundwater interactions. These scenarios adjust recharge
fluxes based on root zone saturation and groundwater head
positions. We discuss the rationale behind coupling DECI-
PHeR and the 2D gridded groundwater model in Sect. 2 and
provide detailed descriptions of the coupled model struc-
tures. Sections 3 and 4 demonstrate the implementation to
669 catchments in England and Wales and its calibration and
evaluation results against a large sample of streamflow and
groundwater level observations. Discussion of advantages as
well as potential future model developments is summarized
in the last section.

2 The DECIPHeR-GW model

2.1 Rationale

Our main aim was to develop a coupled hydrologi-
cal model that represents surface–groundwater interactions
whilst maintaining computational efficiency. To achieve this,
we coupled a hydrological model (DECIPHeR) with a large-
scale 2D groundwater model, both having been applied at
national scales (Coxon et al., 2019; Rahman et al., 2023).
Both models are described below; note that more details can
be found in their respective papers.

DECIPHeR is a flexible modelling framework (Coxon
et al., 2019), which has been implemented across various lo-
cations (Shannon et al., 2023; Dobson et al., 2020). The DE-
CIPHeR model has an auto-build function in the digital ter-
rain analysis (DTA) that defines river basin boundaries based
on the downstream gauge. Each river basin is constructed and
run independently. After the river basin has been delineated,
hydrologically similar points with identical climatic inputs
(e.g. rainfall, evapotranspiration) and landscape attributes
(e.g. geology, land use, soil, slope) are grouped into hydro-
logical response units (HRUs). Each HRU, as the main spa-
tial element, is considered to be an independent model store.
All HRUs can have different spatial inputs and model param-
eter values to represent diverse and localized processes. The
simplest setup uses one HRU per river basin, while the most
complex uses one HRU per DEM grid cell. The spatial reso-
lution of HRUs is typically user-defined; see the full descrip-
tion of the DECIPHeR model structure and evaluation re-
sults for Great Britain in Coxon et al. (2019). Previous stud-
ies on the DECIPHeR model have shown that model perfor-
mance in groundwater-dominated regions can be inadequate,
underscoring the need to enhance surface–groundwater inter-
actions (Coxon et al., 2019; Lane et al., 2021). The model’s

open-source nature and its flexible model structure facili-
tated the opportunity to develop new modules of hydrolog-
ical processes, i.e. groundwater representations. Moreover,
with its river basin auto-build function, HRU-based group-
ing of similar landscapes, and simple model structure that
excludes complex land surface fluxes, the DECIPHeR model
can simulate multiple model runs for calibration and sensi-
tivity analysis against observational data at national scales.

The large-scale groundwater model utilized in this paper
was developed by Rahman et al. (2023). This 2D gridded
model employs a transient groundwater flow equation for nu-
merical groundwater flow simulation. Their study presents
the first development of a numerical groundwater flow model
for large-scale simulations using local hydrogeological infor-
mation. The advantage of this model is its ability to simulate
groundwater hydraulic heads, enabling groundwater resource
assessment and management. This groundwater model omits
river channel representation and simulates only groundwater
flow movements between grids. Additionally, the model op-
erates in two dimensions using 2D hydrogeological data and
omits vertical water movement. These prioritizations ensure
that the model is computationally efficient, facilitating mul-
tiple simulations for both calibration and evaluation against
groundwater level observations or a model parameter sensi-
tivity analysis, as presented in Rahman et al. (2023). This
high computational efficiency is critical, as many existing
large-scale coupled models are published in an uncalibrated
state due to high computational costs (Maxwell et al., 2015;
Reinecke et al., 2019; Naz et al., 2022; Verkaik et al., 2022).
Moreover, this groundwater model also has relatively low
requirements for input data and model parameters. Besides
open-access data like geology and topography, the model
needs groundwater recharge data as inputs, which can typ-
ically be derived by a land surface hydrological model. This
low data requirement facilitates coupling this groundwater
model to other hydrological models.

2.2 DECIPHeR-GW model structure

The new coupled DECIPHeR-GW model fully integrates
the DECIPHeR and the groundwater models, as shown in
Fig. 1, which consists of the HRU-based surface water model
component and the 2D-grid-based groundwater model. At
each time step, the groundwater model receives recharge val-
ues (QRC) from the surface model component, i.e. the root
zone storage (SRZ) at the HRU scale; simulates surface–
groundwater interactions; and passes the derived groundwa-
ter head (HGW) and groundwater discharge (QGWDS) back to
the HRUs for the river routing.

The surface water component (e.g. SRZ), as well as the
river routing module of the coupled model, was taken from
the hydrological model DECIPHeR (Coxon et al., 2019).
The root zone store is the main surface water component in
the coupled model, which directly interacts with precipita-
tion (P ) and evapotranspiration (ET), with a maximum stor-
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Figure 1. Schematic view of (a) the DECIPHeR-GW model structure and (b) the spatial interaction between DECIPHeR HRUs and ground-
water model grid cells.

age determined by the model parameter SRmax. At each time
step, precipitation is added to SRZ, and the actual evapotran-
spiration (ET) is calculated and removed directly from the
root zone. Equation (1) was used to derive the actual evapo-
transpiration (ET) for each HRU, which depends on the po-
tential evapotranspiration rate (PET) and the saturation level
of the root zone storage.

ET= PET · (SRZ/SRmax) (1)

SRinit represents the initial root zone storage for each
HRU, which requires initialization at the beginning of the
simulation. Previous studies (Coxon et al., 2019; Lane et al.,
2021) have shown that this parameter exhibits low sensitivity
to the model results. Consequently, SRinit was initialized as
half of the SRmax in this study instead of behaving as a model
parameter for calibration. Once the root zone storage is full,
excess rainfall is generated as saturated excess flow (QEX),
which is considered to be the saturated overland flow (QOF),
and then is added to the river channel for river routing. The
coupled model does not consider infiltration capacity.

Recharge QRC from the root zone storage is computed by
implementing the nonlinear equation from Famiglietti and
Wood (1994), which takes into account the soil hydraulic
properties and the storage capacity of the root zone (Eq. 2).
In our coupled model setup, recharge is driving the ground-
water model component.

QRC =Ks

[
SRZ

SRmax

] 2+3B
B

, (2)

where Ks is the saturated hydraulic conductivity
(m per time step), and B is the pore size distribution
index (dimensionless).

The groundwater model component was developed by
Rahman et al. (2023) and uses a transient groundwater flow
equation in two spatial dimensions (Eq. 3, Fig. 1b). The finite
difference approximation is used to discretize Eq. (3), and an
implicit approach is employed to solve it. A no-flow lateral

boundary condition is implemented in the model. Spatially,
the model domain can be discretized using a user-defined
uniform grid according to the topography. With the input
of recharge (QRC), groundwater initial head (Hinit), and hy-
drogeology (i.e. transmissivity T and specific yield Sy) data,
gridded groundwater heads (HGW) can be calculated at each
time step by solving large sets of linear equations.

Whenever the modelled groundwater head exceeds the to-
pography, groundwater discharge (QGWDS) is calculated us-
ing Eq. (4). The groundwater discharge is passed back to the
HRUs as saturated flow (QSAT) and added to the nearest river
channel for river routing. The surface component from DE-
CIPHeR does not directly account for water flow from the
river to HRUs, and the groundwater model lacks explicit river
channel representation; thus the coupled model does not cap-
ture the river water contribution to aquifer recharge. Instead,
aquifer recharge is accounted for via the root zone (see also
Fig. 2). Given the high sensitivity of groundwater head sim-
ulation to hydrogeological data (Rahman et al., 2023), trans-
missivity (T ) and specific yield (Sy) are selected as model
parameters for calibration in the coupled model.

Sy
∂h

∂t
=∇(T∇h)+R, (3)

Q= Sy× (h−htop), (4)

where Sy is specific yield (–), h is the groundwater head (m),
t is time, T is transmissivity (m2 per time step), R is the po-
tential recharge rate (m per time step), and htop is the topo-
graphic height (m).

The overview of all model stores, fluxes, state variables,
and model parameters is summarized in Table 1. There are
six model parameters in the coupled model that can be sam-
pled or set to default values. The model parameters for the
surface water and groundwater components are at different
scales, and each is prepared independently. The parameters
SRmax, Ks, B, and CHV control the surface water model
component (including recharge and river routing) at the HRU
or catchment scale, which needs soil texture and land use in-
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Figure 2. Schematic model set-up of surface–groundwater interactions under three scenarios: (a) the groundwater head is below the bottom
of the root zone, (b) the groundwater head is within the root zone, and (c) the groundwater head is higher than the topography. The colour
coding of the text is as follows: red indicates the root zone, purple represents recharge, and blue denotes the modelled groundwater heads.

Table 1. Overview of model stores, fluxes, state variables, and parameters. (mAOD in this table stands for metres above ordnance datum, i.e.
sea level).

Category Name Meaning Unit

Stores SRZ Root zone storage m
SRinit Initial root zone storage m

Internal fluxes QEX Saturated excess flow m per time step
QOF Overland flow m per time step
QRC Recharge flow m per time step
QGWDS Groundwater discharge m per time step
QSAT Saturated flow m per time step

External fluxes (input) P Precipitation m per time step
ET Actual evapotranspiration m per time step

External fluxes (output) Qsim Simulated discharge m per time step

State variable Hinit Initial groundwater head m (AOD)
HGW Groundwater head m (AOD)

Model parameters SRmax Maximum root zone storage m
Ks Saturated hydraulic conductivity m per time step
B Pore size distribution index dimensionless (–)
CHV Channel routing velocity m per time step
T Transmissivity m2 per time step
Sy Specific yield dimensionless (–)

formation to determine their parameterization. Parameters T

and Sy, which govern the groundwater flow simulation, are
determined by a lithology map that matches the spatial res-
olution of the groundwater grids. Details of the river routing
approach can be found in Coxon et al. (2019).

2.3 Surface–groundwater interactions

To represent dynamic surface–groundwater interactions,
three scenarios (as shown in Fig. 2a–c) have been imple-
mented in the coupled model setup. At each time step, the
position of the groundwater head and root zone storage de-
termines the occurrence and the amount of recharge. For ex-
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ample, if the groundwater head is below the bottom of the
root zone (Fig. 2a), we assume that recharge occurs, leak-
ing from the root zone storage to the groundwater system
after removing the actual evapotranspiration. As presented
in Eq. (2) in Sect. 2.2, the value of the recharge depends on
the soil texture and the saturation level of the root zone stor-
age. The recharge was set to not exceed the root zone storage
SRZ. The bottom of the root zone is defined as the topogra-
phy Htopo minus the depth of the root zone DRZ. The root
zone depth is estimated using Eq. (5) according to previous
studies (Wang-Erlandsson et al., 2016; Lane et al., 2021).

DRZ =
SRmax

porosity
(5)

If the groundwater head reaches the bottom of the root
zone but is below the topography (Fig. 2b), we assume
no exchange of water takes place between the surface and
groundwater system in this case (i.e. no recharge). In the last
scenario, if the groundwater head exceeds the topography
(Fig. 2c), groundwater discharge is generated (no recharge).
Groundwater discharge is subsequently passed to the HRUs
as saturated flow and added to the nearest river channel for
river routing.

In all three scenarios, the root zone storage receives rain-
fall, and actual evapotranspiration is subtracted as usual at
every time step (Eq. 1), regardless of the movement of the
groundwater heads. Whenever the root zone storage is full,
any rainfall excess is generated as overland flow and then
added to the river channel.

Given that we build and run the coupled model for each
catchment, the groundwater model gridded domain needs
to be first determined according to the catchment boundary
before the simulations. In our study, we assumed that no
water can move and leave the groundwater system across
the boundary since a no-flow lateral boundary condition
is adopted in the groundwater model. To reduce the ef-
fects of this no-flow boundary condition and allow for inter-
catchment groundwater exchange, the groundwater simula-
tion domain is extended beyond the catchment boundary in
all directions (Fig. 3b). This expanded groundwater gridded
simulation area is referred to as the buffer zone in our study
(light blue grids in Fig. 3b and c). Absence of the buffer zone
could lead to the potential buildup of water in the adjacent
cells of the lateral boundaries due to the adoption of the no-
flow boundary condition. The groundwater grids and buffer
zones outside the catchment boundaries do not incorporate
or consider HRUs, which are exclusively confined within the
catchment boundaries. Users can customize the size of buffer
zone according to the modelling objective. Details on how
to determine the appropriate buffer zone size for our anal-
ysis are provided in Sect. 3.2. Note that the coupled model
is currently designed to run each river basin individually,
without accounting for the exchange of hydrological vari-
ables such as groundwater flow across river basins. Within

each river basin, we do consider the exchange of hydrolog-
ical variables across catchments. While buffer zones of ad-
jacent river basins may overlap geographically, they remain
hydrologically independent and do not interact.

The recharge, groundwater discharge fluxes, and the state
variable groundwater head need to be transferred between
surface water component HRUs and gridded groundwater
cells. To address this spatial-scale discrepancy between vari-
ables, a model mapping scheme is adopted, which follows a
similar procedure to coupling the HRU-based SWAT model
and gridded groundwater model MODFLOW (Bailey et al.,
2016). For a given HRU, the proportion of its area over-
lapped by different grids is needed to transfer variables from
HRUs to grids. Conversely, to transfer variables from grids
to HRUs, the proportion of each grid cell area that is occu-
pied by different HRUs is needed. Both these proportions are
calculated as the weighting matrix at the beginning of the
simulation and stored to transfer variables at each time step.
Detailed model mapping methods and the schematic figures
can be found in Text S2 and Figs. S1–S3 in the Supplement.
Water balance checks were implemented to verify conserva-
tion of mass in the coupled model (See Text S3).

3 Model implementation and evaluation across
England and Wales

3.1 Study area and catchment selection

To test our new coupled model, we apply DECIPHeR-GW
over a large sample of catchments across England and Wales.
Extensive and high-quality open-source hydro-climate and
geological data are available in England and Wales, such as
the CAMELS-GB dataset (Coxon et al., 2020), along with
a large number of groundwater level observations (Environ-
ment Agency, 2023), making it highly suitable for testing
and evaluating our coupled model. Also, Great Britain ex-
hibits a wide diversity of hydrogeology features, with ge-
ological units spanning a range of ages traceable back to
the Pre-Cambrian (Allen et al., 1997), resulting in a wide
variety of aquifer types (Fig. S5). This allows us to test
the robustness of the coupled model under a range of hy-
drogeological conditions, modelling for the three principal
aquifers: chalk, Permo-Triassic sandstone, and Jurassic lime-
stone (Allen et al., 1997). The chalk aquifer, notably dis-
tributed in the southeast of England, is highly permeable,
where catchments are connected to a wider regional ground-
water system, resulting in inter-catchment subsurface flows
(Allen et al., 1997; Oldham et al., 2023). Despite the vast
range of hydrological models applied to this region (Coxon
et al., 2019; Lane et al., 2019, 2021; Hannaford et al., 2022;
Lees et al., 2021; Bell et al., 2007; Ewen et al., 2000; Seib-
ert et al., 2018; Lewis, 2016), deficiencies in model perfor-
mance persist for these groundwater-flow-dominated catch-
ments. Thus, we test our coupled model over England and
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Figure 3. The DECIPHeR-GW coupling and spatial interaction from DECIPHeR hydrologic response units (HRUs) to groundwater model
grid cells for one example catchment, Welland at Ashley 31021. (a) The HRU construction process for catchment 31021; (b) the gridded
groundwater simulation domain for catchment 31021. (c) DECIPHeR-GW coupling and spatial interaction between HRUs and groundwater
grids.

Wales, with the aim of improving model performance in
these groundwater-dominated regions through a better rep-
resentation of surface–groundwater interactions.

We selected 669 catchments from all river records in the
National River Flow Archive (NRFA) across England and
Wales to evaluate the coupled model and represent a vari-
ety of hydro-climate characteristics, which ensures the ro-
bustness and generalizability of our results. All catchments
shown in Fig. 4a–c were selected based on the following
data criteria. Note that catchments in Scotland were excluded
from our analysis due to lack of access to hydrogeological
data.

First, to ensure robust calibration, only catchments with
over 20 years of observed data within the calibration period
spanning 1980 to 2010 were selected. The model was config-
ured to run from 1970 to 2020 based on data availability, cap-
turing a broad range of climate conditions during this period.
The initial 10 years served as a warm-up period, with cal-
ibration performed from 1980 to 2010, followed by model
evaluation in the subsequent years. Secondly, we excluded
catchments that are affected significantly by reservoirs, as
the coupled model does not incorporate the reservoir operat-
ing rules. Using a suite of hydrological signatures, we identi-
fied 25 catchments where reservoirs had a significant impact
on the water balance or flow variability and excluded these
from our sample (Salwey et al., 2023). Thirdly, catchments
with a runoff coefficient (calculated as the ratio of mean an-
nual discharge and mean annual precipitation) greater than 1
were also excluded from the analysis due to potential issues
with data quality, missing rainfall data, or substantial human–

water interactions that we did not consider in this coupled
model.

3.2 Surface water component and groundwater model
configuration

For the surface water component, a 50 m gridded digital el-
evation model (Intermap Technologies, 2009) (also used in
Coxon et al., 2019; Lane et al., 2021) was adopted as the ba-
sis for the digital terrain analysis to build the river network
and define the HRUs across all English and Welsh catch-
ments. Headwater cells were extracted from Ordnance Sur-
vey river layers (Ordnance Survey, 2023) and then routed
downstream along the steepest slopes in the catchment to
create the river network for the coupled model. Defining
HRUs is a critical step in the application of the surface wa-
ter component because these HRUs act as individual model
stores with different spatial inputs and model parameter val-
ues. In this study, we implemented the same HRU discretiza-
tion approach described in Salwey et al. (2024), which uses
three equal classes of slope, accumulated area, and catch-
ment boundaries, as well as a 2.2 km input grid. This is con-
sistent with the national climate projection data detailed in
Sect. 3.3 and higher-resolution input data compared to pre-
vious studies using DECIPHeR (Coxon et al., 2019; Lane
et al., 2021). The average size of the HRUs generated across
all study catchments is 0.31 km2, with HRU areas ranging
from the largest, 3.55 km2, to the smallest, which is the size
of one DEM grid cell (0.0025 km2).
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Figure 4. Hydro-climate, geology, and available groundwater well locations of the 669 catchments used in this study. (a) Mean annual rainfall
(mm yr−1), (b) aridity (–), (c) baseflow index (–), (d) the locations of the 3888 groundwater wells used in this study, and (e) the locations
of six selected catchments (details in Sect. 4.2 and Table 4). The map of hydrogeological properties in the background (this figure contains
British Geological Survey materials ©UKRI 2020) highlights highly productive aquifers, including white chalk, Triassic sandstone, and Lias
limestone.

We constructed and operated the gridded groundwater
model based on the topography data at a 1 km spatial reso-
lution, which has a comparable scale to the size of HRUs.
The groundwater model simulation domain is defined by
grids overlaying the catchment boundary and the buffer zone.
Text S11 and Fig. S14 in the Supplement provide details of
how we determined the buffer zone size, which resulted in
a 3 km buffer zone around the catchment boundary to re-
duce the impact of no-flow boundary conditions. Future users
can adjust this buffer value as needed. We used the long-
term steady-state simulated groundwater heads from Rah-
man et al. (2023) as the initial conditions for the groundwater
model to ensure that the model achieves a stable and rea-
sonable operational state as quickly as possible. A detailed
description of all the topography, hydro-climate, land use,
soil texture, and hydrogeology variables that are used for the
model configuration, inputs, parameterization, and evalua-
tion is summarized in Table 2. Sections 3.3 and 3.4 introduce
more details about the model input and evaluation datasets
and model parameterization.

3.3 Input and evaluation datasets

Daily precipitation, potential evapotranspiration (PET), and
streamflow and groundwater level data were used to run and
evaluate DECIPHeR-GW. For the input data, this study uses
the observation-based gridded daily precipitation and PET
data derived from HadUK-Grid, a newly produced dataset
providing gridded climate observations for the UK at a spa-
tial resolution of 1 km (Hollis et al., 2019). Daily precipi-
tation data from HadUK-Grid, available from 1891 to the
present, is derived from the Met Office UK rain gauge net-
work, which is quality controlled, and then inverse-distance-
weighted interpolation is applied to generate the daily rain-
fall grids. Daily PET data, available from 1969 to 2021, is
calculated using the Penman–Monteith equation, with cli-
mate variables obtained from HadUK-Grid (Robinson et al.,
2023). To align with the existing model setup and the grid
used for the national climate (Robinson et al., 2021; Lane
and Kay, 2022; Salwey et al., 2024), these climate variables
were upscaled to a 2.2 km grid for hydrological simulations.

To evaluate the river flows generated in DECIPHeR-GW,
daily observed streamflow data sourced from NRFA were
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Table 2. Detailed descriptions of the topography, hydro-climate, land use, soil texture, and hydrogeology variables used for model configu-
ration, inputs, parameterization, and evaluation in this study.

Category Variables and
dataset

Spatial
resolution
and coverage

Temporal
resolution
and coverage

Description Sources and
references

Topography Digital elevation
model (DEM)

50 m gridded – Inputs for digital terrain analysis
to generate the river network and
define HRUs across the study area

Intermap Technologies
(2009)

Climate Precipitation 2.2 km gridded Daily time series,
1970–2020

Model inputs Hollis et al. (2019)

Potential evap-
otranspiration
(PET)

2.2 km gridded Daily time series,
1970–2020

Model inputs Robinson et al. (2023)

Hydrology Streamflow 669 river gauges Daily time series,
1970–2020

Model evaluation UK National River
Flow Archive

Groundwater
level

3888 groundwater
wells

Varied temporal
resolution and
coverage

Model evaluation Environment Agency
(2023)

Land use Land use map 50 m gridded – Basemap for estimating the model
parameter SRmax

Derived from reclassi-
fying the UKCEH Land
Cover Map (Lane et al.,
2021; Rowland et al.,
2017)

Soil texture Sand, silt, and
clay
percentage

50 m gridded – Basemap for deriving the root zone
depth, soil texture classification and
estimating the model parameter Ks
and B

LandIS national soils
map for England and
Wales (Lane et al.,
2021)

Porosity 50 m gridded – Basemap for deriving the root zone
depth and estimating the model
parameter SRmax

Maps of porosity were
sourced from Lane
et al. (2021)

Hydrogeology Initial ground-
water head map

1 km gridded – Long-term steady-state simulated
groundwater heads from Rahman
et al. (2023) as the initial conditions
for the groundwater model

Rahman et al. (2023)

Digital geological
map for lithology
type

1 : 625000 map
scale

– Lithological classes described in
this map used for estimating the
transmissivity (T ) and specific
yield (Sy)

British Geological
Survey (2010;
Rahman et al. (2023)

used to calibrate and evaluate the model performance. The
modelled groundwater levels are evaluated using groundwa-
ter level observation data from the Environment Agency’s
groundwater monitoring network database (Environment
Agency, 2023). The groundwater level observations for a to-
tal of 3888 groundwater wells in England and Wales were
collected, which cover a variety of temporal resolution and
coverage with varying levels of data quality. Before using
these in model evaluation, several quality control steps were
applied to the measured groundwater level data, as illustrated
in Fig. S4b. Details of the data quality control are provided
in the Supplement (Text S4). There are 3005 wells provid-
ing manually measured data (dipped data) at either daily
or monthly intervals, while 883 wells offer automatically

logged data recorded by pressure transducers at a subdaily
scale. Furthermore, there are 395 wells where both types of
data are available (see the locations in Figs. 4d and S4a).
The temporal coverage varies significantly, with a median
of approximately 41 years and the shortest period being just
4 years of noncontinuous observations (Fig. S4c). After the
data quality control, data from 1804 groundwater wells were
used for the model evaluation.

3.4 Model parameters

A total of six model parameters need to be calibrated to run
the coupled model. The SRmax and CHV parameters were
already included in the DECIPHeR model structure. For the
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coupled model, we sampled these two model parameters us-
ing the same method following Lane et al. (2021). Specifi-
cally, SRmax is sampled by adopting the multiscale parame-
ter regionalization (MPR) strategy, which was first estimated
at a high resolution based on the geophysical data and the
transfer function and then upscaled to the HRU scale. The
channel routing parameter CHV, which is not associated with
spatial fields, was not parameterized using MPR and was
calibrated through random sampling instead. Details about
the sampling method for these two model parameters can be
found in the work of Lane et al. (2021).

In addition to the two abovementioned model parameters,
we have introduced four new model parameters in the cou-
pled model, i.e. saturated hydraulic conductivity (Ks) and
pore size distribution index (B), which interact with the sur-
face water components, and transmissivity (T ) and specific
yield (Sy), which drive groundwater flow. We use represen-
tative ranges of saturated hydraulic conductivity (Ks) and
pore size distribution (B) from various soil textures mea-
sured from a large sample of soil from Clapp and Hornberger
(1978) and Rawls et al. (1982). Maps of soil surface proper-
ties (porosity and the percentage of sand, silt, and clay) at a
50 m raster were sourced from Lane et al. (2021) to derive
the root zone depth and soil texture classification. Soil tex-
ture is classified based on the United States Department of
Agriculture (USDA) criteria. Ks and B values were sampled
in the corresponding ranges for each soil texture classifica-
tion using a Monte Carlo method on the high-resolution map
(50 m raster) of soil texture, and then the geometric mean was
calculated to upscale to the HRU scale for calibration.

Transmissivity (T ) and specific yield (Sy), the parame-
ters of the groundwater component, needed to align with
its gridded structure, which is set at a 1 km grid resolution
for parameter inputs. Following Rahman et al. (2023), these
parameters can be obtained from the representative ranges
for different lithology classes based on an extensive litera-
ture review and reports for England and Wales (Allen et al.,
1997; Jones et al., 2000). The 1 : 625000-scale digital geo-
logical map of the United Kingdom developed by the British
Geological Survey (BGS) is used to provide the lithology
classes at 1 km grid resolution. By adopting this lithology
map and the lookup table from Rahman et al. (2023), the pa-
rameter values of T and Sy can be sampled using the Monte
Carlo method for every 1 km grid cell. Table 3 summarizes
the functions, parameter ranges, and catchment attribute data
used in this study to sample the model parameters. The
lookup tables for linking Ks and B with soil texture classes
and T and Sy with lithology types, as well as the detailed pa-
rameter ranges, are provided in Tables S2 and S3. Since the
model parameters are linked with the soil and lithology types,
catchments with the same spatial attributes will be calibrated
with the same set of model parameters.

3.5 Model calibration and evaluation

In this study, we set up the simulations for 669 catch-
ments, using the DECIPHeR model introduced by Lane
et al. (2021) as the benchmark model for comparison with
the DECIPHeR-GW model. The DECIPHeR model in Lane
et al. (2021) employs the multiscale parameter regionaliza-
tion (MPR) method to parameterize model parameters while
maintaining the original DECIPHeR model structure (Coxon
et al., 2019) without groundwater representation. The objec-
tive is to utilize these simulations as a benchmark to evaluate
the performance of the coupled model after implementing the
groundwater process representation. Note that these bench-
mark model runs are calibrated and evaluated using the same
method as the coupled model described below.

We use nonparametric Kling–Gupta efficiency KGE met-
rics (Pool et al., 2018) to calibrate and evaluate the model
results, which comprise three components accounting for
the errors in mean flow, flow variability, and the correlation
between observed and simulated flow. This nonparametric
KGE is proposed to avoid overfitting to particular hydro-
graph elements. In contrast to the parametric KGE (Gupta
et al., 2009), this metric incorporates the difference between
flow duration curves (FDCs) to indicate variability instead of
standard deviation and employs the Spearman correlation in
place of the Pearson correlation coefficient.

Both the coupled and benchmark models were calibrated
and evaluated across all 669 catchments by running 5000
simulations in each catchment (i.e. each of the 5000 region-
alizations of parameters g1–g33, t1–tn, and s1–sn mentioned
in Table 3 is used for all catchments). The model simulates
the period from 1970 to 2020 at a daily time step. Simu-
lations from 1970 to 1979 were treated as a warm-up pe-
riod, and the nonparametric KGE was calculated separately
for the calibration period from 1980 to 2010 and the eval-
uation period spanning 2011 to 2020. These periods were
selected as a suitable test for the model, encompassing a
variety of climatic conditions to showcase its ability to re-
produce major national-scale hydrological extremes, includ-
ing floods in 2007, 2015, and 2019, as well as droughts in
1984, 2003, 2011, and 2018. Two calibration approaches,
namely (a) catchment by catchment and (b) nationally con-
sistent calibration, were used to calibrate the coupled model
following the study of Lane et al. (2021). These two cali-
bration methods are applied separately to identify the cor-
responding best-performing parameters, with the parameter
values saved for their respective applications. The first cal-
ibration, the catchment-by-catchment calibration, is to find
the best-performing simulation (maximum KGE across 5000
simulations) and its corresponding parameter sets for each
catchment. The second calibration, the nationally consis-
tent calibration scheme, enables us to identify the best na-
tional model parameter sets across all catchments. The me-
dian KGE across all catchments is calculated for each sim-
ulation, and the nationally consistent approach selects the
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Table 3. Model parameter range, transfer functions, and catchment attribute data used in this study.

Parameter Parameter description
(unit)

Catchment attribute data/sampling method Transfer function/parameter range

SRmax Maximum root zone
storage (m)

Porosity (p) and land use (u): global param-
eters are constrained using the root depth
associated with different land uses

SRmax = g1 ·p ·



g2, u=1

g3, u=2
g4, u=3
...

g11, u=10
g1 is the scaling factor, and g2–g11 are the es-
timated root zone depths for different land use
types; for details, see Lane et al. (2021)

CHV Channel routing
velocity
(m per time step)

Random sampling from the lower and upper
bounds according to previous applications
(Coxon et al., 2019; Lane et al., 2021)

[100, 4000]

Ks Saturated hydraulic
conductivity
(m per time step)

Surface soil texture (sc) based on the per-
centages of sand, clay, and silt;
the lookup table is from Clapp and Horn-
berger (1978) and Rawls et al. (1982), link-
ing Ks to the field-measured representative
value range according to soil texture

Ks =



g12, sc=1

g13, sc=2
g14, sc=3
...

g22, sc=11
The Ks value range for each soil texture class is
presented in Table S2

B Pore size distribution
index (–)

Same as Ks, the lookup table links B field
measured representative values according
to the soil texture (sc)

B =



g23, sc=1

g24, sc=2
g25, sc=3
...

g33, sc=11
The B value range for each soil texture class is
presented in Table S2

T Transmissivity
(m2 per time step)

Lithology types (lt), the lookup table is
from (Rahman et al., 2023)

T =



t1, lt=1

t2, lt=2
t3, lt=3
...

tn, lt=n

The T value range for each lithology type is pre-
sented in Table S3, and n is the total number of
lithology types

Sy Specific yield (–) Lithology types (lt), the lookup table is
from (Rahman et al., 2023)

Sy =



s1, lt=1

s2, lt=2
s3, lt=3
...

sn, lt=n

The Sy value range for each lithology type is
presented in Table S3, and n is the total number
of lithology types
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simulation with the highest median KGE. The second cal-
ibration approach is beneficial for national model parame-
ter regionalization, offering valuable insights into model pa-
rameter selection for model application in ungauged catch-
ments. In contrast, the first calibration method demonstrates
the optimal performance achievable by our coupled model.
For the nationally consistent calibration approach following
Lane et al. (2021), catchments with maximum KGE values
below 0.3 in the first calibration method (catchment by catch-
ment) were excluded from the median KGE calculation. This
exclusion avoids catchments where the model structure was
not suitable, while retaining as many catchments as possible.

Furthermore, modelled groundwater levels are assessed
using a large sample of groundwater level observations from
1804 wells in England and Wales (described in Sect. 3.3) for
the model evaluation. Due to the scale discrepancy between
the 1 km grid-scale-simulated groundwater level and point-
scale observations of specific wells, we use the Spearman
correlation coefficient to quantify the ability of the coupled
model to reproduce the temporal correlation and do not cal-
culate the bias.

4 Results

4.1 Overall model performance across catchments

Figure 5a presents the nonparametric KGE values of the sim-
ulated streamflow for the coupled model across 669 stream-
flow gauges during the evaluation period. The calibration re-
sults, which are consistent with evaluation results, are de-
tailed in the Supplement (Fig. S6). Using the catchment-by-
catchment calibration method (Fig. 5a–d), overall, the cou-
pled model performs well in simulating streamflow across
catchments, with a median KGE of 0.83 and most catch-
ments (81 %) achieving 0.7 or higher. Figure 5b illustrates the
KGE differences between the coupled model and benchmark
runs using DECIPHeR. Approximately 70 % of the catch-
ments exhibit KGE differences of 0.1 or less between the
coupled and benchmark models, indicating that the coupled
model achieves comparable results with those of the bench-
mark model.

Notably, the coupled model demonstrates better perfor-
mance in groundwater-dominated chalk catchments with a
baseflow index > 0.75 (blue dots in Fig. 5b), where the av-
erage KGE improves from 0.49 with the benchmark model
to 0.70. In the southeast’s chalk region, the coupled model
achieves KGE improvements exceeding 0.35 in 20 catch-
ments, with 6 catchments showing improvements greater
than 1. In contrast, the benchmark model performs slightly
better in the western regions of England and Wales (indicated
by orange dots in Fig. 5b), where catchments are wetter,
with mean annual rainfall exceeding 1500 mmyr−1, achiev-
ing a median KGE around 0.88. Nevertheless, the coupled
model still maintains a median KGE of 0.80 for these wet-

ter catchments. The comparison of the KGE bias component
between two models, as displayed in Fig. 5c and d, further
confirms that the coupled model improves the reproduction
of the water balance for these groundwater-dominated catch-
ments in the southeast, particularly those in the Thames River
basin. However, the coupled model still tends to overestimate
streamflow in some catchments in central and southeast Eng-
land, which could be due to human activities such as sur-
face water and groundwater abstractions (Salwey et al., 2023;
Wendt et al., 2021b; Bloomfield et al., 2021).

As expected, a performance drop is observed in the na-
tionally consistent calibration strategy (Fig. 5e and f) since
the parameterization is not optimized for individual catch-
ments. Compared to the catchment-by-catchment calibration,
approximately 50 % of catchments experienced a decline of
less than 0.1 in KGE for the coupled model, whereas 64 %
experienced a decline for the benchmark. The decrease in
KGE scores is primarily concentrated in the southeast of
England, echoing the findings of Lane et al. (2021). This
might be attributed to the method used for catchment se-
lection in the national regionalization process. Groundwater-
dominated catchments with a baseflow index > 0.75 ac-
count for less than 10 % of the total catchments calibrated
in this study. By assigning equal weights to all catchments,
the model parameters for groundwater-dominated catch-
ments might not be constrained properly under the nation-
ally consistent approach, leading to reduced performance in
those areas. However, despite the reduced performance us-
ing the nationally consistent calibration method, the coupled
model still outperforms in approximately 50 % groundwater-
dominated catchments compared to the benchmark model
(Fig. 5f). Future work is suggested to explore alternative
weighting approaches to enhance parameter calibration, in-
stead of using equal weighting.

4.2 Performance of simulated flow time series

Six catchments were selected to demonstrate the coupled
model’s ability to reproduce the streamflow time series
with distinct characteristics, i.e. climate conditions, geology
types, and levels of human impact (Table 4). Specifically,
catchments 76014 and 67005 were selected to evaluate cou-
pled model performance in a wet climate (mean annual rain-
fall > 1200 mmyr−1), while 39028 and 39001, differing in
human impact, represented dry chalk catchments. Catchment
31021 was chosen for limestone and 54044 for sandstone.
The simulation of the 2-year period from 2010 to 2012 us-
ing the calibration period model parameters is presented here
for these catchments, as it encompasses diverse hydrologi-
cal extreme events (Marsh et al., 2013). The evaluation pe-
riod model parameters exhibit a similar pattern and will not
change the analysis herein.

Figure 6 illustrates DECIPHeR-GW results for a wide
spectrum of hydrological dynamics, including the wetter
catchments in northwest England and north Wales (Fig. 6a
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Figure 5. Spatial maps of model performance using two calibration approaches: (a) the catchment-by-catchment (CBC) and (b) the nationally
consistent (NC) approaches. The nonparametric KGE differences between the coupled model and the corresponding DECIPHeR benchmark
runs (b, f), and the bias component of KGE for the coupled model and benchmark runs for the CBC approach (c, d) are also included. The
maps for other KGE components are provided in the Supplement (Fig. S7). Each dot represents the performance at a river gauge during
the evaluation period. Model performance maps for the calibration period are provided in the Supplement (Fig. S6). The scattered dots for
groundwater-dominated catchments (baseflow index > 0.75) were labelled with larger dots and outlined with thicker borders. The background
of the maps highlights the areas of high productivity in aquifers (this figure contains British Geological Survey materials ©UKRI 2020). Light
green represents highly productive aquifers (fracture flow), while blue indicates the intergranular flow of a highly productive aquifer.

and b), as well as the drier catchments in the southeast
(Fig. 6e and f). Especially in the groundwater-dominated
chalk catchment (39028) that is characterized by small net
loss from abstractions and discharge (minor human influ-
ences) and is essentially a natural baseflow-dominated flow
regime, the streamflow hydrograph simulations from the cou-
pled model significantly improve and fit well compared to
observations (Fig. 6e), with the KGE metric increasing al-
most 2-fold compared to the benchmark when using both the

catchment-by-catchment and the nationally consistent cali-
bration methods (showed in Table 4). In addition, when us-
ing the catchment-by-catchment calibration method, the cou-
pled model performed well for other aquifer types, as shown
by the results from limestone catchment 31021 (Fig. 6d)
and sandstone catchment 54044 (Fig. 6c), with KGE values
exceeding 0.80. The simulated streamflow hydrograph us-
ing the nationally consistent calibration method also closely
aligns with the results from the catchment-by-catchment cal-
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Figure 6. The observed and the best simulated streamflow hydrographs using the model parameters from the calibration period for the
six catchments across different catchment attributes (shown in Table 4). The best simulated DECIPHeR-GW hydrographs along with their
KGE values for both the catchment-by-catchment (CBC) and nationally consistent (NC) approaches are provided. The DECIPHeR model
simulation results (the orange line) presented here are based on the CBC calibration method. To enhance clarity and simplify the visuals, the
simulation results for the NC calibration method from DECIPHeR are not plotted here, but the KGE metrics for each catchment using the
NC calibration method are detailed in Table 4.

ibration method, with relatively larger differences in per-
formance observed in groundwater-dominated catchments
(Fig. 6e).

In the Thames at the Kingston River basin (catchment ID
39001), where surface water and groundwater abstractions
are prevalent, the coupled model tends to overestimate flows
during the dry periods in particular (Fig. 6f). Wastewater re-
turns from sewage treatment are also common in these re-
gions and could influence streamflow (Coxon et al., 2024),
potentially contributing to the decline in KGE performance.
This decline in performance indicates the challenge of simu-
lating flows in heavily human-impacted catchments and un-

derscores the need to enhance the representation of human–
water interactions in the hydrological model. Meanwhile, it
is interesting to see that the benchmark model produces bet-
ter simulation results for a catchment with significant human
activities, such as the Thames River basin, with a KGE of
0.85 using the catchment-by-catchment calibration method
despite not accounting for either groundwater or human–
water interactions. This implies that the benchmark calibra-
tion could produce good results, potentially due to the param-
eterization that compensates for the absence of these process
representations. Ensuring that the model performs well with
appropriately structured components is crucial to maintain
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both accuracy and reliability (Kirchner, 2006; Gupta et al.,
2012).

Furthermore, the simulated streamflow hydrographs for
the wetter catchments tends to be flashier than the bench-
mark simulations (as shown in catchment 67005, Fig. 6b).
This might be related to the relatively wet conditions of the
catchment in combination with the underlaying groundwa-
ter system being already saturated or nearly saturated. Once
the root zone reaches capacity, runoff is quickly generated as
excess rainfall, leading to a rapid response to precipitation
and resulting in more pronounced spikes in the hydrographs.
The dynamic variations in these internal variables for this
catchment during 2010–2012 are provided in the Supplement
(Fig. S8). However, for most wet catchments (mean annual
rainfall > 1500 mmyr−1 ), the coupled model performs well
(examples in catchment 76014, Fig. 6a), with around 78 % of
these catchments achieving a KGE greater than 0.7.

A simple model parameter sensitivity analysis (details pro-
vided in Supplement Text S10) reveals that the parameters
of the surface model component have a greater influence on
simulated streamflow hydrographs than on modelled ground-
water levels (as seen in Figs. S10 and S13). SRmax, which de-
termines the maximum root zone storage, plays a crucial role
in regulating the flashiness of simulated flows (Fig. S10a).
Smaller SRmax values lead to increased variability in runoff,
as runoff is rapidly generated whenever SRmax reaches its ca-
pacity, causing spikes in the hydrographs due to excess rain-
fall. Both the B and Ks parameters control the magnitude
of recharge, as shown in Fig. S10b and c; their effects on
simulating streamflow hydrographs are similar, with a rela-
tively greater impact observed for the B parameter. Smaller
B values lead to reduced recharge, causing the root zone
storage to fill up more quickly and resulting in increased
overflow and also flashier in-streamflow hydrographs. The
groundwater-related parameters, i.e. T and Sy, are intended
to control groundwater levels more than streamflow, which
is confirmed by this analysis (see Figs. S11 and S12). Con-
sequently, this sensitivity analysis indicates that increasing
SRmax or B values could result in smoother streamflow hy-
drographs and therefore might improve DECIPHeR-GW’s
performance in wetter catchments.

4.3 Model evaluations with groundwater levels

We used 1804 groundwater well observations to evaluate
grid-scale simulated groundwater levels. In this study, we
calibrated the model solely using streamflow data as our ob-
jective, while utilizing groundwater observations to evalu-
ate the internal dynamics of the coupled model. Figure 7a
and b illustrate groundwater simulations corresponding to the
best streamflow simulations using two streamflow calibration
methods, i.e. catchment by catchment and nationally consis-
tent. Overall, the groundwater simulation results are gener-
ally able to capture the temporal correlation of the observa-
tions, particularly in the chalk region, where over 75 % of
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Figure 7. Spatial maps of groundwater level evaluation results. Panels (a) and (b) show the evaluation results for the simulated ground-
water levels using the catchment-by-catchment (CBC) and nationally consistent (NC) streamflow calibration methods, respectively. Panel
(c) presents the performance of the eight groundwater grids in the Dun at Hungerford catchment (39028) across 5000 simulations using the
catchment-by-catchment calibration method. Panel (d) displays the simulated groundwater level time series compared with the observations
from two wells, demonstrating cases with strong and weak Spearman correlation coefficients. The example groundwater time series is shown
for two wells at Old School House (GW well 2062) and East Wick Farm (GW well 859).

Figure 8. Spatial maps of simulated groundwater table depth for Thames at Kingston 39001. (a) Temporal mean over 1980–2020 of simulated
groundwater table depth (difference between the local topography and the groundwater head in metres below land surface) in catchment
39001 using the best catchment-by-catchment calibration method. (b) The topography map for catchment 39001.

wells achieve Spearman correlation coefficients above 0.6,
with a median of 0.77. The results are highly consistent
between the two streamflow calibration methods (Fig. 7a
and b), indicating that the coupled model is robust in sim-
ulating the groundwater levels. The spatial distribution of
the temporal mean simulated groundwater table depth over

1980–2020 for the Thames at Kingston catchment 39001, a
groundwater-dominated catchment and one of the largest in
our study area, is presented in Fig. 8, which is based on the
best catchment-by-catchment calibration method. The simu-
lated groundwater table depth aligns consistently with topo-
graphic trends, confirming that our coupled model also ac-
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curately reproduces the spatial variability in the groundwater
table.

Taking catchment 39028 as an example, Fig. 7c demon-
strates that model performance can vary across 5000 simula-
tions using the catchment-by-catchment calibration method.
The median Spearman correlation coefficients for different
groundwater grids across all simulations in general reach 0.6
or higher. A portion of the groundwater wells has a median
Spearman coefficient for groundwater levels exceeding 0.8
(see groundwater wells 3, 4, and 5 in Fig. 7c), underscor-
ing the model’s ability to reproduce the temporal patterns of
groundwater variations. Figure 7d presents two examples of
simulated groundwater level time series against well obser-
vations. While these examples are not from the best simu-
lations, they are chosen to demonstrate the model’s perfor-
mance under conditions of both strong and weak temporal
correlation.

Figure S12 illustrates the impact of T and Sy model pa-
rameters on the groundwater level time series for example
catchment 39028 (details are recorded in Text S10). Higher
T values generally result in lower groundwater levels, which
is to be expected, as higher transmissivity (T ) facilitates
quicker lateral flow through an aquifer. In contrast, when Sy
is low, the speed of groundwater flow and storage capacity
may be reduced, resulting in flashier groundwater levels in-
creasing their variability. Our results confirm the above pat-
terns, showing that higher T leads to decreased groundwa-
ter levels and lower Sy leads to greater variability (Fig. S12a
and b), highlighting the overall agreement and good repre-
sentation of physical processes of our coupled model.

Given the poorer temporal correlation observed in some
wells, we investigated the factors that could contribute: short
groundwater observation records; low streamflow accuracy
in catchments; the distance between wells and rivers; and at-
tributes like borehole depth, elevation of wells, and grid el-
evation contributed to the discrepancies. Our findings point
towards key factors, such as borehole depth, river proxim-
ity, and streamflow accuracy, which might be affecting the
model’s ability to model groundwater levels accurately (see
details in Fig. S9). We have found lower Spearman corre-
lations for wells with deeper boreholes, for those closer to
the river, or for the wells with lower streamflow simulation
accuracy. This is likely because our groundwater model is
2D without explicit river feature representation, which can
result in lower performance for wells that are deeper or closer
to rivers. More details are discussed in Sect. 5.2.

5 Discussion

5.1 Enhanced performance of DECIPHeR-GW in
groundwater-dominant catchments

Based on the evaluation of 669 river flow gauges and 1804
groundwater monitoring sites across England and Wales,

our coupled model DECIPHeR-GW v1.0 is able to pro-
duce robust streamflow simulations whilst capturing tem-
poral dynamics of groundwater levels. Notably, the model
achieves better performance when simulating river flows
in groundwater-dominated catchments, with a baseflow in-
dex > 0.75 (Fig. 5b), especially when simulating of catch-
ments with minor human influence, showing significantly
higher performance compared to the DECIPHeR model. This
improvement is most evident in the chalk regions with strong
surface–groundwater interactions, where it reproduces the
observed hydrographs (examples in Fig. 6e) and enhances
hydrological simulation reliability. Moreover, the coupled
model also performed well in other aquifer types including
sandstone and limestone (Fig. 6c and d). Although our cou-
pled model exhibits similar or slightly better performance
compared to the benchmark model in around 70 % of the
catchments, the coupled model has a more robust and reli-
able structure due to the better representation of the ground-
water processes. Herein, the coupled model was able to avoid
the unrealistic model parameterizations to compensate for
the absence of groundwater representations (Kirchner, 2006;
Coxon et al., 2014; Dang et al., 2020). Furthermore, our
groundwater component provides groundwater simulation
results that compare well to observations with high computa-
tional efficiency. Some relatively simplified models only pro-
duce groundwater storage (Yang et al., 2017; Guimberteau
et al., 2014; Griffiths et al., 2023; Müller Schmied et al.,
2014), while some models have adopted a lumped ground-
water model structure, failing to capture spatial variability
in groundwater distribution (Yeh and Eltahir, 2005; Gascoin
et al., 2009; Ejaz et al., 2022). Our model provides simulated
groundwater level at the grid scale, facilitating model valida-
tion against groundwater observations and producing the spa-
tial groundwater distribution. Although our 2D groundwater
model ignores vertical water movement, it is structurally sim-
pler compared to more complex 3D models (Bailey et al.,
2016; Ewen et al., 2000; Maxwell et al., 2015; Naz et al.,
2022), making it better suited for large-scale simulations and
allowing for multiple model calibrations. Hence, the well-
matched results for streamflow, parameter sensitivity, and
groundwater level patterns show the potential of DECIPHeR-
GW for future applications, especially under climate change.

Additionally, the DECIPHeR-GW v1.0 model is a promis-
ing tool for water resource management in southeast Eng-
land, as existing hydrological models in the UK have faced
challenges in accurately simulating streamflow and ground-
water heads in these groundwater-dominated catchments.
For instance, Lane et al. (2019) assessed four different
conceptual hydrological models (TOPMODEL, ARNO/VIC,
PRMS, SACRAMENTO) through the framework for under-
standing structural errors (FUSE) across over 1000 catch-
ments in England, Wales, and Scotland. Their findings
revealed that these models struggled to simulate biases,
standard deviations, and correlations, particularly for the
groundwater-dominated catchments in southeastern Eng-
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land. Similar issues have been reported with other models,
including a grid-to-grid (G2G) simulation over 61 catch-
ments in Great Britain (Rudd et al., 2017), the GR4J ap-
plication across 303 UK catchments (Smith et al., 2019),
the SHETRAN performance in 306 UK catchments (Seib-
ert et al., 2018; Lewis, 2016), and the SWAT simulation
in 2 medium-scale catchments within the Thames River
basin (Badjana et al., 2023). Efforts have been made to im-
prove the groundwater representation in hydrological mod-
els like GR6J and PDM (Pushpalatha et al., 2011; Moore,
2007). However, models are still unable to accurately cap-
ture low flows in some groundwater-influenced catchments,
such as those in the eastern Chilterns north of London (Han-
naford et al., 2023). Even machine learning models like
long short-term memory (LSTM), while generally outper-
forming conceptual models, struggle to accurately simu-
late streamflow in the groundwater-dominated catchments
(Lees et al., 2021). Moreover, most of these models men-
tioned above cannot simulate the time series of groundwa-
ter heads at the same time as they produce streamflow time
series. In this study, our coupled model enables the simu-
lation of inter-catchment subsurface flow and captures the
dynamic surface–groundwater interactions well, providing
a more precise representation of runoff and groundwater
generation process in groundwater-dominated catchments.
Consequently, the DECIPHeR-GW model shows potential
for future applications, such as in low-flow simulation and
drought prediction, particularly in groundwater-dominated
catchments.

Furthermore, our coupled model is relatively efficient
in terms of computational requirements. One simulation
over 51 years for the largest catchment, the Thames at the
Kingston River basin (9948 km2), with 27 980 HRUs, takes
approximately 17 h to run on a standard CPU, producing sim-
ulated streamflow and groundwater level time series for all
98 upstream river gauges and 416 groundwater grids simul-
taneously. A 51-year simulation of the smallest river basin
(10 km2), with 52 HRUs and 1 river gauge, completes in
about 1 s using a CPU. Future enhancements in computa-
tional efficiency of the coupled model can be achieved by
employing sophisticated parallel computing techniques. Our
groundwater component omits vertical water flow and river
representation, requiring only two subsurface hydrogeolog-
ical properties. Our model may encounter challenges in re-
gions with significant vertical hydrogeological variability,
requiring additional tests in future work for these regions
to ensure accuracy. In contrast, some complex 3D ground-
water models need to discretize aquifers vertically and in-
clude specialized modules for river simulation (Bailey et al.,
2016; Ewen et al., 2000; Ng et al., 2018; Maxwell et al.,
2015), demanding finer-resolution hydrogeological data to
capture land surface heterogeneity and higher computa-
tional costs. Currently, lots of existing coupled surface–
groundwater models either cannot perform or require exces-
sive time for calibration due to high computational costs (Ng

et al., 2018; Parkin et al., 2007; Naz et al., 2022; Reinecke
et al., 2019), which limits their ability to assess uncertainty in
the presented results and hinders future model applications.
The computationally efficient feature of our proposed model
allowed us to calibrate it against extensive observed data, in-
cluding 669 streamflow gauges and 1804 groundwater wells,
thereby providing reliable results for future application.

5.2 Lessons learned from model coupling and ongoing
developments

As awareness of the importance of groundwater process-
based representation grows, along with the rapid develop-
ment of groundwater models with a variety of complexi-
ties, there is a growing interest in incorporating groundwa-
ter representations into hydrological or land surface models
(Gleeson et al., 2021; De Graaf et al., 2017; Maxwell et al.,
2015; Irvine et al., 2024; Ntona et al., 2022). When designing
coupled models, balancing model complexity with computa-
tional efficiency is crucial (Condon et al., 2021; Barthel and
Banzhaf, 2016; Henriksen et al., 2003). Therefore, we se-
lected a computationally efficient 2D model (Rahman et al.,
2023), which generally yields superior results. However, this
model lacks the representation of the river network and as-
sumes that groundwater above topography is directly dis-
charged into the nearest river, leading to inaccuracies in
capturing groundwater dynamics in some low-elevation ar-
eas where simulated groundwater levels stay at the surface
(see the example in Fig. S15). In addition, to achieve a sim-
pler and more efficient structure of the coupled model, we
removed the unsaturated zone from the benchmark DECI-
PHeR model and directly replaced the saturated zone with
the groundwater model. This approach is consistent with
many existing coupled models that do not account for the
unsaturated zone and generally provide robust simulations
(Yang et al., 2017; Jing et al., 2018; Reinecke et al., 2019;
Müller Schmied et al., 2014; Henriksen et al., 2003). Ac-
cording to our results, while this approach worked well in
most catchments, the absence of an unsaturated zone led to
flashier hydrographs in some wetter catchments, where the
unsaturated zone is critical for the storage of excess rainfall
(Dietrich et al., 2019; Hilberts et al., 2007). Thus, future re-
searchers are advised to explore and design model structures
tailored to their specific needs.

Parameterizing surface–groundwater coupled models
across large scales and diverse geological types remains chal-
lenging due to the difficulty of accurately representing ge-
ological heterogeneity (Gleeson et al., 2021; Condon et al.,
2021). In our study, groundwater level simulations are highly
dependent on hydrogeological parameters (i.e. T and Sy; see
sensitivity analysis in Fig. S12). Although we have attempted
to capture the complexity of geological conditions using dif-
ferent parameter ranges across 5000 simulations for a total of
101 lithology types, parameters for the same lithology type
can only be assigned the same set of values for one simula-
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tion. In reality, parameters such as T can vary significantly
even within the chalk aquifer (Allen et al., 1997). A recent
study presented a 3D geological digital representation model
of Great Britain using extensive geological maps and bore-
hole data (Bianchi et al., 2024). They developed a national-
scale groundwater model of Great Britain (BGWM) using
this detailed geological data to consider the heterogeneity
characteristics of aquifers, demonstrating the model’s abil-
ity to accurately simulate groundwater dynamics. Griffiths
et al. (2023) developed a method to estimate the initialized
groundwater model parameter set using national-scale hydro-
geological datasets to improve the parameterization of New
Zealand’s national groundwater model. Adopting more ac-
curate and detailed geological data and advanced sampling
methods to parametrize the model could be another direction
for the further improvement of the model performance (Hell-
wig et al., 2020; Henriksen et al., 2003; Westerhoff et al.,
2018).

Since our coupled model retains the digital terrain anal-
ysis (DTA) configuration of the DECIPHeR model (Coxon
et al., 2019; Lane et al., 2021) and currently operates at the
river basin scale, each river basin is configured and run in-
dividually rather than modelling the entire continent or na-
tion. There is no consideration of hydrological variable ex-
changes, such as groundwater flow, across river basins. Ad-
ditionally, this setup can result in inaccuracies for small, iso-
lated catchments, as groundwater grids outside the bound-
aries lack HRU distribution and do not receive rainfall or
recharge. The fixed buffer zone makes up a relatively larger
proportion in small catchments compared to larger ones,
which may explain the model’s poor performance in these
small and isolated catchments. To address these issues, we
recommend improving the DTA model setup in future re-
search by configuring the model for the entire continent or re-
gion, simulating all HRUs and associated groundwater grids
simultaneously at each time step. This will ensure accurate
rainfall and groundwater recharge computations across the
study area and better represent inter-catchment flow dynam-
ics.

Our study demonstrates the robust performance of the
DECIPHeR-GW model in simulating streamflow and the
groundwater head at a large scale across 669 catchments,
highlighting its potential for widespread application in di-
verse geographical regions. While the model effectively cap-
tures natural surface–groundwater interactions, it falls short
of accurately representing human influences, particularly in
catchments affected by anthropogenic factors like surface/-
groundwater abstraction and wastewater returns (see exam-
ple in Fig. 6f). Given the absence of human influences in
the current model version, calibration may lead to the adop-
tion of a parameterization that excessively reduces evapo-
transpiration or lowers groundwater levels through an overly
high transmissivity to compensate for these human influ-
ences, such as water abstractions. The dramatic rise in an-
thropogenic water use over the last century underscores the

need to incorporate these human impacts into hydrologi-
cal models (De Graaf et al., 2019; Döll et al., 2014; Wada
et al., 2017), with significant impacts on river flow demon-
strated for catchments across Great Britain from wastewa-
ter discharge (Coxon et al., 2024), reservoirs (Salwey et al.,
2023), and groundwater abstractions (Wendt et al., 2021b;
Bloomfield et al., 2021). Many previous models lacked ex-
plicit modules for human impacts due to data limitations or
relied instead on parameterizations or water use estimation
statistics to mimic the human influences (Arheimer et al.,
2020; Veldkamp et al., 2018; Sutanudjaja et al., 2018; Müller
Schmied et al., 2014; Guillaumot et al., 2022). However,
with the increasing availability of observed water abstraction
and wastewater return data (Rameshwaran et al., 2022; Wu
et al., 2023), it is crucial to integrate additional modules that
accurately reflect these influences to ensure precise model
parameterization and reliable simulation of internal catch-
ment variables (Dang et al., 2020). In future developments,
we aim to improve the overall accuracy and applicability of
DECIPHeR-GW for both natural and human-dominated hy-
drological systems by refining the model to better capture the
complexities of human–water interactions.

6 Conclusions

DECIPHeR-GW v1.0 is a new coupled surface–subsurface
hydrological model that enhances the representation of
surface–groundwater interactions and demonstrates a good
ability to simulate the streamflow and groundwater heads
over large model domains. This paper introduces the details
of the proposed model structures and its key components. We
present an application in England and Wales, where previous
hydrological models have not captured surface–groundwater
interactions and have shown poor performance in the south-
east of England. Our evaluation against 669 river gauges
and 1804 groundwater wells across England and Wales il-
lustrates that our coupled model performs well at stream-
flow simulation, achieving a median KGE of 0.83 across
diverse catchments. Additionally, the model accurately cap-
tures the temporal patterns of the groundwater level time se-
ries, with approximately 56 % of the wells showing a Spear-
man correlation coefficient of 0.6 or higher. More impor-
tantly, DECIPHeR-GW presents significantly improved re-
sults in the drier natural chalk catchments of southeast Eng-
land, where the average KGE increased from 0.49 in the
benchmark DECIPHeR model to 0.7, making it a promis-
ing tool for water resource management in this region.
DECIPHeR-GW is shown to be computationally efficient
and capable of being calibrated and evaluated over large
datasets of gauges. Being open source and accompanied by
a user manual, DECIPHeR-GW offers researchers an acces-
sible implementation process and could be applied in other
regions.
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Code availability. The DECIPHeR-GW v1.0 model code
(https://doi.org/10.5281/zenodo.14113870, Zheng, 2024a),
written in Fortran, is open source and is accessible at
https://github.com/YanchenZheng/DECIPHeR-GW_V1.0 (last
access: 11 July 2025). A user manual to guide the researchers on
how to use the model is also provided.

Data availability. The rainfall data (Hollis et al., 2019) are ac-
cessible from the CEDA archive (https://catalogue.ceda.ac.uk/uuid/
4dc8450d889a491ebb20e724debe2dfb/, Met Office et al., 2018),
and the PET data (Robinson et al., 2023) are available from the
CEH Environment Data Centre (https://doi.org/10.5285/9275ab7e-
6e93-42bc-8e72-59c98d409deb, Brown et al., 2022). The daily
streamflow time series are available from the NRFA website
(https://nrfa.ceh.ac.uk/data/search, National River Flow Archive,
2025), while the groundwater time series data are avail-
able at https://environment.data.gov.uk/hydrology/explore (Envi-
ronment Agency, 2023). Simulated flow, groundwater outputs,
and performance metrics (Zheng, 2024b) of the best model
simulations (including both catchment-by-catchment and na-
tionally consistent calibration) from the DECIPHeR-GW v1.0
model are available at the University of Bristol data reposi-
tory (https://data.bris.ac.uk/data/, last access: 11 July 2025), at
https://doi.org/10.5523/bris.wt0r1ec81zti2tww4p64fsqr3 (Zheng et
al., 2024b).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-4247-2025-supplement.
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