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Abstract. In this study, we assess the relevance and utility
of several performance indicators (model quality (bias) and
model performance (temporal and spatial) indicators), devel-
oped within the FAIRMODE framework by evaluating eight
Copernicus Atmospheric Monitoring Service (CAMS) mod-
els and their ensemble in calculating concentrations of key air
pollutants, specifically NO2, PM2.5, PM10 and O3. The mod-
els’ outputs were compared with observations that were not
assimilated into the models. For NO2, the results highlight
difficulties in accurately modelling concentrations at traffic
stations, with improved performance when these stations are
excluded. While all models meet the established criteria for
PM2.5, indicators such as bias and winter–summer gradients
reveal underlying issues in air quality modelling, questioning
the stringency of the current criteria for PM2.5. For PM10, the
combination of model quality indicators, bias, and spatial-
temporal gradient indicators prove most effective in identify-
ing model weaknesses, suggesting possible areas of improve-
ment. O3 evaluation shows that temporal correlation and sea-
sonal gradients are useful in assessing model performance.
Overall, the indicators provide valuable insights into model
limitations, yet there is a need to reconsider the strictness of
some indicators for certain pollutants.

1 Introduction

Air chemistry transport models (ACTMs) are used to calcu-
late the complex physical and chemical processes that play
a role in the formation and removal of gases and aerosols

(e.g. NO2, O3, SOx , PM) from our atmosphere. Also, an
ACTM is an instrument used to assess the effects of future
changes in aerosol (+ precursor) emissions, and models are
therefore used to assist policy-making in the design of effec-
tive reduction strategies to improve air quality.

An ACTM requires a set of input data (e.g. emissions and
meteorology) and a description of (dynamical and chemical)
processes to calculate gas and aerosol pollutants. The de-
scription of these processes in the model is associated with
uncertainties. Model performance depends on the quality of
the input data and on the way we represent the dynamical
and chemical processes leading to gas and aerosol concen-
trations. Many approaches exist to manage these two points,
leading to some variability among model results. This vari-
ability can be understood as the modelling uncertainty. Previ-
ous studies investigated the uncertainties associated with cer-
tain processes when air chemistry transport models are used,
through model ensemble approaches such as those described
in Vautard et al. (2006, 2009) and Van Loon et al. (2007).
Other studies investigated the uncertainties associated with
model resolution (De Meij et al., 2007; Wang et al., 2015;
Huang et al., 2021), chemistry (Textor et al., 2006; Thunis
et al., 2021b; Clappier et al., 2021), meteorology (De Meij
et al., 2009; Gilliam et al., 2015) and emission invento-
ries (Thunis et al., 2021c; Colette et al., 2017). Over the
years, air quality modelling has improved as model uncer-
tainties have been reduced. Often, classical statistical param-
eters are used to evaluate the ACTM’s capability in calculat-
ing air pollutants. For example, bias (a measure of overes-
timation or underestimation), standard deviation (a measure
of the dispersion of the observed/calculated values around
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the mean), temporal correlation coefficient (the linear rela-
tionship between model and observations) and root mean
square error (a measure of difference between the model
and the observations; measure of accuracy) to name a few.
In the United States of America, modelling guidance and
performing evaluation was first introduced by the US Envi-
ronmental Protection Agency (EPA) in 1991 (EPA, 1991).
This was followed by the introduction of the concepts of
“goals” (i.e. model accuracy) and “criteria” (i.e. threshold of
model performance) in studies by Boylan and Russell (2006)
and Emery et al. (2017). In the USA, air quality models
are evaluated based on several model performance indica-
tors to ensure their accuracy and reliability. These indicators
are mean bias (MB), mean absolute error (MAE), root mean
square error (RMSE), fractional bias (FB), normalised mean
bias (NMB), normalised mean error (NME), Pearson correla-
tion coefficient (R or R2) and index of agreement (IOA). For
operational air quality performance, additional indicators are
used: Prediction Accuracy, Hit Rate & False Alarm Rate, and
Skill Scores. The EPA has specific regulatory performance
criteria for key pollutants such as PM2.5, NO2 and O3.

For O3 modelling, a model is considered acceptable if

– NMB is within ±15 %

– NME is ≤ 25 %.

For PM2.5 the performance goals are

– NMB within ±30 %

– NME≤ 50 %.

Also, the EPA’s Support Center for Regulatory Atmospheric
Modeling (SCRAM) provides resources and guidance on air
quality models and their evaluation.

In China, Huang et al. (2021) proposes benchmarks for
MB, MAE, RMSE, IOA, R and FB for air quality model
applications since there are no unified guidelines or bench-
marks developed for ACTM applications in China. Huang et
al.’s (2021) methodology is based on Emery et al. (2017),
applying goals and criteria for NMB, NME, FB, FE, IOA
and R. Note that the model criteria are fixed in Huang et
al. (2021) and Emery et al. (2017), while in our work the cri-
teria depend on the observation uncertainties, which is dif-
ferent for each pollutant.

These indicators are, in general, used to assess model per-
formance against measurements. However, these indicators
do not tell us whether model results have reached a suffi-
cient level of quality for a given application. In Huang et
al. (2021), recommendations are given to provide a better
overview of model performance. For example, for PM2.5 the
NMB should be between 10 % and 20 % and R should lie
between 0.6 and 0.7 for hourly and daily PM2.5 and be-
tween 0.70 and 0.90 for monthly PM2.5 concentration val-
ues. Different temporal resolutions for PM2.5 calculated val-
ues are introduced. Furthermore, benchmarks for speciated

PM components (elemental/organic carbon, nitrate, sulfate
and ammonium) were recommended.

Along the same lines, the Forum for Air quality
Modelling (FAIRMODE) (https://fairmode.jrc.ec.europa.eu/
home/index, last access: 7 July 2025) developed several spe-
cific quality assurance and quality control (QA/QC) indica-
tors and associated a threshold to each of them; these indicate
the minimum level of quality to be reached by a model for
policy use (Janssen and Thunis, 2022). Recent studies that
have used these QA/QC indicators and associated thresholds
to evaluate ACTM performances are Kushta et al. (2019) and
Thunis et al. (2021a).

Note that the goals and criteria proposed in the US and
China remain independent of the concentration level. In this
work, we define a threshold on the maximum accepted mod-
elling uncertainty. Because we do not know the modelling
uncertainty in practice, we set it to be proportional to the
measurement uncertainty. With this definition, the more un-
certain the measurement is (e.g. relative uncertainties be-
come larger in the lower concentration range), the more flex-
ibility we allow to the modelling results, i.e. a higher thresh-
old value (and vice versa).

The goal of this study is to assess the relevance and use-
fulness of FAIRMODE’s model quality assessment indica-
tors and FAIRMODE’s QA/QC tools by using as benchmark
the Copernicus Atmospheric Monitoring Service (CAMS)
air quality modelling and ensemble results over Europe.

More details on the models, methodology and emission
inventories are given in Sect. 2, followed by the analysis of
the results in Sect. 3. In Sect. 4 the conclusions are provided.

2 Methodology

CAMS produces annual air quality (interim) reanalysis for
the European domain at a spatial resolution of 0.1× 0.1°. A
median ensemble is calculated from individual outputs, since
ensemble products yield, on average, better performance than
the individual model products. The spread between the eight
models can be used to provide an estimate of the analysis
uncertainty (Marécal et al., 2015; CAMS, 2020).

We assess the relevance and usefulness of FAIRMODE’s
model quality assessment indicators by means of evaluating
simulated air pollutants (NO2, O3, PM2.5 and PM10) by the
eight CAMS models for the year 2021 by comparing the
results with observational data from the European air qual-
ity database and assessing the results against specific per-
formance indicators. The evaluation of the model’s perfor-
mance is based on the comparison with observations that are
not used to assimilate calculated concentrations. The eight
CAMS models are CHIMERE (FR; CHIA), DEHM (DK;
DEHMA), EMEP (NO; EMPA), FMIA-SILAM (FI; FMIA),
GEMAQ (PL; GEMAQA), KNMA-LOTUS-EUROS (NL;
KNMA), MFM-MOCAGE (FR; MFMA), RIU-EURAD-IM
(DE; RIUA) and Ensemble (ENSKCa). The CAMS regional
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air quality models generate reanalysis, detailing the concen-
trations of major atmospheric pollutants in the lowest layers
of the atmosphere across the European domain (ranging from
25.0° W to 45.0° E and 30.0 to 72.0° N). The horizontal res-
olution is approximately 0.1°, varying from around 3 km at
72.0° N to 10 km at 30.0° N.

For that reason, an overview of the type of assim-
ilation methodology, which species are assimilated,
together with gas and aerosol schemes are given in
Table S1 of the Supplement. More details of the dif-
ferent models are described in CAMS (2020) (https:
//confluence.ecmwf.int/display/CKB/CAMS+Regional:
+European+air+quality+reanalyses+data+documentation,
last access: 7 July 2025). The data can be downloaded
here: https://atmosphere.copernicus.eu/data (last access:
7 July 2025).

For the statistical analysis, the FAIRMODE benchmark-
ing methodology is applied; this methodology provides many
different statistical parameters, which are described in FAIR-
MODE’s guidance document (Janssen and Thunis, 2022).

The indicators and modelling criteria described in this
study were defined in the context of FAIRMODE to support
the application of modelling in the context of the Air Quality
Directive.

Initially, FAIRMODE developed a single model perfor-
mance indicator: the Modelling Quality Indicator (MQI).
While this indicator provides a relevant pass/fail test, pass-
ing the test does not ensure that modelling results are fit for
purpose. This is why additional indicators have progressively
been added, in particular to assess how models capture tem-
poral and spatial aspects. The MQI is a statistical indicator
of the accuracy of a specific modelling application calculated
based on measurements and modelling results. It is defined as
the ratio between the model-measured bias at a fixed time (i)
and a quantity proportional to the measurement uncertainty
as

MQI(i)=
|Oi −Mi |

βU (Oi)
(1)

where U(Oi) is the measurement uncertainty and β a coeffi-
cient of proportionality. The normalisation of the bias by the
measurement uncertainty is motivated by the fact that both
model and measurements are uncertain. We want to account
for the fact that when measurement uncertainty is large, some
flexibility on the model performance can be accepted, trans-
lating in accepting larger model-observed errors. With a cur-
rent value of 2 proposed for β, the quality of a modelling ap-
plication is said to be sufficient when the model-observation
bias is less than twice the measurement uncertainty.

Applied to a complete time series, Eq. (1) can be gener-
alised to

MQI=
RMSE
βRMSU

. (2)

A complete time series entails 75 % data availability over the
selected time period. Note that this number is less than the

one requested in the European Commission’s Ambient Air
Quality Directive (AAQD, 2024) (i.e. 90 %) to increase the
available number of measurement stations for validation. We,
however, impose that available data are representative of the
full year.

With this formulation, the RMSE between observed and
modelled values (numerator) is compared to the root mean
square sum of the measurement uncertainties (RMSU ), the
value of which is representative of the maximum allowed
measurement uncertainty (denominator).

For yearly averaged pollutant concentrations, the MQI for-
mula is adapted so that the mean bias between modelled and
measured concentrations is normalised by the uncertainty of
the mean measured concentration (U(O)):

MQI=

∣∣O −M∣∣
βU

(
O
) . (3)

More details on Eqs. (1)–(3) can be found in the modelling
quality objective (MQO) guidance document (Janssen and
Thunis, 2022).

For the statistical analysis of the four air pollutants, we use
for NO2 the hourly values and for O3 the 8 h running mean
maximum values, while for PM2.5 and PM10 the daily av-
erages are used. These different time intervals are in compli-
ance with the EU air quality standards as stated in the AAQD.
The time intervals are specific for each air pollutant because
the observed health impacts associated with the various pol-
lutants occur over different exposure times.

The MQO is fulfilled when the MQI is less than or equal
to 1.0 for at least 90 % of the available stations. The yearly
MQI is, in general, more challenging to fulfil than the daily
MQI (but this is not a rule) because of the smallest mea-
surement uncertainties for yearly mean observed concentra-
tions. The underlying reason for this is that the impact of
random noise and periodic recalibration on the daily obser-
vations lead to larger uncertainties, which are compensated
for yearly averages.

The main drawback of the MQOs is that they provide sin-
gle summary pass/fail information for a modelling applica-
tion. This simple test does not prevent a modelling appli-
cation passing for the wrong reason under certain circum-
stances. In addition, it does not provide any information on
the capability of the model to reproduce hot spot areas (spa-
tial variability) or on the timing of the pollution peaks (tem-
poral variability).

For these reasons, additional indicators are proposed to
assess the capacity of models to capture the temporal and
spatial variability of the measurements. These indicators are
based on temporal and spatial correlation or standard devia-
tions that are normalised by the measurement uncertainty.

These indicators are constructed as follows. For hourly fre-
quency model output, values are first yearly averaged at each
station. A temporal or spatial correlation and standard de-
viation indicator are then calculated for this set of values.
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The two indicators are normalised by the measurement un-
certainty of the average concentrations:

RMSU =

√
1
N

∑
U
(
O
)2
. (4)

The same approach applies for yearly frequency output.
These indicators are defined in Table 1.

On top of these already agreed indicators included in the
FAIRMODE MQI system approach, we propose to comple-
ment them with incremental indicators, where relevant,1 to
assess how concentration gradients between rural and urban
or between traffic and urban stations are reproduced by the
model. This is relevant in the context of the AAQD because
the design of the monitoring network aims to capture exist-
ing gradients and differences occurring as a result of different
pollution sources and different dispersion situations. These
additional spatial indicators can be constructed similarly to
other MQIs, i.e. normalised by the measurement uncertainty.

For example, the modelled incremental change between
rural background (RB) and urban background (UB) locations
is defined as

INCmodel
UB-RB =MUB−MRB (7)

where M is the model value, and similarly for the measured
increment,

INCobserved
UB-RB =OUB−ORB. (8)

These indicators are then normalised by the measurement un-
certainty, see Table 2.

As mentioned earlier, the MQO generally applies to the
average of a specific period, currently 1 year. Consequently,
it provides no information on whether the modelling appli-
cation manages to capture the temporal variability of the air
quality situation. Since the AAQDs include in the assessment
the evaluation of exceedances for specific temporal indica-
tors, the capability of the modelling application to reproduce
the temporal variations becomes highly relevant in the con-
text of air quality management.

For that reason, additional indicators to assess the tempo-
ral coherence of model results at different frequencies are
provided (Table 3). These include seasonal, week/weekend
or day/night indicators. Measurement and modelling results
are then aggregated (all stations belonging to a certain type:
urban – rural – traffic – industrial) together and checks are
made through the following indicators. The AAQD of the Eu-
ropean Commission provides definitions for different types
of air quality monitoring stations based on their location and
the pollution sources they are exposed to. These station types
ensure a comprehensive assessment of air quality across dif-
ferent environments, helping policymakers and researchers
analyse pollution trends and enforce regulatory limits.

1Indicators can only be applied with models that are designed to
simulate the station types that are used in the indicators (e.g. urban-
traffic incremental indicators cannot be applied to models that only
simulate background levels).

The key definitions are as follows:

– Traffic stations: near major roads or intersections (at
least 25 m from major intersections, but no more than
10 m from the road), dominated by vehicle emissions
(NO2, PM10, PM2.5), reflecting population exposure to
road transport pollution.

– Urban stations: in residential or commercial areas
(more than 50 m away from major roads and more than
4 km away from industrial sources), measuring back-
ground pollution levels affecting the general urban pop-
ulation.

– Industrial stations: near factories or power plants, mon-
itoring emissions like SO2, NO2, heavy metals and
volatile organic compounds (VOCs).

– Rural stations: in the countryside or suburban areas (at
least 20 km from urban areas and 5 km from industrial
sources), assessing regional and long-range pollution
transport.

A more detailed description of the station types can be
found in Annex III (“Assessment of Air Quality and Lo-
cation of Sampling Points”) of the Air Quality Direc-
tive (2008/50/EC).

3 Results

To best visualise all these indicators, we use a graphical rep-
resentation in terms of radar plots. These plots help to assess
the relevance and usefulness of the different statistical indi-
cators by comparing all of them in a single diagram. We use
this approach to assess model performance for Spain, France,
Germany, Poland and Italy. This allows us to see if (1) the
MQI values fulfil the MQO. If this is not the case, the radar
plots help to understand which of the other indicators are use-
ful in determining the model’s skill through analysing (2) the
temporal and spatial indicators (1−R and SD), followed
by (3) studying model capability in calculating the tempo-
ral variability, i.e. seasonal (winter–summer [W–S]), week–
weekend (Wk–We) and day–night (D–N) indicators and spa-
tial indicators (e.g. urban background-rural background gra-
dient).

3.1 Model performance analysis for NO2

In Fig. 1, the statistics for NO2 are shown for (a) Spain,
(b) France, (c) Germany, (d) Poland and (e) Italy by all mod-
els considering all stations (i.e. background (B), urban, traf-
fic (T), industry (I)). The green circle represents the reference
line, that is MQI is 1.0. Results for any statistical parameter
that fall within the circle indicates that the MQO is achieved.
Anything that falls outside the green circle indicates a poor
agreement of the model results when compared to observa-
tions. The cyan solid contour in each radar plot represents the

Geosci. Model Dev., 18, 4231–4245, 2025 https://doi.org/10.5194/gmd-18-4231-2025



A. de Meij et al.: A new set of indicators for model evaluation complementing FAIRMODE’s MQO 4235

Table 1. Model performance indicators for temporal and spatial correlation.

Model performance indicator Model performance
(MPI) criterion (MPC)

Correlation (Eq. 5) MPI= 1−R

0.5β2
RMS2

U
σOσM MPC: MPI≤ 1

(bias= 0, σO = σm)

Standard deviation (Eq. 6) MPI= |σM−σO|
βRMSU

(bias= 0, R = 1)

Where the model performance criteria are the criteria to be fulfilled in order to reach the quality objective of
the modelling application.

Table 2. Model performance indicators that describe the incremental change between rural background (RB) and urban background (UB)
locations.

Model performance indicator (MPI) Model performance
criterion (MPC)

UB-RB (Eq. 9) MPI = 1/β ·
INCmodel

UB-RB−INCobserved
UB-RB

0.5·
(

RMS
U(UB)+RMS ¯U(RB)

)
MPC: MPI≤ 1

UT-UB (Eq. 10) MPI= 1/β ·
INCmodel

UB-UT−INCobserved
UB-UT

0.5·
(

RMS
U(UB)+RMS

U(UT)

)
Where UT stands for “urban traffic”.

Ensemble median. The other ACTMs are presented in differ-
ent colours.

Figure 1 shows that the yearly MQIs (MQI_YR) are gen-
erally higher than 1.5 for all models and all countries, indi-
cating that the MQOs are not achieved, while the short-term
MQIs (MQI_HD) fulfil the MQOs. As mentioned earlier, the
yearly MQI is more difficult to fulfil than the daily MQI be-
cause of smaller measurement uncertainties for yearly mean
observed concentrations. As a consequence, the MQI_YR
values are higher than those for MQI_HD, indicating that
each model has difficulties in capturing well the observed
yearly concentrations for NO2.

As mentioned earlier, the MQOs tell us whether the model
fails or passes the MQI, but with limited information on
the model’s capability to calculate the temporal and spatial
variability of the air pollutant concentrations. This is why
we introduced additional indicators, see Eqs. (4)–(6), which
present the bias and temporal and spatial correlation.

A more stringent source of information to the additional
indicators in Eqs. (4)–(6) are presented in Eqs. (7)–(10).
We see that for example these indicators describe the dif-
ferences between biases for day vs. night values for back-
ground [B(D−N)] and industry [I(D−N)] stations are
smaller than 1.0, except for Italy by GEMAQA (see An-
nex). Therefore, one would expect that the models are, in
general, capable of calculating well the NO2 concentrations.
But when the spatial indicators are considered, this is clearly
not the case. For example, the spatial concentration gradient

around a traffic station considering the urban background sta-
tions (UT-UB) and UB-RB (concentration gradient around a
background station considering rural background stations),
exceeds the reference line (1.0) indicating that the model’s
capability in calculating the spatial gradient is poor when
compared to the observations and therefore does not fulfil
the MQO. This highlights the value of these indicators in as-
sessing model performance.

This can be explained by the fact that the model resolu-
tion (0.1× 0.1) is too coarse to capture the emissions from
the road transport sector. This is illustrated in Fig. 2, which
shows the difference between observations and calculated
yearly mean NO2 concentrations for traffic, industry, all and
background stations for Germany. The calculated NO2 con-
centrations for traffic and all stations remain flat, i.e. the con-
centrations are very similar around 13 µg m−3. While the dif-
ference in observed concentrations (grey bar) between traffic
stations and all stations is around 7 µg m−3 (27 for traffic and
20 µg m−3 for all stations).

Also, the bias for traffic stations is much larger (up to
−14 µg m−3), while the bias for all stations is smaller (up to
−9 µg m−3), see Fig. 3. This indicates that the models have
difficulties in calculating the NO2 concentrations for traffic
stations as mentioned earlier. Once again this is expected,
given the resolution of the models, but it shows the relevance
of the indicators and associated thresholds to detect it.

The mean calculated NO2 concentrations by the models
for industry and background stations agree well with the ob-
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Table 3. Model quality indicators at different frequencies: seasonal, week/weekend or day/night.

Model performance indicator (MPI) Model perf.
criteria
(MPC)

Seasonal (Eq. 11) Industry MPI=
SeasDiffmod

Ind −SeasDiffobs
Ind

βRMSŪ

Traffic MPI=
SeasDiffmod

traffic−SeasDiffobs
traffic

βRMSŪ

Background MPI=
SeasDiffmod

bg −SeasDiffobs
bg

βRMSŪ

Week/ Industry MPI=
WeekDiffmod

Ind −WeekDiffobs
Ind

βRMSŪ

weekend (Eq. 12) Traffic MPI=
WeekDiffmod

traffic−WeekDiffobs
traffic

βRMSŪ
MPC: MPI≤ 1

Background MPI=
WeekDiffmod

bg −WeekDiffobs
bg

βRMSŪ

Day/night (Eq. 13) Industry MPI=
DayDiffmod

Ind −DayDiffobs
Ind

βRMSŪ

Traffic MPI=
DayDiffmod

traffic−DayDiffobs
traffic

βRMSŪ

Background MPI=
DayDiffmod

bg −DayDiffobs
bg

βRMSŪ

Figure 1. Radar plots of the calculated air quality model indicators for NO2 for different countries: (a) Spain, (b) France, (c) Germany,
(d) Poland and (e) Italy. Indicators are hourly MQI (MQI_HD), yearly MQI (MQI_YR), bias, 1−R (time), standard deviation (time),
gradients for winter–summer, week–weekend, day–night for traffic, industry, background (T, I, B), 1−R spatial, standard deviation spatial,
yearly urban traffic vs urban background (UT-UB), yearly urban background vs rural background (UB-RB).
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Figure 2. Yearly mean observed (grey bar) and calculated (coloured dots) NO2 concentrations for Germany for traffic, industry, all and
background stations.

Figure 3. Yearly mean bias for NO2 for traffic, industry, all and background stations for the different models (coloured dots) for Germany
stations.

servations. This reflects into low bias for industry and back-
ground stations (< 3 µg m−3).

Looking in more detail, we show in Fig. 4 the compar-
ison between the model vs. day–night and winter–summer
mean observations for traffic and background stations in
Italy. Well-behaving results should lie along the 1 : 1 line.
Results located in the lower right and upper left parts of the
graphs are poor.

Like the other models, GEMAQA (Fig. 4a) shows a poor
agreement for the traffic stations to capture the day–night
and winter–summer profiles for Italy. A similar behaviour
is found for the background stations as shown in Fig. 4b
for RIUA. Note that for the other countries the day–night
and winter–summer profiles are satisfactory for background
stations, but not for traffic stations. In general, for back-
ground stations, all indicator values remain below the thresh-
old of 1.0, except for the GEMAQA model in Italy. This sug-

gests that the models perform better in less complex envi-
ronments and that these indicators may be less effective for
assessing model performance in this context.

When traffic stations are excluded from the analysis
(Fig. 5), we see that the yearly MQI are much lower for the
five countries and even fulfil the MQO for France, Germany
and Poland.

This confirms that the models have difficulties in calculat-
ing the NO2 concentrations for traffic stations. The reason for
this is that the model resolution is not fine enough to capture
the traffic emissions. The short lifetime of NO2 (about 1 h)
requires high model resolution to capture well the non-linear
production and loss of NO2 concentrations.

As indicated, this result was expected and demonstrates
that the level of stringency of the QA/QC indicators is rele-
vant. Apart this expected result for traffic stations, these in-
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Figure 4. NO2 scatter plots of modelled vs observed day–night and summer–winter mean differences for (a) traffic stations by GEMAQA
and (b) background stations by RIUA model.

dicators also flag some aspects that need to be improved for
NO2, such as the spatial concentration gradient.

All the results of the statistical analysis for NO2 (and other
air pollutants) are provided in Table S2.

3.2 Model performance analysis for PM10

The MQI_YRs for PM10 concentrations are higher than the
MQI_HDs (Fig. 6), which can be explained by the smaller
measurement uncertainties for yearly PM10 observations, as
already mentioned. For Germany, the Ensemble MQI_YR is
close to unity, i.e. 1.00 (±0.14).

Looking at the different statistical indicators in the radar
plots, we see that all the models show similar shapes in
the radar plots, indicating that the models show the same
strengths and weaknesses.

The normalised temporal correlation coefficient is ex-
pressed in terms of 1−R; the threshold for this indicator

remains 1 as for all indicators, meaning that values below 1
fulfil the objective. Values closer to zero indicate even better
performances. This implies that other indicators are required
to perform a more stringent evaluation of the ACTM.

The radar plots show that the models have in general dif-
ficulties in calculating the spatial profiles (year UT-UB, UB-
RB) and temporal profiles (winter–summer gradient for traf-
fic, background and industry) for Spain, France, Poland and
Italy. For Germany, all indicators are below unity for the dif-
ferent models, apart from UT-UB and UB-RB by DEHMA
and EMPA, and MQI_YRs by DEHMA, GEMAQA and
MFMA.

The poor skill for Spain and Poland is illustrated in Fig. 7,
which shows the large differences between the models in
calculating the average PM10 concentrations for the differ-
ent station types. Only DEHMA shows a small positive bias
(∼ 1 µg m−3) for all the station types for Spain, while most
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Figure 5. Radar plots of the calculated air quality model indicators for NO2 for different countries excluding the traffic stations: (a) Spain,
(b) France, (c) Germany, (d) Poland and (e) Italy.

Figure 6. Radar plots of the calculated air quality model indicators for PM10 for different countries: (a) Spain, (b) France, (c) Germany,
(d) Poland and (e) Italy. Indicators are hourly MQI (MQI_HD), yearly MQI (MQI_YR), bias, 1−R (time), standard deviation (time),
gradients for winter–summer, week–weekend, day–night for traffic, industry, background (T, I, B), 1−R spatial, standard deviation spatial,
yearly urban traffic vs urban background (year UT-UB), yearly urban background vs rural background (year UB-RB).
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Figure 7. Mean calculated PM10 concentrations by the nine models (indicated by coloured bullets) for the different measurement stations
(grey bars for traffic, industry, all and background) for Spain and Poland, together with the bias.

Figure 8. Mean bias PM10 for summer (JJA) and winter (DJF) for Poland by all the models for the different station types (traffic, industry,
all and background).

of the models underestimate on average the observed PM10
concentrations.

For Poland, all the models underestimate the observed
PM10 concentrations for the different station types (Fig. 7).
The highest PM10 concentrations are observed for traffic sta-
tions for Poland. It is for these stations that the model capa-
bility in calculating elevated PM10 concentrations for traffic
stations is poor, which is shown in the largest bias found for
these stations. Excluding the traffic stations from the com-
parison results in an MQI of 0.99, while with traffic stations
MQI is 1.32.

The radar plots show that the winter–summer gradients are
larger than 1.0 for the different countries. For that reason, we
analyse in more detail the PM10 concentrations for Poland
during different seasons that will help to understand the rea-
son for the higher bias for traffic. The mean bias during the
summer period (Fig. 8, left panel) is the highest for traffic
stations (up to ∼−10 µg m−3) with a small positive bias for
a few models when all and background stations are consid-
ered. For the winter period (Fig. 8, right panel), the mean bias
is a factor ∼ 2 higher than for the summer, with RIUA and
KNMA showing the highest bias (up to ∼−20 µg m−3) for
the four different station types. This indicates that the models
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Figure 9. PM10 Scatter plots of modelled vs observed winter–summer and week–weekend mean differences for Spain for all the models.

underestimate the PM10 concentrations for the whole coun-
try, especially during wintertime, even though the model con-
centrations are assimilated.

When traffic stations are excluded from the analysis, it ap-
pears that only for Germany, Poland and Italy the Ensemble’s
MQI_YR is lower (e.g. for Poland ∼ 1.4 vs ∼ 1.0 without
traffic stations). As mentioned earlier, the winter–summer
profiles for industry, background (and to some extent traf-
fic) stations hampers the overall model performance in cal-
culating the PM10 concentrations (indices are well above the
reference criterion of 1.0). For example, the winter–summer
gradients for Spain (Fig. 9) are scattered around the 1 : 1 line,
while the week–weekend profiles are closer to the 1 : 1 line.
The latter corroborates the indicator values below the crite-
ria.

The analysis above tells us that in addition to the MQI, the
bias and spatial gradient indicators are relevant and useful
to highlight the potential model weaknesses in calculating
PM10 concentrations. On the other hand, temporal correla-
tion and standard deviation indicators seem to be less useful
for evaluating model performance in this context.

3.3 Model performance analysis for PM2.5

Yearly MQIs for PM2.5 fulfil the MQOs for all models and
countries. Also, the MQIs are in general lower than for PM10

(Fig. 10). This can be explained by the higher measure-
ment uncertainty assumed for PM2.5 than for PM10 in the
MQI equations, allowing less stringency on the model results
when calculating the MQI for PM2.5 (Thunis et al., 2021a).

For Poland, where coal combustion in households is still
an important contributor to PM (De Meij et al., 2024), larger
biases are found for the winter period (up to −13 µg m−3)
than for the summer (up to −3 µg m−3), see Fig. 11. Our
analysis further showed that for PM2.5 daily and yearly MQI
values for Poland are on average a factor ∼ 2 higher during
winter (1.23 and 1.02, respectively) than summer (0.60 and
0.48, respectively). The absence of condensables in the emis-
sion inventories (or possibly other seasonal dependent emis-
sions, such as emissions released by forest fires) may lead
to much higher biases during the peak season and as a con-
sequence potentially result in higher daily than yearly MQI
values.

As we have seen before, considering only the MQI for the
model evaluation does not provide enough information on the
model’s skill in calculating the temporal and spatial variabil-
ity of the pollutant. The radar plots that include additional
temporal and spatial indicators show that for Spain, France
and Germany all the models show a similar behaviour, i.e. el-
evated values for the winter–summer indicators for industry
and background, but still below unity. Just like for Poland,
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Figure 10. Radar plots of the calculated air quality model indicators for PM2.5 for different countries: (a) Spain, (b) France, (c) Germany,
(d) Poland and (e) Italy. Indicators are hourly MQI (MQI_HD), yearly MQI (MQI_YR), bias, 1−R (time), standard deviation (time),
gradients for winter–summer, week–weekend, day–night for traffic, industry, background (T, I, B), 1−R spatial, standard deviation spatial,
yearly urban traffic vs urban background (year UT-UB), yearly urban background vs rural background (year UB-RB).

Figure 11. Mean bias PM2.5 for summer (JJA) and winter (DJF) for Poland by the models for the different station types (traffic, industry, all
and background). Note that for winter, there is only one industry station; therefore the bias for this station type is not shown.

the winter–summer profiles for background, traffic and in-
dustry stations are higher than 1.0 for DEHMA, KNMA and
RIUA, while GEMAQA has difficulties in capturing the tem-
poral correlation.

The analysis raises questions about the stringency of the
indicators for PM2.5, as passing the criteria does not nec-
essarily indicate flawless performance. The bias and the
winter–summer indicators reveal potential problems in air
quality modelling for PM2.5 and for that reason are very use-
ful.

3.4 Model performance analysis for O3

For O3, all indicators are lower than unity for France, indicat-
ing that the models capture well the 8 h maximum O3 values
(Fig. 12). Except for GEMAQA for Spain, i.e. the winter–
summer traffic, background and industry indicators are larger
than 1.0. This is also true for the winter–summer traffic indi-
cator by RIUA.

Only for Poland, the RIUA model fails to capture the tem-
poral profiles for winter–summer for the traffic and back-
ground stations. Looking in more details at the temporal cor-
relation coefficient (R) for RIUA for all the available sta-
tions (35 stations in total), we see that R varies between 0.06
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Figure 12. Radar plots of the calculated air quality model indicators for 8 h maximum O3 values for different countries: (a) Spain, (b) France,
(c) Germany, (d) Poland and (e) Italy. Indicators are hourly MQI (MQI_HD), yearly MQI (MQI_YR), bias, 1−R (time), standard deviation
(time), gradients for winter–summer, week–weekend, day–night for traffic, industry, background (T, I, B), 1−R spatial, standard deviation
spatial, yearly urban traffic vs urban background (year UT-UB), yearly urban background vs rural background (year UB-RB).

and 0.81 (on average R is 0.63), while for ENSKCa R varies
between 0.42 and 0.98 (on average 0.90). This indicates that
RIUA has more difficulty capturing the temporal profile for
some stations when compared to the other models.

For Italy, MQI_YR is higher than 1.0 by EMPA, FMIA
and RIUA, and all the models have difficulty capturing the
temporal profile for winter–summer background stations,
i.e. the results are scattered around the 1 : 1 line (not shown).
Also, the spatial gradients for UB-RB are higher than 1.0 by
GEMAQA and EMPA.

Even though the daily and yearly MQI for 8 h maximum
O3 values are, in general, below 1.0, the temporal correlation
coefficient, together with the winter–summer gradients, ap-
pear to be useful indicators to highlight potential problems
for O3 concentration modelling.

4 Conclusion

In this work, we examine the relevance and usefulness of
assessment indicators within the FAIRMODE framework
by evaluating the performance of eight CAMS models and
their ensemble in calculating air pollutants. The evaluation is
based on comparisons with observations that were not used
to assimilate the modelled concentrations.

For nitrogen dioxide (NO2), we found that the yearly
MQIs, as well as the winter–summer and spatial gradient in-
dicators, clearly show the challenges the models face in accu-

rately calculating NO2 concentrations at traffic stations. This
highlights the value of these indicators in assessing model
performance. As expected, the exclusion of traffic stations
from the analysis improves model performance, confirming
that the indicators are effectively capturing the model diffi-
culties. For background stations, all indicator values fall be-
low the threshold of 1.0, except for the GEMAQ model in
Italy, suggesting better model performance in less complex
environments.

When analysing fine particulate matter (PM2.5), we ob-
served that the yearly and daily MQI for all models meet
the established criteria. This, however, raises questions about
the stringency of the indicators, as passing the criteria does
not necessarily indicate flawless performance. Our analysis
demonstrated that other indicators, such as bias and winter–
summer gradients, are crucial for identifying the underlying
issues in air quality modelling for PM2.5, making these indi-
cators highly valuable.

For PM10, the yearly MQI, winter–summer indicators and
spatial gradients were not always met by the models. This
suggests that, in addition to MQI, bias and both temporal and
spatial gradient indicators are particularly important for iden-
tifying weaknesses in the models’ ability to calculate PM10
concentrations. On the other hand, temporal correlation and
standard deviation indicators seem to be less useful for eval-
uating model performance in this context.
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Regarding O3, although the daily and yearly MQI for the
8 h maximum O3 values generally fall below the threshold
of 1.0, additional indicators such as the temporal correla-
tion coefficient and winter–summer gradients prove useful
for identifying potential model issues in calculating O3 con-
centrations.

Overall, the various indicators effectively served their pur-
pose of revealing the specific limitations in the model ap-
plications, and assisting the modelling community in under-
standing where improvements are needed. However, there
is ongoing debate about the appropriate level of stringency
for certain indicators and pollutants, suggesting that there is
room for refinement in the evaluation process.
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