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Abstract. Wildfires have shown increasing trends in both
frequency and severity across the contiguous United States
(CONUS). However, process-based fire models have diffi-
culties in accurately simulating the burned area over the
CONUS due to a simplification of the physical process and
cannot capture the interplay among fire, ignition, climate,
and human activities. The deficiency of burned area simu-
lation deteriorates the description of fire impact on energy
balance, water budget, and carbon fluxes in the Earth sys-
tem models (ESMs). Alternatively, fire models based on ma-
chine learning (ML), which capture statistical relationships
between the burned area and environmental factors, have
shown promising burned area predictions and correspond-
ing fire impact simulation. We develop a hybrid framework
(ELM2.1-XGBFire1.0) that integrates an eXtreme Gradient
Boosting (XGBoost) wildfire model with the Energy Exas-
cale Earth System Model (E3SM) land model (ELM) version
2.1. A Fortran–C–Python deep learning bridge is adapted to
support online communication between ELM and the ML
fire model. Specifically, the burned area predicted by the
ML-based wildfire model is directly passed to ELM to ad-
just the carbon pool and vegetation dynamics after distur-
bance, which are then used as predictors in the ML-based
fire model in the next time step. Evaluated against the histori-
cal burned area from Global Fire Emissions Database 5 from
2001–2019, the ELM2.1-XGBFire1.0 outperforms process-
based fire models in terms of spatial distribution and seasonal
variations. The ELM2.1-XGBFire1.0 has proven to be a new
tool for studying vegetation–fire interactions and, more im-
portantly, enables seamless exploration of climate–fire feed-
back, working as an active component of E3SM.

1 Introduction

Recent wildfire outbreaks worldwide have raised alarms due
to wildfires burning longer and more intensely in many re-
gions, posing significant threats to human livelihoods and
biodiversity. In the past 2 decades, satellite-derived data
suggest that the global total burned area has declined by
over 20 %, which is primarily attributed to human influences
(Jones et al., 2022; Andela et al., 2017). However, the con-
tiguous United States (CONUS) has emerged as a hotspot
for wildfires, where both climate change and human activ-
ities have fueled a 42 % increase in burned area (Jones et
al., 2022). Such expansive burned areas release an average of
162×106 t of CO2 and 0.9×106 t of PM2.5 annually into the
atmosphere, resulting in over USD 200 billion health costs
due to exposure to wildfire smoke (Global Wildfire Informa-
tion System, 2024; JEC, 2023). Accurate prediction of wild-
fire risks has become an urgent need.

Traditional fire models, predominantly process-based
models, simulate the behavior of individual wildfires using
theoretical equations for ignitions and fire spread (Hantson
et al., 2016). These models explicitly simulate the number
and size of individual fires by incorporating parameteriza-
tions and parameters derived from laboratory or field experi-
ments and typically estimate the burned area by scaling up to
the grid-cell level (Lasslop et al., 2014; Pfeiffer et al., 2013;
Yue et al., 2014; Li et al., 2012; Thonicke et al., 2010; Huang
et al., 2020, 2021; Arora and Boer, 2005; Burton et al., 2019).
While process-based wildfire models are effective in simu-
lating global burned area distribution (Hantson et al., 2020),
they often fall short when accurately predicting the extent
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and temporal changes of wildfires over the CONUS (Forkel
et al., 2019; Teckentrup et al., 2019). The climate and veg-
etation controls on the CONUS burned area and their rela-
tive importance are incorrectly represented, leading to fail-
ures in burned area predictions regarding both spatial distri-
bution and temporal variations (Forkel et al., 2019). Human
ignition and suppression are assumed to be linearly or log-
linearly related to population density and the gross domes-
tic product (GDP), respectively (Jones et al., 2023; Li et al.,
2013). This assumption overlooks a more nuanced picture of
human activities, such as road density, cultural differences,
agricultural activities, and forest management policy (Jones
et al., 2022; Villarreal et al., 2022; Hanan et al., 2021; Miller
et al., 2009; Turco et al., 2023; Haas et al., 2022). Process-
based fire models are often integrated with biogeochemical
process-enabled land models (hereafter referred to as BGC
models) within Earth system models (ESMs) to predict fire
disturbances to carbon allocation, which is then used to up-
date energy balance, water budget, and carbon fluxes in the
land model. Incorrect simulation of burned areas over the
CONUS induces large uncertainties in the assessment of fire
impacts using ESMs.

Recent advances have explored the application of machine
learning (ML) techniques in wildfire prediction (e.g., Buch
et al., 2023; Li et al., 2023; Wang et al., 2021; Zhu et al.,
2022). ML models offer the advantage of capturing nonlin-
ear dependencies and complex interactions between driving
factors and fire dynamics without the need for the explicit
understanding of physical processes (Rodrigues and de la
Riva, 2014). Zhu et al. (2022) presented a deep neural net-
work (DNN) scheme that surrogated the process-based wild-
fire model with the Energy Exascale Earth System Model
(E3SM) interface, demonstrating over 90 % higher accuracy
in simulating the global burned area. Wang et al. (2021) com-
bined the local predictors, large-scale meteorological pat-
terns, and the eXtreme Gradient Boosting (XGBoost) algo-
rithm to build an ML wildfire model, which improves the
temporal correlations of burned areas in several regions over
the CONUS by 14 %–44 %. Buch et al. (2023) developed a
novel stochastic machine learning (SML) framework, SML-
Fire1.0, with a high spatial resolution of 12 km over the west-
ern US (WUS).

The newly developed ML fire models often focus on wild-
fire properties such as burned area, fire count, and fire emis-
sions (Wang et al., 2021; Buch et al., 2023). Despite the im-
proved fire predictions, fire impacts on the ecosystem, cli-
mate, and human community cannot be evaluated without
integrating the wildfire process into the Earth system. In ad-
dition, climate change impacts on the burned area, either di-
rectly through fire weather conditions or indirectly through
ecosystem productivity, vegetation type, fuel loads, and fuel
moisture, cannot be fully understood without explicitly rep-
resenting the complex interplays between climate, ecosys-
tems, and fire. For instance, a warmer and drier climate
has been shown to cause an 8-fold rise in the high-severity

burned area from 1985 to 2017 over the WUS (Parks and
Abatzoglou, 2020). The corresponding changes in fire dy-
namics may shift the vegetation species distribution from
those originally low in resistance to wildfire to those in high
resistance or even benefiting from regular fire occurrence
(Rogers et al., 2015; Huang et al., 2024). The fire-adapted
vegetation species, in turn, facilitate the frequent occurrence
of wildfires. Taking this into consideration, a full coupling of
fire, ecosystem, and climate is required to better predict fire
changes and the corresponding impacts in a future climate.

Leveraging the accuracy of ML-based wildfire models
and the representation of ecosystem–climate interactions in
ESMs, in this study, we develop a novel hybrid frame-
work to integrate a pretrained ML wildfire model with the
E3SM land model (ELM) to study the full atmosphere–
vegetation–wildfire feedback. This integration facilitates a
dynamic feedback loop where outputs from the ML model
(i.e., predicted burned areas) inform the land surface pro-
cesses in ELM, which in turn update the inputs for the ML
model for subsequent predictions. This approach leverages
the detailed physical understanding of surface biogeophys-
ical and biogeochemical processes provided by ELM and
the predictive power of ML-based wildfire models to create
a more accurate and robust framework for wildfire predic-
tion and impact assessment. The remaining sections are ar-
ranged as follows: Sect. 2 introduces the ELM and ML wild-
fire model training method, coupling strategy, and datasets
used in this study; Sect. 3 presents the simulated burned area
compared with observations and several process-based fire
models; and Sect. 4 contains the discussion and conclusion.

2 Materials and methods

2.1 Model description

2.1.1 Default wildfire model in ELM

The ELM is part of the E3SM project which started with a
version of the Community Earth System Model (CESM1).
The ELM default wildfire module originated from the Com-
munity Land Model (CLM4.5) (Li et al., 2012). This wild-
fire model calculates burned areas by multiplying the num-
ber of wildfires and burned area per fire on a grid-cell level.
The number of wildfires (fire count) is derived using an-
thropogenic and natural ignition sources, fuel load and com-
bustibility, surface meteorology, and anthropogenic suppres-
sion. The natural ignition source is derived from the num-
ber of cloud-to-ground lightning flashes multiplied by a con-
stant ignition efficiency (Prentice and Mackerras, 1977). An-
thropogenic ignitions are simply parameterized using a fixed
number of potential anthropogenic ignitions by a person and
population density (Venevsky et al., 2002). Humans also sup-
press wildfires. The capability of fire suppression is assumed
to be a function of GDP and population density. The igni-
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tion efficiency is also altered by fuel conditions, including
the fuel load (aboveground biomass) and fuel combustibility
(approximated using relative humidity, temperature, and top
or root zone soil moisture). The spread of each fire is approx-
imated using an ellipse shape, with its length-to-breadth ra-
tio determined by wind speed and fuel moisture (Rothermel,
1972). This simple concept captures the major constraints for
predicting the global wildfire distribution and seasonal vari-
ations well (Rabin et al., 2017; Li et al., 2014; Huang et al.,
2020).

Like many other process-based wildfire models, the de-
fault fire model in ELM benefits from the full ecosystem
interactions from its hosting land model as well as the po-
tential to be coupled with atmospheric models. With the
BGC processes being turned on, ELM-BGC reallocates car-
bon and nitrogen in leaf, wood, root, litter, and soil pools
after fire based on carbon combustion and mortality rate de-
pendent on plant functional type (PFT). The biogeochemi-
cal changes subsequently influence biogeophysical proper-
ties such as leaf area index (LAI), vegetation canopy height,
and albedo, disturbing the land–atmosphere exchanges of en-
ergy and water fluxes. The post-fire vegetation recovery in
ELM-BGC depends on the plant photosynthesis processes
and PFT competition strategy for soil resources. The inter-
actions between wildfire and vegetation under historical cli-
mate have been thoroughly assessed in CLM long-term sim-
ulations (Li and Lawrence, 2017). The model framework is
illustrated in Fig. 1. Hereafter the ELM coupled with the
process-based fire model is referred to as ELM-BGC.

2.1.2 Machine learning wildfire model

The XGBoost-based wildfire model has proven to outper-
form process-based models in predicting burned areas over
the CONUS (Wang et al., 2021). XGBoost is a highly ef-
ficient and scalable implementation of gradient boosting,
designed for performance and speed (Chen and Guestrin,
2016). It builds sequential decision trees to correct errors
from previous models, using techniques like regularization to
prevent overfitting and parallel processing for faster compu-
tation. In this study, we adapt the XGBoost algorithm used in
Wang et al. (2021) to develop an offline ML fire model using
variables directly provided by ELM at each grid cell. Wang
et al. (2021) integrated large-scale meteorological patterns
alongside local weather, land surface properties, and socioe-
conomic data to enhance the prediction of burned areas. The
large-scale patterns were identified using singular value de-
composition (SVD) to capture influential atmospheric condi-
tions that develop over days to weeks and cumulatively im-
pact the monthly burned area. The feature importance anal-
ysis in their study noted that while large-scale patterns im-
proved prediction, however, they played a secondary role.
Therefore, we exclude the large-scale patterns from predic-
tors without significantly affecting the model accuracy. Here-

after the uncoupled XGBoost fire model is referred to as
offline-XGB.

2.1.3 Hybrid modeling framework

The offline-XGB model is integrated with the ELM using the
ML4ESM coupling framework. The ML4ESM framework
offers a robust and flexible solution for integrating ML pa-
rameterizations into ESMs through a Fortran–Python inter-
face (Zhang et al., 2024). It supports popular ML libraries
such as PyTorch, TensorFlow, and Scikit-learn, enabling the
seamless incorporation of ML algorithms to represent com-
plex climate processes like convection and wildfire dynam-
ics. The interface leverages C language as an intermediary for
efficient data transfer by accessing the same memory refer-
ence instead of the extra data copy or through files, minimiz-
ing memory overhead and computational inefficiencies. A C
hub is then used to communicate variables from the Fortran-
written ELM and the Python-written ML fire model. In our
application, all surface meteorology, lightning, and socioeco-
nomic data alongside the ELM simulated fuel conditions are
passed to the ML-based fire model to predict the burned area.
The burned area is returned to ELM to calculate fire impacts
and update surface properties.

2.2 Datasets and processing

2.2.1 Burned area datasets

The primary dataset for training and validating the ML-
based model is the Global Fire Emissions Database version 5
(GFED5) (Chen et al., 2023). The GFED5 is a succession of
GFED4s (van der Werf et al., 2017), which we also use as an
additional reference dataset. GFED4 is generated by fusing
multiple streams of remote sensing data to create a 24-year
(1997–2020) dataset of the monthly burned area at 0.25° spa-
tial resolution. During 2001–2020, the GFED5 comprises the
Moderate Resolution Imaging Spectroradiometer (MODIS)
MCD64A1 burned area product (Hall et al., 2016; Giglio
et al., 2016; Giglio et al., 2018) with adjustments for the
errors of commission and omission. Adjustment factors are
estimated based on region, land cover, and tree cover frac-
tion using spatiotemporally aligned burned areas from Land-
sat or Sentinel-2 (Claverie et al., 2018). Because of a new
fire detection method that significantly boosts the area of
small fires, the CONUS annual burned area increases from
2.36 Mha in GFED4s to 6.04 in GFED5, which is primar-
ily contributed to by the increase of crop fires from 0.83 to
3.09 Mha.

The FireCCI5.1 is obtained as another reference dataset
(Chuvieco et al., 2019). FireCCI5.1 maps fires at 250 m res-
olution using the spectral information from MODIS in com-
bination with the thermal anomalies. FireCCI5.1 has been re-
ported to heavily underestimate the total burned area mainly
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Figure 1. Schematic diagram of the hybrid model framework.

due to the underrepresentation of small fires (Lizundia-
Loiola et al., 2020).

Besides observations, we also obtain burned area from
seven state-of-the-art process-based wildfire models partic-
ipating in the Inter-Sectoral Impact Model Intercompari-
son Project (ISIMIP3a) (Burton et al., 2024b), including the
Canadian Land Surface Scheme Including Biogeochemical
Cycles (CLASSIC) (Melton et al., 2020), the Simplified Sim-
ple Biosphere model coupled with the Top-down Represen-
tation of Interactive Foliage and Flora Including Dynamics
model (SSiB4-TRIFFID-Fire) (Huang et al., 2020, 2021), the
SPread and InTensity of FIRE (SPITFIRE) coupled with the
Organizing Carbon and Hydrology In Dynamic Ecosystems
(ORCHIDEE) (Yue et al., 2014), the Joint UK Land En-
vironment Simulator (JULES) coupled with the INFERNO
fire model (Mathison et al., 2023; Mangeon et al., 2016),
the LPJ-GUESS dynamic global vegetation model coupled
with the SPITFIRE (LPJ-GUESS-SPITFIRE) and SIMple
FIRE model (SIMFIRE) (Knorr et al., 2016) and BLAZe in-
duced biosphere–atmosphere flux Estimator (BLAZE) (LPJ-
GUESS-SIMFIRE-BLAZE) (Rabin et al., 2017), and the
Vegetation Integrative Simulator for Trace gases (VISIT)
(Ito, 2019). Driven by GSWP3-W5E5 historical climate forc-
ing (Cucchi et al., 2020; Lange et al., 2021), these models
provide the monthly burned area at 0.5° spatial resolution
from 1901–2019. The multi-model output during 2001–2019
is used in this study. We also performed the benchmarking
simulation using the built-in process model in ELM-BGC.

The process-based models differ from one another in not
only their dynamic global vegetation models (DGVMs) but
also the complexity of their fire models. ELM-BGC and
SSiB4-TRIFFID utilized the same fire model from Li et
al. (2012), LPJ-GUESS-SPITFIRE and ORCHIDEE, both
coupled with SPITFIRE. Other models incorporate their own

unique fire modules. The representation of fires over crop-
lands and pastures varies across models (Burton et al., 2024a;
Teckentrup et al., 2019). Most models, except for JULES,
classify croplands as non-burnable. JULES treats croplands
similarly to natural grasslands, while all other models ex-
clude croplands from burning. Most models do not include
pasture as a PFT and, therefore, do not distinguish pastures
from grasslands in terms of both growth and fire behavior.
In LPJ-GUESS-SIMFIRE-BLAZE, pastures are harvested,
leading to reduced biomass and consequently a smaller
burned area. The difference among process-based models is
discussed in Sect. 4.

2.2.2 Surface meteorological, lightning, and
socioeconomic datasets

Surface meteorological variables, including temperature, hu-
midity, wind speed, downward shortwave radiation, down-
ward longwave radiation, precipitation, and surface pressure,
are obtained from NLDAS-2 (Phase 2 of the North American
Land Data Assimilation System), forcing fields to both drive
the ELM and construct the training set for the ML fire model.
This dataset combines multiple sources of observations (such
as precipitation gauge data, satellite data, and radar precip-
itation measurements) to produce estimates of climatologi-
cal properties at or near the Earth’s surface at hourly tem-
poral resolution and 1/8° grid spacing. We use the temper-
ature, relative humidity, specific humidity, wind speed, and
precipitation directly from NLDAS-2 to train the ML fire
model. Additionally, we calculate the standardized precip-
itation evapotranspiration index (SPEI) following Beguería
et al. (2014) and the vapor pressure deficit (VPD) based on
NLDAS-2 dataset as additional input for the ML model (Ta-
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ble 1). We coarsen this dataset to 0.25° to align with burned
area datasets.

In addition to surface meteorological forcing, while identi-
cal to those used by ISIMIP3a fire models, we acquire light-
ning and socioeconomic datasets from multiple sources. The
2 h climatology lightning flash data from NASA LIS/OTD
v2.2 at 2.5° resolution are used to calculate the number of
natural ignitions. Lightning data are aggregated by summing
the 2 h data to derive monthly climatological means, and
these monthly climatologies are repeated across all years,
disregarding interannual variations. The annual gridded pop-
ulation density data are acquired from Klein Goldewijk et
al. (2017), while the GDP per capita is from the World Bank
(https://data.worldbank.org/, last access: 20 June 2024), and
both are assigned constant values for all months within each
corresponding year. All datasets are spatially resampled to a
0.25°× 0.25° grid using bilinear interpolation. To train the
ML model, additional inputs, including top-layer soil mois-
ture, LAI, and spatial fraction of each plant functional type
(PFT), are simulated by ELM (explained further in Sect. 2.3).

2.3 Model configuration and offline-XGB training and
coupling processes

In ELM-BGC, vegetation properties, including canopy
height and LAI, vary with carbon allocation and distribution
driven by climate variability and disturbances such as wild-
fires. To bring the model’s carbon and nitrogen pools into
equilibrium, we first conduct long-term spin-up simulations
as suggested by Lawrence et al. (2011). We adopt a two-
step approach consisting of a 400-year accelerated decom-
position (AD) spin-up followed by a 400-year regular spin-
up, driven by cycling NLDAS-2 meteorological forcing from
1981 through 2000. In the AD spin-up, acceleration factors
are applied to accelerate decomposition in soil organic mat-
ter pools and for plant dead stem and coarse root mortality.
The terrestrial carbon pools and vegetation distribution after
spin-up simulations reach quasi-equilibrium states after the
800-year simulations.

With the quasi-equilibrium state from the spin-up simula-
tion, we conduct transient simulations with the process-based
fire model in the ELM-BGC driven by hourly NLDAS-2 me-
teorological forcings at a 0.25° resolution from 2001 to 2020.
The process-based fire model operates on an hourly basis,
matching the frequency of the meteorological inputs, while
the ML fire model is trained and applied at a monthly in-
terval consistent with GFED5 data intervals. For training the
offline-XGB model, the ELM-BGC outputs, including LAI,
surface soil moisture, and PFT fractions, are averaged to
monthly intervals combined with monthly mean meteorolog-
ical conditions, socioeconomic variables (GDP, population
density), and lightning (as detailed in Table 1) to learn the
relationship between predictors and burned area. To reduce
overfitting, the 20-year dataset is split, with 80 % used for
training and 20 % for validation. During training, grid cells

with fewer than 30 months of non-zero burned area (∼ two-
thirds of the total number of grid cells) are masked. This step
is important to avoid feeding the ML model distinct predictor
combinations that all correspond to zero burned areas, which
could skew the model’s learning process. Model performance
was evaluated based on its accuracy in predicting the spatial
distribution and temporal variation of burned areas. Valida-
tion metrics included root mean square error (RMSE) and
the coefficient of determination (R2).

We then integrate the offline-XGB to ELM-BGC, forming
the coupled model ELM2.1-XGBfire1.0. The coupled model
runs at 0.25° and hourly resolutions, where the hourly model
predictions are accumulated to calculate monthly means. At
the end of each month, the ML fire model is called to predict
the monthly burned area, updating the land surface proper-
ties (e.g., LAI and vegetation height), carbon cycling (biotic
carbon in each pool), and ecohydrology processes (photosyn-
thesis and soil moisture) in ELM-BGC.

2.4 Ecoregion

We evaluate the model simulated burned area for each ecore-
gion adopted from the US Environmental Protection Agency
(EPA). Ecoregions are areas where ecosystems (and the type,
quality, and quantity of environmental resources) are gen-
erally similar (Omernik and Griffith, 2014), and, generally,
wildfire properties in each ecoregion are similar. A combi-
nation of level I and level II ecoregions is used, and some
types have been combined to focus on the broad vegeta-
tion distribution. As shown in Fig. 2, the Western Forested
Mountains include NW Forested Mountains, Marine West
Coast Forests, and Mediterranean California from level I
ecoregions. The North American (NA) Deserts include NA
Deserts and small portions of Temperate Sierras and South-
ern Semi-Arid Highlands. The Northeast (NE) Temperate
Forests include Mixed Wood Shield, Mixed Wood Plains,
and Atlantic Highlands from level II ecoregions. The South-
east (SE) Temperate Forests include Southeastern US Plains
Ozark, Ouachita–Appalachian Forests, and Mississippi Allu-
vial and Southeast US Coastal Plains level II ecoregions.

3 Results

3.1 Evaluation of the burned area spatial distribution

The burned areas across the CONUS exhibit a strong spatial
variation (Fig. 3a), which is primarily influenced by climate,
vegetation, and human activities. According to the GFED5,
the CONUS experiences an average burned area frac-
tion (BAF) of 0.6 % yr−1–0.9 % yr−1 (4.8–7.1 Mha yr−1).
The BAF in the WUS (Western Forested Mountains and
NA Desert) ranges between 0.4 % yr−1–0.9 % yr−1 (1.1–
2.3 Mha yr−1). States like California, Oregon, and Nevada, as
well as the Rocky Mountain region, including parts of Col-
orado and Wyoming, experience large wildfires. The wild-
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Table 1. Meteorological forcing, land surface properties, and fire-specific inputs for driving the ELM-BGC and training the offline-XGB fire
model.

Meteorological forcing Land surface property

Temperature NLDAS-2 Soil moisture ELM-BGC output

Relative humidity Leaf area index

Wind speed Plant functional type (PFT) fraction

Precipitation Fire-specific inputs

Standardized precipitation evapotranspiration index (SPEI) Lightning NASA LIS/OTD v2.2

Vapor pressure deficit (VPD) GDP World Bank

Population density Klein Goldewijk et al. (2017)

Figure 2. Ecoregions used in fire model evaluation. 1: Western
Forested Mountains, 2: NA Desert, 3: Great Plains, 4: SE Temperate
Forests, and 5: NE Temperate Forests.

fires in the Pacific Northwest and northern California are
generally lightning-caused and occur in boreal forests (Balch
et al., 2017), whereas those in southern California are primar-
ily caused by human ignition in dry forests and shrublands.
The southwest, including Arizona and New Mexico, also
sees significant burned areas in shrublands and dry forests. In
the Great Plains, states such as Kansas and North Dakota also
exhibit high burned areas alongside Texas and Oklahoma,
with a BAF ranging between 0.7 % yr−1 and 1.3 % yr−1 (1.6–
2.9 Mha yr−1). These high burned areas are primarily con-
tributed by agricultural fires, particularly for cleaning crop
residues and managing pastures (Donovan et al., 2020). The
southeastern US experiences 0.9 % yr−1–1.5 % yr−1 (1.5–
2.6 Mha yr−1) BAF annually, while the temperate forested ar-
eas covering Florida, Georgia, and the Carolinas, show lower
burned areas compared to the West. The Midwest and north-
east exhibit sparse burned areas, with BAF mostly less than
0.16 % yr−1–0.25 % yr−1 (0.2–0.3 Mha yr−1). Burned areas
in GFED4s and FireCCI5.1 are much smaller than GFED5
due to the underrepresentation of small fires. The overall

spatial distributions are generally consistent across the three
datasets, as shown by the high spatial correlation coefficients
(Rp).

The offline-XGB wildfire model reproduces the burned
area distribution over the CONUS well (Fig. 3b), with a Rp

of 0.98 (p < 0.01) and a bias of −1.0 Mha yr−1. While in-
tegrated with ELM, the performance degraded (Rp = 0.59,
p < 0.01, bias= 1.9 Mha yr−1) (Fig. 3d). This degradation is
likely due to the fire–vegetation feedback. The aboveground
biomass and fuel moisture from ELM-BGC have been used
to train the offline-XGB prior to the coupled run within ELM.
In the coupled simulation, ELM2.1-XGBfire1.0 updates the
biotic carbon and fuel moisture based on the burned area sim-
ulated in the previous time step. Consequently, differences
in the simulated burned area compared to the process-based
models are reflected in the biotic carbon and fuel moisture,
accumulating over the 20-year simulation period and influ-
encing the burned area simulation in subsequent time steps.

In various ecoregions, the offline-XGB model demon-
strates minimal biases, and the ELM2.1-XGBfire1.0 consis-
tently outperforms all process-based fire models in predict-
ing annual mean burned area (Fig. 4a–b). The accurate sim-
ulation of burned area over the Western Forest Mountains
indicates that the ELM2.1-XGBfire1.0 framework generally
captures the complex interplays between climate, vegetation,
and human activities, with both climate forcings and pre-
dicted vegetation status acquired from ELM-BGC. Mean-
while, the ELM2.1-XGBfire1.0 shows superior performance
over the Great Plains, indicating that the ML model effec-
tively describes crop fire, thereby utilizing data on crop frac-
tion and LAI.

The performance of the eight process-based fire models
in simulating burned areas over the CONUS shows both
strengths and weaknesses (Figs. 4c–j and 5). All models gen-
erally capture the high burned areas in key regions such as
the WUS and southeast US, except for ORCHIDEE show-
ing a concentrated burned area in the Great Plains and
LPJ-GUESS-SIMFIRE-BLAZE model missing fires in SE
US. However, all process-based models tend to overestimate
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Figure 3. Observed burned area fraction (% yr−1). (a) GFED5 (2001–2019), (b) GFED4s (2001–2016), and (c) FireCCI5.1 (2001–2019).
The numbers indicate the mean (M) burned area fraction and burned area (in Mha) in brackets for each dataset. The pattern correlation (R)
against GFED5 is also shown, with an asterisk (∗) denoting significance at the 0.01 level. Black contours outline the ecoregions.

Figure 4. Same as Fig. 3 but showing model outputs. The pattern correlation (R) and bias (B) against GFED5 are denoted.

burned areas in various regions across the CONUS. ELM-
BGC has moderate overestimations over the CONUS, with
3.83 Mha yr−1. The burned areas are doubled in CLASSIC,
ORCHIDEE, JULES, and VISIT simulations, with values of
up to 20.7 Mha yr−1 (Fig. 4a).

In the Western Forest Mountains, where fuel is abundant
due to dense forest coverage, all process-based models ex-
cept ORCHIDEE simulate 2 to 5 times of the GFED5 burned
area. This overestimation can be related to many factors, in-
cluding overestimation of fuel combustibility and underrep-
resentation of anthropogenic fire suppression (Balch et al.,
2017). In contrast, wildfires in the NA Desert are primarily
constrained by the fuel load. ELM-BGC and CLASSIC pro-
duce smaller overestimations, while SSiB4-TRIFFID-Fire,

VISIT, JULES, and LPJ-GUESS models significantly over-
estimate the burned area (4–16 times of GFED5), likely due
to overestimations of fuel load, which might be attributed to
insufficient water stress on vegetation growth in the arid re-
gion (Liu and Xue, 2020; Zhang et al., 2015). Although none
of the process-based models accurately capture the spatial
distribution of burned area over the Great Plains (Fig. 1),
ELM-BGC, SSiB4-TRIFFID-Fire, and VISIT produce com-
parable burned areas to observations, while CLASSIC and
ORCHIDEE overpredict them (4–7 times of GFED5). The
inaccurate description of the spatial pattern and large inter-
model spread in the Great Plains may be caused by inac-
curate treatments of cropland fires and pasture fires (Dono-
van et al., 2020). As noted by Teckentrup et al. (2019) and
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Figure 5. Observed and simulated mean burned area fraction ( % yr−1) over the CONUS and ecoregions. The red line in each panel indicates
the observed burned area. Modeled burned areas greater than 4 % yr−1 are truncated with the value denoted on the bar.

Burton et al. (2024a), none of the process-based models
has activated the explicit cropland fire model. While LPJ-
GUESS-SIMFIRE-BLAZE incorporates harvesting in pas-
tures, reducing biomass and influencing fire dynamics, all
other process-based vegetation models do not distinguish
pastures from natural grasslands for both vegetation growth
and fire processes. Therefore, information on how fuel prop-
erties, including the amount as well as physical (e.g., bulk
density) and chemical characteristics, and fire ignitions dif-
fer between pastures and natural grasslands could help to im-
prove burned area simulation in the process-based fire mod-
els (Rabin et al., 2017). Fuel management practices, such as
prescribed burning and grazing, can significantly alter fire
dynamics but are generally absent in current models. In the
eastern US (EUS) forests (Southeast and Northeast Tem-
perate Forests ecoregions), fires are more managed by pre-
scribed burning, leading to fewer uncontrolled extreme wild-
fires. Although prescribed burning as an additional ignition
source is not included in the process-based models, ignition
is not a limiting factor in this region due to the abundance of
lightning, which provides sufficient natural ignition sources.
Consequently, the burned area is primarily controlled by fire
spread, which is influenced by natural conditions such as fuel
availability and wind, allowing the models to perform well in
simulating fire dynamics.

3.2 Evaluation of the burned area temporal variability

We evaluate the model performance in simulating the
monthly burned area and depicting fire seasons. Fire season
is defined as a monthly burned area greater than 1/12 of the
annual total burned area. The CONUS has two fire seasons,
i.e., March–April–May and August–September–October, af-
fected by both climate and human activities (Fig. 6a). The
WUS fire season spans from early summer to late fall and is
primarily determined by the dry conditions and high temper-
ature during these months (Safford et al., 2022; Schoennagel
et al., 2017). Specifically, over the Western Forest Moun-
tains, the fire season includes July-to-November (Fig. 6b).
Most models capture the July to October fire season, except
for ORCHIDEE (May–August). However, only offline-XGB,
SSiB4-TRIFFID-Fire, and CLASSIC simulate the peak fire
month in August, while others simulate a peak∼ 1–2 months
late. Similar fire season and model performance are observed
over the NA Desert (Fig. 5c). In wildfire-dominant regions,
the shift in fire peak months might be related to the represen-
tation of seasonality in vegetation production and fuel build-
up in the BGC model (Hantson et al., 2020).

Human activities can also change the timing of fire occur-
rences (Le Page et al., 2010). Over the Great Plains, pasture
fires are conducted during late winter to early spring to con-
trol pests, recycle nutrients, and prepare fields for planting
(Gates et al., 2017). During the late summer to early fall,
crop fires are conducted to clear crop residues. However,
these fires may become uncontrolled, leading to larger fires
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Figure 6. Monthly mean burned area fraction (% yr−1) over each ecoregion. Vertical shadings indicate the fire seasons, monthly burned area
greater than 1/12 of the total burned area, and shadings along x axes indicate 1 standard deviation across the years.

that significantly impact the region. The fire seasons due to
pasture fires and crop fires are evident in observations and
are captured in offline-XGB and ELM2.1-XGBfire1.0, de-
spite ELM2.1-XGBfire1.0 slightly underestimating the peak
in March. Except for LPJ-GUESS-SPITFIRE, none of the
process-based models is able to simulate these periods, and
instead, a summer fire season is predicted. LPJ-GUESS-
SPITFIRE produces peaks in both spring and summer. In SE
Temperate Forests, routinely prescribed burns reduce large
fire occurrences across the year (Mitchell et al., 2014). The
dry condition and/or fallen vegetation fuel larger burned ar-
eas in February–March and September–November. The ML-
based models generally reproduce the fire seasons in March–
April and September–November while none of the process-
based models captures the bimodal seasonality. The results
of NE Temperate Forests are similar to Great Plains, ex-
pect no peak burned area appears in November. The offline-
XGB and SSiB4-TRIFFID-Fire models capture the spring
peak. To the best of our knowledge, ELM-BGC is one of
the few process-based models capable of explicitly simulat-
ing crop fires; however, this feature was not enabled in our
study. None of the models used here includes explicit rep-
resentations of pasture burning. Our evaluation suggests that
including anthropogenic fires could help to improve model
simulations in central and eastern US. However, this requires
a better understanding of how fire is used for land manage-
ment under different socioeconomic and cultural conditions
(Pfeiffer et al., 2013; Li et al., 2013).

Over the CONUS, the observed interannual variability
(IAV), measured using standard deviation, is 0.7 Mha yr−1,
representing 12 % of the annual total burned area in GFED5
(Fig. 7a). GFED4s and FireCCI5.1 suggest 1.1 Mha yr−1

(45 %) and 0.9 Mha yr−1 (30 %), respectively. Process-based
models greatly overestimate the IAV, ranging from 2.5 (LPJ-
GUESS-SIMFIRE-BLAZE) to 6.6 Mha yr−1 (VISIT). The
relative IAV regarding the modeled annual mean value, rang-
ing from 12 % (JULES) to 41 % (ELM-BGC), generally
within the range of observations. The machine learning mod-
els, offline-XGB and ELM2.1-XGBfire1.0 produce IAV of
0.6 Mha yr−1 (11 %) and 0.8 Mha yr−1 (10 %), respectively.

Despite the magnitude of IAV being amplified by process-
based models, after extracting the mean values and divid-
ing by standard deviation, the standardized time series cor-
related well with the observation (Fig. 7b). Since the mod-
eled IAV is generally influenced by climate variability and
the climate-driven fuel variability, both process-based and
ML-based models capture the timing of the fluctuations.

Monthly temporal variability in burned areas demon-
strates significant regional differences across the ecoregions
(Fig. 8). Over the entire simulation period, the ML-based
models generally capture the timing of wildfires across the
CONUS with a temporal correlation coefficient greater than
0.5 (p < 0.01), whereas the process-based models exhibit
a correlation of only 0.3 (p > 0.01). The ML-based mod-
els also effectively capture the temporal variability across
the ecoregions, although there is a slight decrease in the
ELM2.1-XGBfire1.0 in the Great Plains and EUS. This de-

https://doi.org/10.5194/gmd-18-4103-2025 Geosci. Model Dev., 18, 4103–4117, 2025



4112 Y. Liu et al.: ELM2.1-XGBfire1.0

Figure 7. Annual total burned area (Mha yr−1). (a) Annual total value and (b) standardized by removing mean and standard deviation.

crease is likely related to the fire–vegetation feedback, which
alters the fuel condition differently from the training set. In
contrast, the process-based models show correlations compa-
rable to the ML-based models in the WUS but fail to accu-
rately predict burned area temporal variations in the Great
Plains and EUS. Again, climatic factors play a dominant
role in shaping the temporal variability of BAF in the WUS,
while human activities largely influence the BAF in the Great
Plains and EUS (Kupfer et al., 2020; Chen et al., 2023).
Process-based models tend to better describe the responses
of fuel load and combustibility to climate than the responses
of fire ignition and suppression to human activities (Hantson
et al., 2016).

4 Discussion and conclusion

4.1 Overview of the hybrid framework

This study introduces a hybrid framework integrating an XG-
Boost wildfire model into an Earth system model (ELM-
BGC), resulting in ELM2.1-XGBfire1.0. Both offline and
coupled versions of the ML model were evaluated against
observations and compared to eight state-of-the-art process-
based models. The offline-XGB model significantly reduces
burned area biases, particularly in the WUS, while the
ELM2.1-XGBfire1.0 model retains the spatial and tempo-
ral accuracies with slightly reduced performance. In regions
such as the Great Plains and EUS, where human activities
are major influences, offline-XGB and ELM2.1-XGBfire1.0
outperform all process-based models.

4.2 Challenges and insights for process-based models

We acknowledge that the simulation biases in process-based
models may come from multiple sources. All ISIMIP3a fire
models were driven by daily GSWP3-W5E5 forcings at a

0.5° spatial resolution. Differences in forcing data could lead
to variations in burned area predictions. However, given that
both ELM-BGC and ELM2.1-XGBfire1.0 are driven by the
same set of forcings yet produce markedly different burned
area predictions, we suggest that limitations in physical un-
derstanding may play a dominant role in hindering the per-
formance of the process-based model. By contrast, the ML
model incorporates the crop PFT fraction and is trained with
data that include agricultural burning, allowing it to capture
burning patterns that are often missing or underrepresented
in process-based models. Meanwhile, all process-based fire
models used in this study have used GFED4s or an earlier
versions as a reference for calibration. GFED5 captures sig-
nificantly more small fires compared to GFED4s, making the
CONUS annual burned area increase by 156 %, with crop
fire increasing by 240 % (Chen et al., 2023). The inclusion of
crop fires is particularly impactful in the CONUS.

The process-based fire models used in this study differ
in both fire models and DGVMs. VISIT, JULES, and LPJ-
GUESS-SIMFIRE-BLAZE employ the semi-empirical fire
models (Thonicke et al., 2001; Pechony and Shindell, 2009;
Knorr et al., 2014), in which burned area is calculated with-
out an explicit rate-of-spread model (Hantson et al., 2016).
The CLM-Li fire model (Li et al., 2012), a fire model of
intermediate complexity, is incorporated into both ELM-
BGC and SSiB4-TRIFFID-Fire and partially used in CLAS-
SIC (Melton and Arora, 2016). Consequently, similar perfor-
mance is observed among these models, although CLASSIC
tends to exhibit a larger overestimation. The highly complex
SPITFIRE model (Thonicke et al., 2010) provides a more
comprehensive description of fire behavior (e.g., fire dura-
tion and flame height) and is coupled with ORCHIDEE and
LPJ-GUESS to describe the fire impact depending on plant
traits (bark thickness and crown height). Although SPITFIRE
provides more comprehensive description of fire, it does not
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Figure 8. Monthly correlation coefficient between simulations and GFED5 over each ecoregion.

outperform other fire models with regard to burned area sim-
ulation (Hantson et al., 2020).

With more sophisticated parameterization and fire param-
eters introduced, more observational analyses are required
to understand the mechanism behind and to constrain the
parametric uncertainty. The fire–vegetation feedback further
complicates this problem, with more complex dynamic veg-
etation models being slow to reach equilibrium after dis-
turbances. The choice of prescribed or dynamic vegetation
could also play a role; note that among all the process-based
models, CLASSIC, VISIT, and ELM used prescribed vege-
tation, while all others used dynamic vegetation. It is note-
worthy that parameters involved in wildfire prediction are
calibrated to align with the research interests of the insti-
tutes developing and managing these models. Advancing the
physical understanding of wildfire processes for the CONUS
and fine-tuning model parameters towards the new burned
area dataset hold the potential to improve model performance
(Huang et al., 2020).

4.3 Impact on carbon dynamics and broader
application

Although ELM2.1-XGBfire1.0 significantly improves the
simulation of burned areas, its impact on terrestrial car-
bon fluxes remains limited. Within the CONUS, fires pri-
marily affect the terrestrial carbon cycle at localized scales
due to the relatively small burned areas. ELM-BGC, for in-
stance, underestimates gross primary production (GPP) by

approximately 30 % (figure not shown). With more accu-
rate fire predictions, ELM2.1-XGBfire1.0 helps to slightly
reduce this negative bias (less than 1 %). Additionally, while
ELM-BGC using prescribed PFT distributions can suppress
the effects of fires on the ecosystem, it does not account for
fire-induced shifts in vegetation species, where species with
greater resistance or fire-adaptive traits may gradually domi-
nate. Nonetheless, the coupling remains valuable, especially
when the model is configured at higher resolutions. It is par-
ticularly important for evaluating fire-induced tree mortality,
post-fire recovery, and fire emissions and their subsequent
impacts on air quality, cloud formation, and surface meteo-
rology, particularly when ELM is run as part of the E3SM.

The development and application of ML4Fire-XGB repre-
sent a significant step forward in our ability to model wildfire
dynamics in regions with complicated interactions between
fires, ecosystems, climate, and human activities, bypassing
the explicit understanding of physical processes. By incor-
porating an ML wildfire model into a land surface model,
we address the critical need for enhanced predictive capabil-
ities at subseasonal to seasonal scales. Meanwhile, the pre-
dictability can adapt to the evolving nature of fire regimes
under climate change. This research not only contributes to
the scientific community’s understanding of fire–ecosystem–
climate interactions but also provides a practical tool for pol-
icymakers and resource managers engaged in wildfire pre-
paredness and response.
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Code and data availability. Data and scripts used to generate re-
sults in this study are publicly available at the Pacific North-
west National Laboratory (PNNL) DataHub (https://doi.org/10.
25584/2424127, DataHub, 2020). The Fortran–Python interface
(ML4ESM) for developing ML parameterizations is archived
at https://doi.org/10.5281/zenodo.11005103 (Zhang, 2024). The
E3SM v2.1 (including ELM v2.1) is available at https://doi.org/
10.11578/E3SM/dc.20230110.5 (E3SM Project, 2023) and https:
//github.com/E3SM-Project/E3SM/releases/tag/v2.1.0 (last access:
20 June 2024). The modified ELM v2.1 (including the XG-
Boost ML fire model) is available at https://doi.org/10.5281/zenodo.
13358187 (Liu, 2024).
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